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Abstract

Foundation models have made rapid advances in many do-
mains including Earth observation, where Geospatial Foun-
dation Models (GFMs) can help address global challenges
such as climate change, agriculture, and disaster response.
Previous work on GFMs focused on tailoring model archi-
tecture and pre-text tasks, and did not investigate the impact
of pre-training data selection on model performance. How-
ever, recent works from other domains show that the pre-
training data distribution is an important factor influencing
the performance of the foundation models. With this motiva-
tion, our research explores how the geographic distribution of
pre-training data affects the performance of GFMs. We eval-
uated several pre-training data distributions by sampling dif-
ferent compositions from a global data pool. Our experiments
with two GFMs on downstream tasks indicate that balanced
and globally representative data compositions often outper-
form region-specific sampling, highlighting the importance
of diversity and global coverage in pre-training data. Our re-
sults suggest that the most appropriate data sampling tech-
nique may depend on the specific GFM architecture. These
findings will support the development of robust GFMs by in-
corporating quality pre-training data distributions, ultimately
improving machine learning solutions for Earth observation.

1 Introduction

Foundation models have proven to be powerful tools across a
wide variety of fields. These models have shown remarkable
potential by achieving promising results while reducing the
dependencies on labeled data. Researchers are increasingly
adapting foundation models in specialized domains, such as
health, law, physics, and geoscience by leveraging their abil-
ity to generalize from large datasets (Colombo et al. 2024;
Parmar et al. 2022; Cong et al. 2022).

In recent years, Geospatial Foundation Models (GFMs)
pre-trained on vast quantities of satellite data have been
developed for Earth observation (EO) applications. These
models can play a critical role in improving the performance
of tasks related to climate change, agriculture, oceanog-
raphy, forests, disaster response, and more (Jakubik et al.
2023; Tseng et al. 2023; Klemmer et al. 2023).
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There is a general perception in Al that more data will
help to improve the model’s performance (Sun et al. 2017,
Shi et al. 2024). Hence, most current efforts to build foun-
dation models usually pre-train on as much data as available
or computationally feasible. However, recent studies show
that dataset characteristics like diversity, spatial distribution,
and representivity can be more important than data quantity
to build robust ML models (Nguyen et al. 2022; Cole et al.
2022). This suggests that understanding the effects of pre-
training data distribution on model performance is crucial.

Although some studies have explored the relation be-
tween pre-training data distribution and downstream task
performance in computer vision (CV) for natural images
(Al Kader Hammoud et al. 2024; Fang et al. 2022; Long-
pre et al. 2024), there is a lack of studies of this type for
GFMs. To build GFMs, researchers use large remote sensing
datasets collected by satellites and aerial platforms. Given
the massive data volume available from EO satellites (e.g.,
from the Sentinel-2 satellites), it is essential to select pre-
training data in a way that benefits model performance but
also reduces the computational cost — e.g., by focusing on
data quality instead of quantity (Rolf et al. 2021).

Unlike standard CV datasets, which are generally static,
geospatial datasets are dynamic and available from multiple
time periods. Satellite data offers the unique advantage of
global coverage, allowing data to be sampled from any loca-
tion on Earth. However, we don’t know the answer to some
critical questions, such as “Is it crucial to have data from
all continents? Is it crucial to have data evenly represented
across biomes?”’

As a result, existing GFMs employ different strategies to
sample pre-training data, showing a lack of consensus on
a unified approach to sample pre-training data (details in
§2). Roscher et al. (2024) showed that most of the modeling
focus in the geospatial domain is currently paid to the pre-
training approach or model architecture. At the same time,
the composition of data chosen for pre-training is relatively
understudied, due to the assumption that training data size is
the dominant factor determining performance. In particular,
Manas et al. (2021) is the only study that compares model
performance with multiple data sampling strategies.

Motivated by these limitations, we investigated how dif-
ferent GFMs perform on downstream tasks when different
sampling techniques are used to curate pre-training data
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Figure 1: Our experimental pipeline to measure the impact of pre-training data distributions on downstream task performance.

