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Abstract
Speech dysfluency modeling is the bottleneck001
for both speech therapy and language learning.002
However, there is no AI solution to systemat-003
ically tackle this problem. We first propose004
to define the concept of dysfluent speech and005
dysfluent speech modeling. We then present Hi-006
erarchical Unconstrained Dysfluency Modeling007
(H-UDM) approach that addresses both dysflu-008
ency transcription and detection to eliminate009
the need for extensive manual annotation. Fur-010
thermore, we introduce a simulated dysfluent011
dataset called VCTK++ to enhance the capabil-012
ities of H-UDM in phonetic transcription. Our013
experimental results demonstrate the effective-014
ness and robustness of our proposed methods015
in both transcription and detection tasks.016

1 Introduction017

Spoken language dysfluency modeling is the core018

technology in speech therapy and language learn-019

ing. According to NIDCD (2016), an estimated020

17.9 million adults and 1.4 percent of children in021

the U.S. suffer from chronic communication and022

speech disorders. Currently, hospitals have to in-023

vest substantial resources in hiring speech and lan-024

guage pathologists (SLPs) to manually analyze and025

provide feedback. More importantly, the cost is not026

affordable for low-income families. Kids’ speech027

disorders also have a significant connection to the028

language learning market. According to a report029

by VCL (2021), the English language learning mar-030

ket will reach an estimated value of 54.8 billion by031

2025. Unfortunately, there is not an AI tool that032

can effectively automate this problem.033

In current research community, there is not a034

unified definition for dysfluent speech. As such,035

we first propose to define dysfluent speech as any036

form of speech characterized by abnormal pat-037

terns such as repetition, prolongation, replacement,038

and irregular pauses. Dysfluencies can happen ei-039

ther in speech disorders such as stuttering, apha-040

sia (Brady et al., 2016), and dyslexia (Snowling041

and Stackhouse, 2013), or in normal conversational 042

speech (Pitt et al., 2005), where individuals may ex- 043

perience hesitations while speaking. Within the do- 044

main of dysfluent speech modeling, research efforts 045

are conducted both on the speech side and the lan- 046

guage side. Whenever dysfluent speech transcrip- 047

tion is given(such as human transcription in Figure 048

1), the problem can be tackled by LLMs (ChatGPT, 049

2022). However, such transcription is not available 050

and current best ASR systems such as Radford et al. 051

(2023) tend to recognize them as perfect speech. 052

Thus, we argue that the bottleneck lies in the speech 053

side rather than in language. 054

Unfortunately, there is also no established defini- 055

tion for the problem of speech dysfluency modeling. 056

We first propose to define that speech dysfluency 057

modeling is to detect all types of dysfluencies at 058

both the word and phoneme levels while also pro- 059

viding a time-stamp for each type of dysfluency. 060

In other words, dysfluency modeling should be hi- 061

erarchical and time-accurate. Previous research 062

has mainly focused on addressing a small aspect 063

of this problem and can be broadly categorized as 064

transcription and detection. 065

Current state-of-the-art word transcription mod- 066

els (Radford et al., 2023; Zhang et al., 2023; Pratap 067

et al., 2023; Aghajanyan et al., 2023) can only 068

transcribe certain obvious word-level dysfluency 069

patterns, such as word repetition or replacement. 070

However, the majority of dysfluencies occur at 071

the phoneme-level or subword-level, making them 072

challenging for any ASR system to explicitly detect. 073

As time-accurate detection is required, phonetic 074

alignment might be a better representation to cap- 075

ture various dysfluency types. Another requirement 076

is that phonetic alignment should be sensitive to 077

silences as it might indicate a block or poor breath- 078

speech coordination. Kouzelis et al. (2023) recently 079

proposed a time-accurate and silence-aware neural 080

forced aligner, where a weighted finite-state trans- 081

ducer (WFST) is introduced for modeling dysflu- 082
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Figure 1: Hierarchical Unconstrained Dysfluency Modeling(H-UDM) consists of Transcription module and
Detection module. Both word-level and phoneme-level dysfluencies are detected and localized. Here is an example
of aphasia speech. The reference text is "You wish to know all about my grandfather," while the real/human
transcription differs significantly from the reference. Whisper (Radford et al., 2023) recognizes it as perfect speech,
while H-UDM is able to capture most of the dysfluency patterns. An audio sample of this can be found here1.

