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ABSTRACT

Quantization significantly accelerates inference in large language models (LLMs)
by replacing original high-precision matrices with low-precision counterparts. Re-
cent advances in weight-activation quantization have primarily focused on map-
ping both weights and activations to the INT4 format. Although the new FP4
Tensor Cores in NVIDIA’s Blackwell architecture offer up to 4x speedup over
FP16, existing INT4-based kernels fail to fully exploit this capability due to mis-
matched data formats. To bridge this gap, we propose MicroMix, a co-designed
mixed-precision quantization algorithm and GEMM kernel based on Microscal-
ing (MX) data formats. Tailored for the Blackwell architecture, the MicroMix
kernel supports arbitrary combinations of MXFP4, MXFP6, and MXFP8 chan-
nels, and produces BFloatl6 outputs. To achieve a favorable trade-off between
accuracy and efficiency for each linear layer, we introduce quantization thresh-
olds that identify activation elements where lower-precision formats (MXFP4
or MXFP6) incur excessive quantization error. Our algorithm selectively al-
locates higher-precision channels to preserve accuracy while maintaining com-
pute efficiency. On the Llama and Qwen model families, MicroMix achieves
near-FP16 performance across diverse downstream tasks with an average preci-
sion of 5 bits. In particular, Qwen2.5-32B-Base and Coder exhibit lossless ac-
curacy on zero-shot, code generation, and mathematical reasoning benchmarks.
In addition, on RTX 5070Ti laptop and RTX 5090 GPUs, our kernel achieves
2.29-3.38x acceleration compared to TensorRT-FP16. Our code is available at
https://github.com/lwy2020/MicroMix.

1 INTRODUCTION

In recent years, large language models (LLMs) have demonstrated remarkable performance across a
wide range of tasks (Vaswani et al., 2023 Brown et al.,|2020). However, these capabilities come with
substantial computational and energy costs. To mitigate this, quantization techniques replace high-
precision matrix multiplications with more efficient low-bit alternatives (Yao et al.||2022; [Xiao et al.|
2024), significantly improving LLM inference speed. Quantization techniques are broadly classified
into weight-only and weight-activation approaches. Weight-only methods (Lin et al., 2024b; |Frantar,
et al., [2023; |Yang et al.| 2025) have substantially mitigated the precision loss associated with 4-bit
weights and 16-bit activations (W4A16). In parallel, weight-activation methods (Dettmers et al.,
20225 X1ao et al.,[2024)) suppress activation outliers effectively, enabling accurate 8-bit quantization
of both weights and activations (W8AS8). More recently, mixed-precision and rotation-based quan-
tization algorithms (Ashkboos et al.l 2024} Zhao et al., 2024) have pushed the frontier further to
W4A4, achieving strong performance on downstream tasks.

Despite these advances, two key bottlenecks continue to restrict the kernel-level efficiency of INT4-
based quantization: (1) The widely adopted group-wise integer quantization scheme requires de-
quantizing each integer group to floating-point values followed by partial summations. This proce-
dure is executed on slower CUDA Cores, as INT8 Tensor Cores only support INT32 accumulation.
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(2) NVIDIA’s latest Blackwell architecture introduces FP4 Tensor Cores that offer up to 4 x higher
throughput than FP16 and 2 x higher than FP8 or INT8. However, existing INT-based quantization
kernels are incompatible with these new tensor cores and thus fail to leverage their full potential. As
a result, significant room remains for optimizing quantization kernel throughput on the Blackwell
architecture.
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Figure 1: (a) MicroMix reorders channels and allocates different bit-widths accordingly. (b) The
quantization thresholds T'(4) and 7'(6) partition elements into three groups based on their quantiza-
tion error magnitude. (¢) MicroMix consistently achieves lower quantization error across all layers.

In this paper, we propose MicroMix, a mixed-precision quantization framework based on Microscal-
ing (MX) data formats, featuring a co-designed algorithm and kernel. The key components of Mi-
croMix are as follows:

(1) Flexible bit-width ratios (4, 6, and 8 bits). To balance efficiency and accuracy, MicroMix
assigns customized ratios of three precision levels to each linear layer. The quantization kernel
supports multiple Microscaling formats (MXFP8, MXFP6, MXFP4) and arbitrary mixing ratios.
By leveraging CUTLASS GEMM, we instantiate optimized matrix multiplication kernels tailored
to specific data types and problem sizes. In addition, dequantization operations are deeply fused into
MMA instructions, introducing negligible overhead on Blackwell Tensor Cores.

(2) Low-error precision assignment strategy. We propose a bit allocation algorithm that adapts
to input distributions from the perspective of quantization error. The key idea is to ensure that the
quantization error of lower-bit formats remains below the upper bound of higher-precision formats.
To this end, we define explicit quantization thresholds for MXFP4 and MXFP6: elements exceeding
the threshold at a given bit-width are reassigned to higher-precision formats (see Figure[I{b)). This
formulation introduces explicit outlier thresholds for MXFP4 and MXFP6, addressing a limitation of
prior work. As a result, MicroMix significantly reduces the quantization error induced by MXFP4,
as shown in Figure [Tc).

(3) Efficient reorder-and-quantize operation. Since adjacent channels may be assigned differ-
ent bit-widths, channels of the same precision need to be reordered into the same block. Without
reordering, applying mixed-precision quantization directly results in irregular memory access and
considerable overhead. To address this, MicroMix integrates the reordering step into the quanti-
zation kernel (Figure [T{a)), enabling high-throughput quantization across heterogeneous precision
levels with negligible additional latency.

We evaluate MicroMix on multiple downstream tasks, including zero-shot and few-shot learning,
language modeling, code generation and mathematical reasoning. Across various Llama and Qwen
models, MicroMix generally maintains at least 98% FP16 accuracy on zero-shot, code and math
benchmarks, achieving comparable to or better than state-of-the-art baselines. In particular, Mi-
croMix achieves near-FP16 performance on Qwen2.5-32B models (Base and Coder) with an av-
erage bits about 5.2. For efficiency analysis, we evaluate the MicroMix kernel on RTX 5070Ti
laptop, RTX 5090 and RTX PRO 6000 GPUs. Compared with TensorRT-FP16, MicroMix achieves
a kernel-level speedup of 2.45-2.93 x on the RTX 5070Ti laptop and 2.29-3.38 x on the RTX 5090.
When integrated into the Transformer architecture, MicroMix achieves 1.98-2.02x higher end-to-
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end compared to FP16. For end-to-end efficiency, MicroMix delivers at least 1.82 times higher
decoding throughput than INT4 baselines on RTX PRO 6000.

