
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HYPERPARAMETER TRAJECTORY INFERENCE WITH
CONDITIONAL LAGRANGIAN OPTIMAL TRANSPORT

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks (NNs) often have critical behavioural trade-offs that are set at de-
sign time with hyperparameters—such as reward weighting in reinforcement learn-
ing or quantile targets in regression. Post-deployment, however, user preferences
can evolve, making initially optimal settings undesirable, necessitating expensive
retraining. To circumvent this, we introduce the task of Hyperparameter Trajectory
Inference (HTI), to learn, from observed data, how a NN’s conditional output distri-
bution changes as a function of its hyperparameters, such that a surrogate model can
approximate the NN at unobserved hyperparameter settings. HTI requires extend-
ing existing trajectory inference approaches to incorporate conditions, posing key
challenges to ensure meaningful inferred conditional probability paths. We propose
an approach grounded in conditional Lagrangian optimal transport theory, jointly
learning the Lagrangian function governing hyperparameter-induced dynamics
along with the associated optimal transport maps and geodesics, which form the
surrogate model. We incorporate inductive biases based on the manifold hypoth-
esis and least-action principles into the learned Lagrangian, improving surrogate
model feasibility. We empirically demonstrate that our approach reconstructs NN
behaviour across hyperparameter spectrums better than other alternatives, enabling
effective inference-time adaptation of NNs.

1 INTRODUCTION

Neural network (NN) behaviour is critically shaped by hyperparameters, λ, which alter the parameters
of the converged network, θλ, and therefore the distribution of outputs y given input x, pθλ(y|x).1
Often, hyperparameters govern trade-offs—such as the reward pursued in reinforcement learning
(RL) (Deb, 2011), or NN noise sensitivity (Duesterwald et al., 2019)—fixing complex preferences
at design time. In deployment, however, evolving conditions can render initial hyperparameters
suboptimal, necessitating expensive retraining that can be infeasible.

This motivates an alternate approach—to learn a surrogate model that can sample outputs across
a spectrum of hyperparameter settings. We introduce Hyperparameter Trajectory Inference
(HTI)—inspired by trajectory inference (TI) (Hashimoto et al., 2016; Lavenant et al., 2021)—to
address exactly this. The goal of HTI is to learn hyperparameter-induced dynamics λ 7→ pθλ(y|x)
to develop a surrogate model p̂(y|x, λ) with which the NN conditional probability paths, for some
reasonable hyperparameters λ ∈ Λ, can be estimated as (p̂(y|x, λ))λ∈Λ ≈ (pθλ(y|x))λ∈Λ, thereby
permitting inference-time adjustment of λ. Below we expand on two potential use cases of HTI.

Reinforcement learning. NN-based RL policies (Zhu et al., 2023; Park et al., 2025) define
a state-conditional action distribution pθλ(a|s), with fundamental behaviours determined by
certain hyperparameters. Consider, for instance, a policy for cancer treatment, with a reward
function balancing two objectives: reducing tumour volume Rtumour, and minimising immune
system damage Rimmune, weighted by a scalar λ. The ideal balance can vary per patient, based
on factors such as comorbidities (Sarfati et al., 2016). An HTI surrogate policy p̂(a|s, λ) would
allow for personalised treatment strategies, by varying λ at inference time (§5.2.1).

1pθλ(y|x) = δθλ(x)(y) in the deterministic case, but we also consider non-degenerate distributions e.g.
generative models, or distributions parameterised by NN outputs.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Quantile regression. Regression tasks can require measures of uncertainty. Quantile regression
(Koenker & Bassett Jr, 1978) provides a way to construct prediction intervals, but typically
models target individual quantiles τ , or a multi-head model outputs a fixed set of quantiles
(Wen et al., 2017). This can make examining arbitrary quantiles, to tailor uncertainty bounds,
computationally intensive. HTI can address this, learning the dynamics τ 7→ pθτ (y|x) across a
desired range, yielding a surrogate that can predict all intermediate quantiles (§5.5).

HTI is challenging, as the dynamics λ 7→ pθλ(y|x) are likely non-linear, given complex deep learning
optimisation landscapes (Ly & Gong, 2025), making simple interpolation schemes like conditional
flow matching (CFM) (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2022)
unlikely to yield meaningful (p̂(y|x, λ))λ∈Λ. HTI requires an approach capable of capturing complex,
non-Euclidean dynamics from sparse ground-truth samples. Similar problems have been addressed
in standard TI (Tong et al., 2020; Scarvelis & Solomon, 2023; Kapusniak et al., 2024), however the
effects of conditions on probability paths, which is essential for HTI, are currently under-explored.

We aim to enable HTI by addressing this problem of conditional TI (CTI). We propose an approach
grounded in conditional Lagrangian optimal transport (CLOT) theory, allowing us to bias inferred
conditional probability paths to remain meaningful. Specifically, we aim to learn kinetic and potential
energy terms that define a Lagrangian cost function, and to encode inductive biases into these
terms. This cost function dictates the inferred conditional paths between observed distributions
{pθλ(y|x)}λ∈Λobs , which are estimated with neural approximations to the optimal transport maps
and geodesics that respect the learned Lagrangian. We do so in a manner inspired by the procedure
of Pooladian et al. (2024), extending it to handle conditions, encode more useful inductive biases,
and perform on more complex and higher-dimensional geometries. Once the Lagrangian and CLOT
components are learned, samples for a target hyperparameter λtarget and condition x can be drawn
by sampling from a base distribution in {pθλ(y|x)}λ∈Λobs , approximating CLOT maps and geodesic
paths, and evaluating the paths at the λtarget position. In short, our main contributions include:

1. We introduce the problem of Hyperparameter Trajectory Inference to allow inference-time
NN behavioural adjustment, using the framing of TI to encourage particular inductive biases
for modelling hyperparameter dynamics (§2.1).

2. We propose a general method for CTI to efficiently learn complex conditional dynamics from
temporally sparse ground-truth samples, based on principles from CLOT (§4). We extend
the procedure of Pooladian et al. (2024) in several ways, learning a data-dependent potential
energy term U alongside a kinetic term K (§4.1), elevating the method to the conditional OT
setting (§4.2), and establishing a more expressive neural representation for the learned metric,
GθG , underpinning K that naturally extends to higher dimensions (§4.3).

3. We demonstrate empirically that our approach reconstructs conditional probability paths better
than alternatives, including in our specific application of HTI, enabling effective inference-time
adaptation of a single hyperparameter in multiple domains (§5).

2 PRELIMINARIES

2.1 HYPERPARAMETER TRAJECTORY INFERENCE

TI (Hashimoto et al., 2016; Lavenant et al., 2021) aims to recover the continuous time-dynamics
t 7→ pt of a population from observed samples from a set of temporally sparse distributions {pt}t∈Tobs .
CTI is an extension of TI where a conditioning variable x ∈ X affects these dynamics, with a goal of
inferring the conditional population dynamics t 7→ pt(·|x) for arbitrary x.

Building upon the concept of CTI, we introduce a novel, impactful instantiation that we address in
this work—Hyperparameter Trajectory Inference (HTI). In HTI, the ‘population’ is the outputs
of a NN, with distribution pθλ(y|x) conditioned on its input x and with parameters θλ, and we wish
to learn the dynamics λ 7→ pθλ(y|x) induced by a single continuous hyperparameter λ ∈ Λ (acting
as ‘time’) from a set of known distributions {pθλ}λ∈Λobs to recover the conditional probability paths
(pθλ(y|x))λ∈Λ. These dynamics can be used to build a surrogate model p̂(y|x, λ) for the NN in
question, allowing efficient, approximate sampling at arbitrary hyperparameter settings within Λ.
Since many hyperparameters, by their training effect, define families of NNs, among which the
optimal member is context dependent (see concrete examples in §1 and §5), such a surrogate model
could reduce the need to retrain NNs in dynamic deployment scenarios.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 CONDITIONAL OPTIMAL TRANSPORT

To infer these trajectories, we deploy the mathematical framework of COT (Villani et al., 2008) to
define optimal maps and paths between conditional distributions, which can be neurally approximated.
Let Y0 and Y1 be two complete, separable metric spaces, and X be a general conditioning space. For
x ∈ X , consider two probability measures µ0(·|x) ∈ P(Y0) and µ1(·|x) ∈ P(Y1) and cost function
c(·, ·|x) : Y0 × Y1 → R≥0. The primal COT formulation (Kantorovich, 1942) involves a coupling π
that minimises the total transport cost:

COTc(µ0(·|x), µ1(·|x)) = inf
π(·,·|x)∈Π(µ0(·|x),µ1(·|x))

∫
Y0×Y1

c(y0, y1|x)dπ(y0, y1|x) (1)

where Π(µ0(·|x), µ1(·|x)) is the collection of all probability measures on Y0 × Y1 with marginals
µ0(·|x) on Y0 and µ1(·|x) on Y1. However, solving the primal problem is generally intractable, and it
cannot be easily neurally approximated as it requires modelling a high-dimensional joint distribution.
The equivalent dual formulation is often used instead, simplifying the problem to a constrained
optimisation over two scalar potential functions f(·|x) and g(·|x):

COTc(µ0(·|x), µ1(·|x)) = sup
f,g

∫
Y0

f(y0|x)dµ0(y0|x) +
∫
Y1

g(y1|x)dµ1(y1|x) (2)

subject to the constraint f(y0|x) + g(y1|x) ≤ c(y0, y1|x),∀(y0, y1) ∈ (Y0,Y1). Enforcing this
constraint with neural instantiations of f and g across the entire domain is challenging (Seguy et al.,
2017). As such, we follow recent literature (Taghvaei & Jalali, 2019; Makkuva et al., 2020; Amos,
2022; Pooladian et al., 2024) and utilise the semi-dual formulation based on the c-transform (Villani
et al., 2008), converting the problem into an unconstrained optimisation over a single potential g(·|x):

COTc(µ0(·|x), µ1(·|x)) = sup
g(·|x)∈L1(µ1(·|x))