ency patterns such as repetition. However, this ap-083

proach assumes there is minimal deviation between084

the reference and "real" transcribed text. In real-085

life dysfluent speech, such as the example shown086

in Figure 1, this assumption may not hold true.087

Research on speech dysfluency detection has088

traditionally been conducted independently of tran-089

scription and has recently been dominated by end-090

to-end methods. These approaches typically focus091

on either utterance-level detection (Kourkounakis092

et al., 2021; Alharbi et al., 2017, 2020; Jouaiti093

and Dautenhahn, 2022), or frame-level detection094

(Harvill et al., 2022; Shonibare et al., 2022). How-095

ever, these studies primarily address data-driven096

classification problems and do not explicitly incor-097

porate dysfluency transcription into their detection098

methods. More importantly, speech dysfluency de-099

tection must be dependent of text. For example, if100

the reference text is "you wish you wish" and we101

read that text, there is no dysfluency (stuttering).102

This crucial aspect has been ignored in all of the103

previous work. A unified framework that integrates104

transcription and detection is essential to develop a105

robust dysfluency modeling system.106

In this study, we propose an Hierarchical Un-107

constrained Dysfluency Modeling (H-UDM) ap-108

proach that integrates dysfluent speech transcrip-109

tion and detection in an automatic manner with110

no human effort. It is unconstrained because real 111

transcription for dysfluent speech is unknown (as 112

shown in the "Human Transcription" in Figure 1, 113

which is largely different from reference text). In 114

transcription module, we first introduce Uncon- 115

strained Recursive Forced Aligner (URFA) to it- 116

eratively generate phoneme alignment (1D) and 117

2D-Alignment with weak text supervision. We 118

also propose a Text Refresher that leverages the 119

2D-Alignment from URFA to refine the state-of- 120

the-art Whisper (Radford et al., 2023) transcription. 121

In detection module, we pre-define 2D alignments 122

for 5 types of phoneme-level dysfluencies (missing, 123

insertion, replacement, repetition, irregular pause) 124

and 4 types of word-level dysfluencies (missing, 125

insertion, replacement, repetition). We then sim- 126

ply perform the template matching between these 127

templates and the 2D-Alignment from URFA to 128

generate time-accurate detection results. The en- 129

tire pipeline is shown in Fig 1. To further enhance 130

performance, we curate a dysfluent dataset called 131

VCTK++ to boost the capacity of URFA. Experi- 132

mental results demonstrate the effectiveness of our 133

proposed framework in both dysfluent speech tran- 134

scription and dysfluency pattern detection. 135

1Fig.1 Audio samples. (1) Aphasia Speech Sample:
https://shorturl.at/eTWY1. (2) Template speech
samples: https://shorturl.at/bszVX
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Figure 2: Unconstrained Recursive Forced Aligner consists of three basic modules: UFA, 2D alignment Search,
Smoothed Re-segmentation. In the first iteration (Zero-order), the entire utterance is taken and 2D alignment is
generated. Starting at 2nd iteration (1st-order), the dysfluent speech is segmented at word level and each segment is
processed separately and then combined to generate the final 2D alignment for detection.

2 Transcription Module136

Our transcription module consists of two core parts:137

(1) Unconstrained Recursive Forced Aligner, which138

generates phonetic transcriptions (2D-Alignment),139

and (2) Text Refresher which takes both Whisper140

output and 2D-Alignment to generate word tran-141

scription, as shown in Fig. 1.142

2.1 Unconstrained Recursive Forced Aligner143

The bottleneck for dysfluent speech alignment is144

that the real text transcription is unknown, which145

is significantly different from the reference text, as146

shown in Fig. 1. However, dysfluency detection147

relies on the reference text. Traditional speech-text148

aligners (McAuliffe et al., 2017; Kim et al., 2021;149

Li et al., 2022) assume that the reference text is150

the same as the real text transcription, and thus151

they only work for normal fluent speech. Let’s152

look at a simple example. If the reference text153

is "Y UW W IH SH (You Wish)" and the actual154

speech (real text transcription) is "Y UW W IH W155

IH SH (You Wi-Wish)," then the alignment from156

traditional aligners will all be "Y UW W IH SH"157

as monotonicity is enforced, which is not accu-158

rate. For dysfluent speech detection, deriving non-159

monotonic speech-text alignment is required, and160

this is achieved through the Unconstrained Forced161

Aligner (UFA). As dysfluency detection depends on162

the reference text, we also introduce 2D-Alignment163

to align the non-monotonic phoneme alignment164

with the reference text. Additionally, we deploy165

our alignment methods recursively, re-segmenting166

the utterance based on the 2D-Alignment to refine167

2D-Alignment itself. The entire paradigm is illus- 168

trated in Fig. 2. Each sub-module is detailed in the 169

following. 170

2.1.1 UFA 171

Unconstrained forced aligner (UFA) predicts align- 172

ment with weak text supervision. The speech seg- 173

ment is passed into WavLM (Chen et al., 2022) 174

encoder which generates latent representations. A 175

conformer module (Gulati et al., 2020) is followed 176

to predict both alignment and boundary informa- 177

tion. The alignment and boundary targets used in 178

UFA are derived from the Montreal Forced Aligner 179

(MFA) (McAuliffe et al., 2017). During the infer- 180

ence stage, there is no need for text input, making 181

the alignment process unconstrained.Two linear 182

layers are simply applied as phoneme classifier and 183

boundary predictor. For the phoneme classifier, 184

UFA optimizes the softmax cross-entropy objec- 185

tive, while logistic regression is utilized for bound- 186

ary prediction. Specifically, it predicts floating 187

numbers between 0 (non-boundary) and 1 (bound- 188

ary). We experimentally found that introducing 189

an additional CTC (Graves et al., 2006) constraint 190

(monotonicity) can enhance the robustness of our 191

non-monotonic alignment. Note that CTC is in- 192

volved only in training stage. See Appendix A for 193

model details. 194

Dynamic Alignment Search For the inference 195

of dysfluent speech, real text transcription is of- 196

ten not achievable, as discussed Sec. 2.1. Con- 197

sequently, alignment should be decoded without 198

text supervision. We propose a boundary-aware 199
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dynamic alignment search algorithm, which is the200

