
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NESTED HASH LAYER: A PLUG-AND-PLAY MODULE
FOR MULTIPLE-LENGTH HASH CODE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep supervised hashing is essential for efficient storage and search in large-scale
image retrieval. Traditional deep supervised hashing models generate single-length
hash codes, but this creates a trade-off between efficiency and effectiveness for
different code lengths. To find the optimal length for a task, multiple models must
be trained, increasing time and computation. Furthermore, relationships between
hash codes of different lengths are often ignored. To address these issues, we
propose the Nested Hash Layer (NHL), a plug-and-play module for deep supervised
hashing models. NHL generates hash codes of multiple lengths simultaneously
in a nested structure. To resolve optimization conflicts from multiple learning
objectives, we introduce a dominance-aware dynamic weighting strategy to adjust
gradients. Additionally, we propose a long-short cascade self-distillation method,
where long hash codes guide the learning of shorter ones, improving overall code
quality. Experiments indicate that the NHL achieves an overall training speed
improvement of approximately 5 to 8 times across various deep supervised hashing
models and enhances the average performance of these models by about 3.4%.

1 INTRODUCTION

With the growing amount of visual data on the Internet, existing databases are becoming vast. To
manage this data in large-scale image databases, hashing represents images as binary hash codes for
efficient storage and search (Luo et al., 2023). Recently, deep supervised hashing has made significant
progress by extracting deep features and using supervised signals to enhance hash code quality. As
shown in the upper part of Figure 1a, the traditional approach involves using a deep neural network
to extract features and a hash layer to generate hash codes1. The hash layer typically consists of
a single-layer perceptron that maps features to the desired hash code length, followed by a binary
operation (e.g., the signum function) to produce the final hash codes.

However, most deep supervised hashing models focus on generating hash codes of a specific length.
This leads to two problems. First, Figure 1b shows the performance of four deep supervised hashing
models (Liu et al., 2016; Wang et al., 2017; Cao et al., 2018; Wang et al., 2022) on the CIFAR-10
dataset at different code lengths. There is a clear trade-off between efficiency and effectiveness:
shorter hash codes improve efficiency but reduce effectiveness, while longer hash codes enhance
performance but increase storage and computational costs (Sun et al., 2023). Furthermore, this
trade-off is not entirely inversely proportional, as seen with the DSH model, which suffers a notable
performance drop at 128 bits, a phenomenon known as the dimension curve of hash code. As a
result, multiple models must be trained for different code lengths to find the best fit for a specific task,
greatly increasing training time and resource use (Wu et al., 2022). Second, since these models only
produce single-length hash codes, they overlook the potential relationships between hash codes of
different lengths. This raises a question: is it possible to train a single hashing model capable of
producing hash codes of multiple lengths?

Code expansion and compression-oriented deep hashing methods address the variation in hash code
lengths after training. They generate new codes either through code expansion (Mandal et al., 2019;

1Most deep hashing methods for image retrieval adhere to this paradigm, while some works (Shen et al.,
2017; Jiang & Li, 2018; Chen et al., 2019; Wu et al., 2023) optimize the hash code in the database independently.
Our work focuses on the former.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Deep Hashing Model with Traditional Hash Layer

DNN Hash Layer x-bit

Image Feature

DNN NHL

2-bits 4-bits 8-bits
Image Feature

 Deep Hashing Model with Nested Hash Layer

(a)

DSH
DTSH
DCH
SHCIR

m
A
P@
A
LL

0.4

0.6

0.8

16bit 32bit 64bit 128bit

dimension
curve

efficiency effectiveness

(b)

Figure 1: (a) A schematic comparison between traditional hash layer methods and our proposed
NHL. The NHL can generate hash codes of multiple lengths simultaneously in a nested manner. (b)
The performance of four deep supervised hashing models on the CIFAR-10 dataset highlights the
uncertainty in effectiveness and efficiency under different code lengths.

Wu et al., 2022; 2024) or compression (Zhao et al., 2020). However, their primary focus is on learning
a mapping after model training to convert existing hash codes into new ones. MAH (Luo et al., 2020)
and SDMLH (Nie et al., 2022) involve the generation of hash codes with multiple lengths, but they
rely on specifically designed models that cannot be generalized to other deep hashing models. Thus,
designing a method capable of being widely applied to deep hashing models for generating hash
codes of multiple lengths remains an unexplored area.