(pipeline shown in Figure 1). We conducted experiments
on two GFMs by pre-training models on five different data
sampling strategies, referred as data compositions. These
strategies include random, stratified, and clustered sampling
techniques (see §3.3). We refer to sampling techniques that
ensure balanced or global data representation as balanced
sampling techniques, and those grouping samples by spatial
or environmental characteristics as clustered sampling. We
pre-trained the models on five different data compositions
and investigated how they affect the downstream task per-
formance disaggregated by continent (Figure 1). We com-
pared these results with a baseline of no pre-training. Our
main contributions are:

* We investigated the effect of different pre-training data
compositions on downstream tasks for GFMs. To the
best of the authors’ knowledge, this is the first study to
explore the impact of pre-training data distribution on
downstream task performance for GFMs.

* Our experimental results show that all balanced sampling
techniques yield approximately equal performance on
downstream tasks, and usually outperform models with
clustered pre-training data or no pre-training.

Overall, our observations highlight the importance of bal-
anced and representative data sampling strategies in pre-
training GFMs. We believe our findings will contribute to
the development of robust GFMs by incorporating quality
pre-training data that benefit downstream task performance.

2 Related Work

The relationship between pre-training data distribution and
its impact on downstream tasks is well-documented in the
CV literature (detailed discussion in Appendix A). However,
this relationship for GFMs has received limited attention.
Previous GFMs used heuristic measures of diversity to
decide where to sample pre-training data, with large differ-
ences from model to model. Presto developed a stratified
random sampling strategy across hemispheres, ecological
biomes, and land cover types (Tseng et al. 2023). MMEarth
sampled pre-training data uniformly across biomes and from
five years (Nedungadi et al. 2024). SatCLIP used a global
uniform at random sampling (Klemmer et al. 2023). SeCo,
SSL4EQO, and CROMA used pre-training data within a range
of 50km around 10,000 largest cities globally, assuming

data will be more diverse around cities (Manas et al. 2021;
Wang et al. 2023; Fuller, Millard, and Green 2024). Prithvi
used pre-training data only from the contiguous United
States (Jakubik et al. 2023). SatMAE, ScaleMAE, and Spec-
tralGPT pre-trained on existing datasets fMoW (Christie
et al. 2018), which is biased towards the Global North, and
BigEarthNet (Sumbul et al. 2019), which includes only Eu-
rope (Cong et al. 2022; Reed et al. 2023; Hong et al. 2024).

Previous work chose different pre-training data sampling
techniques due to differing assumptions about which strat-
egy yields a diverse data distribution. The impact of different
sampling methods on downstream task performance remains
unclear, as there has been no systematic comparison across
different pre-training sampling techniques. In this research,
we aim to fill this gap by providing empirical insights and
guidance for future GFM development.

3 Experimental Setup
3.1 Task Formulation

Our goal is to investigate how different pre-training data
compositions affect the performance of GFMs on down-
stream tasks. We performed experiments with two GFMs
(explained in §3.2), each pre-trained on five different data
compositions created by various sampling techniques from
globally available data, and compared with a baseline of no
pre-training (details in §3.3).

For finetuning, we created subsets of downstream data
samples based on their continent of origin. We split each
continent subset into training, validation, and testing sets.
We then finetuned each pre-trained model on task-specific
training data from each continent (Africa, Asia, Europe,
North America, Oceania, and South America) to investi-
gate each model’s performance in few-shot settings. This
continent-wise approach allowed us to assess the model’s ef-
fectiveness with region-specific tasks, which capture unique
geographic and continental variations. We finetuned and
evaluated each GFM on a specific downstream task ex-
plained in §3.2.

Since collecting labeled data for geospatial applications
can be expensive (Rolf et al. 2024), there is a need for mod-
els that can achieve good performance in a few-shot setting.
We finetuned all downstream tasks on a few-shot learning
setting by randomly selecting a total of n = 100 samples



from each continent’s training set (Schick and Schiitze 2021;
Pecher, Srba, and Bielikova 2024).

To improve the reliability of the results for few-shot fine-
tuning, we repeated each finetuning experiment 50 times
with a different random seed for sampling training data. We
reported the average and standard deviation across these it-
erations for each continent. We finetuned and evaluated each
task using both parametric (Multi-Layer Perceptron (MLP)
or logistic regression) and non-parametric (Random Forest
and K-Nearest Neighbors (KNN)) models. Details of the ex-
perimental configuration are provided in Appendix C.