2  PRELIMINARY AND MOTIVATIONS

2.1 PRELIMINARY
Given an activation tensor X and a weight tensor W, quantization approximates the original matrix
multiplication with a low-precision computation:

Q(X) = round(g)

Y = XW = QX)QW) - sxsw. ;

(D
where sx and sy are the scaling factors of X and W respectively. VX; € X, the quantization
error for X; is defined as:

B(X) = 1%~ QUX)| = 1X; — round(“2)s| =5
where v = |round(X;/s) — X;/s| is the rounding error. In Appendix we further analyze the
relationship between quantization error and model accuracy. Empirically, we observe that model
accuracy remains close to the FP16 baseline as long as the quantization error is constrained within a
specific threshold. However, once the quantization error exceeds this threshold, accuracy degrades
rapidly. For recent LLMs, INT8 quantization typically remains within the high-accuracy region,
whereas INT4 often lies near the onset of significant accuracy degradation.

2

Microscaling data formats (MX) are advanced numerical formats designed for deep learning. The
basic unit of MX is a block of size k, consisting of k scalar elements { X }?:1 and a single shared
scaling factor s in ESMO (Darvish Rouhani et al.,[2023a). Recently, DeepSeek V3.1 (DeepSeek-AlL
2024])) was trained using the UESMO FP8§-scaled data format for both model weights and activations,
ensuring compatibility with microscaling formats. Given a FP16 tensor X € RL*!, quantization
to MXFP8/MXFP6/MXFP4 first partitions X into blocks of 32 elements { X}, N = £ then
applies per-block symmetric quantization for V.X; € X as follows:

X,
Q(X;) = round(=7), s = 2llosa(meax(XI = 3)

where round(-) denotes rounding to the nearest MXFP value and the exponent bias b is format-
specific (see Appendix [B]for more details).

2.2 MOTIVATIONS

The primary motivations of this paper stem from addressing the limitations in current quantization
methods and their corresponding kernels.

Motivation 1: Adaptive Mixed-precision Al-
location for Diverse Activation Distributions.
Existing mixed-precision quantization methods
such as Atom (Zhao et al.l 2024), employ a
fixed number of high-precision channels across
all layers. This uniform allocation fails to ac-
count for the heterogeneous activation distri-
butions observed in different layers (see Fig-
ure [2). Specifically, layers with larger activa-
tion values across channels require more high-
precision channels to reduce the quantization
error. Consequently, directly applying current
fixed-allocation mixed-precision algorithms to
MX formats leads to a noticeable degradation
in accuracy (see Table[TT]in Appendix[D.3). To
overcome this, we propose a novel strategy that
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methods, MicroMix assigns a larger portion of
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layer-wise adaptive precision ratios across all lin-
ear layers.
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flexibly allocates the number of 4, 6, and 8-bit channels per layer. This adaptive approach ensures
that all linear layers consistently maintain low errors, thereby improving model accuracy.

Motivation 2: Leveraging FP4 Tensor Cores for Enhanced Kernel Efficiency. Current INT-
based kernels, exemplified by Atom and QuaRot (Ashkboos et al., 2024)), require dequantization on
CUDA Cores because INT8 Tensor Cores only produce INT32 partial sums. The dequantization
process on CUDA Cores limits the performance of these INT kernels (Lin et al., 2025b). In stark
contrast, FP4 matrix multiplication allows for direct dequantization on FP4 Tensor Cores, leading
to a significant improvement in computational efficiency. This fundamental advantage highlights
the critical need for developing next-generation mixed-precision methods with kernels specifically
designed for FP formats.

Motivation 3: Quantization Error Management through Adaptive Thresholding for Outliers.
Quantization error, inherent to the format conversion between original activations X and their quan-
tized representations Q(X ), cannot be entirely eliminated. Therefore, it is critical to ensure this
error remains within an acceptable bound. While prior works have introduced various techniques,
such as smoothing, rotation, and clipping, to mitigate the impact of outliers in activations. There
is still a notable gap in research concerning the precise threshold above which outliers should be
constrained for MXFP4 and MXFP6. In this paper, we define specific quantization thresholds for
MX. Elements exceeding these defined thresholds will be preferentially stored in higher bit-width,
thereby effectively minimizing quantization error and maintaining high model fidelity.

3 METHOD

To address the accuracy degradation observed in INT4 quantized models on downstream tasks, prior
work has explored various solutions. However, post-training quantization for Microscaling (MX)
formats remains underexplored. Leveraging the inherent flexibility of multiple MX data formats,
we propose MicroMix, a novel co-designed mixed-precision quantization algorithm and kernel.

3.1 ALGORITHM

In MicroMix, the activation tensor channels are partitioned into three groups, G4, Gg, and Gy,
which are quantized to MXFP4, MXFP6, and MXFPS, respectively. The corresponding weight
channels are quantized to the same bit-width as their activation counterparts.

Reducing Quantization Error through Permutation. Due to the limited bit-width, the quanti-
zation error of MXFP4 or MXFP6 cannot, in general, be lower than that of INTS. Given a token
X € R/, our key idea is to constrain the quantization error of MXFP4 and MXFP6 such that it
remains within the upper bound of the error introduced by INTS:

E(X)uxrpiaey < E(X)ints, VX € Gag 4

According to Equation 2] the reduction of quantization error in MX primarily depends on lowering
the maximum value within each block of X;. A straightforward approach is to group large val-
ues into the same blocks while keeping smaller values together. To achieve this, we introduce a
permutation o that rearranges the elements of X in ascending order:

o: X —o(X) &)

Defining Quantization Threshold for Partitioning. After permutation, the next step is to deter-
mine the groups G4, G, G's. To accurately distinguish outliers from regular elements, we define
the quantization threshold as follows:

Definition 1. Given a high-precision bit-width (e.g., 8-bit for recent LLMs) and a target bit-width
n, the quantization threshold T'(n) is defined as:

271,—1 o

T(n)=2° “E(X)iNTs (6)

qmam
To maintain low quantization error at MXFP4 or MXFP6, the maximum allowable magnitude within

group must satisfy:
max(|Gy|) < T(n) (7)
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Here, n denotes the number of bits, b is the exponent bias and g, 4, represents the maximum repre-
sentable value in the target format. A detailed derivation of the quantization threshold is provided in
Appendix [C.2] Based on the thresholds, the groups G4, G, and G are defined as:

Gi={X|X <T@A)} Ge¢={X|T(4) <X <T(6)}, Gs={X|T6)<X} @8

We calculate the proportions py, pg, and pg corresponding to the channel groups G4, G, and Gg
for each linear layer in Llama3.1-8B. The results are shown in Figure [3] We summarize three key
observations:

Layer-wise Adaptivity: The proportions vary dynamically across layers, reflecting the diverse in-
put distributions in each activation. This demonstrates that the mixed-precision allocation is layer-
specific rather than fixed globally.