In this work, we propose the Nested Hash Layer (NHL), a plug-and-play module that replaces the
traditional hash layer in deep supervised hashing models to generate hash codes of multiple lengths.
First, we observe that deep supervised hashing models use the same backbone to extract features,
regardless of code length. Additionally, longer hash codes can be seen as extensions of shorter ones.
Based on these insights, the NHL is designed as shown in the lower part of Figure 1a to generate hash
codes of different lengths in a nested manner, enabling multiple-length code generation in one model.
Second, while the NHL combines objectives for multiple code lengths, conflicts may arise, as shorter
hash codes are integral to longer ones. Thus, we introduce a Dominance-Aware Dynamic Weighting
strategy. We define a "domination gradient" for each nested parameter, prioritizing the optimization
of shorter hash codes. By monitoring parameter gradients, we dynamically adjust objective weights
to align with the domination gradient and avoid conflicts. Third, unlike the traditional hash layer,
NHL generates multiple-length hash codes. To further enhance code quality, we propose a Long-short
Cascade Self-distillation method, leveraging the relationships in long hash codes to guide and improve
shorter ones.

As evidenced by extensive experiments and analysis, NHL offers the following key advantages: (1)
NHL achieves an overall training speed improvement of approximately 5 to 8 times across various
deep supervised hashing models. (2) While ensuring faster training, NHL enhances the average
performance of these models by about 3.4% and remarkably alleviates the dimensionality curse of
hash codes. (3) NHL demonstrates exceptional flexibility in adapting to scenarios with multiple hash
code length settings and different backbones.

2 RELATED WORK

2.1 DEEP SUPERVISED HASHING

Our work focuses on deep supervised hashing models, which can be roughly divided into pair-wise
methods, ranking-based methods, and proxy-based methods. The objective of pair-wise methods
(Liu et al., 2016; Zhu et al., 2016; 2017; Cao et al., 2018; Li et al., 2020; Zheng et al., 2020) is
to ensure similar pairs have similar hash codes while dissimilar pairs have dissimilar hash codes.
Ranking-based methods adopt ranking-based similarity-preserving loss terms. For instance, triplet
loss (Wang et al., 2017; Liu et al., 2018) and list-wise loss (Cakir et al., 2019) are commonly used to
maintain data ordering. Proxy-based methods (Yuan et al., 2020; Fan et al., 2020; Hoe et al., 2021;

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Wang et al., 2022; 2023), also known as center-based methods, have emerged as a widely acclaimed
approach recently. These methods first generate each category’s proxies (or hash centers). Then, they
force hash codes outputted from the network to approach corresponding proxies (or hash centers).
Most of the current deep supervised hashing models only account for a single model with a specific
code length. This limitation leads to slow training in practical applications due to the need to train
multiple models with different hash code lengths. MAH (Luo et al., 2020) and SDMLH (Nie et al.,
2022) attempt to solve this problem, but they rely on specifically designed models that cannot be
generalized to other deep hashing models.

2.2 MULTI-TASK LEARNING

The NHL can be seen as a multi-task learning framework (Lee & Seok, 2023), where multiple related
tasks are trained simultaneously using a shared model. Its primary function is to enable a single hash
model to serve multiple learning objectives for different code lengths. A key aspect of multi-task
learning is architecture design, including hard parameter sharing methods (Kokkinos, 2017; Bragman
et al., 2019) and soft parameter sharing methods (Ruder et al., 2019; Gao et al., 2020; Liu et al., 2019).
NHL only makes simple adjustments to the hash layer to accommodate various deep hashing models.
MRL (Kusupati et al., 2022) partly inspired its basic structure, which generates representations
of different lengths for multiple tasks. However, MRL does not address gradient conflicts or the
relationships between representations of different lengths.

To address gradient or task conflicts, some methods re-weight the task losses based on specific criteria
such as uncertainty (Kendall et al., 2018), gradient norm (Chen et al., 2018), or difficulty (Guo et al.,
2018). Other methods leverage gradient information to modify the gradient on the parameter update
procedure (Yu et al., 2020; Chen et al., 2020; Liu et al., 2021; Javaloy & Valera, 2022). Nevertheless,
these multi-task learning methods assume the importance of different objectives is equivalent. In
NHL, the weights of objectives are different because the short hash codes appear to hold greater
significance. Resolving this problem remains a further exploration.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Given a database X = {xi}Ni=1 comprising N images and Y = {yi}Ni=1 is the corresponding label
set, deep supervised hashing targets to learn a hash function f : xi 7→ hi that maps each data xi ∈ X
to a binary hash code hi ∈ {−1, 1}b, where b denotes the length of hash code. This mapping aims to
preserve the pairwise similarities between the images xi and xj in the Hamming space, characterized
by the Hamming distance for hash codes hi and hj . In this work, we aim to generate hash codes with
m code lengths b = {bk}mk=1. Without loss of generality, we define bk < bk+1. Then, the image xi is
mapped to m different lengths of hash codes, denoted as {h(k)

i }mk=1.