3.2 Geospatial Foundation Models and
Downstream Tasks

Presto Presto is a lightweight pixel timeseries foundation
model that aims to capture temporal patterns and spatial fea-
tures efficiently (Tseng et al. 2023). It is one of the few
GFMs that uses time series satellite data to capture seasonal
patterns. Presto uses various spectral bands from different
satellite sensors, topographic data, location coordinates, etc.

We evaluated Presto using the CropHarvest agriculture
downstream task (Tseng et al. 2021). We chose CropHar-
vest because it was used for evaluation in the original Presto
paper and has global coverage. CropHarvest is a binary crop
vs. non-crop classification task. We created a custom task
from CropHarvest instead of using the pre-defined bench-
mark tasks to provide continent-wise subsets for finetuning
(explained in the Appendix C).

SatCLIP SatCLIP is a location encoder-based foundation
model (Klemmer et al. 2023), with a strong capability to
learn implicit representations of locations. As a model op-
timized for extracting location-based features from satellite
imagery, it effectively captures geographic and environmen-
tal characteristics. Being a location encoder, the input of
each task consists of raw latitude and longitude coordinates.

We evaluated SatCLIP with the EcoRegions downstream
task (Dinerstein et al. 2017) which is a multi-class classifi-
cation of 14 classes. For this task, the model classifies eco-
logical zones into predefined biome categories. This task as-
sesses the model’s understanding of geographical and eco-
logical patterns, which include climate, soil type, vegetation,
and biodiversity. We chose the EcoRegions task because it
was used for evaluation in the original SatCLIP paper and
has global coverage.

3.3 Pre-training Data Compositions

To vary the geographic distribution of pre-training data, we
implemented several pre-training data sampling strategies,
ranging from uniform random sampling to targeted regional
geographies. Each technique was selected to capture differ-
ent geographic data variability that could impact GFM per-
formance. We experimented with five different data compo-
sitions, and zero pre-training as a baseline, detailed below:

e Zero pre-training (Zero): To establish a baseline for as-
sessing the impact of pre-training data, we employed
zero pre-training in which the GFM is finetuned from
random weights. This measures the model’s performance
solely based on its architecture and finetuning data.

* Uniform at Random (UAR): To capture global represen-
tation, we uniformly and randomly sampled data with
equal likelihood from the Earth’s landmass. This sam-
pling approach was used in Klemmer et al. (2023) to min-
imize bias toward any specific region or environment.

* Stratified Continent: We sampled pre-training data strat-
ified by continents to achieve balanced representation
across continental boundaries (Esri 2023). Within each
stratum, we used uniform at random sampling to select
points. We excluded Antarctica due to its limited land
use and diversity.

* Stratified Biome: To capture environmental biodiversity
and landcover, we uniformly sampled within each biome
stratum, drawing an equal number of samples from the
ecological zones created by Dinerstein et al. (2017).

* Natural Forest: To evaluate the model’s capability in
a strongly biased data context, we sampled all data
exclusively from global intact forest cover (Potapov
et al. 2017). This simulates cases where researchers
may develop domain-specific foundation models, e.g.,
for forestry-related tasks.

* World Cities: In this population-centric sampling strat-
egy, we sampled randomly within a 50 km radius around
the world’s 10,000 most populated cities (SimpleMaps
2024). This emulates the approach used by Manas et al.
(2021); Wang et al. (2023); Fuller, Millard, and Green
(2024) which sampled using a Gaussian distribution
around the same cities, assuming land cover/land use is
most diverse near cities.

We created pre-training datasets for SatCLIP using the
Microsoft Planetary Computer data catalog (Source et al.
2022). For Presto, we drew samples from the global pool
of ~ 22 million samples provided by (Tseng et al. 2023).
We provided further details on the composition of each pre-
training dataset, including the number of samples and visu-
alizations of their geographic distributions, in Appendix B.

4 Results and Analysis

Table 1 shows the F1 score for the CropHarvest and EcoRe-
gions tasks using Random Forest (results of other finetuning
models are included in Appendix D). We summarize our re-
sults in response to specific research questions below.