extension of Viterbi algorithm while there are two201

new updates. Firstly, instead of traversing along the202

monotonic target sequence, we conduct our search203

across all possible phonemes in the subsequent time204

step. Secondly, we must consider that the transition205

probability should be influenced by the boundary206

information. The intuition is that the transitions207

between consecutive phonemes near the boundary208

should be assigned lower importance to mitigate209

the risk of phoneme omissions. For instance, con-210

sider the correct alignment as SIL SIL SIL Y Y Y.211

In some cases, when the predicted probability for212

"Y" is low, there is a possibility that the prediction213

of "Y" might be overlooked due to the higher self-214

transition probability of SIL. Consequently, the215

final prediction could erroneously become SIL SIL216

SIL SIL SIL SIL. The bi-gram phoneme language217

model is derived by applying maximum likelihood218

estimation to the VCTK (Yamagishi et al., 2019)219

forced alignment obtained from MFA (McAuliffe220

et al., 2017). Details of the search algorithm are221

outlined in Algorithm 1 in appendix.222

2.1.2 2D-Alignment Modeling223

As dysfluency detection depends in reference text,224

we are going to align the phoneme alignment from225

UFA to reference text, named 2D-Alignment. We226

extract the phoneme center embeddings from the227

phoneme classifier in the Unconstrained Forced228

Aligner (UFA) (Fig. 4). By obtaining the phoneme229

embedding sequences for both the reference text230

and the forced alignment, we compute the dot prod-231

uct between these sequences. As a result, we gen-232

erate a 2D similarity matrix that serves as the align-233

ment representation. In the forced alignment, each234

phoneme may align with multiple occurrences of235

the same phoneme in the reference text, partic-236

ularly when the reference text contains repeated237

phonemes. For instance, in the phrase "Please call238

Stella" represented as "P L IY Z K AO L S T EH239

L AH," each occurrence of "L" in the forced align-240

ment aligns with all three "L" phonemes in the241

reference text. To ensure that only one phoneme242

in the reference aligns with the current phoneme243

in the forced alignment, we develop 2D-Alignment244

Search, which adopts Viterbi Algoithm, on the 2D245

similarity matrix. This process yields the final 2D246

alignment, which is primarily monotonic. As illus-247

trated in Figure 1 and Figure 3, the alignment-2d248

is visualized through green plots, highlighting the249

relationship between the forced alignment and the250

reference text. In addition to Alignment-2d, we also 251

require a ground truth 2D-Alignment, which repre- 252

sents the expected alignment between the forced 253

alignment of nearly perfect speech and the refer- 254

ence text. This ground truth alignment is strictly 255

monotonic. To obtain it, we apply Dynamic Time 256

Warping (DTW) between the forced alignment and 257

the reference text, resulting in the alignment rep- 258

resented by the red plots in Fig. 1 and Fig. 3. We 259

denote this as 2D-Alignment-DTW, which is used 260

in detection stage only.

2D-Alignment  Search Smoothed Re-segmentation

Forced Alignment

Ref Text
UFA

For Detection!

2D-Alignment 2D-Alignment-DTW

For Next Iteration!

Figure 3: 2D-Alignment Modeling

261
Smoothed Re-segmentation and Recursive 262

Alignment The generation of non-monotonic 263

alignment inherently introduces variances that can 264

lead to misdetection. To address this issue, we 265

propose segmenting the dysfluent speech by word 266

boundaries and generating alignment for each seg- 267

ment, potentially mitigating the problem. For in- 268

stance, consider the case illustrated in Fig. 1 and 269

Fig. 2, where the sequence [AO L Pause AH B] 270

actually corresponds to the word "all." Another 271

source of variance arises when individuals utter 272

sequences like "AH, AO, AY," which may indi- 273

cate the repetition of the phoneme "AH." However, 274

our 2D alignment treats them as distinct phonemes, 275

failing to detect the repetition, which poses a signif- 276

icant challenge. To tackle this issue, we introduce 277

a phoneme smoothing technique. Specifically, at 278

each time step, we calculate the cosine similarity of 279

phoneme embeddings for both 2D-Alignment and 280

2D-Alignment-DTW. If the similarity falls within a 281

predefined threshold, we merge the 2D-Alignment 282

into 2D-Alignment-DTW, as demonstrated in the 283

final figure of Fig. 3. This process yields a mono- 284

tonic 2D alignment, allowing us to identify word 285

boundaries by simply locating each word along the 286

"ref text" axis. These segmented results serve as 287

input for 1st-order Unconstrained Forced Aligner 288

(URFA), as depicted in Fig. 2. In 1st-order URFA, 289
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we compute a 2D-Alignment for each segment and290