3.2 HASH CODE GENERATION

The process of acquiring hash codes of most deep supervised hashing methods is divided into two
parts. First, a deep neural network is employed to extract the feature v = F(x) ∈ Rl given the data
xi ∈ X , where l is the dimension of v. Then, a hash layer is utilized to derive the hash code h. In
most cases, the hash layer consists of a single-layer perceptron to map the data features to a length
equivalent to that of the hash code, and an operation ϕ for acquiring the hash codes. The whole
process to get the hash code h can be formulated as follows:

h = f(x) = ϕ(WF(x) + c), (1)

where W ∈ Rb×l and c ∈ Rb are the parameters in the single-layer perception to be learned. Current
deep hashing methods usually predefine a code length bk and then train a hash model fk accordingly.
However, in practice, the selection of an appropriate code length depends on the specific task at hand,
which means we need to train multiple deep hashing models {fk}mk=1 for different code lengths and
select the most suitable one. Such an approach will increase both the training time and computational
resources required. To solve this problem, we introduce NHL to replace the original hash layer in
deep hashing models. In the following section, we omit the bias c and the operation ϕ for conciseness.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Anti-domination Align-domination

(a) The Basic Structure of NHL (b) Dominance-Aware Dynamic Weighting (c) Long-short Cascade Self-distillation

Short
Code

Long
Code

Relationship
Transfer

<latexit sha1_base64="zaBidHnVw5nv1dcXRwfvcn92jjc=">AAAC1nicjVHLSsNAFD2Nr1pfUZdugkXQTUnE17LoxmUF+4BWZTKdajAvkokipe7ErT/gVj9J/AP9C++MKahFdEKSM+fec2buvW7se6m07deCMTY+MTlVnC7NzM7NL5iLS400yhIu6jzyo6TlslT4Xijq0pO+aMWJYIHri6Z7eaDizSuRpF4UHsubWJwE7Dz0eh5nkqgzc7ETMHnBmd9vDk77687G4Mws2xVbL2sUODkoI1+1yHxBB11E4MgQQCCEJOyDIaWnDQc2YuJO0CcuIeTpuMAAJdJmlCUogxF7Sd9z2rVzNqS98ky1mtMpPr0JKS2skSaivISwOs3S8Uw7K/Y37772VHe7ob+bewXESlwQ+5dumPlfnapFooc9XYNHNcWaUdXx3CXTXVE3t75UJckhJk7hLsUTwlwrh322tCbVtaveMh1/05mKVXue52Z4V7ekATs/xzkKGpsVZ6eyfbRVru7noy5iBatYp3nuoopD1FAn72s84gnPRsu4Ne6M+89Uo5BrlvFtGQ8flLqWPQ==</latexit>

W(1)

<latexit sha1_base64="4d0p3GySLm9AcHozZbl6Rcrd7/U=">AAAC1nicjVHLSsNAFD2Nr1pfVZdugkWom5IWX8uiG5cV7AOqlsl02obmRTJRpNSduPUH3OoniX+gf+GdMQUfiE5Icubce87MvdcOXSeWlvWSMaamZ2bnsvO5hcWl5ZX86lojDpKIizoP3CBq2SwWruOLunSkK1phJJhnu6JpD49UvHkpotgJ/FN5HYpzj/V9p+dwJonq5FfPPCYHnLmj5vhiVKxsjzv5glWy9DJ/gnIKCkhXLcg/4wxdBOBI4EHAhyTsgiGmp40yLITEnWNEXETI0XGBMXKkTShLUAYjdkjfPu3aKevTXnnGWs3pFJfeiJQmtkgTUF5EWJ1m6niinRX7m/dIe6q7XdPfTr08YiUGxP6lm2T+V6dqkejhQNfgUE2hZlR1PHVJdFfUzc1PVUlyCIlTuEvxiDDXykmfTa2Jde2qt0zHX3WmYtWep7kJ3tQtacDl7+P8CRqVUnmvtHuyU6gepqPOYgObKNI891HFMWqok/cVHvCIJ6Nl3Bi3xt1HqpFJNev4soz7d5cclj4=</latexit>

W(2)

<latexit sha1_base64="4QT+8dZchv/HhylHoYHQUkCkghM=">AAAC1nicjVHLSsNAFD2N73eqSzfBItRNSX0vi25cKtgHaC2TcdoG8yKZKCXUnbj1B9zqJ4l/oH/hnTGCD0QnJDlz7j1n5t7rRJ6bSNt+Lhgjo2PjE5NT0zOzc/MLZnGxkYRpzEWdh14YtxyWCM8NRF260hOtKBbMdzzRdC72Vbx5KeLEDYNjOYhE22e9wO26nEmiOmbx1Geyz5mXNYdnWXljbdgxS3bF1sv6Cao5KCFfh6H5hFOcIwRHCh8CASRhDwwJPSeowkZEXBsZcTEhV8cFhpgmbUpZgjIYsRf07dHuJGcD2ivPRKs5neLRG5PSwippQsqLCavTLB1PtbNif/POtKe624D+Tu7lEyvRJ/Yv3Ufmf3WqFokudnUNLtUUaUZVx3OXVHdF3dz6VJUkh4g4hc8pHhPmWvnRZ0trEl276i3T8RedqVi153luild1Sxpw9fs4f4LGeqW6Xdk62izV9vJRT2IZKyjTPHdQwwEOUSfvK9zjAY9Gy7g2bozb91SjkGuW8GUZd2+ZfpY/</latexit>