FP4 Dominance: The proportion p, consistently exceeds 50%, indicating that FP4 computations
dominate the mixed-precision workflow. This dominance contributes significantly to the computa-
tional efficiency of the model.

Cross-Dataset Stability: The variations of p4, pg, and ps across different datasets and sampling
strategies are minimal, suggesting that the mixed-precision assignment remains relatively stable.
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Figure 3: Distribution statistics of p4 (E2M1), pg (E3M?2), and pg across Llama3.1-8B. We evaluate
32 samples selected from WikiText2 (Merity et al, 2016) and the Pile dataset (Gao et al., |2020),
covering batch sizes of 8, 16, 32, and 64, and sequence lengths of 512, 1024, 2048, and 4096. For
each sample, p4, pg, and pg are computed over all linear layers. The figure reports the mean values
and min-max ranges of py, pg, and pg across all samples.

Offline Channel Assignment Strategy. Online evaluation of channel partitioning would introduce
substantial runtime overhead. Instead, leveraging the observed stability of p4, pg, and pg, we pre-
compute {p5, pk pk ¥} for the kth linear layer offline using calibration data. To allocate higher
precision to more critical channels, we sort the activation channels according to their absolute mean
values. Specifically, for the kth linear layer input tensor X* € RZ*! the channel-wise absolute
mean vector M* € R’ is computed as:

1 <& 1 & 1<
Mk:(ZZ|X€1|7ZZ|X]?2|77ZZ‘XITI|) 9)
i=1 i=1 i=1

The permutation o* is obtained by sorting the elements of M* in ascending order. Let pf, p&, and
p% denote the proportions obtained for X *; the channel partitioning is then defined as:
k k k
Gyi=o0 (X):,:pi“[? Gg=o0 (X):,pi"[:pglﬂ Gs=o0 (X) (P +pE)I:pEI (10)

3.2 KERNEL DESIGN

Low-bit quantization offers significant performance improvements but presents considerable chal-
lenges in kernel design, especially for mixed-precision and fine-grained schemes like MicroMix.
Recent advancements in GPU architectures, particularly the increased throughput of Tensor Cores
for low-bit floating-point operations, combined with underlying support for block-scaled formats,
have diminished the competitive advantage of traditional INT-type and GEMM quantization ker-
nels. This simultaneously creates new opportunities for low-bit floating-point quantization.

Mixed-precision Quantization. Driven by the goal of deep algorithm-hardware integration, we
have designed a mixed-precision, block-scaling quantization kernel for MicroMix. Complementing
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this, we adopt MXFP-type GEMM kernels from CUTLASS, resulting in a kernel suite that delivers
both excellent performance and high accuracy.

Fine-grained Block-scaled Data Formats. Quantization error is also influenced by the number of
elements sharing a single scale factor. To fully harness the representational power of low-bit data
types, fine-grained group quantization has become widely adopted and proven efficient in related
works such as Atom and QuaRot. This used to be a tough trade-off between accuracy gains and
dequantization overhead. However, the NVIDIA Blackwell architecture changes the game. Black-
well’s mma instructions directly support new 4, 6, and 8-bit floating-point data types with integrated
scale factors (known as MXFP formats), making block-scaled quantization a truly practical solution.

GEMM Kernel. As shown in Figure |4 (a), the output matrix is divided into blocks within each
GEMM kernel, with iterations for each block performed along the K dimension. After loading
fragments of input matrices and their scale factors into Shared Memory or Tensor Memory, MMA
instructions fused with dequantization operations are continuously executed on Tensor Cores. These
operations accumulate FP32 partial sums into the BFloat16 result matrix. The process is highly
decoupled, as matrices of specific data types invoke their corresponding GEMM kernels. This design
allows for easy adjustment of data type categories and their ratios.
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Figure 4: (a): The fused GEMM kernel of MicroMix. (b): The fused reorder-and-quantize operation.
The quantization of weights is one-time cost and could be performed offline.

Quantization Kernel. Mixed-precision quantization often faces ir- — eorder

regular memory access, leading to significant performance degrada- .. - rieca reocersns cuantie
tion. To tackle this, MicroMix adopts a strategy similar to Atom and e
RPTQ (Yuan et all 2023)) by reordering channels to enable regular
memory access. Our algorithm divides channels of activation into
three distinct parts, to which we then apply block-wise scaling quan-
tization in 32-element blocks. To ensure correct matrix multiplica-
tion, weights are correspondingly permuted to match the reordered
activations before undergoing a similar three-part block-wise scaling

quantization. Crucially, the reordering and quantization of activations T R
must occur dynamically, while these processes for weights can be  Fjoure 5. Comparison of
handled offline as a pre-processing step. To mitigate the overhead of 1o latency between single
dynamic reordering, we employ a kernel fusion technique (see Fig- 14 fused operations with a
ure[d](b)), which combines the quantization and reordering operations p,¢ch size of 32.

into a single kernel. As shown in Figure[5] our fused kernel introduces

little overhead compared to mixed-precision quantization only.

Latency (ms)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Quantization. MicroMix performs block-wise symmetric quantization with a block size of 32 for
both weights and activations, using the ESMO scaling format. The data formats are MXFP8 (E4M3),
MXFP6 (E3M2), MXFP4 (E2M1) respectively. In Appendix Table 0] provides a summary of
the quantized model information, including average using bits, offline calibration time and the size
of quantized models.
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Baselines. We compare MicroMix against four INT-based weight—activation quantization methods:
Atom (Zhao et al.,[2024)), QUIK (Ashkboos et al.,[2023), QuaRot (Ashkboos et al., [2024), FlatQuant
(Sun et al.}|2025) and one MX-based method, AMXFP4 (Lee et al., [2025)). All baselines are repro-
duced on both Llama (Grattafior1 et al., 2024) and Qwen (Qwen et al., [2025). Since MicroMix
employs non-fixed bit-widths across linear layers, we additionally report the average bit-width per
token element for all methods in Table[I] Implementation details are provided in Appendix [D.1]

Benchmarks. For zero-shot evaluation, we use ARC_C (Clark et al., [2018), Lambada (Paperno
et al., |2016), Winogrande (Sakaguchi et al., [2019), BoolQ (Clark et al., 2019), and PIQA (Lourie
et al.,2021). For five-shot accuracy, we adopt MMLU (Hendrycks et al.,[2021a). WikiText2 (Merity
et al.,|2016) is used to evaluate perplexity (PPL). Additionally, we assess the Code and Math capabil-
ities of the Qwen2.5 model series. Code benchmarks are Human-Eval (Chen et al.,[2021) and MBPP
(Austin et al.l 2021)), while Math benchmarks cover GSM8K (Cobbe et al., [2021)), MMLU-STEM
(Hendrycks et al.,[2021al), CMATH (Wei et al.,[2023)) and MATH (Hendrycks et al., [ 2021b)).