∫
Y0

gc(y0|x)dµ0(y0|x) +
∫
Y1

g(y1|x)dµ1(y1|x) (3)

where gc(·|x) is the c-transform of g(·|x):
gc(y0|x) := inf

y′
1∈Y1

{c(y0, y′1|x)− g(y′1|x)}. (4)

Denoting g∗(·|x) as an optimal potential for (3), the COT map Tc(·|x) : Y0 → Y1 can be found as
Tc(y0|x) ∈ argmin

y′
1∈Y1

{c(y0, y′1|x)− g∗(y′1|x)}. (5)

2.3 CONDITIONAL LAGRANGIAN OPTIMAL TRANSPORT

The cost function c is where knowledge of system dynamics can be embedded into the COT mapping
and paths (Asadulaev et al., 2022). The standard Euclidean cost c(y0, y1) = ∥y0− y1∥2, for example,
corresponds to straight line paths. To induce more complex paths, given our assumed complex
hyperparameter-dynamics, we require a cost function that is path-dependent, which motivates us to
use principles from Lagrangian dynamics (Goldstein et al., 1980), bringing us to the CLOT setting.
Given a smooth, time-dependent curve qt for t ∈ [0, 1], with time derivative q̇t, the action S(q|x) can
be determined by integrating the Lagrangian L(qt, q̇t|x)

S(q|x) =
∫ 1

0

L(qt, q̇t|x)dt. (6)

The resulting Lagrangian cost function c can then be defined using the least-action, or geodesic, curve
c(y0, y1|x) = inf

q:q0=y0,q1=y1

S(q|x) (7)

and we denote geodesics as q∗. While flexible in form, a common Lagrangian instantiation is

L(qt, q̇t|x) = K(qt, q̇t|x)− U(qt|x) =
1

2
q̇Tt G(qt|x)q̇t − U(qt|x) (8)

where K and U are kinetic and potential energy terms, respectively, with metric G defining the
geometry of the underlying manifold (e.g. for Euclidean manifolds, G = I). We consider learning
conditional Lagrangians of the above form by setting a neural representation of G and estimating U
using a kernel density estimate, and learning neural estimates of the transport maps and geodesics
for the consequent CLOT problem. We design U and G to incorporate biases for dense-traversal
and efficient movement into the inferred conditional probability paths, improving feasibility when
ground-truth observations are temporally sparse.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 RELATED WORKS

Trajectory inference. TI (Hashimoto et al., 2016; Lavenant et al., 2021) is prominent in domains
such as single-cell genomics, where destructive measurements preclude tracking individual cells over
time (Macosko et al., 2015; Schiebinger et al., 2019). Successful TI relies on leveraging inductive
biases to generalise beyond the sparse observed times. One typical bias is based on least-action
principles—assuming that populations move between observed marginals in the most efficient way
possible—naturally giving rise to OT approaches (Yang & Uhler, 2018; Schiebinger et al., 2019;
Tong et al., 2020; Scarvelis & Solomon, 2023; Pooladian et al., 2024). Another potential bias invokes
the manifold hypothesis (Bengio et al., 2013), which posits that data resides on a low-dimensional
manifold, concentrated around the observed data (Arvanitidis et al., 2021; Chadebec & Allassonnière,
2022), to encourage paths to traverse dense regions of the data space (Kapusniak et al., 2024).

Neural optimal transport. NNs have been used for OT, especially in high-dimensions where
classical OT algorithms are infeasible (Makkuva et al., 2020; Korotin et al., 2021). The semi-dual OT
formulation with neural parametrisations of the Kantorovich potentials and transport maps (Taghvaei
& Jalali, 2019; Makkuva et al., 2020; Amos, 2022; Pooladian et al., 2024) is standard. Neural COT
has also been explored (Wang et al., 2024; 2025), although with fixed cost functions, and we novelly
extend this to incorporate learned conditional Lagrangian costs. Our work is particularly related to
Scarvelis & Solomon (2023) and Pooladian et al. (2024), which jointly learn OT cost functions and
transport maps from observed time marginals. We consider more expressive cost functions, involving
Lagrangians with kinetic and potential energy terms, and we operate in the conditional setting.

Conditional generative modeling via density transport. Some generative models, such as con-
ditional diffusion (Ho et al., 2020; Ho & Salimans, 2022) and CFM models (Zheng et al., 2023),
operate by transporting mass from a source to a target distribution, according to some condition. They
can therefore be applied to conditional TI. However, generative models focus on accurately learning
the target data distribution, and they are generally unconcerned with the intermediate distributions
formed along the transport paths. While some recent works utilise OT principles to achieve more
efficient learning and sampling for CFM models (Tong et al., 2023; Pooladian et al., 2023), their
primary objective remains high-fidelity sample generation from the target distribution.

Bayesian optimization. Bayesian optimization (Snoek et al., 2012; Shahriari et al., 2015), often used
for NN hyperparameter optimisation, builds a surrogate model of the NN objective function across
hyperparameters. HTI extends on this significantly, learning a surrogate for the NN’s conditional
output distribution rather than for a scalar objective function. This could allow for more flexible
hyperparameter optimisation, permitting Bayesian optimisation with arbitrary, post-hoc objective
functions estimated with samples from an HTI surrogate model (Appendix A).

4 NEURAL CONDITIONAL LAGRANGIAN OPTIMAL TRANSPORT

We now present our method for general CTI, which involves a neural approach to CLOT. From ob-
served temporal marginals, we seek to learn both the underlying conditional Lagrangian L(q, q̇|x) =
K(q, q̇|x)− U(q|x) that governs dynamics, along with the consequent CLOT maps Tc and geodesics
q∗, such that conditional trajectories can be inferred. We novelly encode both the inductive biases
discussed in Section 3—least-action and dense traversal—into L to aid generalisation of inferred
trajectories beyond the observed temporal regions.

4.1 POTENTIAL ENERGY TERM

Firstly, we set the conditional potential energy, Û(q|x), through which we encode a bias for dense
traversal. By designing Û(q|x) to be large in dense regions of the data space, and small elsewhere,
the Lagrangian cost function c, as in (7), will lead to geodesics that favour dense regions.

Let Dobs = {(yi, xi, ti)}Ni=1 be the set of observed samples, where yi ∈ Y are the Dy-dimensional
ambient space observations, xi ∈ X are their Dx-dimensional corresponding conditions, and ti ∈
{t0, t1, ..., tT } are the T discrete ‘times’ of observation. We define the potential at a point q ∈ Y for
a given condition x ∈ X as:

Û(q|x) = α log(p̂(q|x) + ϵ), (9)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where α > 0 is set by the user to control the strength of the density bias, ϵ > 0 is for numerical
stability, and p̂(q|x) is estimated with a Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964):

p̂(q|x) =
∑N

i=1 Khy
(q − yi)Khx

(x− xi)∑N
j=1 Khx

(x− xj)
, (10)

where Khy
and Khx

are Gaussian kernel functions with bandwidths hy and hx, respectively:

Khy (u) = (2πh2
y)

−Dy/2 exp

(
−||u||

2

2h2
y

)
, Khx(v) = (2πh2

x)
−Dx/2 exp

(
−||v||

2

2h2
x

)
. (11)

We can see that (9) will be high when p̂(q|x) is high, and low when p̂(q|x) is low, thus encoding our
desired bias for geodesics to traverse dense regions of the data space. Û(q|x) is fixed throughout the
subsequent learning phase for the kinetic energy term K and the CLOT maps and geodesic paths.

4.2 JOINT LEARNING OF KINETIC ENERGY TERM AND CLOT PATHS

To learn the remaining kinetic term K(q, q̇|x) = 1
2 q̇

TG(q|x)q̇, and solve the consequent CLOT
problem, we adopt a neural approach similar to Pooladian et al. (2024), adapting it to our conditional
setting. We operate under the assumption that the observed data display dynamics that are efficient in
the underlying data manifold, embedding the desired least-action bias into our method. We consider
neural instantiations of the metric GθG and the T Kantorovich potentials gθg,k between temporally
adjacent observed distributions, with parameters θG and θg,k respectively.2 These networks are learnt
with a min-max procedure, alternating between optimising GθG , with fixed gθg,k, to minimise the
estimated CLOT cost between observed marginals (encoding the desired least-action principles), and
optimising each gθg,k, with fixed GθG , to maximise (3) (to accurately estimate the CLOT cost under
the current metric). The overall objective is

min
θG

∑
k

Ex

[
max
θg,k

Eyk∼µk(·|x)[g
c
θg,k

(yk|x)] + Eyk+1∼µk+1(·|x)[gθg,k(yk+1|x)]
]
, (12)

where µk(·|x) is the conditional distribution of the data at time tk. We denote the inner maximisation
objective for each interval as L(k)

dual(θg,k), and the outer minimisation objective as Lmetric(θG).

Calculating gc, as in (4), requires solving an optimisation problem, with a further embedded optimisa-
tion problem to calculate the cost function c. These nested optimisations can make training computa-
tionally infeasible. As such, we adopt the amortisation procedure from Pooladian et al. (2024), simul-
taneously training and using neural approximators to output CLOT maps TθT,k

(yk|x) ≈ Tc,k(yk|x)
and the parameters of a spline-based geodesic estimation, qφ ≈ q∗, allowing efficient c-transform
approximation. At a given training iteration, the current learned map TθT,k

warm-starts the minimisa-
tion (4); this estimate is refined with a limited number of L-BFGS (Liu & Nocedal, 1989) steps to
yield Tc,k(yk|x) which is used to calculcate gc in (12), and as a regression target for TθT,k

:

Lmap(θT,k) = E
[
(TθT,k

(yk|x)− Tc,k(yk|x))2
]
. (13)

To efficiently calculate the cost function required for these L-BFGS steps we approximate geodesic
paths q∗ with a cubic spline qφ, with parameters φ output by a NN SθS trained to minimise

Lpath(θS) = E [S(qφ|x)] , φ = SθS (yk, TθT,k
(yk|x), x). (14)

To condition each network on x, we equip them with FiLM layers (Perez et al., 2018) that modulate
the first-layer activations based on x. The overall training procedure (Algorithm 1) alternates between
updating each θg,k, θT,k, and θs to maximise the inner part of (12), minimise (13), and minimise (14),
respectively, and updating θG to minimise the outer sum in (12).