W(3)

<latexit sha1_base64="zaBidHnVw5nv1dcXRwfvcn92jjc=">AAAC1nicjVHLSsNAFD2Nr1pfUZdugkXQTUnE17LoxmUF+4BWZTKdajAvkokipe7ErT/gVj9J/AP9C++MKahFdEKSM+fec2buvW7se6m07deCMTY+MTlVnC7NzM7NL5iLS400yhIu6jzyo6TlslT4Xijq0pO+aMWJYIHri6Z7eaDizSuRpF4UHsubWJwE7Dz0eh5nkqgzc7ETMHnBmd9vDk77687G4Mws2xVbL2sUODkoI1+1yHxBB11E4MgQQCCEJOyDIaWnDQc2YuJO0CcuIeTpuMAAJdJmlCUogxF7Sd9z2rVzNqS98ky1mtMpPr0JKS2skSaivISwOs3S8Uw7K/Y37772VHe7ob+bewXESlwQ+5dumPlfnapFooc9XYNHNcWaUdXx3CXTXVE3t75UJckhJk7hLsUTwlwrh322tCbVtaveMh1/05mKVXue52Z4V7ekATs/xzkKGpsVZ6eyfbRVru7noy5iBatYp3nuoopD1FAn72s84gnPRsu4Ne6M+89Uo5BrlvFtGQ8flLqWPQ==</latexit>

W(1)
<latexit sha1_base64="zaBidHnVw5nv1dcXRwfvcn92jjc=">AAAC1nicjVHLSsNAFD2Nr1pfUZdugkXQTUnE17LoxmUF+4BWZTKdajAvkokipe7ErT/gVj9J/AP9C++MKahFdEKSM+fec2buvW7se6m07deCMTY+MTlVnC7NzM7NL5iLS400yhIu6jzyo6TlslT4Xijq0pO+aMWJYIHri6Z7eaDizSuRpF4UHsubWJwE7Dz0eh5nkqgzc7ETMHnBmd9vDk77687G4Mws2xVbL2sUODkoI1+1yHxBB11E4MgQQCCEJOyDIaWnDQc2YuJO0CcuIeTpuMAAJdJmlCUogxF7Sd9z2rVzNqS98ky1mtMpPr0JKS2skSaivISwOs3S8Uw7K/Y37772VHe7ob+bewXESlwQ+5dumPlfnapFooc9XYNHNcWaUdXx3CXTXVE3t75UJckhJk7hLsUTwlwrh322tCbVtaveMh1/05mKVXue52Z4V7ekATs/xzkKGpsVZ6eyfbRVru7noy5iBatYp3nuoopD1FAn72s84gnPRsu4Ne6M+89Uo5BrlvFtGQ8flLqWPQ==</latexit>

W(1)

<latexit sha1_base64="uLFwlB7eS0hOcWECjc6VRxCyDBI=">AAAC4nicjVHJSsRAEH3GfdxGPYoQHAS9DIm4XQTRi0cFZwFHh05Pq2GykXSEIeTkzZt49Qe86seIf6B/YXWbARdEOyR5/are664qJ/LcRFrWy4AxODQ8Mjo2XpqYnJqeKc/O1ZMwjbmo8dAL46bDEuG5gahJV3qiGcWC+Y4nGk53X8UbVyJO3DA4lr1InPrsInDPXc4kUe3yYitr+UxecuZljfwsW+mu5q28nXV37PzMb5crVtXSy/wJ7AJUUKzDsPyMFjoIwZHCh0AASdgDQ0LPCWxYiIg7RUZcTMjVcYEcJdKmlCUogxHbpe8F7U4KNqC98ky0mtMpHr0xKU0skyakvJiwOs3U8VQ7K/Y370x7qrv16O8UXj6xEpfE/qXrZ/5Xp2qROMe2rsGlmiLNqOp44ZLqrqibm5+qkuQQEadwh+IxYa6V/T6bWpPo2lVvmY6/6kzFqj0vclO8qVvSgO3v4/wJ6mtVe7O6cbRe2d0rRj2GBSxhhea5hV0c4BA18r7GAx7xZHSMG+PWuPtINQYKzTy+LOP+HWjcm5o=</latexit>