How do different data compositions affect the perfor-
mance of downstream tasks? Table 1 shows that models
pre-trained with any data composition generally outperform
models with zero pre-training. Overall, all balanced data
sampling techniques (i.e., UAR, stratified continent/biome)
outperform clustered techniques, i.e., Natural Forest for
CropHarvest and both Natural Forest and World Cities for
EcoRegions. Notably, performance is approximately con-
sistent among balanced techniques, suggesting that among
sampling strategies that ensure global representation, there
is less difference in downstream task performance. This find-
ing can be further strengthened in future work by evaluating
more balanced and clustered sampling techniques and addi-
tional downstream tasks. In CropHarvest, for South America
and Oceania, Natural Forest performs on par with other data



Table 1: Average F1 score and standard deviation (over 50 runs) for the CropHarvest and EcoRegions when Presto and SatCLIP
are finetuned using Random Forest (RF) on 100 training samples, respectively. Here, highlighted results indicate scores that
are at least 2% lower than UAR. (AF: Africa, AS: Asia, EU: Europe, NA: North America, OC: Oceania, SA: South America)

Data | CropHarvest | EcoRegion
Composition ™4 AS EU NA oc SA | AF AS KU NA oc SA
Zero ‘ 0.68 £0.02 0.76+0.03 0.744+0.02 0.79+0.02 0.73£0.03 0.75 £ 0.02 ‘ 0.66 £0.02 047+0.03 0.67+002 0.61+£0.03 0.73£005 0.58=+0.04
UAR \ 0.71+£0.02 0.78+0.03 0.76+0.02 0.8040.03 0.754+0.03 0.79 +0.02 \ 0.78+0.01 0.68+003 0.81+0.02 0774002 084+£002 0.76 £0.03
Stratified Continent ‘ 0.71+0.02 0.78+£0.03 0.76+0.03 0.81+0.03 0.75+£0.02 0.80 £ 0.02 ‘ 0.75+£0.02 0.66+£0.02 081+002 0.76+£0.02 083+£0.03 0.75+0.02
Stratified Biome | 0.71+0.02  0.78£0.03 075+0.02 0.81£002 0764+0.03 080+£002 | 0.77+0.02 0.66+£0.02 082+002 075£0.04 083+0.02 0.75+0.03
Natural Forest ‘ 0.67+£0.02 075+£003 0.73£0.02 0.774£0.03 0.75+0.03 0.80+0.03 ‘ 059+0.03 042+£0.02 0.65+0.04 058+0.03 0.76+0.03 0.61+0.04
World Cities ‘ 0.72£0.02 0.78+0.03 0.764+0.03 0.81+£0.03 0.75+£0.02 0.79 £ 0.02 ‘ 0.72£0.02 057003 0784+0.02 0.61+£0.02 0.77£0.03 0.72+0.03
CropHarvest - RF (NA) Natural Forest. This .hypothes‘is can bq invest.igated in fu-
ture work by performing experiments with additional GFMs
086 based on location-encoding and pixel timeseries.
0.84 Do performance differences between data composi-
o 08 tions disappear when models are finetuned with an in-
g Zero creasing amount of data? Our findings indicate that pre-
o 080 UAR training data compositions impact how models perform with
0.78 —— Stratified Continent different amounts of finetuning data. Balanced data compo-
06 — ztarfu“rgfgo‘:’s':e sitions outperform clustered data sampling in few-shot sce-
I — \World Cities narios. However, when finetuning is conducted on an in-
- creasing amount of data (thousands of samples), the per-
Number of finetuning samples formance differences between various data compositions
] drop significantly. As shown in Figure 2 for North America,
EcoRegions - RF (NA) lines representing different data compositions converge as
e the number of finetuning samples increases (results of other
08 continents are presented in the Appendix). Similar findings
07 were observed across nine downstream tasks with ImageNet
S oe or LAION pre-training Entezari et al. (2023).
8 —— Zero
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03 — Natural Forest As the development of GFMs advances, focusing on qual-
~ World Cities ity of pre-training data is essential, yet the impact of pre-
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Figure 2: Performance Comparison across different data
compositions for North America (NA).

compositions, likely because Natural Forest covers a large
portion of these continents.