4.3 METRIC PARAMETRISATION

Within the above procedure, the parametrisation of the neural metric GθG is particularly important,
as this must be a symmetric, positive-definite, Dy-dimensional matrix to be a valid metric. Critically,

2gθg,k denotes the kth Kantorovich potential, for the CLOT between the distributions at tk and tk+1

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Neural CLOT Training

Require: Observed data Dobs, ambient and conditional bandwidths hy, hx, potential weight α, no.
outer training iterations Nouter, no. inner training iterations Ninner, learning rates ηg, ηT , ηS , ηG

1: Û(q|x)← α log(p̂(q|x)), where p̂(q|x) =
∑N

i=1 Khy (q−yi)Khx (x−xi)∑N
j=1 Khx (x−xj)

2: Initialise θG, {θg,k, θT,k}k, θS
3: Define S(q|x) :=

∫ 1

0
( 12 q̇

T
t GθG(qt|x)q̇t − Û(qt|x))dt

4: for i = 1 . . . Nouter do
5: for j = 1 . . . Ninner do
6: for k = 0 . . . T − 1 do
7: Dk ← {(y, x, t) ∈ Dobs | t = tk}, Dk+1 ← {(y, x, t) ∈ Dobs | t = tk+1}
8: for (yk, x) ∈ Dk do
9: y′k ← TθT,k

(yk|x)
10: y′∗k ← L-BFGS(y′k,S(qϕ|x)− gθg,k(y

′
k|x)), where ϕ = SθS (yk, y

′
k, x)

11: gcθg,k(yk|x)← S(qϕ∗ |x)− gθg,k(y
′∗
k |x), where ϕ∗ = SθS (yk, y

′∗
k , x)

12: end for
13: θg,k ← θg,k + ηg∇L(k)

dual(θg,k)
14: θT,k ← θT,k − ηT∇Lmap(θT,k)
15: end for
16: θS ← θS − ηS∇Lpath(θS)
17: end for
18: θG ← θG − ηG∇Lmetric(θG)
19: end for
20: return {TθT,k

}k, SθS

there exist degenerate minima to (12) by setting GθG → 0, where movement in all directions results
in near-zero cost. We set our parametrisation to ensure GθG avoids this and maintains sufficient
volume. In Pooladian et al. (2024), where only two-dimensional data spaces are considered, they set
GθG as a fixed diagonal matrix with a neural rotation matrix

GθG(x) =

[
cos(RθG(x)) − sin(RθG(x))
sin(RθG(x)) cos(RθG(x))

] [
1 0
0 0.1

] [
cos(RθG(x)) − sin(RθG(x))
sin(RθG(x)) cos(RθG(x))

]T
(15)

where RθG(x) is the output of the NN. This is only applicable to two-dimensional spaces, and
avoids degenerate solutions by fixing the local anisotropy of GθG . We design a parametrisation
that extends to higher dimensions, and is more expressive, while still avoiding degenerate solutions
without requiring regularisation as in Scarvelis & Solomon (2023). Specifically, we set GθG using
its eigendecomposition GθG = RθGEθGR

T
θG

, where a NN parametrises both a Dy-dimensional
diagonal matrix EθG , and rotation matrices RθG . To avoid degeneracy, we enforce the entries of
EθG , and therefore the eigenvalues of GθG , to be positive, and sum to a non-zero ‘eigenvalue budget’,
ensuring non-trivial volume of GθG while permitting expressive levels of anisotropy. To define
the Dy-dimensional rotation matrix RθG , we multiply Dy(Dy−1)

2 Givens rotation matrices (Givens,
1958), with angles parametrised by the NN. This improves performance over the fixed approach of
Pooladian et al. (2024) in two-dimensions (§5.4), while also extending to higher dimensions (§5.5).

4.4 SAMPLING ALONG THE INFERRED TRAJECTORY

To generate samples from the inferred conditional distribution p̂(y|x, t∗), we use the neural approxi-
mators for the CLOT maps and geodesics, avoiding the need for any optimisation at inference time.
First, samples are drawn from the ground-truth distribution with the largest observed base time with
tk < t∗, yk ∼ ptk(·|x). The learned map TθT,k

(yk|x) then predicts the transported point yk+1 at the
end of the interval [tk, tk+1], which contains t∗. Subsequently, the parameters for the approximate
geodesic path qφ connecting yk to yk+1 can be estimated as φ = Sθs(yk, yk+1, x), and qφ can be
evaluated at the appropriate point. By normalising t∗ to s∗ = (t∗ − tk)/(tk+1 − tk), the final sample
is obtained as ŷt∗ = qφ(s

∗).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

We now empirically demonstrate the efficacy of our method for CTI (§5.1), before moving to two
specific applications of HTI in RL (§5.2) and quantile regression (§5.5). All results are averaged over
20 runs, and reported with standard errors. We provide detailed experimental set-ups in Appendix C.

5.1 ILLUSTRATIVE EXAMPLE OF CTI

(a) KI (b) KI − Û

(c) Kθ (d) Kθ − Û

Figure 1: Semicircle CTI. Dots represent true sam-
ples across t ∈ [0, 1], lines represent model es-
timated trajectories from t = 0 to t = 1. Each
condition has a distinct colour.

To illustrate our method’s inductive biases, we
devise a temporal process with conditions x ∈
{1, 2, 3, 4}, where each defines a temporal dis-
tribution pt(y|x) that evolves from the origin
over t ∈ [0, 1] as a noised von Mises, with cen-
tre moving along one of four semicircular paths.
Samples from the true process are shown in Fig-
ure 1, where each condition has a distinct colour,
and lighter samples are from larger t. To conduct
CTI, using observations from t ∈ {0, 0.5, 1.0},
models must: (1) learn condition-dependent
dynamics despite overlapping initial distribu-
tions; (2) capture the non-Euclidean geometry
of semicircular paths; and (3) generalise across
t ∈ [0, 1] from sparse temporal samples.

We compare four ablations of our method, with varying complexity of the learned conditional
Lagrangian: (1) KI : Using an identity metric G = I and setting Û = 0, resulting in Euclidean
geometry with no density bias; (2) Kθ: Learning the metric GθG via our method in §4.2 and setting
Û = 0, to incorporate only the inductive bias of least-action; (3) KI − Û : Using an identity metric
G = I and learning Û as in §4.1, to incorporate only the inductive bias of dense traversal, and; (4)
Kθ − Û : Our full approach, learning both the metric GθG and the potential term Û .

Table 1: NLL and CD at t ∈ {0.25, 0.75}.

Method NLL (↓) CD (↓)
KI 105.713 (2.42) 0.323 (0.003)

Kθ 23.008 (4.62) 0.158 (0.009)

KI − Û −0.532 (0.057) 0.016 (0.001)

Kθ − Û −0.662 (0.046) 0.016 (0.001)

Figure 1 shows the inferred paths of samples from
t = 0 to t = 1. Our full method (Figure 1d) most
faithfully reconstructs the true temporal process, as
the paths correctly diverge according to their con-
dition and closely follow the intended semicircular
geometry. We can see the individual effects of both
inductive biases, as individually learning Û (Fig-
ure 1b) results in straight paths that favour denser
regions, avoiding the circle centres, while learning
GθG only (Figure 1c) better captures the underlying curvature of the semicircular geometry. In
Table 1 we evaluate p̂(y|x, t) at withheld t ∈ {0.25, 0.75}, reporting negative log-likelihood (NLL)
and distance from the target circle perimeter (CD). We can quantitatively see that both inductive
biases improve the feasibility of the inferred marginals.

5.2 HTI FOR REWARD-WEIGHTING IN REINFORCEMENT LEARNING

We now transition to specific applications of HTI, first addressing a compelling challenge in RL, to
create surrogate policies that allow dynamic reward weighting.

5.2.1 CANCER THERAPY

We investigate HTI for personalised cancer therapy, mirroring the first use case presented in §1. We
employ an environment from DTR-Bench (Luo et al., 2024), which we call Cancer, that simulates
tumour progression under chemotherapy and radiotherapy. Natural Killer (NK) cells are pivotal
immune system components, and they can be depleted as a side effect of cytotoxic treatments like
chemotherapy and radiotherapy (Shaver et al., 2021; Toffoli et al., 2021), increasing susceptibility
to infections and compromising treatment efficacy. This side effect varies substantially with age,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Average surrogate Cancer reward
across λnk ∈ {1, 2, 3, 4, 6, 7, 8, 9}.

Method Reward (↑)
Direct −38.35 (10.65)

Kθ 30.63 (8.50)

CFM 36.03 (6.46)

KI 48.72 (7.22)

KI − Û 83.62 (5.37)

Kθ − Û 102.49 (5.46)

0 2 4 6 8 10
Lambda_NK

0.02

0.03

0.04

0.05

0.06

NK
 P

en
al

ty

True
Surrogate

Figure 2: PNK vs. λnk for ground truth policies
and our surrogate policy.

comorbidities, and baseline immune status (Diakos et al., 2014) and, consequently, optimal cancer
therapy necessitates a patient-specific balance between tumour reduction and NK cell preservation.

The Cancer reward function incorporates both tumour volume and NK cell preservation, with a
hyperparameter λnk weighting an NK cell penalty term, PNK . Training a Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) agent to convergence in this environment takes approximately 3.5
hours, so training per-patient policies with tailored λnk is computationally prohibitive. This therefore
presents a prime application for HTI, to enable inference-time policy adaptation.

To learn the λnk-induced dynamics of the policy distribution across λnk ∈ [0, 10], we train ground-
truth policies with PPO at λnk ∈ {0, 5, 10} and sample 1000 state-action pairs from each converged
policy, across a shared set of states, to act as the HTI training set. We assess the four approaches from
§5.1, alongside two non-CLOT based methods. We compare to a direct surrogate, where the target
λnk, current state, and action from the λnk = 0 policy are inputs to an MLP that is trained to output
actions at a given λnk via supervised regression. We also compare to a CFM surrogate, which learns
a vector field between the distributions at λnk = 0 and λnk = 5, and at λnk = 5 and λnk = 10, and
generates samples by integrating actions along these vector fields to the desired λnk point.