4.2 MAIN RESULTS

Table [1| reports zero-shot and five-shot accuracy, along with WikiText-2 perplexity, for MicroMix
and six baselines on Llama3.1-8B and Qwen2.5-32B. Across the five zero-shot benchmarks, Mi-
croMix is the only quantization method that consistently preserves at least 98% of FP16 average
accuracy on both models (Llama: 71.56 vs. 73.03; Qwen: 75.20 vs. 75.55). On the five-shot
MMLU benchmark, MicroMix retains at least 96% of FP16 accuracy (Llama: 62.65 vs. 65.24;
Qwen: 81.79 vs. 83.32), outperforming all competitors by >1.32 points on Llama and >0.27 points
on Qwen. For WikiText2, MicroMix incurs only a marginal perplexity increase of 0.48 on Llama3.1-
8B (6.72 vs. 6.24) and 0.46 on Qwen2.5-32B (5.56 vs. 5.02). The results of KV cache quantization
is demonstrated in Table [T0] of Appendix [D.3]

Table 1: Zero-shot and few-shot accuracy and perplexity of Llama3.1-8B and Qwen2.5-32B evalu-
ated with 1m-eval (Gao et al.|2024). “Avg. Bits” denotes the average bit-width per token element.
INT®6 is implemented using symmetric per-token quantization.

vodel | Methog | Ave | 0-shot (1) | S-shot (1) | PPL ()
| Bits | ARCC BoolQ Lambada PIQA Winogrande Avg. | MMLU | WikiText2
‘ FP16 ‘ 16.00 ‘ 53.58 81.99 75.47 80.09 74.03 73.03 ‘ 65.24 ‘ 6.24
QuaRot 4.12 46.42 76.24 68.48 77.91 70.96 68.00 55.23 6.98
QUIK 5.95 44.62 77.09 73.28 77.09 69.19 68.05 56.65 7.29
Llama3.1-8B Atom 4.25 50.17 76.15 69.45 78.02 70.01 68.76 58.05 6.79
FlatQuant 4.19 51.54 78.87 73.32 79.16 71.98 70.97 61.33 6.95
AMXFP4 5.00 43.77 74.80 71.12 75.19 66.85 66.34 53.79 7.49
INT6 6.00 48.38 717.37 69.86 78.29 70.01 68.78 58.67 7.53
MicroMix | 5.51 50.26 81.13 74.13 80.14 72.14 71.56 62.65 6.72
‘ FP16 ‘ 16.00 ‘ 55.89 87.46 76.21 82.26 75.93 75.55 ‘ 83.32 ‘ 5.02
QuaRot 4.12 53.08 84.77 74.89 80.96 73.14 73.36 79.39 5.86
QUIK 6.21 52.90 85.87 74.21 80.36 71.82 73.03 78.89 5.92
Qwen2.5-32B Atom 421 54.78 86.54 75.92 81.45 73.48 74.43 79.54 5.89
FlatQuant 471 56.23 86.30 75.41 81.50 74.19 74.72 81.52 5.74
AMXFP4 5.00 51.54 87.09 75.24 80.85 73.51 73.64 79.96 5.85
INT6 6.00 55.29 85.38 69.45 78.84 71.82 72.15 79.33 5.82
MicroMix | 5.22 56.66 87.13 717.37 80.65 74.19 75.20 81.79 5.56

Notably, higher average bit-width does not necessarily translate into higher accuracy. For instance,
QUIK and INT6 employ more bits than MicroMix, yet provide limited performance gains.

Table 2: Mixtral-8x7B-v0.1-Instruct performance comparison between FP16 and MicroMix.

| Arc.C  BoolQ Lambada PIQA  Winogrande Avg. | Execution Time
FP16 ‘ 65.70 88.50 77.37 84.49 76.87 78.58 ‘ Smin 18s
MicroMix ‘ 64.25 88.07 78.52 84.00 76.16 78.20 ‘ 2min 03s

As shown in Table 2] MicroMix attains accuracy comparable to FP16 on Mixtral-8x7B-v0.1-
Instruct, with an average score drop of only 0.38 points (78.58 to 78.20) and per-task differences



Published as a conference paper at ICLR 2026

typically within +1.5 points. Notably, this minor accuracy trade-off comes with a substantial runtime
reduction, cutting execution time from Sm18s to 2m03s.

Math benchmarks. Table [3| shows that MicroMix incurs an average accuracy drop of less than
4% compared to FP16, while retaining at least 98.4% of FP16 accuracy on GSM8SK, MATH, and
CMATH, with an average bit-width of 5.16.

Table 3: Accuracy (1) of Qwen2.5-Math-7B-Instruct on math benchmarks: GSM8SK, MMLU-
STEM, CMATH, and MATH. FP8 is implemented by vLLM (Kwon et al., [2023)).

Model | Method | GSM8K MATH MMLU-STEM CMATH | Average

| FPI6 | 958 837 778 915 | 872
B FP8 95.5 834 68.7 917 84.8
MicroMix | 95.1 82.4 66.5 91,5 838

Code benchmarks. As reported in Table ] MicroMix achieves accuracy comparable to or better
than INTS8 on the 14B (Avg. Bits: 5.54) and 32B (Avg. Bits: 5.18) models. Relative to FP16, the
accuracy degradation remains within 1.5%.

Table 4: Accuracy (1) of Qwen2.5-Coder-{14B,32B }-Instruct on Code benchmarks: Human-Eval
and MBPP. INTS is implemented by Bitsandbytes (Dettmers et al., 2022).