Do all data compositions show similar trends across
different GFMs? In other words, can we expect that a
specific data composition performs similarly across dif-
ferent models compared to other compositions? Our re-
sults indicate that the relative order of performance for dif-
ferent data compositions varies for each model. Table 1
shows that clustered data compositions, i.e., Natural Forest
and World Cities, perform poorly in EcoRegions, however,
World Cities shows an equal level of performance with other
data compositions in CropHarvest. The reason behind this
discrepancy could be the architectural design of the model.
SatCLIP, which is a location-encoder model, struggles to
generalize when pre-training data lacks global representa-
tion. However, Presto is a pixel timeseries model (which
does not rely solely on location) and is likely more capable
of generalizing on World Cities — which is less clustered than

training data distribution on downstream performance re-
mains underexplored. To address this gap, our study is the
first to investigate how pre-training data distribution can af-
fect downstream task performance for GFMs. We conducted
experiments on two GFMs by pre-training with different
data compositions (including random, stratified, and clus-
tered sampling) and evaluating in few-shot settings.

Experimental results indicate that balanced and global
representative sampling techniques generally outperform
clustered or region-specific compositions, highlighting the
importance of globally diverse pre-training data for GFMs.
Results also show that the effects of data sampling tech-
niques can vary depending on model architecture. Moreover,
balanced sampling techniques exhibit nearly equal perfor-
mance, suggesting that the choice of specific sampling tech-
niques is insignificant, as long as the composition ensures
balanced samples across the globe.

Our results provide preliminary insights into how the geo-
graphic distribution of pre-training data can influence down-
stream task performance. However, further exploration can
be done to deepen our understanding by adding more GFMs
and data sampling strategies. Detailed limitations and direc-
tions for future work are provided in the Appendix E.
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A Pre-training Data Distribution Study in
General CV

The effect of pre-training data distribution on performance
has been widely explored in general CV research. Hammoud
et. al. shows that increasing pre-training data diversity im-
proves the performance of the self-supervised model, but
only when the distribution closely aligns with the down-
stream task data (Al Kader Hammoud et al. 2024). For an
ImageNet-scale dataset, reducing the pre-training data by
half (from 1M to 500k images) only decreases downstream
performance by about 1-2% (Cole et al. 2022). Another
study (Ramanujan et al. 2024) shows that pre-training with
additional data enhances robustness, however, a significant
gain can be achieved without large datasets. They show that
using only 25K images from ImageNet or iNaturalist—6x
smaller than the finetuning dataset—already provides no-
ticeable improvements. Cole et. al. and Ramanujan et. al. es-
tablish that simply increasing data volume without increas-
ing diversity does not always benefit. Longpre et al. (2024)
examines how pre-training data choices affect language
model performance, showing that data age, quality, toxicity
filtering, and domain diversity significantly influence out-
comes. Longpre et. al. also demonstrates that diverse data
sources, like books and web content, improve robustness in
language model development. Previous work also shows that
different pre-training distributions lead to variations in trans-
fer accuracy and these differences are more significant in
few-shot finetuning (Entezari et al. 2023). Having a variety
of objects and their characteristics in pre-training data sig-
nificantly improves the generalization capability of the CLIP
model (Abbasi, Rohban, and Baghshah 2024). Also, Fang
et al. (2022) shows that CLIP’s robustness largely depends
on the choice of training data, with other factors having min-
imal impact.

B Details of Pre-training Data

As discussed in §3.3, to vary spatial distributions of pre-
training datasets, we experimented with five data composi-
tion techniques each designed to capture varying levels of
geographic coverage and regional characteristics as shown
in Figure 3. These compositions range from broad global di-
versity to targeted environmental and urban-focused regions,
offering unique spatial distributions for analysis. To do a fair
comparison across pre-training sampling strategies, we used
an equal number of pre-training samples in all data compo-
sitions for a given GFM. Details of pre-training data distri-
bution for each GFM are as follows:

* Presto: For each composition, we resampled pre-training
datasets from an existing pool of approximately ~ 22
million samples provided by the Presto dataset (Tseng
et al. 2023). Particularly, for each data composition, we
sampled 6.5 million data points. The choice of 6.5 mil-
lion samples was driven by the need to maintain equal
samples across strata in stratified sampling techniques.