In Table 2 we report the average reward for each surrogate at held-out settings λnk ∈
{1, 2, 3, 4, 6, 7, 8, 9}. Our full method (Kθ − Û) infers the most realistic trajectory between λnk
settings, yielding a surrogate policy with the best average reward. We also examine how our surrogate
favours NK cell preservation across λnk ∈ [0, 10] in Figure 2, plotting the average per-episode PNK

penalty for our surrogate and ground-truth policies. We see our surrogate’s behaviour closely mirrors
the profile of the ground-truth policies, correctly favouring treatment strategies that preserve NK cells
as λnk increases. Critically, training our surrogate model takes approximately 15 minutes, after which
rapid inference-time adaptation is possible. This contrasts with the 3.5 hours required to train each
new PPO policy, highlighting the substantial computational advantage conferred by HTI.

5.2.2 REACHER

Table 3: Average surro-
gate Reacher rewards across
λcontrol ∈ {2, 3, 4}.

Method Reward (↑)
Direct −6.711 (0.070)

KI − Û −6.397 (0.031)

KI −6.307 (0.041)

CFM −6.251 (0.028)

Kθ −6.158 (0.033)

Kθ − Û −6.093 (0.036)

To further demonstrate HTI for reward weighting, we evaluate it in
the Reacher environment from OpenAI Gym (Brockman et al.,
2016), a standard continuous control benchmark. In this setting, an
agent controls a two-joint arm with the goal of reaching a random tar-
get position. The reward function is structured to minimise distance
to the target, while penalising the magnitude of the applied joint
torques, discouraging inefficient, high-force movements, weighted
by a hyperparameter λcontrol.

Following a similar process to the cancer therapy experiment, we
first establish ground-truth data by training PPO agents at λcontrol = 1
and λcontrol = 5. Once converged, we collect 1000 state-action pairs
from each agent to form the HTI training dataset.

In Table 3 we evaluate the same suite of surrogate models as previously, assessing their ability to
infer policy behaviour at unseen λcontrol ∈ {2, 3, 4}. Consistent with the cancer therapy task, our full
method (Kθ − Û) again yields the most performant surrogate, achieving the highest average reward.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.2.3 NON-LINEAR REWARD SCALARIZATION

Table 4: Average surro-
gate Cancer_nonlin
reward across λnk ∈
{1, 2, 3, 4, 6, 7, 8, 9}.

Method Reward (↑)
KI 42.84 (5.86)

Kθ 45.83 (12.73)

Direct 49.50 (17.90)

CFM 69.70 (7.73)

KI − Û 94.93 (5.83)

Kθ − Û 101.80 (7.93)

The previous reward scalarizations involve linear combinations of
a main objective (tumour volume/distance to target) and a penalty
term (NK penalty/torque penalty). Such scalarization is known to
lead to well-behaved trade-offs when tuning reward weights (Răd-
ulescu et al., 2020). For a more challenging RL setting, with less
well-behaved hyperparameter dynamics, we modify Cancer to
have non-linear reward scalarization, with a hinge penalty. In this
Cancer_nonlin setup, the weighted NK penalty is only applied
if the change in cell count crosses a threshold (see definition in Ap-
pendix C.2.2). We employ the same training and evaluation protocol
as in §5.2.1, with results in Table 4. We see that our method again
achieves the highest average reward across held-out settings, remain-
ing robust when the hyperparameter governs non-linear objectives.

5.3 SPARSITY INVESTIGATION

To investigate sensitivity to data sparsity, we evaluate performance with various number of anchor
distributions in the Cancer and Reacher environments, between which surrogates learn to inter-
polate. We range from the sparse settings from §5.2.1 and §5.2.2 to a dense setting, where training
data is available at every evaluation setting. Figure 3 shows that, in both environments, the perfor-
mance gap between methods is negligible in the dense regime, where interpolation is trivial, and this
widens as sparsity increases. Our method degrades the least as interpolation becomes more difficult,
outperforming all baselines in sparse settings, confirming the effect of our inductive biases.

3 5 7 9 11
Number of Anchors

40

20

0

20

40

60

80

100

120

Re
wa

rd Direct
CFM

I

I

2 3 4 5
Number of Anchors

6.8

6.6

6.4

6.2

6.0

5.8

5.6

5.4

Re
wa

rd Direct
CFM

I

I

Figure 3: Surrogate model reward in Cancer (left) and Reacher (right).

5.4 METRIC LEARNING ABLATION

In Table 5 we compare our neural metric GθG , with learned rotation RθG and eigenvalues EθG ,
against the parametrisation from Pooladian et al. (2024), which uses fixed eigenvalues E. We evaluate
both within our most expressive Lagrangian setting across the previous three experiments, which all
have two-dimensional ambient spaces. Our parametrisation achieves superior performance across all
tasks, yielding a lower NLL in the semicircle task and higher rewards in the Cancer and Reacher
environments. This result supports our hypothesis that learning the eigenvalues of GθG enables
a more accurate recovery of the underlying conditional dynamics. By allowing for flexible local
anisotropy, our metric can better adapt to the intrinsic geometry of the data manifold. Furthermore,
our parametrisation readily extends to higher-dimensional settings, which we will now demonstrate.

Table 5: GθG ablations in 2D experiments.

Semicircle Cancer Reacher

GθG NLL (↓) CD (↓) Reward (↑) Reward (↑)
RθGERT

θG
−0.602 (0.033) 0.016 (0.001) 98.72 (6.32) −6.122 (0.080)

RθGEθGR
T
θG

−0.662 (0.046) 0.016 (0.001) 102.49 (5.46) −6.093 (0.036)

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 6: Surrogate ETTm2
quantile forecasts com-
pared to ground-truth
NN forecasts across τ ∈
{0.1, 0.25, 0.5, 0.75, 0.9}.

Method MSE (↓)
Direct 1.845 (0.065)

CFM 1.402 (0.008)

KI 0.765 (0.070)

KI − Û 0.651 (0.076)

Kθ 0.620 (0.057)

Kθ − Û 0.608 (0.034)

40

44

48

52
History
True
Direct
CFM
Ours 44

46

48

48

50

52

40

44

48

52

Te
m

pe
ra

tu
re

44

46

48

48

50

52

0 3 6 9 12 15
40.0

42.5

45.0

47.5

0 3 6 9 12 15
Time Step

44

46

48

0 3 6 9 12 15

48

49

50

51

Figure 4: Central 80% prediction intervals from HTI surrogates
compared with the true intervals on randomly selected ETTm2 sam-
ples, for direct (top), CFM (middle), and our (bottom) approach.

5.5 HTI FOR QUANTILE REGRESSION

Finally, we demonstrate HTI’s application in a higher-dimensional setting of quantile regression for
time-series forecasting, mirroring the second use case presented in §1. Time-series forecasting is
a task where providing a full picture of uncertainty, such as through quantile regression, is crucial,
but the need to train forecasting models to target distinct quantiles can hinder this. We investigate
whether HTI can address this by inferring intermediate quantiles from the outputs of models trained at
the extremes of the quantile range. Using the ETTm2 forecasting dataset (Zhou et al., 2021), we train
two MLPs to forecast a 3-step horizon from a 12-step history at the quantiles τ = 0.01 and τ = 0.99,
using a standard pinball loss. We then generate a dataset of 1200 forecasts from these two models,
across shared inputs, to act as the HTI training set. In Table 6 we evaluate the mean squared error
(MSE) for surrogate forecasts at held-out quantiles τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9} on unseen input
data. Our full method once again outperforms all baselines. Figure 4 provides qualitative validation
of this, visualising the central 80% prediction intervals (between the τ = 0.1 and τ = 0.9 quantiles)
from different surrogates on a random selection of samples, alongside the 80% intervals from the
ground-truth NNs. Our method most closely matches the width and shape of the true interval.

6 DISCUSSION

In this work, we investigate CTI, proposing a novel methodology grounded in the principles of CLOT.
Our approach approximates the components of a conditional Lagrangian, involving a kinetic energy
term with a learned metric GθG , and a density-based potential energy term Û , that govern inferred
dynamics by neural approximators to CLOT maps and geodesics. This framework extends existing TI
techniques by explicitly incorporating conditional information, and novelly combining dense traversal
(via Û) and least-action (via Kθ) inductive biases. Our empirical results show we can effectively
reconstruct non-Euclidean conditional probability paths from sparsely observed marginal distributions
(§5.1). Our ablation study validates our neural metric parametrisation, highlighting its superior ability
to capture intricate data geometries (§5.4) and extend to higher dimensions (§5.5). Furthermore, we
propose HTI as a novel and impactful instantiation of CTI, addressing the challenge of adapting
NN behaviour without expensive retraining. We showcased the practical utility of HTI for dynamic
RL reward weighting for cancer treatment (§5.2.1) and continuous control (§5.2.2), and for quantile
regression in time-series forecasting (§5.5), conferring substantial efficiency gains. For instance,
the ground-truth result in Figure 2 requires training 11 PPO policies, taking approximately 38 GPU
hours, while the surrogate result requires training three PPO policies and an HTI surrogate, taking
approximately 11 GPU hours. Further potential applications of HTI are discussed in Appendix A.

Our approach is not without limitations. HTI will be challenging when the underlying dynamics ex-
hibit chaotic behaviour, making inference from sparse samples inherently difficult. While our method
demonstrated robustness in an RL setting, where optimisation can be unstable and hyperparameter-
sensitive, further investigation across a wider range of hyperparameter landscapes is warranted. Also,
our method for HTI is only applicable for varying a single, continuous hyperparameter. Future work
should explore extensions to handle multiple hyperparameters, which we discuss in Appendix D.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to ensuring our work is reproducible. As such, we give a brief introduction to the
mathematical concepts our method is based on in §2, clearly describe our method in §4, and provide
concrete training and sampling algorithms in Appendix B. To help with reproducibility of the specific
results we display in §5, we give detailed experimental set-ups in Appendix C. This includes detailing
the datasets and environments used, model hyperparameters and training procedures, and providing
references and links to key libraries. Furthermore, we will release our code base upon acceptance.