Model | Method | Human-Eval Human-Eval+ MBPP MBPP+

| FPI6 | 878 841 810 692

14B INTS 86.6 82.9 86.0  73.0
MicroMix 87.4 82.9 854 701

| FPl6 | 884 84.1 845 709

328 INTS 89.0 85.4 82 735
MicroMix 89.0 85.4 86.8 74.1

4.3 ABLATION STUDIES

In this section, we analyze the potential impact of different data formats and calibration datasets.

MXFP6 and MXFPS8 Variants. We examine the impact of different MXFP6 (E2M3 and E3M?2) and
MXFP8 (E5SM2 and E4M3) variants on zero-shot accuracy and perplexity. As shown in Table[5] all
four configurations yield comparable results, suggesting that the specific exponent—mantissa trade-
off has only a minor effect on MicroMix. This robustness arises because the definition of quantiza-
tion thresholds explicitly accounts for the influence of both exponents and mantissas on quantization
error, thereby mitigating sensitivity to data format choices.

Table 5: Zero-shot accuracy (1) on Winogrande, Lambada, PIQA, and perplexity ({) on WikiText2,
using different exponent and mantissa bits for MXFP6 and MXFP8 on Llama3.1-8B. MXFP4 is
E2MI1 consistently.

MXFP8 | MXFP6 | Winogrande Lambada PIQA | WikiText2

ey | E3M2 | 7253 7336 80.25 | 6.84
| E2M3 | 72.69 72.83  80.14 | 681
e | OE3M2 | 7214 7413 80.14 | 672
| E2M3 | 7151 7407 8009 | 673

Impact of Calibration Datasets. To assess the robustness of offline partitioning, we test different
calibration datasets, including WikiText2, Pile and C4 (Raffel et al., 2019)). As shown in Table @]
of Appendix zero-shot and perplexity results remain stable across datasets with performance
fluctuations within approximately 1%.

Time Breakdown by Component. We use the average values of py4, pg, and pg from Llama3.1-
8B to compute the runtime breakdown of reorder-and-quantize and GEMM relative to the total
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MicroMix kernel time, as shown in Table [6] Fused reorder-and-quantize operation takes less than
20% MicroMix kernel runtime across different lengths.

Table 6: The proportion of runtime for each part on RTX 5090.

Part ‘ Length =128 Length=256 Length=512 Length=1024 Length=2048 Length=4096
Reorder-and-Quantize 7.9% 9.7% 11.8% 14.3% 17.0% 16.9%
GEMM 92.1% 90.3% 88.2% 85.7% 83.0% 83.1%

4.4 EFFICIENCY EVALUATION

In this section, we assess the efficiency of MicroMix from three perspectives: (1) single-kernel
execution speed; (2) speedup of our custom kernel relative to CUTLASS; and (3) end-to-end per-
formance in the prefill and decode stages. We evaluate MicroMix on three Blackwell architecture
GPUs: RTX 5070Ti laptop, RTX 5090, and RTX PRO 6000, to examine its applicability across
consumer and server GPUs.

Kernel Efficiency. We measure the latency of the MicroMix kernel across varying sequence lengths
and hidden sizes. As baselines, we use strong TensorRT implementations: TensorRT FP8 (per
tensor), W4A16 (per token), and FP16. Because MicroMix employs a nonfixed combination of 4-, 6-
, and 8-bit channels, all kernel and transformer-block experiments report the minimum to maximum
ranges alongside mean-value curves. As shown in Figure [6] MicroMix consistently outperforms
TRT FP8 on both GPU platforms. On the RTX 5070Ti laptop, it achieves a 2.45 to 2.93x speedup
over TRT FP16 and up to 1.45x over TRT FP8. On the RTX 5090, MicroMix delivers a 2.29 to
3.38 x speedup over TRT FP16 and up to 1.74 x over TRT FPS.
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Figure 6: Computation latency of a single kernel with different lengths. ”MicroMix-Range” denotes
the latency span from the fastest to the slowest time.

Performance of our customized kernel. Table [/|reports the speedup of our customized GEMM
kernel relative to CUTLASS. For small problem sizes with N = K = 4096, our kernels consistently
outperform CUTLASS, achieving speedups of approximately 2.6 to 4.0x for W4A4, 3.1 to 5.0x for
WO6AG6, and 1.2 to 3.1x for W8AS8 as M increases. The gains are most pronounced at moderate M
values, for example M = 32, indicating improved utilization and kernel efficiency for low-precision
formats, particularly W6A®6.

Table 7: Customized GEMM Kernel Speedup over CUTLASS on Small Problem Size (N=K=4096).

M | W4A4 | WO6A6 | W8A8
CUTLASS  Customized Speedup | CUTLASS Customized Speedup | CUTLASS Customized Speedup
TFLOPS TFLOPS TFLOPS TFLOPS TFLOPS TFLOPS
1 1.04 2.72 2.62% 0.65 2.04 3.14x 1.02 1.63 1.60x
2 2.07 5.45 2.63x 1.30 4.67 3.59x 2.11 3.27 1.55%
4 4.16 10.91 2.62% 2.62 8.19 3.13x 4.16 6.55 1.57x
8 8.09 26.17 3.23%x 5.23 18.72 3.58% 8.46 16.37 1.93x
16 15.95 52.37 3.28x 10.47 43.68 4.17x 17.01 37.42 2.20x
32 32.58 130.99 4.02x 20.95 104.75 5.00x 33.58 104.80 3.12x
64 66.82 209.50 3.14x 41.92 134.61 3.21x 67.28 130.96 1.95%
128 130.91 260.90 1.99x 83.83 161.35 1.92x 134.82 160.90 1.19%

Comparison of 4-bit baselines. To demonstrate the end-to-end efficiency of MicroMix, we com-
pare against two 4-bit baselines, Atom and QuaRot. As shown in Figure[7} MicroMix reduces prefill
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latency by about 85 percent compared to Atom and QuaRot on RTX PRO 6000. In the decode stage,
MicroMix increases throughput by 1.82 to 3.02 times compared to Atom.
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Figure 7: Prefill latency (left) and decoding throughput (right) of three methods on RTX PRO 6000.

Comparison of FP16 and INT8 baselines. On RTX 5090, we further compare the prefill perfor-
mance of MicroMix against two baselines: FP16 from HuggingFace and INTS8 from Bitsandbytes.
Figure 8] reports the prefill latency and peak memory usage of Llama2-7B and Llama3.1-8B on the
RTX 5090 with batch sizes {8, 12} and sequence length 2048. Compared with FP16, MicroMix re-
duces memory usage by 2.29-2.84 x and latency by approximately 2.0 at batch size 8. Compared
with INT8, MicroMix further reduces memory usage by 1.60-2.01x and latency by 1.80—1.84x at
batch size 12.
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Figure 8: Prefill latency and peak memory usage of MicroMix compared with FP16 and INTS.