{W(k)}m
k=1

<latexit sha1_base64="HIuOCHzHYkz93rHKTza7Nz5AdM4=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSwK4rIF+wAtkqTTOnTyIDMplKI/4Fa/TfwD/QvvjCmoRXRCkjPn3nNm7r1+IrhUjvNasObmFxaXisulldW19Y3y5lZLxlkasGYQizjt+J5kgkesqbgSrJOkzAt9wdr+8FzH2yOWSh5HV2qcsG7oDSLe54GniGqMbssVp+qYZc8CNwcV5Ksel19wgx5iBMgQgiGCIizgQdJzDRcOEuK6mBCXEuImznCPEmkzymKU4RE7pO+Adtc5G9Fee0qjDugUQW9KSht7pIkpLyWsT7NNPDPOmv3Ne2I89d3G9Pdzr5BYhTti/9JNM/+r07Uo9HFqauBUU2IYXV2Qu2SmK/rm9peqFDkkxGnco3hKODDKaZ9to5Gmdt1bz8TfTKZm9T7IczO861vSgN2f45wFrYOqe1w9ahxWamf5qIvYwS72aZ4nqOESdTSN9yOe8GxdWMKSVvaZahVyzTa+LevhA2mcj4U=</latexit>v

<latexit sha1_base64="9sIawPRiqqfDYAGMmyvm2hNvk7M=">AAACzHicjVHLSsNAFD2Nr1pfVZdugkWom5KIr2XRjSupYB9Sa0mm0zo0L5KJUEq3/oBb/S7xD/QvvDNGUIvohCRnzr3nzNx73cgTibSsl5wxMzs3v5BfLCwtr6yuFdc3GkmYxozXWeiFcct1Eu6JgNelkB5vRTF3fNfjTXd4quLNOx4nIgwu5SjiHd8ZBKIvmCOJuhp07Ztx2d6ddIslq2LpZU4DOwMlZKsWFp9xjR5CMKTwwRFAEvbgIKGnDRsWIuI6GBMXExI6zjFBgbQpZXHKcIgd0ndAu3bGBrRXnolWMzrFozcmpYkd0oSUFxNWp5k6nmpnxf7mPdae6m4j+ruZl0+sxC2xf+k+M/+rU7VI9HGsaxBUU6QZVR3LXFLdFXVz80tVkhwi4hTuUTwmzLTys8+m1iS6dtVbR8dfdaZi1Z5luSne1C1pwPbPcU6Dxl7FPqwcXOyXqifZqPPYwjbKNM8jVHGGGurk7eMBj3gyzg1pjI3JR6qRyzSb+LaM+3c3WZIu</latexit>

g
(1)
1

<latexit sha1_base64="rf0OMHRzWOIpHxt1Q4q6heuw/w4=">AAACzHicjVHLSsNAFD2Nr1pfVZdugkWom5IUX8uiG1dSwT6k1pKk0xqaF5OJUEK3/oBb/S7xD/QvvDOmoBbRCUnOnHvPmbn32pHnxsIwXnPa3PzC4lJ+ubCyura+UdzcasZhwh3WcEIv5G3bipnnBqwhXOGxdsSZ5dsea9mjMxlv3TMeu2FwJcYR6/rWMHAHrmMJoq6HveptWjb3J71iyagYaumzwMxACdmqh8UX3KCPEA4S+GAIIAh7sBDT04EJAxFxXaTEcUKuijNMUCBtQlmMMixiR/Qd0q6TsQHtpWes1A6d4tHLSaljjzQh5XHC8jRdxRPlLNnfvFPlKe82pr+defnECtwR+5dumvlfnaxFYIATVYNLNUWKkdU5mUuiuiJvrn+pSpBDRJzEfYpzwo5STvusK02sape9tVT8TWVKVu6dLDfBu7wlDdj8Oc5Z0KxWzKPK4eVBqXaajTqPHeyiTPM8Rg3nqKNB3j4e8YRn7UITWqpNPlO1XKbZxrelPXwAOb+SLw==</latexit>

g
(1)
2

<latexit sha1_base64="kbveY+hRrNRJdCWtW7nEDmvq7dk=">AAACzHicjVHLSsNAFD2Nr1pfVZdugkWom5L4XhbduJIK9iG1liSd1qF5kUyEErr1B9zqd4l/oH/hnTEFtYhOSHLm3HvOzL3XDl0eC8N4zWkzs3PzC/nFwtLyyupacX2jEQdJ5LC6E7hB1LKtmLncZ3XBhctaYcQsz3ZZ0x6eyXjznkUxD/wrMQpZx7MGPu9zxxJEXQ+6+7dp2dwdd4slo2KopU8DMwMlZKsWFF9wgx4COEjggcGHIOzCQkxPGyYMhMR1kBIXEeIqzjBGgbQJZTHKsIgd0ndAu3bG+rSXnrFSO3SKS29ESh07pAkoLyIsT9NVPFHOkv3NO1We8m4j+tuZl0eswB2xf+kmmf/VyVoE+jhRNXCqKVSMrM7JXBLVFXlz/UtVghxC4iTuUTwi7CjlpM+60sSqdtlbS8XfVKZk5d7JchO8y1vSgM2f45wGjb2KeVQ5vDwoVU+zUeexhW2UaZ7HqOIcNdTJ28MjnvCsXWhCS7XxZ6qWyzSb+La0hw88JZIw</latexit>