subsequently concatenate them. This iterative ap-291

proach can be extended to 2nd-order URFA, 3rd-292

order URFA, and beyond. It is important to note293

that the smoothed monotonic 2D-Alignment is ex-294

clusively used for segmentation purposes, while295

the original non-monotonic 2D-Alignment remains296

in use for detection. This recursive aligner yields297

improved word boundary detection, as exempli-298

fied in Fig. 2, where the boundaries obtained in299

1st-order alignment outperform those of zero-order300

alignment in capturing dysfluencies.301

2.2 Text-Refresher302

State-of-the-art ASR models (Radford et al., 2023;303

Zhang et al., 2023; ?) are commonly trained using304

a robust language model constraint, ensuring a high305

level of accuracy in transcribing dysfluent or dis-306

ordered speech, thereby generating nearly perfect307

transcriptions. However, to perform word-level308

dysfluency analysis, it is necessary to introduce309

imperfections. In this study, we propose Text Re-310

fresher to achieve this objective.311

First, we obtain a perfect transcription using312

Whisper-large (Radford et al., 2023). We then ob-313

tain its corresponding phoneme transcription us-314

ing CMU dictionary (cmu). Subsequently, in Text315

Refresher, we perform Dynamic Time Warping316

(DTW) between the phoneme transcription of the317

Whisper output and the output of the Unsupervised318

Forced Aligner (UFA). Our primary focus is on319

identifying insertions and deletions. If a word320

(represented as a phoneme sequence) in the Whis-321

per output does not align with the correct word322

(phoneme sequence) in the UFA output, we remove323

that word. For example, in the case illustrated in324

Figure 1, the word "to" is deleted. On the other325

hand, if a word (phoneme sequence) in the UFA326

output does not align with any word (phoneme327

sequence) in the Whisper output, we insert that328

word. Our observations indicate that in real-life329

dysfluent speech such as Aphasia speech, most330

word-level imperfections that Whisper cannot tran-331

scribe are primarily from deletions or insertions. It332

is important to note that URFA also generates word333

transcriptions. However, based on our findings, it334

exhibits inferior performance in word-level dysflu-335

ency detection compared to text-refresher. There-336

fore, we have opted to employ URFA exclusively337

for phonetic-level dysfluency detection.338

2.3 Transcription Module Evaluation 339

2.3.1 Phonetic Transcription 340

In order to evaluate how accurately the speech is 341

transcribed at the frame level, we report Micro 342

F1 Score and Macro F1 Score (sklearn F1) of 343

phoneme transcription. Note that our F1 scores 344

evaluate how many phonemes are correctly pre- 345

dicted. This is different from (Strgar and Har- 346

wath, 2023) which evaluates how many time steps 347

are correctly predicted as phonetic boundaries. In 348

order to evaluate the phoneme segmentation per- 349

formance within our methods, in additional to 350

phoneme error rate (PER), we also propose the 351

duration-aware phoneme error rate (dPER). dPER 352

extends Phoneme Error Rate (PER) by weighing 353

each operation (substitution, insertion, deletion) 354

with its duration. See appendix A for details. 355

2.3.2 Imperfect Word Transcription 356

In contrast to conventional ASR tasks, evaluating 357

the performance in word-level dysfluency analysis 358

requires the utilization of imperfect word targets. 359

In this study, we employ manual word annotation 360

of disordered speech (Aphasia, Dyslexia) as the tar- 361

get reference and report the imperfect Word Error 362

Rate (iWER). To evaluate the word segmentation, 363

we calculate the Intersection over Union (IoU) be- 364

tween our predicted time boundaries from URFA 365

and the ground truth boundaries from human anno- 366

tations. If the IoU is greater than 0.5, the dysflu- 367

ency is identified as detected. We also report the 368

F1 score for this matching evaluation, referred to 369

as the Matching Score (MS). 370

3 Detection Module 371

We develop rule-based methods for detecting time- 372

accurate phonetic-level dysfluencies, including 373

Phonetic Errors (Missing, Deletion, Replacement), 374

Repetition, and Irregular Pause. Our methods also 375

cover word-level dysfluencies, including Missing, 376

Insertion, Replacement, and Repetition. 377

3.1 Phonetic-Level Dysfluency Detection 378

Finally, the detection of phonetic dysfluency be- 379

comes straightforward with the availability of the 380

alignment-2D and alignment-2D-DTW. As illus- 381

trated in Figure 1-Template, in the case of nor- 382

mal speech, these two alignments align perfectly 383

with each other. However, if there is a significant 384

decrease in the alignment-2D-DTW while lack- 385

ing any intersection in the corresponding row, it 386
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indicates a missing phoneme, as depicted in Fig387