5 CONCLUSION

In this paper, we present MicroMix, a co-designed mixed-precision quantization algorithm and ker-
nel that supports MXFP4, MXFP6, and MXFP8 formats. Our algorithm introduces the quantization
threshold to identify elements that incur excessive quantization error at the target bit width. We
also propose an offline calibration strategy to determine the optimal channel assignments for each
precision level on calibration dataset. To enable efficient inference, we design a matrix multiplica-
tion kernel that integrates three GEMM precisions and a fused reorder-and-quantize operation. Mi-
croMix kernel achieves significant speedups over TensorRT baselines on both RTX 5070Ti laptop
and RTX 5090 GPUs across various configurations. On the RTX PRO 6000, MicroMix consistently
outperforms FP16, INT8 and INT4 baselines.
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A RELATED WORKS

Post-training Quantization can be broadly divided into two categories: weight-only methods and
weight—activation methods |Lin et al.| (2025a). Weight-only approaches (Frantar et al.| 2023 |Kim
et al 2024; Lin et al.| 2024b) compress model weights into low-bit formats while dequantizing
them back to high precision (e.g., FP16) during GEMM operations. Although this reduces memory
bandwidth requirements, the computation itself still relies on high-precision operations, leaving a
significant bottleneck in inference efficiency (Lin et al.l [2025b). Consequently, there remains sub-
stantial room for accelerating LLM inference. Weight—activation methods (Yao et al., 2022} |Lee
et al.}2024;|Lin et al.,|2026), in contrast, quantize both weights and activations into low-bit formats,
enabling GEMM to be executed entirely in low precision. This approach alleviates both band-
width and computational bottlenecks but often suffers from severe accuracy degradation due to the
presence of outlier activations.To address this challenge, mathematically equivalent transformation
methods (Xiao et al.,[2024; |Shao et al.|[2024) adopt a channel-level smoothing strategy. By shifting
activation outliers into the weights, these methods effectively reduce quantization error. Rotation-
based weight—activation methods (Ashkboos et al., 2024; [Liu et al.| 2024} Lin et al.l 2024a) have
recently emerged, achieving notable success in preserving model accuracy even at 4-bit precision.

Mixed-precision quantization retains outliers in higher bit-widths while quantizing the remaining
elements to lower bit-widths (Dettmers et al., 2022; [Saxena et al.l 2025; |Ashkboos et al., 2023}
Hooper et al.l 2025)). The central challenge is designing efficient fused GEMM kernel. Atom (Zhao
et al.| [2024)) achieves state-of-the-art performance by preserving 128 outlier channels in INT8 and
quantizing the rest to INT4. Although Atom demonstrated a 7.73 x speedup over FP16 on the RTX
4090, its current kernel is limited to Llama2-7B and can only handle up to 128 high-precision chan-
nels. Unlike previous approaches that use a fixed number of high-precision channels for all linear
layers, our method enables flexible, fine-grained mixed-precision configurations, and is specifically
designed to leverage the advantages of Microscaling data formats.

Applications of Microscaling data formats. Recent works (Darvish Rouhani et al.,[2023b};\Sharity
et al.l 2024ajb) begin to study the applications of MX in both training and inference. AMXFP4
(Lee et al.,|2025) handles outliers and asymmetries in activation by introducing asymmetric shared
scales. Furthermore, |(Chen et al.| (2025) significantly improved the FP4 training accuracy of Vision
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Transformers by identifying and solving the weight oscillation problem in forward propagation.
MicroScopiQ (Akshat Ramachandran, [2025]) optimizes the quantization by combining pruning with
outlier-aware miniaturization. Although these works have made significant progress in the inference
and training of low-width MX formats, there is still a lack of systematic work on using microscaling
data formats for general mixed-precision quantization.

B MICROSCALING DATA FORMATS (MX)

According to |Darvish Rouhani et al.[(2023a), we give some supplementary information of MX in
this section. An MX-compliant format is consisted of three components: scaling block size k, k
scalar elements {z;}*_, and a shared scale s in ESMO format (see Figure @) The special scale
format enables the Microscaling data format to achieve dequantization operations solely through
shift operations, thereby enhancing the running speed. Here, {x;}*_, is already quantized, so the
original value is {sx;}%_;. The specific parameters of MX data formats are shown in Table More
details on MX please refer to OCP Microscaling Specification (Darvish Rouhani et al.,[2023a)).

w bits shared scale

dbits‘x1|’x2‘|x3 xk‘

( J
/

k scalar elements

Figure 9: A schematic diagram of the basic unit of Microscaling block. The block encodes the
original k values sx; into k elements in MX and a shared scale s.

Table 8: Format names and parameters of concrete MX-compliant formats (Darvish Rouhani et al.,
20234).

Format | Element Bits | Element Data | Exponent Max Scaling Block Size | Scale Data | Scale Bits
Name (d) Type Bias (b) Normal (k) Type (w)
MXFPS | 3 | FP8(E5M2) | 15 | £57344 | 3 | ESMO | 3 |
| | FP8(E4M3) | 7 | +448 | \ \ \
MXFP6 | 6 | FPOEIM2) | 3 | *£28 | 32 | Esmo | g
| | FP6 (E2M3) | 1 | £75 | | | |
MXFP4 | 8 | FP4(E2M1) | 1 | +6 | 32 | ESMO | 8 |
MXINTS | 8 | INTS8 | N/A | £ 163/64 | 32 | ESMO | 8 |
LLaMA3.1-8B Qwen2.5-7B Ministral-8B Phi4-14B
P e i el I B R 070 070
) 060 065 065
0.60
0.55 0.60 0.60
> 0.55
% 0.50 0.55 0.55
§ 050 s 050 0.50
< 045 0as 045
0.40 0.40 0‘40 0.40
035 0.35 0:35 0.35
0 50 100 150 200 [ 50 100 150 200 [ 20 40 60 80 100 120 0 20 40 60 80 100 120
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—+— Decline Stage  —a— Stable Stage  --- WA4A16

Figure 10: After quantizing weights to INT4 using per-channel symmetric quantization, the zero-
shot average accuracy of the models on Winograde, PIQA, BoolQ, ARC_C, and Lambada changes
with ¢,,q..The quantization process of activations corresponding to different ¢,,4, is implemented
through fake-quant simulation. A lower value of g;,4, corresponds to a higher upper bound on the
quantization error.
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C QUANTIZATION ERROR ANALYSIS

C.1 OBSERVATIONS

In this section, we discuss the quantization error in detail. We observe the variation relationship
between the accuracy of the quantization model and the quantization error, which supplements the
deficiency in the description of the continuity relationship between accuracy and error in previous
works.