g
(1)
3

<latexit sha1_base64="9sIawPRiqqfDYAGMmyvm2hNvk7M=">AAACzHicjVHLSsNAFD2Nr1pfVZdugkWom5KIr2XRjSupYB9Sa0mm0zo0L5KJUEq3/oBb/S7xD/QvvDNGUIvohCRnzr3nzNx73cgTibSsl5wxMzs3v5BfLCwtr6yuFdc3GkmYxozXWeiFcct1Eu6JgNelkB5vRTF3fNfjTXd4quLNOx4nIgwu5SjiHd8ZBKIvmCOJuhp07Ztx2d6ddIslq2LpZU4DOwMlZKsWFp9xjR5CMKTwwRFAEvbgIKGnDRsWIuI6GBMXExI6zjFBgbQpZXHKcIgd0ndAu3bGBrRXnolWMzrFozcmpYkd0oSUFxNWp5k6nmpnxf7mPdae6m4j+ruZl0+sxC2xf+k+M/+rU7VI9HGsaxBUU6QZVR3LXFLdFXVz80tVkhwi4hTuUTwmzLTys8+m1iS6dtVbR8dfdaZi1Z5luSne1C1pwPbPcU6Dxl7FPqwcXOyXqifZqPPYwjbKNM8jVHGGGurk7eMBj3gyzg1pjI3JR6qRyzSb+LaM+3c3WZIu</latexit>

g
(1)
1

<latexit sha1_base64="kbveY+hRrNRJdCWtW7nEDmvq7dk=">AAACzHicjVHLSsNAFD2Nr1pfVZdugkWom5L4XhbduJIK9iG1liSd1qF5kUyEErr1B9zqd4l/oH/hnTEFtYhOSHLm3HvOzL3XDl0eC8N4zWkzs3PzC/nFwtLyyupacX2jEQdJ5LC6E7hB1LKtmLncZ3XBhctaYcQsz3ZZ0x6eyXjznkUxD/wrMQpZx7MGPu9zxxJEXQ+6+7dp2dwdd4slo2KopU8DMwMlZKsWFF9wgx4COEjggcGHIOzCQkxPGyYMhMR1kBIXEeIqzjBGgbQJZTHKsIgd0ndAu3bG+rSXnrFSO3SKS29ESh07pAkoLyIsT9NVPFHOkv3NO1We8m4j+tuZl0eswB2xf+kmmf/VyVoE+jhRNXCqKVSMrM7JXBLVFXlz/UtVghxC4iTuUTwi7CjlpM+60sSqdtlbS8XfVKZk5d7JchO8y1vSgM2f45wGjb2KeVQ5vDwoVU+zUeexhW2UaZ7HqOIcNdTJ28MjnvCsXWhCS7XxZ6qWyzSb+La0hw88JZIw</latexit>

g
(1)
3

<latexit sha1_base64="rf0OMHRzWOIpHxt1Q4q6heuw/w4=">AAACzHicjVHLSsNAFD2Nr1pfVZdugkWom5IUX8uiG1dSwT6k1pKk0xqaF5OJUEK3/oBb/S7xD/QvvDOmoBbRCUnOnHvPmbn32pHnxsIwXnPa3PzC4lJ+ubCyura+UdzcasZhwh3WcEIv5G3bipnnBqwhXOGxdsSZ5dsea9mjMxlv3TMeu2FwJcYR6/rWMHAHrmMJoq6HveptWjb3J71iyagYaumzwMxACdmqh8UX3KCPEA4S+GAIIAh7sBDT04EJAxFxXaTEcUKuijNMUCBtQlmMMixiR/Qd0q6TsQHtpWes1A6d4tHLSaljjzQh5XHC8jRdxRPlLNnfvFPlKe82pr+defnECtwR+5dumvlfnaxFYIATVYNLNUWKkdU5mUuiuiJvrn+pSpBDRJzEfYpzwo5STvusK02sape9tVT8TWVKVu6dLDfBu7wlDdj8Oc5Z0KxWzKPK4eVBqXaajTqPHeyiTPM8Rg3nqKNB3j4e8YRn7UITWqpNPlO1XKbZxrelPXwAOb+SLw==</latexit>