1-Template-(b). If a row in alignment-2D-DTW388

encounters multiple columns in alignment-2D, and389

there are repeated phonemes present, it indicates a390

repetition. This is depicted in Figure 1-template-391

(d). Conversely, if a row in alignment-2D-DTW al-392

ready aligns with alignment-2D and simultaneously393

aligns with the surrounding column in alignment-394

2D, it signifies an insertion. This is illustrated395

in Figure 1-template(c). If a row in alignment-396

2D-DTW does not overlap with any horizontal re-397

gions in alignment-2D, but only overlaps with a398

single vertical block in alignment-2D, it is recog-399

nized as a replacement. This is depicted in Fig-400

ure 1-template(e). Lastly, any pauses occurring401

within a complete sentence are identified as irreg-402

ular pauses, as shown in Figure 1-template(f). It403

should be noted that within this rule-based detec-404

tion framework, the precise timing of all five types405

of dysfluencies can be accurately identified with a406

resolution of 20ms.407

3.2 Word-level Dysfluency Detection408

We address missing, insertion, replacement, and409

repetition as part of our word-level dysfluency de-410

tection. To detect word-level dysfluency, we follow411

a similar methodology as phonetic-level dysfluency412

detection, which involves obtaining 2D-Alignment413

and 2D-Alignment-DTW. However, in the case414

of word-level dysfluency, we do not utilize word415

embeddings. Instead, we employ perfect matching416

between the words in the reference and predicted417

texts, without the need for embedding dot product418

calculations. Duration, including silence, is not419

taken into account in this particular analysis as it is420

already incorporated in the phonetic component.421

3.3 Dysfluency Evaluation422

We conduct dysfluency evaluation on segments of423

Aphasia speech. In each Aphasia speech segment,424

manual annotations are made for all types of dys-425

fluencies, including their accurate timing. For the426

evaluation of phonetic-level dysfluency, we report427

the F1 score (Micro and Macro) for dysfluency428

type identification. Additionally, we measure the429

accuracy of dysfluency detection in terms of time430

alignment. We apply Matching Score (MS), as de-431

fined in Sec. 2.3.2. For the evaluation of word-level432

dysfluency, we simply report the F1 score (Micro433

and Macro) without considering the timing aspects.434

4 Experiments 435

4.1 Datasets and Pre-processing 436

VCTK (Yamagishi et al., 2019) It is a multi- 437

speaker accented corpus containing 44 hours of 438

fluent speech. We randomly select 90% of speakers 439

as training set and the remaining as dev set. VCTK 440

is used to train UFA. 441

VCTK++ For each waveform in VCTK and its 442

forced alignment (from MFA (McAuliffe et al., 443

2017)), we applied simulations regarding the fol- 444

lowing stutter types. (i) Repetitions: Phonemes 445

are randomly sampled within the waveform, ap- 446

pended by a variable-length sample of silence. 447

(ii) Prolongations: Phonemes are randomly se- 448

lected. The sound sample containing the phoneme 449

is then stretched by a random factor. (iii) Blocks: 450

Phonemes are selected from a list of commonly 451

blocked sounds, such as consonants. With each 452

simulation, we maintain the alignments such that 453

the phoneme timestamps line up with the individ- 454

ual stutters. See Appendix A for details. VCTK++ 455

is used to train UFA. 456

Buckeye (Pitt et al., 2005) It contains over 40 457

hours of recordings from 40 speakers of American 458

English. The corpus contains quite a few portions 459

of dysfluent speech with time-accurate annotation. 460

We follow (Strgar and Harwath, 2023) to make the 461

train/test split. Buckeye is used for training UFA 462

and for Phonetic Transcription Evaluation. 463

Disorded Speech From our clinical collabora- 464

tors, our dysfluent data comprises ten participants 465

diagnosed with Aphasia and three kids suffering 466

from Dyslexia. It consists of audio recordings cap- 467

turing interactions between patients and speech- 468

language pathologists (SLPs). Our primary focus 469

lies in the audio input of patients reading the Grand- 470

father passage, resulting in approximately 20 min- 471

utes of speech data. The disordered speech dataset 472

is employed for the evaluation of Imperfect Word 473

Transcription and Dysfluency Detection. 474

4.2 Phonetic Transcription Experiments 475

We train UFA using three types of data: VCTK 476

only, VCTK+Buckeye, and VCTK++. Addition- 477

ally, we conduct an ablation study to examine 478

the impact of the boundary-aware constraint in 479

the dynamic search algorithm. This is achieved 480

by removing the constraint from the search algo- 481

rithm. Furthermore, we investigate two alternative 482
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Method WavLM Size Training Data Micro F1 (%, ↑) Macro F1 (%, ↑) dPER (%, ↓) PER (%, ↓) Micro F1 (%, ↑) Macro F1 (%, ↑) dPER (%, ↓) PER (%, ↓)

Buckeye Test Set VCTK++ Test Set
WavLM-CTC-VAD Large None 50.1 47.3 86.9 12.0 48.8 45.7 88.0 8.2
WavLM-CTC-MFA Large None 49.8 28.7 53.9 12.0 47.6 26.0 54.2 8.2
UFA Base VCTK 68.9 55.6 53.3 15.0 78.8 59.5 53.4 11.0
UFA Base VCTK+Buckeye 65.9 51.6 63.6 16.3 75.2 56.0 60.0 11.8
UFA Large VCTK+Buckeye 70.3 55.0 46.2 13.3 80.7 66.4 45.8 11.0
UFA Large VCTK 71.3 60.0 46.0 11.9 81.7 72.0 44.0 10.5

– Boundary-aware Large VCTK 68.9 52.0 49.9 12.8 78.4 62.9 47.8 10.7
+ CTC Large VCTK 68.9 52.0 49.9 10.2 78.4 62.9 47.8 7.8

UFA Large VCTK++ 73.5 64.0 41.0 11.5 93.6 90.8 38.0 9.2
– Boundary-aware Large VCTK++ 71.0 63.7 44.3 12.2 91.1 90.0 42.1 9.6
+ CTC Large VCTK++ 77.2 68.7 40.3 9.5 92.0 90.9 39.8 6.4

Table 1: Phonetic Transcription Evaluation

forced aligners for comparison purposes: WavLM-483

CTC-VAD and WavLM-CTC-MFA. In WavLM-484

CTC-VAD, we combine the CTC phoneme align-485

ment (Kürzinger et al., 2020) obtained from486

WavLM-CTC (HugginFace-WavLM, 2022) with487

Voice Activity Detection (VAD) segmentation. By488

assigning blank tokens and incorporating silence489

segments identified using online Silero VAD (Team,490

2021), we obtain a silence-aware transcription.491

In WavLM-CTC-MFA, we employ the Montreal492

Forced Aligner (MFA) (McAuliffe et al., 2017)493

to derive silence-aware phoneme alignment. We494

utilize WavLM-CTC (HugginFace-WavLM, 2022)495

to generate the initial phoneme transcription, A496

pronunciation dictionary maps phonemes (as word-497

level items) to phonemes (as phonemic pronun-498

ciation breakdowns). Details can be checked in499

Appendix A. It is worth noting that UFA remains500

constant throughout the recursive process. There-501

fore, our evaluation focuses solely on the alignment502

produced by UFA rather than that of URFA, as the503

latter is directly proportional to the former. Pho-504

netic transcription results are shown in Table. 1.505

4.3 Imperfect Word Transcription506

Experiments507

iWER(%, ↓)
URFA Config Zero-order 1st-order 2nd-order 3rd-order
Whisper-Large 11.3 - - -
+Text Refresher 9.7 9.4 9.2 9.2