» SatCLIP: We created pre-training datasets by sampling
100,000 patches for each composition strategy, following
the original SatCLIP data sampling configuration (Klem-
mer et al. 2023). We used Sentinel-2 data by excluding
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Figure 3: Geographic distribution of pre-training data compositions

one band as specified in the SatCLIP implementation. To
export data, we used Microsoft Planetary Computer cata-
log (Source et al. 2022). The temporal range for sampling
spanned from January 1st, 2021 to September 15th, 2024.
The dataset for each sampling strategy was created from
scratch to ensure the uniqueness of each composition.

C Experiment Configuration

Pre-training: To pre-train Presto and SatCLIP, we used the
same configuration and hyperparameters as specified in the
original studies, utilizing the official repositories provided
by Tseng et al. (2023)! and Klemmer et al. (2023)?, respec-
tively.

Downstream Tasks and Finetuning: As described in
§3.2, we finetune the CropHarvest and EcoRegions tasks
continent-wise. To achieve this, we first categorize the data
samples of each task into continent categories, Table 2 pro-
vides the number of samples for all six continents and the to-
tal dataset size across both tasks. We then split the data from
each continent into training, validation, and testing sets for

Uhttps://github.com/nasaharvest/presto
*https://github.com/microsoft/satclip

finetuning and evaluation. We did not consider country-level
finetuning and evaluation, as the country-level samples were
insufficient, and the reduced sample size in the testing set
prevented us from drawing reliable conclusions.

For CropHarvest, we modified the task from what was
originally proposed in (Tseng et al. 2021). The original
CropHarvest released an evaluation set focused on specific
crop categories in three countries. Instead, we used the full
CropHarvest dataset to create continent-specific subsets for
finetuning. For each continent, we split the data into 70%
for training, 10% for validation, and 20% for testing. For
EcoRegions, we used the dataset including its training, vali-
dation, and testing splits as it was employed in SatCLIP.

As discussed in the §4, we conducted finetuning and eval-
uation on both tasks using an increasing amount of data. For
both downstream tasks, we finetuned the model on varying
sample sizes, starting from n = 10 up to the total available
training samples in the continent. As the number of fineun-
ing samples n increases, we proportionally reduce the num-
ber of iterations r used to compute the final average perfor-
mance metric, i.e., n o< % Importantly, in all finetuning and
evaluation, only the training set is changing, validation and
test set remain fixed across all experimental configurations.



Table 2: Total and continent-wise number of samples in downstream tasks

AF AS EU NA ocC SA | Total
CropHarvest 21693 14475 15784 10656 756 6812 | 70176
EcoRegions 4027 8333 2246 5747 1177 2344 | 23874

D Additional Results

As mentioned in §3.1, we evaluated each task using both
parametric models (Multi-Layer Perceptron (MLP) and lo-
gistic regression) and non-parametric models (Random For-
est (RF) and K-Nearest Neighbors (KNN)).

Figure 4, 5, and 6 present line plots of the F1 score
with confidence intervals for CropHarvest, finetuned on RF,
KNN, and Regression, respectively. Similarly, results for
EcoRegions finetuned using RF, KNN, and MLP are shown
in Figure 7, 8, and 9, respectively. Across all these line
plots, we observe that performance improves for all conti-
nents as the number of samples increases. Moreover, find-
ings reported in the main paper remain consistent: the impact
of differences in data composition diminishes as the sample
size grows.

E Limitations and Future Work

This study focuses primarily on providing preliminary in-
sights into the impact of pre-training data distribution on the
performance of GFMs. There is significant room for extend-
ing this research that helps in development of robust GFMs.
Below, we outline key areas for future exploration:

Our analysis includes two GFMs and a single downstream
task per GFM. Future work can be expanded to evaluate a
broader range of GFMs and multiple downstream tasks. This
will help to strengthen the findings reported in this research
and provide guidelines for pre-training data sampling tech-
niques tailored to diverse EO applications.