g
(1)
2

<latexit sha1_base64="e1h83vVftG49Iy/+Cbka2oC2i7E=">AAACynicjVHLSsNAFD2Nr1pfVZdugkWom5KIr2XRjQsXFWwr1CpJOq1D82IyEUrozh9wqx8m/oH+hXfGFNQiOiHJmXPPuTP3Xjf2eSIt67VgzMzOzS8UF0tLyyura+X1jVYSpcJjTS/yI3HlOgnzeciakkufXcWCOYHrs7Y7PFXx9j0TCY/CSzmKWTdwBiHvc8+RRLUHN1nV3h3flitWzdLLnAZ2DirIVyMqv+AaPUTwkCIAQwhJ2IeDhJ4ObFiIiesiI04Q4jrOMEaJvCmpGCkcYof0HdCuk7Mh7VXORLs9OsWnV5DTxA55ItIJwuo0U8dTnVmxv+XOdE51txH93TxXQKzEHbF/+SbK//pULRJ9HOsaONUUa0ZV5+VZUt0VdXPzS1WSMsTEKdyjuCDsaeekz6b2JLp21VtHx9+0UrFq7+XaFO/qljRg++c4p0Frr2Yf1g4u9iv1k3zURWxhG1Wa5xHqOEMDTV3lI57wbJwbwhgZ2afUKOSeTXxbxsMHkRSRig==</latexit>

g(1)
<latexit sha1_base64="e1h83vVftG49Iy/+Cbka2oC2i7E=">AAACynicjVHLSsNAFD2Nr1pfVZdugkWom5KIr2XRjQsXFWwr1CpJOq1D82IyEUrozh9wqx8m/oH+hXfGFNQiOiHJmXPPuTP3Xjf2eSIt67VgzMzOzS8UF0tLyyura+X1jVYSpcJjTS/yI3HlOgnzeciakkufXcWCOYHrs7Y7PFXx9j0TCY/CSzmKWTdwBiHvc8+RRLUHN1nV3h3flitWzdLLnAZ2DirIVyMqv+AaPUTwkCIAQwhJ2IeDhJ4ObFiIiesiI04Q4jrOMEaJvCmpGCkcYof0HdCuk7Mh7VXORLs9OsWnV5DTxA55ItIJwuo0U8dTnVmxv+XOdE51txH93TxXQKzEHbF/+SbK//pULRJ9HOsaONUUa0ZV5+VZUt0VdXPzS1WSMsTEKdyjuCDsaeekz6b2JLp21VtHx9+0UrFq7+XaFO/qljRg++c4p0Frr2Yf1g4u9iv1k3zURWxhG1Wa5xHqOEMDTV3lI57wbJwbwhgZ2afUKOSeTXxbxsMHkRSRig==</latexit>

g(1)

<latexit sha1_base64="amy7uYpu3Sp6viNhImxttHXDzY0=">AAAC13icjVHLTsJAFD3UF+ILcemmkZjghrTG15LoxiUm8jCAZFoGaCxt006NhBB3xq0/4Fb/yPgH+hfeGUuiEqPTtD1z7j1n5t5rBa4TCcN4TWkzs3PzC+nFzNLyyupadj1Xjfw4tHnF9l0/rFss4q7j8YpwhMvrQcjZwHJ5zbo6kfHaNQ8jx/fOxTDgrQHreU7XsZkgqp3NNZkb9Fnb1Htt83JUMHfG7WzeKBpq6dPATEAeySr72Rc00YEPGzEG4PAgCLtgiOhpwISBgLgWRsSFhBwV5xgjQ9qYsjhlMGKv6NujXSNhPdpLz0ipbTrFpTckpY5t0viUFxKWp+kqHitnyf7mPVKe8m5D+luJ14BYgT6xf+kmmf/VyVoEujhSNThUU6AYWZ2duMSqK/Lm+peqBDkExEncoXhI2FbKSZ91pYlU7bK3TMXfVKZk5d5OcmO8y1vSgM2f45wG1d2ieVDcP9vLl46TUaexiS0UaJ6HKOEUZVTI+waPeMKzdqHdanfa/Weqlko0G/i2tIcPk4GVyw==</latexit>