+VCTK++ 9.2 9.0 8.7 8.7
+CTC 8.8 8.6 8.4 8.4

Table 2: Word Transcription Evaluation

We utilize Whisper (Radford et al., 2023) as our508

baseline. We begin by presenting the results ob-509

tained directly from Whisper-large. Subsequently,510

we employ Text Refresher to refine the Whis-511

per transcription and report the updated results.512

By default, Text Refresher incorporates the UFA-513

WavLM-Large-VCTK alignment. Additionally, for514

ablation purposes, we consider the UFA-WavLM-515

Large-VCTK++ alignment as input, which demon- 516

strated superior performance as indicated in Ta- 517

ble 1. We also provide a report on various iter- 518

ations of URFA, including zero-order, 1st-order, 519

2nd-order, and 3rd-order. The comprehensive tran- 520

scription results are presented in Table 2.We subse- 521

quently select the optimal configuration from Table 522

2 and present the performance of word segmenta- 523

tion. As a baseline, we employ WhisperX (Bain 524

et al., 2023), which reports the timing information 525

for each word. The results are detailed in Table 3.

MS(%, ↑)
URFA Config Zero-order 1st-order 2nd-order 3rd-order
Whisper-X 42.1 - - -
Ours 77.4 79.4 81.2 81.4

Table 3: Word Segmentation Evaluation

526

4.4 Dysfluency Detection 527

The preliminary experiments presented in Table 1 528

indicate that both WavLM-CTC-VAD and WavLM- 529

CTC-MFA do not exhibit significant improvements 530

in phonetic transcription performance. Further- 531

more, the joint training of the VCTK and Buckeye 532

corpora does not enhance the overall performance. 533

Hence, we restrict our evaluation to two variants of 534

the Unconstrained Forced Aligner (UFA): UFA- 535

WavLM-Large-VCTK and UFA-WavLM-Large- 536

VCTK++. To assess the efficacy of our rule-based 537

detection algorithm, we also perform manual detec- 538

tion using the predicted alignment from URFA and 539

human-created targets. We also provide a report 540

on various iterations of URFA, including 1st-order, 541

2nd-order, and 3rd-order. The results are presented 542

in Table 4 and Table 5. MS is Matching Score, as 543

stated in Sec. 3.3. 544

4.5 Results and Discussion 545

4.5.1 Transcription Analysis 546

We begin by examining the phonetic transcription 547

results, as presented in Table 1. Both WavLM-CTC- 548
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VAD and WavLM-CTC-MFA demonstrate com-549

mendable zero-shot silence-aware phonetic tran-550

scription capabilities. However, their performance551

remains limited and is even inferior to the UFA552

trained with the WavLM base model. Interest-553

ingly, incorporating the Buckeye data during train-554

ing does not yield any performance improvement.555

We hypothesize that the presence of noise in the556

Buckeye corpus, being a dysfluent dataset itself,557

hinders performance. Additionally, including the558

LibriSpeech dataset in VCTK training does not559

lead to performance enhancement. This suggests560

that UFA has already reached a certain limit in561

terms of data scalability. Consequently, the sub-562

sequent ablations and dysfluency detection exper-563

iments are conducted solely using UFA-WavLM-564

Large-VCTK. During our ablation study, we con-565

sistently observed performance improvements by566

incorporating boundary prediction information in567

the dynamic alignment search, as described in Sec-568

tion 2.1.1. Moreover, our experiments on VCTK++569

consistently demonstrated enhanced performance570

compared to the original VCTK dataset, highlight-571

ing the robustness introduced by VCTK++. Ul-572

timately, the inclusion of CTC significantly en-573

hances performance across all metrics. In terms574

of word transcription results, as shown in Table575

2, we found that Whisper-Large exhibited the low-576

est performance due to its overpowering language577

modeling. However, with the introduction of Text578

Refresher and the incorporation of VCTK++ and579

CTC, we observed an improvement in the imper-580

fect Word Error Rate (iWER), further boosting the581

overall performance. It is noteworthy that the re-582

cursive updating of alignment has a notable impact583

on performance enhancement, with the 3rd-order584

iteration outperforming the 2nd-order, which, in585

turn, outperforms the 1st-order iteration. We re-586

frained from exploring additional iterations, as per-587

formance tends to approach saturation. This obser-588

vation aligns with the findings from Fig. 2, where,589

after the 1st-order URFA iteration, the detection of590

dysfluent word boundaries surpasses that achieved591

in the zero-order iteration. The conslusion also592

holds true for dysfluent word segmentation results,593

reported in Table. 3. We also provide more exam-594

ples in Appendix A to illustrate its effectiveness.595

4.5.2 Dysfluency Analysis596

Since there is no previous work on ierarchical597

(word/phoneme) and fine-grained (time-accurate)598

dysfluency detection models like ours, we con-599

URFA Settings F1 (%, ↑) MS (%, ↑) Human F1 (%, ↑) Human MS (%, ↑)