REFERENCES

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
arXiv preprint arXiv:2209.15571, 2022.

Brandon Amos. On amortizing convex conjugates for optimal transport. arXiv preprint
arXiv:2210.12153, 2022.

Georgios Arvanitidis, Miguel González-Duque, Alison Pouplin, Dimitris Kalatzis, and Søren Hauberg.
Pulling back information geometry. arXiv preprint arXiv:2106.05367, 2021.

Arip Asadulaev, Alexander Korotin, Vage Egiazarian, Petr Mokrov, and Evgeny Burnaev. Neural
optimal transport with general cost functionals. arXiv preprint arXiv:2205.15403, 2022.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Des-
jardins, and Alexander Lerchner. Understanding disentangling in beta-vae. arXiv preprint
arXiv:1804.03599, 2018.

Clément Chadebec and Stéphanie Allassonnière. A geometric perspective on variational autoencoders.
Advances in Neural Information Processing Systems, 35:19618–19630, 2022.

Kalyanmoy Deb. Multi-objective optimisation using evolutionary algorithms: an introduction.
In Multi-objective evolutionary optimisation for product design and manufacturing, pp. 3–34.
Springer, 2011.

Connie I Diakos, Kellie A Charles, Donald C McMillan, and Stephen J Clarke. Cancer-related
inflammation and treatment effectiveness. The Lancet Oncology, 15(11):e493–e503, 2014.

Evelyn Duesterwald, Anupama Murthi, Ganesh Venkataraman, Mathieu Sinn, and Deepak Vi-
jaykeerthy. Exploring the hyperparameter landscape of adversarial robustness. arXiv preprint
arXiv:1905.03837, 2019.

A Ghaffari, B Bahmaie, and M Nazari. A mixed radiotherapy and chemotherapy model for treatment
of cancer with metastasis. Mathematical methods in the applied sciences, 39(15):4603–4617,
2016.

Wallace Givens. Computation of plain unitary rotations transforming a general matrix to triangular
form. Journal of the Society for Industrial and Applied Mathematics, 6(1):26–50, 1958.

H Goldstein, C Poole, J Safko, et al. 1., classical mechanics, 1980.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Tatsunori Hashimoto, David Gifford, and Tommi Jaakkola. Learning population-level diffusions with
generative rnns. In International Conference on Machine Learning, pp. 2417–2426. PMLR, 2016.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Leonid V Kantorovich. On the translocation of masses. In Dokl. Akad. Nauk. USSR (NS), volume 37,
pp. 199–201, 1942.

Kacper Kapusniak, Peter Potaptchik, Teodora Reu, Leo Zhang, Alexander Tong, Michael Bronstein,
Joey Bose, and Francesco Di Giovanni. Metric flow matching for smooth interpolations on the
data manifold. Advances in Neural Information Processing Systems, 37:135011–135042, 2024.

Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

Roger Koenker and Gilbert Bassett Jr. Regression quantiles. Econometrica: journal of the Economet-
ric Society, pp. 33–50, 1978.

Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M Solomon, Alexander Filippov, and Evgeny
Burnaev. Do neural optimal transport solvers work? a continuous wasserstein-2 benchmark.
Advances in neural information processing systems, 34:14593–14605, 2021.

Hugo Lavenant, Stephen Zhang, Young-Heon Kim, and Geoffrey Schiebinger. Towards a mathemati-
cal theory of trajectory inference. arXiv preprint arXiv:2102.09204, 2021.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen,
David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv preprint
arXiv:2412.06264, 2024.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Zhiyao Luo, Mingcheng Zhu, Fenglin Liu, Jiali Li, Yangchen Pan, Jiandong Zhou, and Tingting Zhu.
Dtr-bench: an in silico environment and benchmark platform for reinforcement learning based
dynamic treatment regime. arXiv preprint arXiv:2405.18610, 2024.

Andrew Ly and Pulin Gong. Optimization on multifractal loss landscapes explains a diverse range
of geometrical and dynamical properties of deep learning. Nature Communications, 16(1):3252,
2025.

Evan Z Macosko, Anindita Basu, Rahul Satija, James Nemesh, Karthik Shekhar, Melissa Goldman,
Itay Tirosh, Allison R Bialas, Nolan Kamitaki, Emily M Martersteck, et al. Highly parallel genome-
wide expression profiling of individual cells using nanoliter droplets. Cell, 161(5):1202–1214,
2015.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee. Optimal transport mapping via
input convex neural networks. In International Conference on Machine Learning, pp. 6672–6681.
PMLR, 2020.

Elizbar A Nadaraya. On estimating regression. Theory of Probability & Its Applications, 9(1):
141–142, 1964.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. arXiv preprint arXiv:2502.02538,
2025.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman,
and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch couplings.
arXiv preprint arXiv:2304.14772, 2023.

Aram-Alexandre Pooladian, Carles Domingo-Enrich, Ricky Tian Qi Chen, and Brandon Amos.
Neural optimal transport with lagrangian costs. In Proceedings of the Fortieth Conference on
Uncertainty in Artificial Intelligence, pp. 2989–3003, 2024.

Roxana Rădulescu, Patrick Mannion, Diederik M Roijers, and Ann Nowé. Multi-objective multi-
agent decision making: a utility-based analysis and survey. Autonomous Agents and Multi-Agent
Systems, 34(1):10, 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Diana Sarfati, Bogda Koczwara, and Christopher Jackson. The impact of comorbidity on cancer and
its treatment. CA: a cancer journal for clinicians, 66(4):337–350, 2016.

Christopher Scarvelis and Justin Solomon. Riemannian metric learning via optimal transport. In
International Conference on Learning Representations. OpenReview, 2023.

Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh Solomon,
Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, et al. Optimal-transport analysis of single-cell
gene expression identifies developmental trajectories in reprogramming. Cell, 176(4):928–943,
2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Vivien Seguy, Bharath Bhushan Damodaran, Rémi Flamary, Nicolas Courty, Antoine Rolet, and
Mathieu Blondel. Large-scale optimal transport and mapping estimation. arXiv preprint
arXiv:1711.02283, 2017.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2015.

Kari A Shaver, Tayler J Croom-Perez, and Alicja J Copik. Natural killer cells: the linchpin for
successful cancer immunotherapy. Frontiers in immunology, 12:679117, 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Amirhossein Taghvaei and Amin Jalali. 2-wasserstein approximation via restricted convex potentials
with application to improved training for gans. arXiv preprint arXiv:1902.07197, 2019.

Elisa C Toffoli, Abdolkarim Sheikhi, Yannick D Höppner, Pita de Kok, Mahsa Yazdanpanah-Samani,
Jan Spanholtz, Henk MW Verheul, Hans J van der Vliet, and Tanja D de Gruijl. Natural killer
cells and anti-cancer therapies: reciprocal effects on immune function and therapeutic response.
Cancers, 13(4):711, 2021.

Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. Trajectorynet:
A dynamic optimal transport network for modeling cellular dynamics. In International conference
on machine learning, pp. 9526–9536. PMLR, 2020.

13

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2008.

Richard von Mises. Über die “ganzzahligkeit" der atomgewichte und verwandete fragen. Physikalis-
che Zeitschrift, 19:490, 1918.

Jun Wang, Bohan Lei, Liya Ding, Xiaoyin Xu, Xianfeng Gu, and Min Zhang. Autoencoder-based
conditional optimal transport generative adversarial network for medical image generation. Visual
Informatics, 8(1):15–25, 2024.

Zheyu Oliver Wang, Ricardo Baptista, Youssef Marzouk, Lars Ruthotto, and Deepanshu Verma.
Efficient neural network approaches for conditional optimal transport with applications in bayesian
inference, 2025. URL https://arxiv.org/abs/2310.16975.

Geoffrey S Watson. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series A,
pp. 359–372, 1964.

Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. A multi-horizon
quantile recurrent forecaster. arXiv preprint arXiv:1711.11053, 2017.

Karren D Yang and Caroline Uhler. Scalable unbalanced optimal transport using generative adversarial
networks. arXiv preprint arXiv:1810.11447, 2018.

Qinqing Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky TQ Chen. Guided
flows for generative modeling and decision making. CoRR, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Haoquan Guo, Tingting
Chen, and Weinan Zhang. Diffusion models for reinforcement learning: A survey. arXiv preprint
arXiv:2311.01223, 2023.

14

https://arxiv.org/abs/2310.16975


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A FURTHER APPLICATIONS OF HTI

We will now elaborate on some especially compelling potential applications for HTI. In general,
HTI can be useful in scenarios when a user is deploying a NN in a dynamic environment, where
behavioural preferences are context-dependent, and where the NN has a hyperparameter with a known,
tangible behavioural effect. Traditionally, in such deployment scenarios, a user would either have to
compromise with some fixed NN behavioural setting, determined at training time, or allow dynamic
behaviours by undergoing slow and expensive retraining at different hyperparameter settings when
deemed necessary. HTI can alleviate this by enabling much faster inference time NN behavioural
adaptation, by sampling estimated outcomes from the surrogate model p̂(y|x, λ) for a novel λ setting.
For a visual depiction of HTI in action, see Figure 5.

A.1 VARYING NEURAL NETWORK ROBUSTNESS IN DYNAMIC NOISE SETTINGS

Perturbations (e.g. Gaussian noise) of magnitude ϵ added to NN training data can increase robustness
during inference for noisy inputs (Goodfellow et al., 2014; Madry et al., 2017). Calibrating the
training noise to that expected to be seen in deployment can lead to optimal results in terms of
inference-time accuracy. The hyperparameter ϵ directly controls this trade-off: higher ϵ typically
increases robustness to noisy inputs but may decrease accuracy on clean data.