In terms of describing geographic diversity, this study se-
lected groupings based on continents, biomes, cities, and
natural forests. However, there are many other factors such
as countries, hemispheres, climate zones, land cover/land
use, etc can also be used which raises an important question:
What groupings should we define pre-training data diversity
with respect to?

Our experiments are conducted at the continent-level due
to the infeasibility of country-level finetuning and evalu-
ation (details in Appendix C). Future work can consider
downstream tasks with well-distributed data across coun-
tries, enabling country-level evaluations and exploring the
pre-training data distributions best suited for such granular
analyses.

Although this work focuses on balanced and stratified
sampling methods for continent and biome grouping, fu-
ture studies can explore scenarios where intentionally (it can
be somewhat or totally) biased sampling techniques can en-
hance the performance for specific regional tasks. This will
help to understand the trade-offs between global coverage
and regional specialization in GFM development.

While this paper focuses on the impact of geographic

diversity of pre-training data, the influence of data quan-
tity is another crucial factor. Future research can investi-
gate the relationship between the volume of pre-training data
and model performance, exploring whether increasing the
amount of data leads to proportional improvements in down-
stream task performance.

By addressing these gaps, the GeoAl community can de-
velop more effective GFMs and establish best practices for
pre-training data selection, ultimately advancing machine
learning solutions for Earth observation tasks.



0.825

0.800

0.775

0.750

0.725

F1 score

0.700

0.675

0.650

0.625

CropHarvest - RF (AF)

Zero

UAR

Stratified Continent
Stratified Biome
Natural Forest
World Cities

F1 score

[ 2000 4000 6000 8000

10000 12000 14000

Number of finetuning samples

CropHarvest - RF (NA)

Zero

UAR

Stratified Continent
Stratified Biome
Natural Forest
World Cities

F1 score

F1 score

0 1000 2000 3000 4000

5000 6000 7000

Number of finetuning samples

CropHarvest - KNN (AF)

Zero

UAR

Stratified Continent
Stratified Biome
Natural Forest
World Cities

0 2000 4000 6000 8000

10000 12000 14000

Number of finetuning samples

CropHarvest - KNN (NA)

Zero

UAR

Stratified Continent
Stratified Biome
Natural Forest
World Cities

0 1000 2000 3000 4000

5000 6000 7000

Number of finetuning samples

F1 score

F1 score

F1 score

F1 score

CropHarvest - RF (AS)

0.86
0.84
0.82
0.80

—— Zero
0.78 — UAR
0.76 —— Stratified Continent
: —— Stratified Biome
0.74 —— Natural Forest

—— World Cities

2000 4000 6000 8000 10000
Number of finetuning samples
CropHarvest - RF (OC)
0.80
0.78
0.76
0.74 Zero
UAR
0.72 Stratified Continent
Stratified Biome

o0.70 Natural Forest

—— World Cities
0.68

160 200 300 400 500

Number of finetuning samples

CropHarvest - KNN (AS)

— Zero
—— UAR
—— Stratified Continent
—— Stratified Biome
—— Natural Forest
—— World Cities

2000 4000 6000 8000
Number of finetuning samples

CropHarvest - KNN (OC)

10000

— Zero
—— UAR
—— Stratified Continent
—— Stratified Biome
—— Natural Forest
—— World Cities

100

260 360 400
Number of finetuning samples

F1 score

F1 score

F1 score

F1 score

CropHarvest - RF (EU)

0.84
0.82
0.80
0.78 Zero
—— UAR
0.76 —— Stratified Continent
—— Stratified Biome
0.74
—— Natural Forest
0.72 —— World Cities
2000 4000 6000 8000 10000
Number of finetuning samples
CropHarvest - RF (SA)
0.88
0.86
0.84
0.82
—— Zero =
0.80 —— UAR
078 —— Stratified Continent
’ —— Stratified Biome
0.76 —— Natural Forest
—— World Cities
0.74
1000 2000 3000 4000 5000

Number of finetuning samples

Figure 4: Continent-wise results for CropHarvest task with Random Forest
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Figure 6: Continent-wise results for CropHarvest task with Regression
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Figure 7: Continent-wise results for EcoRegions task with Random Forest
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Figure 8: Continent-wise results for EcoRegions task with KNN
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Figure 9: Continent-wise results for EcoRegions task with MLP