UFA-VCTK 62.4 55.2 90.4 85.6

UFA-VCTK++ 64.5 60.2 90.6 86.0

+1st-order 65.6 61.0 90.6 86.0

+2nd-order 67.0 62.7 90.6 86.0

+3rd-order 67.2 62.8 90.7 86.2

Table 4: Phonetic Dysfluency Detection Evaluation

ducted ablation experiments to compare our pro- 600

posed rule-based detection methods against our- 601

selves. The results, as shown in Table 4 and Table 602

5, indicate impressive performance in terms of F1 603

scores and matching scores (MS), demonstrating 604

the ability of our methods to accurately capture 605

most dysfluencies. In a consistent manner, the iter- 606

ative update of alignment significantly influences 607

the enhancement of performance for both word- 608

level and phoneme-level detection. However, it is 609

important to note that our methods still fall short 610

of human detection performance, highlighting their 611

inherent limitations. 612

Methods F1 (%, ↑) Human F1 (%, ↑)
Whisper-Large 64.0 86.4

+Text Refresher(VCTK) 66.8 88.0
+Text Refresher(VCTK++) 68.4 89.1

+1st-order 70.1 89.1
+2nd-order 73.0 89.3
+3rd-order 73.1 89.3

Table 5: Word Dysfluency Detection Evaluation

5 Conclusion and Limitations 613

We propose a hierarchical unconstrained dysflu- 614

ency modeling (H-UDM) approach that combines 615

transcription and detection, which has been proven 616

effective in both tasks. However, there are several 617

limitations that should be addressed in future re- 618

search. First, our detection experiments primarily 619

focus on disordered speech, which limits the gen- 620

eralizability. Future work should explore diverse 621

and open-domain dysfluent datasets, which may 622

lack manual annotations. Second, our approach re- 623

lies on phoneme-level forced alignment as the key 624

representation for detection. However, it is worth 625

investigating alternative speech units such as artic- 626

ulatory units (Lian et al., 2022; Wu et al., 2023), 627

to improve alignment modeling. Lastly, it is worth 628

exploring the application of LLM-guided speech 629

models (Gong et al., 2023) to advance dysfluency 630

modeling in a prompt manner, which remains an 631

open problem. 632
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A Appendix 796

UFA Unconstrained forced aligner (UFA) predicts alignment with weak text supervision. As shown 797

in Fig. 4, a speech segment is passed into WavLM (Chen et al., 2022) encoder which generates latent 798

representations. A conformer module (Gulati et al., 2020) is followed to predict both alignment and 799

boundary information. The alignment and boundary targets used in UFA are derived from the Montreal 800

Forced Aligner (MFA) (McAuliffe et al., 2017). During the inference stage, there is no need for text input, 801

making the alignment process unconstrained. The conformer module comprises of four conformer (Gulati 802

et al., 2020) encoder layers. The hidden size, number of attention heads, filter size, and dropout for each 803

conformer layer are [1024, 4, 5, 0.1], [1024, 8, 3, 0.1], [1024, 8, 3, 0.1], [1024, 4, 3, 0.1] respectively. Two 804

linear layers are simply applied as phoneme classifier and boundary predictor. For the phoneme classifier, 805

UFA optimizes the softmax cross-entropy objective, while logistic regression is utilized for boundary 806

prediction. Specifically, it predicts floating numbers between 0 (non-boundary) and 1 (boundary). 807

WavLM Encoder

/SIL/ /SIL/ /SIL/  /Y/  /K/  /Y/  /UW/

/SIL/ /SIL/ /SIL/  /Y/  /Y/  /Y/  /UW/

0.8   0.2   1.0   0.9   0.1  0.9  0.9

Unconstrained Forced Aligner (UFA)

Conformer Module

Dynamic Alignment Search

Phoneme
Classifier

Boundary
Prediction CTC

/Y/  /UW/Predicted Phoneme
Predicted Boundary

Predicted Alignment

Latent Embeddings

Figure 4: UFA Module

Dynamic Alignment Search We propose a boundary-aware dynamic alignment search algorithm, which 808

is the extension of Viterbi algorithm. Let us denote the phoneme logits as logits ∈ RB,T,D, the boundary 809

predictions as boundaries ∈ RB,T , and the bi-gram phoneme language model as transition_probs ∈ RD,D, 810

where (B, T,D) represents the batch size, time steps, and phoneme dictionary size, respectively. The 811

algorithm is presented as follows. 812

Algorithm 1 Boundary-Aware Dynamic Alignment Search
1: procedure DECODE(logits, boundaries, transitional_probs)
2: B, T,D ← shape of logits
3: Initialize trellis and backpointers
4: for t in range(1, T ) do
5: for d in range(D) do
6: trellis[:, t, d], backpointers[:, t, d]← MAX_ARGMAX(trellis[:, t − 1, :] + (1 − boundaries)[:, t] × transi-

tion_probs[d, :])
7: end for
8: end for
9: Derive best_path from trellis and backpointers

10: return best_path
11: end procedure

VCTK++ For each waveform in VCTK and its forced alignment (from MFA (McAuliffe et al., 2017)), 813

we applied simulations regarding the following stutter types. (i) Repetitions: Phonemes are randomly 814