Consider an image classification NN used in a quality control system on a manufacturing line, where
the input ximage is an image of a product. The desired level of robustness ϵ∗ might change based on
several factors:

• Environmental conditions: Changes in factory lighting can alter image noise.
• Operational mode: A user might decide to temporarily increase sensitivity to minor defects

(requiring lower ϵ∗ for higher accuracy on subtle features) during a specific batch run, or
prioritise overall stability (higher ϵ∗) if the line is known to be experiencing vibrations.

• Sensor age: As the camera ages, its noise profile might change, warranting an adjustment to
ϵ∗.

HTI would learn a surrogate model p(yclass|ximage, ϵ). At inference time, based on the current
conditions and any explicit user preference for robustness, an appropriate ϵ∗ can be selected. The
system then samples from p(yclass|ximage, ϵ

∗) to obtain predictions as if from a model specifically
tuned for that desired robustness level, without needing on-the-fly retraining.

A.2 VARYING SHORT- VS. LONG-TERM FOCUS IN REINFORCEMENT LEARNING

The discount factor γ ∈ [0, 1) in reinforcement learning (RL) determines an agent’s preference for
immediate versus future rewards. A low γ leads to myopic, short-term reward-seeking behaviour,
while a γ closer to 1 encourages far-sighted planning, valuing future rewards more highly.

Consider an RL agent managing a patient’s chronic disease treatment, such as Type 2 Diabetes, where
actions involve adjusting medication dosage or recommending lifestyle interventions. The state s
includes physiological markers (e.g., blood glucose levels, HbA1c) and patient-reported outcomes.
The optimal planning horizon, and thus the desired discount factor γ∗, can vary based on patient
preference. For example, a patient might express a desire to prioritize aggressive short-term glycemic
control before an important impending event, or prefer a more conservative approach at other times
when they know their activity will be low. With HTI, users could then adjust the desired γ∗ based
on the current clinical context. The system would then sample actions from p(a|s, γ∗), allowing the
treatment strategy to dynamically shift its focus between immediate needs and long-term objectives
without retraining the entire RL policy for each desired γ.

A.3 VARYING FIDELITY AND DIVERSITY IN GENERATIVE MODELLING

Variational Autoencoders (VAEs) (Kingma et al., 2013) are generative models that learn a latent
representation of data. The β-VAE (Higgins et al., 2017) introduces a hyperparameter β that modifies
the VAE objective function by weighting the Kullback-Leibler (KL) divergence term, which acts as a
regulariser on the latent space. The choice of β critically influences the model’s behaviour:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 5: Example inference-time adjustment enabled by HTI. We illustrate disparate user preferences
affecting desired NN behaviour (desired λ level) for different users in this abstract example. Having
a fixed number of trained NNs (pθλi

) only allows partial exploration of the full hyperparameter
trajectory, while an HTI surrogate model ((p̂(·|xi, λ))λ∈Λ) can estimate outputs across the entire
spectrum of hyperparameters (estimated conditional probability paths represented by solid blue/red
lines). Crucially, hyperparameter-induced dynamics can differ amongst input conditions (xi), as the
true conditional distributions move along their own respective manifolds (Mxi ), so an effective HTI
model must learn conditional dynamics.

• Low β (e.g., β < 1): With less pressure on the KL divergence term, the model prioritizes
reconstruction accuracy. This often leads to generated samples with high fidelity (i.e., they
closely resemble the training data and are sharp/realistic). However, the latent space might be
less structured or more "entangled," potentially leading to lower diversity in novel generations
and poorer disentanglement of underlying factors of variation.

• High β (e.g., β > 1): A higher β places more emphasis on making the learned latent
distribution q(z|x) close to the prior p(z) (typically a standard Gaussian). This encourages
a more disentangled latent space, where individual latent dimensions might correspond to
distinct, interpretable factors of variation in the data (Burgess et al., 2018). While this can
lead to greater diversity in generated samples and better generalisation for tasks like latent
space interpolation, it might come at the cost of reconstruction fidelity, potentially resulting in
blurrier or less detailed samples as the model sacrifices some reconstruction capacity to satisfy
the stronger regularisation.

Consider a β-VAE trained to generate images. If a user needs to generate photorealistic images, a
lower β∗ would be preferred to maximise the sharpness and detail, ensuring the generated image is
of high perceptual quality. On the other hand, if a user is brainstorming image ideas, a higher β∗

would be beneficial, encouraging the model to generate a wider variety of images and styles, even
if individual samples are slightly less photorealistic. HTI could learn a surrogate generative model
p(yimage|z, β). The user could then dynamically adjust β∗ based on their current task.

A.4 FLEXIBLE HYPERPARAMETER OPTIMISATION WITH BAYESIAN OPTIMISATION

Standard Bayesian Optimization (BO) (Snoek et al., 2012; Shahriari et al., 2015) typically involves
learning a probabilistic surrogate model for a specific scalar objective function f : Λ → R (e.g.,
validation accuracy). This creates a rigid dependency: if the user’s preference changes during
deployment—for instance, shifting from maximising pure accuracy to maximising accuracy subject
to a fairness constraint or an inference latency budget—the learned surrogate is no longer valid for
the new objective, and the hyperparameter search process must be restarted.

HTI can decouple the surrogate model from the objective function. Because HTI learns a surrogate
for pθλ(y|x) rather than a scalar objective, it can be used to calculate any performance metric derived
from the model outputs as so:

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1. The HTI model is trained on a sparse set of anchor models to learn the conditional probability
paths.

2. Post-training, a user can define an arbitrary objective function J (λ) based on the model
outputs (e.g., Expected Calibration Error, F1-score, or a custom utility function balancing
risk and reward).

3. A BO optimiser searches for the optimal λ∗ that minimises J (λ) by querying the HTI
surrogate p̂(y|x, λ).

Critically, evaluating the objective J via the HTI surrogate is much faster than retraining the original
neural network. This could allow users to explore arbitrary Pareto frontiers of competing objectives
without the need for further expensive ground-truth model training, or training multiple surrogate
objectives as in standard BO.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B SAMPLING ALGORITHM

We summarise our sampling procedure, as detailed in §4, below in Algorithm 2.

Algorithm 2 Sampling from p̂(y|x, t∗)
Require: True distributions {ptk(·|x)}tk∈Tobs , CLOT maps {TθT,k

}k, geodesic path generator SθS ,
target marginal t∗, condition x ∈ X

Find k such that tk, tk+1 ∈ Tobs and tk < t∗ < tk+1.
yk ∼ ptk(·|x).
ŷk+1 = TθT,k

(yk|x)
Define spline geodesic path qφ(·) with φ = SθS (yk, ŷk+1, x)
s∗ = (t∗ − tk)/(tk+1 − tk). ▷ Normalise target marginal for current interval
ŷt∗ = qφ(s

∗)
return ŷt∗

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS

We now provide detailed experimental set-ups for each of our experiments in §5.

We ran all experiments on an Azure VM A100 GPU. A single run for the semicircles experiment took
between 5-10 minutes, depending on the surrogate model. To produce data for the reward-weighting
experiments, it took 3.5 hours to train a PPO agent at each setting. For the cancer experiment, it took
between 2-15 minutes to train the surrogate models. For the reacher experiment, it took between 1-7
minutes to train the surrogate models. For the quantile regression experiment, it took approximately
5 minutes to train the MLP quantile forecasters, and between 2-15 minutes to train the surrogate
models. Ultimately, final experimental runs involve approximately 100 hours of computation.

We base our implementation of our neural CLOT method off the code from Pooladian et al. (2024)
(CC BY-NC 4.0 License, https://github.com/facebookresearch/lagrangian-ot),
which we adapt for our specific setting. We will release our code upon acceptance.

C.1 SEMICIRCLES EXPERIMENT

C.1.1 SEMICIRCLES DATASET

We describe here the temporal process we used to generate the conditional semicircles synthetic
dataset from §5.1. The dataset comprises 2D points (x, y) associated with one of four discrete
conditions c ∈ {1, 2, 3, 4}, generated at a continuous time t ∈ [0, 1]. For each condition and time,
points are generated by first sampling an angle from a Von Mises distribution (von Mises, 1918), with
a time- and condition-dependent mean, and then sampling a radius from a Log-Normal distribution
centred around a unit circle radius. Specifically, the generation process for a single point under
condition c at time t is as follows:

Global parameters:

• rnom = 1: Nominal radius of the semicircles.
• σrad = 0.05: Standard deviation of the logarithm of the radial component, controlling radial

spread.
• κang = 5.0: Angular concentration parameter for the Von Mises distribution.

Generation: For each condition c and time t:

1. Sample radius (R): The radial component R is drawn from a Log-Normal distribution, such that
log(R) is normally distributed:

log(R) ∼ N (µlog, σ
2
log)

where µlog = log(rnom) and σlog = σrad. Thus,

R ∼ LogNormal(log(rnom), σ
2
rad)

This distribution is independent of condition c and time t.

2. Mean angle (µang(c, t)) and semicircle centre (xoffset,c): The mean angle µang(c, t) and the
x-coordinate of the semicircle’s center xoffset,c are determined by the condition c and time t:

xoffset,c =

{
−1.0 if c ∈ {1, 2}
1.0 if c ∈ {3, 4}

µang(c, t) =


tπ if c = 1 (top-left semicircle, 0→ π)

−tπ if c = 2 (bottom-left semicircle, 0→ −π)
(1− t)π if c = 3 (top-right semicircle, π → 0)

(t− 1)π if c = 4 (bottom-right semicircle, − π → 0)

3. Sample angle (Φc(t)): The angular component Φc(t) is drawn from a Von Mises distribution
centred at the mean angle:

Φc(t) ∼ VonMises(µang(c, t), κang)

19

https://github.com/facebookresearch/lagrangian-ot


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

4. Cartesian coordinates (xc(t), yc(t)): The 2D coordinates are obtained by converting the sampled
polar coordinates (R,Φc(t)) to Cartesian, relative to the semicircle’s center:

xc(t) = xoffset,c +R cos(Φc(t))

yc(t) = R sin(Φc(t))

The full dataset at a given time t consists of N samples drawn from each of the four conditional
distributions.