Given a FP16 tensor X € R/, VX; € X, the quantization error F(X;) between Q(X;) and X;
is:

X

where v = |round(X;/s) — X;/s| is the rounding error. INT quantization is similar to FP quanti-

zation:
max(] X)

Qmaz

X;
Q(X;) = round(—), s = (12)
s
where round|(+) is rounding to the nearest INT value and ¢, = 2"~ — 1 is the maximum value of
INT range. For INT format, there is v € [0, 0.5], so we can get the quantization error upper bound
E(X;) of INT format:
EX;)=v-s<05-s
max(|X]) max(|X|) (13)

—05- - = F(X;
oan—1 1 2n — 2 (X:)

in particular, for INTS:

— max (| X
E(Xi)inTs = # (14)
We reformulate Equation [I4]as following:
— X
E(Xl) = % (15)
*dmazx

Then we control ¢,,,, to observe the relationship between the quantized model accuracy and the
quantization error upper bound, as shown in Figure[I0] We have three observations:

(1) The curve in Figure[I0] clearly illustrates how model accuracy varies with quantization error. In
general, the accuracy of the model decreases with the increase of the upper bound of the quantization
error.

(2) There is a “Stable Stage” for each model maintaining high accuracy of variation g4, INT8
(¢mao=127) is located in this stage. For all four models, INTS is a high-precision format.

(3) When g4, is below a threshold, the accuracy of quantized model degrades significantly, which
we name as “Decline Stage”, and INT4 (g;,,q,=7) is located at the end of this stage.

In conclusion, enhancing the accuracy of a quantized model requires reducing its quantization error
to bring it within the stable stage. The relationship between the quantization error upper bound and
the model accuracy inspires us to divide values into three parts from the view of quantization error
upper bound.

C.2 DERIVATIONS

In this section, we show the detailed derivation processes of quantization threshold, which is based
on the motivation of controlling the quantization error of MXFP4/MXFP6 below E(X);n7s. The
quantization error of MXFP4/MXFP6 is:

E(Xi)(mxrpayxrpey =7 - 2L0stmax(XDI=0 (16)

Since the gap between adjacent FP values is not a constant, we use

qmam
V= ont A7)
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to approximately express the rounding error in Equation [T6] where ¢y,4. is the maximum value of
MXFP4/MXFP6. Substituting Equation[T7]into Equation[16] gives:

B(X;) = Imaz 9o, (max(1X )] —b

gn—1
dmazx log, (max (| X|))—b
< = . 9log, (max(| X)) (18)
 Gmae max(|X])
T 9n-—1 ' 2b
Let E(Xi){MXFP4,MXFP6} S E(Xi)]NTg. Then we have
max (|G —
B(X) < 575 (|2b{4’6} L < B (19)
If the inequality on the right-hand side holds, it follows that
271 max(| X
max((Ga ) <20 2 O] 20)

Tmaz 254

According to Table [8) when n = 4 or n = 6, the corresponding values of ¢uax and b can be
substituted directly into Equation[20] At last, we get the definition of quantization threshold:

2n=1 max(|X])

T(n) =2°.
() Gmae 254

1)

D SUPPLEMENTARY MATERIALS OF EXPERIMENTS

D.1 EXPERIMENTAL SETTINGS

In this section, we demonstrate some reproduction details, especially claiming how “Avg.Bits” in
Table[dlis calculated.

QuaRolﬂ QuaRot uses symmetric INT4 quantization of group size 128. a_clip_ratio
is 0.9, and w_clip is used. For QuaRot, its online Hadamard transformation depends on
Fast_Hadamard.-Transfo r kernel without introducing extra matrices. So its average bits
is:

1
4+HB <16 = 4.12 (22)

Atonﬂ The activation-sort metric is chosen as “hessian” according to Atom’s default settings.
a_clip_ratio is 0.9, w_clip_ratio is 0.85 and keeper_size is 128. The “Avg.Bits” of Atom is calcu-
lated as following:
((hidden_size — 128) - 4 + 128 - 8 + hiddensize .16
hidden_size

(23)

QUIKE]. The value of fp_features_num is set to 256, following the settings used in QUIK. The
part of INT4 is quantized using asymmetric per-token quantization. w_clip and int8_down_proj is
used. Since QUIK adopts pure INTS for all Down Projs and mixed-precision for other linear layers,
its “Avg. Bits” is:
((hidden_size — 256) - 4 + 256 - 16 4+ 2 - 16) - 6 + (intermediate_size - 8 + 16)
hidden_size - 6 + intermediate_size

where 6 counts for Q, K, V, O, Up and Gate Projs.

(24)

"https://github.com/spcl/QuaRot/tree/main
Zhttps://github.com/Dao-AILab/fast-hadamard-transform
3https://github.com/efeslab/Atom
*https://github.com/IST-DASLab/QUIK
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AMXFPéﬂ We use the fp4_e2ml_asym element format as specified in AMXFP4. scale_bits is 8
and block _size is 32. scale_mode = 2 (default setting in run.sh) needs two FP16 scales for each
block, so its “Avg. Bits” is:
32-4+2-16
=5 25

D) (25
FlatQuamﬁ We adopt the per-token and per-channel INT4 symmetric quantization for FlatQuant,
with parameters such as lwc, lac, cali_trans, and add_diag. Since FlatQuant introduces 7 addi-
tional square transformation matrices per layer during the forward pass, and the elements of these
matrices differ across decoder layers, its “Avg. Bits” is computed as follows:

(hidden_size - 6 + intermediate_size) - 4 - seqlen + numel(P) - 16

26
(hidden_size - 6 4+ intermediate_size) - seqlen (26)

where numel(P) denotes the sum of the elements of the transformation matrices per layer:

64-64-4+432-324+112-112 4 128 - 128 = 46336, Llama 3.1-8B
64-64-2480-80-2+40-40+ 144 - 144 + 192 - 192 = 80192, Qwen 2.5-32B

27)
Since the additional introduced matrix can be reused for all tokens, when the seqlen is longer, the
average number of bits caused by transformation matrices is lower. When seglen > 190, the average
number of additional bits introduced by P is less than 0.01. But at the same time, the single-token
situation in the decode stage has to be taken into consideration. In conclusion, we uniformly set
seqlen = 100.

numel(P) = {

D.2 INFORMATION ON POST-QUANTIZATION MODELS

Table 9] shows some information of quantized models. In general, MicroMix utilizes 5-5.6 bits for
Llama and Qwen series models. The offline calibration and quantization time are relatively fast,
which only takes 2min23s to get the quantized model of Qwen2.5-Math-7B-Instruct.