11



sampled within the waveform, appended by a variable-length sample of silence, and inserted into the815

original sound file. The silence sample is set to vary between 200ms and 500ms in multiples of 20 to816

match the framerate of the phoneme alignments. (ii) Prolongations: Phonemes are randomly selected,817

excluding phonemes that cannot be reasonably prolonged, such as hard consonants or silence tokens. The818

sound sample containing the phoneme is then stretched by a random factor anywhere from 5x to 10x819

using Waveform Similarity Overlap-Add (WSOLA)(Verhelst and Roelands, 1993). The original phoneme820

is then replaced by the stretched variant in the waveform. (iii) Blocks: Phonemes are selected from a821

list of commonly blocked sounds, such as consonants or combinations of hard phonemes. With each822

simulation, we maintain the phoneme alignments such that the phoneme timestamps line up with the823

individual stutters, generating new alignments that act as ground truth for inference. See supplemental824

material for details. Here is an example of our augmented data. https://shorturl.at/xBFG7825

Phonetic Dictionary We remove stress-aware phoneme labels (e.g. AE0, AE1→AE). The phoneme826

dictionary adopted in this paper contains 39 monophones from CMU phoneme dictionary (cmu) along with827

one additional silence label. For Buckeye corpus, we manually translate the out-of-dictionary phonemes828

into CMU monophones. Here is the translation paradigm: AEN→AE N, EYN→EY N, IYN→IY829

N, TQ→T, IHN→IH N, OWN→OW N, NX→N, EHN→EH N, DX→T, EN→AH N, OYN→OY N,830

EM→EH M, ENG→EH NG, EL→EH L, AAN→AA N, AHN→AH N, AWN→AW N.831

Audio Segmentation For VCTK, we train on the entire utterance without segmentation. For Buckeye832

data, we follow (Strgar and Harwath, 2023) to segment the long utterance by the ground truth transcription.833

We make sure that the beginning and ending silence length would be no longer than 3s, resulting in the834

length of all segments ranging from 2s to 17s. Different from (Strgar and Harwath, 2023), we keep all835

silence labels but still remove the untranscriptable labels such as ’LAUGH’, ’IVER’, etc. For patient836

speech, we apply the online Silero VAD (Team, 2021) with a default threshold of 0.5 to make the segments.837

We keep all of the silences and this results in the length of all segments ranging from 2s to 15s. All audio838

samples have a sampling rate of 16K Hz.839

Human Data Annotation For all disordered speech (aphaisa and dylexia), our co-workers work together840

to manually label the dysfluencies: types of dysfluency and its time stamp at both word and phoneme level.841

As the dysfluency patterns are straightforward to observe, each utterance is labelled by only one person.842

dPER Definition Denote Ŝ, Î, D̂, Ĉ as the weighted value of substitutions, insertions, deletions, and843

correct samples. Denote pi and pj as the current two phonemes we are comparing in the reference sequence844

and prediction sequence respectively. Denote d(pi) and d(pj) as their durations (number of repetitions).845

Whatever the error type is detected, we propose the following updating rule: Ŝ → Ŝ + d(pi) + d(pj),846

Î → Î + d(pj), D̂ → D̂ + d(pi), Ĉ → Ĉ + |d(pi)− d(pj)|. The ultimate formula is:847

dPER = Ŝ+D̂+Î
Ŝ+D̂+Ĉ

(1)848

Phonetic Transcription Experiements Across all experiments, we utilize the same configuration849

settings, employing the Adam optimizer with an initial learning rate of 1e-3, which is decayed by 0.9850

at each step. Each model converges after approximately 30 epochs, as determined by achieving a 90%851

phoneme classification accuracy on the development set. Each set of experiment takes about 12 hours on852

one A6000 GPU.853

Configurations for two baseline forced aligner: WavLM-CTC-VAD and WavLM-CTC-MFA. In854

WavLM-CTC-VAD, we combine the CTC phoneme alignment (Kürzinger et al., 2020) obtained from855

WavLM-CTC (HugginFace-WavLM, 2022) with Voice Activity Detection (VAD) segmentation. By856

assigning blank tokens and incorporating silence segments identified using online Silero VAD (Team,857

2021), we obtain a silence-aware transcription. The VAD threshold is set to the default value of 0.5,858

and the minimum and maximum speech durations are defined as 250ms and infinity, respectively. In859

WavLM-CTC-MFA, we employ the Montreal Forced Aligner (MFA) (McAuliffe et al., 2017) to derive860

silence-aware phoneme alignment. We utilize WavLM-CTC (HugginFace-WavLM, 2022) to generate861
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the initial phoneme transcription, and we leverage a pre-trained English ARPA acoustic model. A pro- 862

nunciation dictionary maps phonemes (as word-level items) to phonemes (as phonemic pronunciation 863

breakdowns). The default beam size of 10 is applied for MFA. In the phoneme-to-phoneme dictionary, the 864

parameters for each phoneme mapping include a pronunciation probability of 0.99, a silence probability 865

of 0.05, and final silence and non-silence correction terms of 1.0. For both methods, no additional training 866

data is needed. 867

Word Segmentation Examples 868

GT denotes ground truth. Some samples might have multiple ground truths denoted as GT1, GT2, etc.

Figure 5: Segmentation-(Dyslexia Sample: Giving those who observe him)

869

Figure 6: Segmentation-(Dyslexia Sample: But he always answered banana oil.)
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Figure 7: Segmentation-(Dyslexia Sample: We have often urged him)

Figure 8: Segmentation-(Aphasia Sample: Usually several buttons missing.)

Figure 9: Segmentation-(My stutter sample: Please call stella.)
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