In §5.1 and §5.4 our training data consists of 100 samples for each condition at times t ∈ {0, 0.5, 1.0}.
The geodesics plotted in Figure 1 begin at true points sampled at t = 0 and end at their estimated
CLOT maps at t = 1. For the numerical results in Tables 1 and 5, we compare estimated distributions
from the respective models to the true distributions at t ∈ {0.25, 0.75}.

C.1.2 MODEL DETAILS

The hyperparameters for the surrogate models used in the semicircles experiments are listed in Table 7.
Note that, since we have discrete conditions in this experiment, we construct separate NW density
estimators for each condition, hence we set hx as N/A.

Hyperparameter Value

α 0.05 for models with Û , 0 otherwise
hy 0.05
hx N/A

Epochs 2001
GθG learning rate 5× 10−3

GθG MLP hidden layer sizes [128, 128]
GθG activations ReLU

GθG eigenvalue budget 2
gθg , TθT MLP hidden layer sizes [64, 64, 64, 64]
SθS MLP hidden layer sizes [1024, 1024]
gθg , TθT , SθS learning rate 10−4

gθg , TθT , SθS activations ReLU
Spline knots 15

FiLM layer size (applied to first layer activations) 16
c-Transform solver LBFGS, 10 iterations

Min-max optimisation 1×GθG update per 10× gθg , TθT , SθS updates

Table 7: Hyperparameters for semicircle experiments in §5.1.

C.2 CANCER THERAPY EXPERIMENT

C.2.1 ENVIRONMENT

We conduct this experiment using the ‘GhaffariCancerEnv-continuous’ environment from
DTR-Bench/DTR-Gym (Luo et al., 2024) (https://github.com/GilesLuo/DTRGym,
MIT license) which is based on the mathematical model for treatment of cancer with metasta-
sis using radiotherapy and chemotherapy proposed in Ghaffari et al. (2016). The implementation
deviates from Ghaffari et al. (2016) by treating the dynamics of circulating lymphocytes (c1) and
tumor-infiltrating cytotoxic lymphocytes (c2) as constant.

The state at time t is an 8-dimensional continuous vector representing key biological and treatment-
related quantities:

St = [Tp,t, Np,t, Lp,t, Ct, Ts,t, Ns,t, Ls,t,Mt]
T

where:

• Tp,t: Total tumour cell population at the primary site.
• Np,t: Concentration of Natural Killer (NK) cells at the primary site (cells/L).

20

https://github.com/GilesLuo/DTRGym


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• Lp,t: Concentration of CD8+T cells at the primary site (cells/L).
• Ct: Concentration of lymphocytes in blood (cells/L).
• Ts,t: Total tumour cell population at the secondary (metastatic) site.
• Ns,t: Concentration of NK cells at the secondary site (cells/L).
• Ls,t: Concentration of CD8+T cells at the secondary site (cells/L).
• Mt: Concentration of chemotherapy agent in the blood (mg/L).

All state components are non-negative real values.

The action at time t is a 2-dimensional continuous vector representing the treatment intensities:

At = [Dt, vt]
T

where:

• Dt: The effect of radiotherapy applied at time t.
• vt: The effect of chemotherapy applied at time t.

These actions influence the dynamics of the state variables according to the underlying mathematical
ODE model.

The reward Rt received after taking action At in state St and transitioning to state St+1 is designed
to encourage tumor reduction while penalizing significant deviations in Natural Killer (NK) cell
populations, with an additional reward or penalty in terminal states. Let S0 = [Tp,0, Np,0, . . . ]

T be
the initial state of an episode. The components of the reward at each non-terminal step are:

Tumor reduction component (Rtumor): This component measures the relative reduction in total
tumor cells. First, the total tumor populations at the current step k (representing St+1) and at the
initial step 0 are calculated:

Ttot,k = Tp,k + Ts,k and Ttot,0 = Tp,0 + Ts,0

These are then log-transformed:

Tk = ln(max(e, Ttot,k)) and T0 = ln(max(e, Ttot,0))

The tumor reduction reward is then:

Rtumor,t = 1− Tt+1

T0

NK cell population penalty (Rnk): This component penalizes deviations of the total NK cell
population from its initial value. The total NK cell populations are:

Ntot,k = Np,k +Ns,k and Ntot,0 = Np,0 +Ns,0

These are also log-transformed:

Nk = ln(max(e,Ntot,k)) and N0 = ln(max(e,Ntot,0))

The penalty is then calculated, with weighting factor λnk:

Rnk,t = −λnk

∣∣∣∣Nt+1

N0
− 1

∣∣∣∣
Finally, a termination reward (Rterm) is added if the episode ends:

Rterm =


100 if positive termination (no more tumour)
−100 if negative termination (max tumour size)
0 if non-terminal step

The total reward at step t is:

Rt = Rstep,t +Rterm =

(
1− Tt+1

T0

)
− λnk

∣∣∣∣Nt+1

N0
− 1

∣∣∣∣+Rterm

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.2.2 NON-LINEAR REWARD VARIANT:

For the non-linear reward scalarization experiment (§5.2.3), denoted as Cancer_nonlin, we
modify the reward function to incorporate a hinge mechanism on the NK penalty term, employing
the non-linear reward scalarization discussed in eq. (6) in (Rădulescu et al., 2020). In this setting,
the weighted NK cell penalty is only active if the relative deviation exceeds a threshold of 0.01. The
modified penalty term Rnk,t is defined as:

Rnk,t =

{
−λnk

∣∣∣Nt+1

N0
− 1

∣∣∣ if
∣∣∣Nt+1

N0
− 1

∣∣∣ > 0.01

0 otherwise

All other components of the reward function remain unchanged.

C.2.3 POLICIES

We train PPO agents (Schulman et al., 2017) for the true distributions pθλ(a|s) at various λnk
settings using the implementation in Stable Baselines3 (Raffin et al., 2021) (MIT license,
https://github.com/DLR-RM/stable-baselines3), with all other hyperparameters
left at default, using the MLPPolicy architecture. For each agent, we train for 500, 000 timesteps.

Once trained, we use samples from the models with λnk ∈ {0, 5, 10} as the training dataset for each
surrogate model. Specifically, we run the agent with λnk = 10 for 100 steps in the environment,
collecting 10 actions from each (stochastic) policy per observation. We evaluate each surrogate model
at λnk ∈ {1, 2, 3, 4, 6, 7, 8, 9}.

C.2.4 MODEL DETAILS

The hyperparameters for our surrogate models for the adaptive reward-weighting experiment are
listed in Table 8.

Hyperparameter Value

α 0.01 for models with Û , 0 otherwise
hy 1.0
hx 1.0

Epochs 2001
GθG learning rate 5× 10−3

GθG MLP hidden layer sizes [128, 128]
GθG activations ReLU

GθG eigenvalue budget 2
gθg , TθT MLP hidden layer sizes [64, 64, 64, 64]
SθS MLP hidden layer sizes [1024, 1024]
gθg , TθT , SθS learning rate 10−4

gθg , TθT , SθS activations ReLU
Spline knots 15

FiLM layer size (applied to first layer activations) 16
c-Transform solver LBFGS, 3 iterations

Min-max optimisation 1×GθG update per 10× gθg , TθT , SθS updates

Table 8: Hyperparameters for our surrogate models in the cancer therapy experiment in §5.2.1 and
§5.2.3.

For the direct surrogate model, we train a four-layer MLP using supervised learning, with inputs of
the base action, condition, and target hyperparameter, and output of the target action at the relevant
hyperparameter setting. We list the direct surrogate hyperparameters in Table 9.

For the CFM surrogate model, we train two flow matching models, to model the vector fields between
the distributions at λnk = 0 and λnk = 5, and between λnk = 5 and λnk = 10 respectively. We base
our implementation on the open source code from Lipman et al. (2024), found here https://
github.com/facebookresearch/flow_matching (CC BY-NC 4.0 License), extending

22

https://github.com/DLR-RM/stable-baselines3
https://github.com/facebookresearch/flow_matching
https://github.com/facebookresearch/flow_matching


1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Hyperparameter Value

Epochs 10000
Early stopping patience 100

Validation set 10%
Batch size 256

Learning rate 10−3

Hidden layer sizes [64, 64, 64, 64]
Activation function Swish

FiLM layer size (applied to first layer activations) 16

Table 9: Hyperparameters for the direct surrogate model in the cancer therapy experiment in §5.2.1.

it to incorporate external conditions via a FiLM layer. The hyperparameters for both of the CFM
models in this surrogate model are listed in Table 10.

Hyperparameter Value

Epochs 10000
Early stopping patience 100

Validation set 10%
Batch size 1000

Learning rate 10−3

Hidden layer sizes [64, 64, 64, 64]
Activation function Swish

FiLM layer size (applied to first layer activations) 16

Table 10: Hyperparameters for the CFM surrogate model in the cancer treatment experiment in
§5.2.1.

C.3 REACHER

C.3.1 ENVIRONMENT

We conduct this experiment using the Reacher-v2 environment from OpenAI Gym (https:
//github.com/openai/gym, MIT License). This environment consists of a two-jointed robotic
arm where the goal is to move the arm’s end-effector to a randomly generated target location.

The state at time t is an 11-dimensional continuous vector representing the angles and velocities of
the arm’s joints, as well as the location of the target and the vector from the fingertip to the target:

St = [cos(θ1), cos(θ2), sin(θ1), sin(θ2), xtarget, ytarget, θ̇1, θ̇2, xfingertip−xtarget, yfingertip−ytarget, zfingertip−ztarget]
T

where:

• cos(θ1), cos(θ2): Cosine of the angles of the two joints.
• sin(θ1), sin(θ2): Sine of the angles of the two joints.
• xtarget, ytarget: The x and y coordinates of the target location.

• θ̇1, θ̇2: The angular velocities of the two joints.
• xfingertip−xtarget, yfingertip−ytarget, zfingertip− ztarget: The vector from the fingertip to the target.