Table 9: Average bit-width per element and memory consumption of quantized weights across all
evaluated models. “Quantization Time” denotes the total offline time cost, including reordering and
quantization of the original model weights.

Models | Avg. Bits | Memory | Quantization Time
Llama3.1-8B 5.51 5.09 GB 179s
Qwen2.5-32B 5.22 24.54 GB 406s

Qwen2.5-Coder-14B-Instruct 5.54 9.10 GB 260s
Qwen2.5-Coder-32B-Instruct 5.18 24.53 GB 406s
Qwen2.5-Math-7B-Instruct 5.16 4.79 GB 143s

In Figure [3] we tallied p4, ps and pg of each layer of Llama3.1-8B. We supplement the average
number of bits for each layer in Figure [TT]

Q, K, V Proj O Proj Up Gate Proj Down Proj

w
4
N
w
N
>
«

»
0
o
[
5 8
Bits
oo
[
¥R
o
°

E
&
©

Average Bits

3
Average Bits
v v v

5

ag

I

2

3
Average Bits

S
©
o
Ay
w
®
&
©

s
©
o
°
S
w
>
IS

N
&

i
o
=

0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Layer Index Layer Index Layer Index Layer Index

Figure 11: The average number of bits per layer of Llama3.1-8B.

Shttps://github.com/aiha-lab/MX-QLLM
8 github.com/ruikangliu/FlatQuant
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Figure [12] illustrates the precision mapping in MicroMix. The reorder-and-quantize operation is
fused into LayerNorm, and the resulting quantized activations are reused by subsequent linear layers.
In addition, the KV cache is quantized with FlashInfer (Ye et al., 2024) to further reduce memory
usage.

[] MicroMix Kernel
{ MXFP4 BFP16[ ] =

MXFP6  Fysed Op[]
MXFP8

LayerNorm
Reorder and Quantize

i o y , .
:L,Q,E LK,,E :L,Y,E LayerNorm
LA

INT4 []

KV Cache A
¥ ¥ C Gate ! T Up.
;
- v
(Reorder and Quantize | (Reorder and Quantize
:::(;)::f. CDowi ]
D

Figure 12: Precision mapping of MicroMix for a Transformer block in LLM.

D.3 SUPPLEMENTARY RESULTS

The results of KV cache quantization are reported in Table[I0] where all methods adopt INT4 asym-
metric quantization with a group size of 64. MicroMix retains over 97.6% of the FP16 zero-shot
accuracy under this setting. For five-shot accuracy and perplexity, MicroMix also achieves state-of-
the-art performance.

Table 10: Zero-shot, few-shot accuracy and perplexity of Llama3.1-8B, using Im-eval (Gao et al.,
2024])). All methods use asymmetric INT4 quantization of group size 64.

Model | Method | Avg. | 0-shot (1) | 5-shot (1) | PPL({)
\ | B "ARCC BoolQ Lambada PIQA Winogrande Avg. | MMLU | WikiText2
| FPI6 | 1600 | 5358 8199 7547  80.09 7403 7303 | 6524 | 624
QuaRot | 4.12 | 4488 7419 6674 7709  66.61 6590 | 53.19 8.03
Llamas.1.gp | QUIK | 595 | 4966 7777 7108 7851 67.88 6898 | 57.63 732
: Atom | 425 | 4795 7994 7281 7835 7072 69.95 | 57.10 7.43
FlaQuant | 4.19 | 5017 7933 7215 7927 7159 7050 | 59.34 7.12
AMXFP4 | 500 | 4684 7324 6959  77.15 67.56  66.87 | 53.11 7.33
INT6 | 600 | 4915 7673  68.62  78.07 69.06 6832 | 5682 7.82
MicroMix | 551 | 5222  80.64 7400 7938 7096 7144 | 60.90 6.97

Table |11 shows the results of Atom and QUIK directly applied to MXFP4 and MXFPS, with a
significant performance drop compared to MicroMix. Since the kernels of Atom and QUIK do not
support the MXFP format, we use the MicroMix kernel to keep the number of MXFP8 channels at
128 and 256 respectively.

Table 11: Zero-shot accuracy (1) and WikiText2 perplexity ({) results of mixed-precision methods
on MXFP formats using Llama3.1-8B.

Methods | ARC.C  BoolQ Lambada PIQA | WikiText2
FPI6 | 5128 8205 7580  80.03 | 624

Atom 43.60 76.36 66.52 75.57 8.02
QUIK 47.27 76.15 68.52 76.72 7.86
MicroMix | 50.17 81.13 74.13 80.14 6.72
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Table 12: Zero-shot accuracy (1) on ARC_C, BoolQ, Lambada, PIQA, and perplexity ({) on Wiki-
Text2 of MicroMix on different datasets using Qwen2.5-14B.

Calib Data | ARC.C  BoolQ Lambada PIQA | WikiText2

WikiText2 57.59 86.18 74.29 81.12 5.87
Pile 57.68 85.41 74.13 80.14 5.92
C4 58.36 86.57 73.65 81.56 5.92

Table 13: Using Qwen2.5-32B, we report the accuracy and performance of MicroMix on various

average bits.

AvgBits | Arc.C BoolQ Lambada PIQA Winogrande | Avg. | Execution Time
4.48 56.91 85.87 76.54 81.28 73.88 74.89 Smin 37s
4.84 55.46 86.51 77.18 81.50 74.19 74.96 Smin 42s
5.09 56.14 85.66 77.14 81.39 74.98 75.06 Smin 44s

5.22 (ours) 56.66 87.13 77.37 80.65 74.19 75.20 Smin 46s
5.30 55.38 86.09 77.24 81.66 75.06 75.08 Smin 48s
5.74 55.63 86.02 76.65 81.77 74.19 74.85 Smin 49s
6.01 55.78 86.27 76.67 81.72 74.66 75.02 Smin 50s

We further test the stability and flexibility of MicroMix to adapt different average bit-widths (4, 5
and 6), as shown in Table
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