The action at time t is a 2-dimensional continuous vector representing the torque applied to the two
joints:

At = [τ1, τ2]
T

and each τi ∈ [−1, 1].
The reward Rt received at each step is the sum of a distance-to-target reward and a control cost
penalty:

Rt = −∥p⃗fingertip,t+1 − p⃗target∥2 − λcontrol∥a⃗t∥22

23

https://github.com/openai/gym
https://github.com/openai/gym


1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

where the first term is the negative Euclidean distance between the fingertip and the target, and the
second is the negative squared Euclidean norm of the action vector, which penalises large torques.
We introduce the weighting hyperparameter, λcontrol, that controls the strength of the control penalty
in the reward.

C.3.2 POLICIES

We train PPO agents (Schulman et al., 2017) at the setting λcontrol ∈ {1, 2, 3, 4, 5} using the im-
plementation in Stable Baselines3 (Raffin et al., 2021) (MIT license, https://github.
com/DLR-RM/stable-baselines3). We use the MLPPolicy architecture with default hy-
perparameters. Each agent is trained for 1, 000, 000 total timesteps.

Once trained, we use samples from the models with λcontrol ∈ {1, 5} as the training dataset for our
surrogate model p̂(a|s, λ). Specifically, we run the agent with λcontrol = 1 for 1000 steps in the
environment, collecting actions from each policy per observation. We evaluate each surrogate model
at λcontrol ∈ {2, 3, 4}.

C.3.3 MODEL DETAILS

The hyperparameters for our surrogate models for the Reacher experiment are listed in Table 11.

Hyperparameter Value

α 0.01 for models with Û , 0 otherwise
hy 2.0
hx 1.0

Epochs 2001
GθG learning rate 5× 10−3

GθG MLP hidden layer sizes [128, 128]
GθG activations ReLU

GθG eigenvalue budget 2
gθg , TθT MLP hidden layer sizes [64, 64, 64, 64]
SθS MLP hidden layer sizes [1024, 1024]
gθg , TθT , SθS learning rate 10−4

gθg , TθT , SθS activations ReLU
Spline knots 15

FiLM layer size (applied to first layer activations) 16
c-Transform solver LBFGS, 3 iterations

Min-max optimisation 1×GθG update per 10× gθg , TθT , SθS updates

Table 11: Hyperparameters for reacher experiment in §5.2.2.

For the direct surrogate model, we train a four-layer MLP in the same fashion as the cancer therapy
experiment, with the same hyperparameters (Table 9).

For the CFM surrogate model, we train one flow matching model, between the distributions at
λcontrol = 1 and λcontrol = 5 with the same hyperparameters as in the cancer experiment (Table 10).

C.4 QUANTILE REGRESSION

C.4.1 DATA

We use the ETTm2 dataset from the Electricity Transformer Temperature (ETT) collection (Zhou
et al., 2021) (https://github.com/zhouhaoyi/ETDataset, CC BY-ND 4.0 License),
which contains data on electricity load and oil temperature. We formulate a forecasting task for oil
temperature, with an input horizon of 12 steps to predict an output horizon of 3 steps. The dataset
is partitioned chronologically, with the first 70% used for training the ground-truth models and the
subsequent 15% for validation. From the remaining data, the next 1200 samples form the training set
for the HTI surrogates, and the final 180 samples are used as the HTI testing set to evaluate surrogate
model performance.

24

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://github.com/zhouhaoyi/ETDataset


1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.4.2 GROUND-TRUTH FORECASTERS

The ground-truth forecasters are three-layer MLPs with hidden dimensions of [256, 128, 128]. We
train a separate model for each target quantile τ ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99}. Training is
performed for up to 2000 epochs using the pinball loss function, with a learning rate of 10−3 and a
batch size of 32. We employ early stopping with a patience of 10 epochs.

The pinball loss, Lτ (y, ŷ), for a true value y and a quantile forecast ŷ at quantile level τ is defined as:

Lτ (y, ŷ) =

{
τ(y − ŷ) if y ≥ ŷ

(1− τ)(ŷ − y) if y < ŷ

This loss function penalizes under-prediction and over-prediction asymmetrically, which encourages
the model to learn the specified quantile.

To create the HTI training dataset, we use the ground-truth forecasters trained for τ = 0.01 and
τ = 0.99 to generate forecasts on the 1200 inputs of the HTI training set. For evaluation, the forecasts
from the remaining ground-truth models (for τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}) on the 180 HTI test
inputs serve as the ground-truth quantiles.

C.4.3 MODEL DETAILS

The hyperparameters for our surrogate models for the quantile regression experiment are listed in
Table 12.

Hyperparameter Value

α 0.01 for models with Û , 0 otherwise
hy 1.0
hx 1.0

Epochs 1001
GθG learning rate 5× 10−3

GθG MLP hidden layer sizes [128, 128]
GθG activations ReLU

GθG eigenvalue budget 3
gθg , TθT MLP hidden layer sizes [64, 64, 64, 64, 64, 64, 64, 64]
SθS MLP hidden layer sizes [1024, 1024]
gθg , TθT , SθS learning rate 10−4

gθg , TθT , SθS activations ReLU
Spline knots 15

FiLM layer size (applied to first layer activations) 16
c-Transform solver LBFGS, 10 iterations

Min-max optimisation 1×GθG update per 10× gθg , TθT , SθS updates

Table 12: Hyperparameters for ETT experiment in §5.5.

For the direct surrogate model, we train an eight-layer MLP with a hidden dimension of 64, to match
the increase in the number of layers for the Kantorovich potential and CLOT map MLPs in our
surrogate models. The other hyperparameters are the same as in the cancer experiment (Table 9).

For the CFM surrogate model, we also use an eight-layer MLP with a hidden dimension of 64 for the
flow matching model. The other hyperparameters are the same as in the cancer experiment (Table
10).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D EXTENDING TO MULTIPLE HYPERPARAMETERS

A limitation of our current approach is its design is only immediately appropriate for a single,
continuous hyperparameter. We see extensions to multiple and discrete hyperparameter settings as a
key direction for future research. Extending our current HTI method to this setting is non-trivial.

One simple extension that would allow for interpolation between multiple hyperparameters with our
current method involves extablishing a mapping from the multi-dimensional hyperparameter space to
a single ’time’ space, allowing our interpolation scheme that works on a single dimensional ’time’
variable to apply. We have considered two representative strategies for creating such a mapping—a
data-driven Principal Curve and a geometric space-filling Hilbert Curve—but there are outstanding
limitations to both potential approaches.

• Principal Curves: A principal curve, a non-linear generalisation of PCA, is the smooth curve
that captures the most variance a dataset. If we have multiple observed multi-dimensional
hyperparameters, we could find the principle curve through them, which could serve as our
1D ’time’ axis. The primary limitation of this approach is that it only allows for interpolation
to hyperparameter settings defined along this learned curve. To approximate an arbitrary
setting that is not on the curve, one would first have to project it onto the curve.

• Hilbert Curves: Conversely, a space-filling Hilbert Curve is a pre-defined geometric con-
struction whose single, continuous line is guaranteed to pass through every point in a
multi-dimensional space, ensuring full coverage. While this could guarantee coverage, its
critical flaw is that it breaks locality. Our method is grounded in Optimal Transport and
least-action principles, which assume that small changes in our "time" variable should lead to
small changes in the output distribution. A Hilbert curve would not necessarily respect this
intuition, potentially mapping two very different distributions to be ’temporal neighbours’.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E COMPARISON WITH NLOT FROM POOLADIAN ET AL. (2024)

We compare our approach against the full Neural Lagrangian Optimal Transport (NLOT) method
proposed by Pooladian et al. (2024). As NLOT was originally formulated for unconditional trajectory
inference, we adapted it for the CTI setting to ensure a fair comparison. Specifically, we equipped
all neural networks in the NLOT baseline with FiLM layers conditioning on x, identical to the
conditioning mechanism used in our own method. Consequently, the performance gap reported
below isolates the impact of: 1) the incorporation of a density-based potential energy term Û into the
Lagrangian, and 2) our more expressive parametrisation of the learned metric GθG .

Table 13: Surrogate model performance across 2D experiments.

Semicircle Cancer Reacher

Method NLL (↓) CD (↓) Reward (↑) Reward (↑)
Pooladian et al. (2024) 13.293 (1.98) 0.159 (0.008) 9.26 (10.55) −6.173 (0.038)

Ours −0.662 (0.046) 0.016 (0.001) 102.49 (5.46) −6.093 (0.036)

In all experiments, our method significantly outperforms the NLOT method.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

F LLM USAGE

In this work, we used LLMs to assist with the writing of this manuscript. This primarily involved
consulting LLMs to refine drafts, improving the coherence and clarity of our work, and simplifying
the writing process.

28


	Introduction
	Preliminaries
	Hyperparameter trajectory inference
	Conditional optimal transport
	Conditional Lagrangian optimal transport

	Related works
	Neural conditional Lagrangian optimal transport
	Potential energy term
	Joint learning of kinetic energy term and CLOT paths
	Metric parametrisation
	Sampling along the inferred trajectory

	Experiments
	Illustrative example of CTI
	HTI for reward-weighting in reinforcement learning
	Cancer therapy
	Reacher
	Non-Linear Reward Scalarization

	Sparsity Investigation
	Metric learning ablation
	HTI for quantile regression

	Discussion
	Further applications of HTI
	Varying neural network robustness in dynamic noise settings
	Varying short- vs. long-term focus in reinforcement learning
	Varying fidelity and diversity in generative modelling
	Flexible Hyperparameter Optimisation with Bayesian Optimisation

	Sampling algorithm
	Experimental details
	Semicircles experiment
	Semicircles dataset
	Model details

	Cancer therapy experiment
	Environment
	Non-linear Reward Variant:
	Policies
	Model details

	Reacher
	Environment
	Policies
	Model details

	Quantile regression
	Data
	Ground-truth forecasters
	Model details


	Extending to multiple hyperparameters
	Comparison with NLOT from pooladian2024neural
	LLM usage