↵1g
(1)
1

<latexit sha1_base64="DbM/gV0zfsWX5RnYjJGmc6kbW+8=">AAAC13icjVHLTsJAFD3WF+ILcemmkZjghrTE15LoxiUmAhpBMi0DNPSVdmokhLgzbv0Bt/pHxj/Qv/DOWBIfMTpN2zPn3nNm7r1W6DqxMIyXKW16ZnZuPrOQXVxaXlnNreXrcZBENq/ZgRtEZxaLuev4vCYc4fKzMOLMs1zesAZHMt644lHsBP6pGIa85bGe73Qdmwmi2rl8k7lhn7XLeq9dvhwVze1xO1cwSoZa+k9gpqCAdFWD3DOa6CCAjQQeOHwIwi4YYnouYMJASFwLI+IiQo6Kc4yRJW1CWZwyGLED+vZod5GyPu2lZ6zUNp3i0huRUscWaQLKiwjL03QVT5SzZH/zHilPebch/a3UyyNWoE/sX7pJ5n91shaBLg5UDQ7VFCpGVmenLonqiry5/qkqQQ4hcRJ3KB4RtpVy0mddaWJVu+wtU/FXlSlZubfT3ARv8pY0YPP7OH+Cerlk7pV2T3YKlcN01BlsYBNFmuc+KjhGFTXyvsYDHvGknWs32q1295GqTaWadXxZ2v07mFGVzQ==</latexit>

↵2g
(1)
2

<latexit sha1_base64="zIaCQVIv3iG+C4uw1hNsUtLhDro=">AAAC13icjVHLSsNAFD2N7/qKdekmWATdlMT3UnTjUsFqxUeYxLEOnSYhmYhSijtx6w+41T8S/0D/wjtjCj4QnZDkzLn3nJl7b5BIkSnXfSlZff0Dg0PDI+XRsfGJSXuqsp/FeRryehjLOG0ELONSRLyuhJK8kaSctQPJD4LWlo4fXPI0E3G0p64TftJmzUici5Apony7csxkcsH8JafpL5125r2Frm9X3ZprlvMTeAWoolg7sf2MY5whRogcbXBEUIQlGDJ6juDBRULcCTrEpYSEiXN0USZtTlmcMhixLfo2aXdUsBHttWdm1CGdIulNSelgjjQx5aWE9WmOiefGWbO/eXeMp77bNf2DwqtNrMIFsX/pepn/1elaFM6xbmoQVFNiGF1dWLjkpiv65s6nqhQ5JMRpfEbxlHBolL0+O0aTmdp1b5mJv5pMzep9WOTmeNO3pAF738f5E+wv1rzV2srucnVjsxj1MGYwi3ma5xo2sI0d1Mn7Cg94xJN1aN1Yt9bdR6pVKjTT+LKs+3edIZXP</latexit>

↵3g
(1)
3

<latexit sha1_base64="y1k4aK7VgpgMIZPFrvgco1ujAsg=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy66bKifUAtJZlOa2iahMlEKUXwB9zqp4l/oH/hnXEKahGdkOTMufecmXuvn4RBKh3nNWfNzS8sLuWXCyura+sbxc2tRhpngvE6i8NYtHwv5WEQ8boMZMhbieDeyA950x+eq3jzlos0iKMrOU54Z+QNoqAfME8SdVntut1iySk7etmzwDWgBLNqcfEF1+ghBkOGETgiSMIhPKT0tOHCQUJcBxPiBKFAxznuUSBtRlmcMjxih/Qd0K5t2Ij2yjPVakanhPQKUtrYI01MeYKwOs3W8Uw7K/Y374n2VHcb0983XiNiJW6I/Us3zfyvTtUi0cepriGgmhLNqOqYccl0V9TN7S9VSXJIiFO4R3FBmGnltM+21qS6dtVbT8ffdKZi1Z6Z3Azv6pY0YPfnOGdB46DsHpePLg5LlTMz6jx2sIt9mucJKqiihjp5D/CIJzxbVSuyMuvuM9XKGc02vi3r4QOe3I/7</latexit>

H1
<latexit sha1_base64="8ct+9gOWXKqKP7jg9vjEYh2/qWo=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy66bKifUAtJZlO69A0CclEKUXwB9zqp4l/oH/hnXEKahGdkOTMufecmXuvHwcilY7zmrPm5hcWl/LLhZXVtfWN4uZWI42yhPE6i4IoafleygMR8roUMuCtOOHeyA940x+eq3jzliepiMIrOY55Z+QNQtEXzJNEXVa7B91iySk7etmzwDWgBLNqUfEF1+ghAkOGEThCSMIBPKT0tOHCQUxcBxPiEkJCxznuUSBtRlmcMjxih/Qd0K5t2JD2yjPVakanBPQmpLSxR5qI8hLC6jRbxzPtrNjfvCfaU91tTH/feI2Ilbgh9i/dNPO/OlWLRB+nugZBNcWaUdUx45Lprqib21+qkuQQE6dwj+IJYaaV0z7bWpPq2lVvPR1/05mKVXtmcjO8q1vSgN2f45wFjYOye1w+ujgsVc7MqPPYwS72aZ4nqKCKGurkPcAjnvBsVa3Qyqy7z1QrZzTb+Lashw+hPI/8</latexit>

H2
<latexit sha1_base64="isCCLdBdE1PUd3vFwuiVJdtxrH8=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVVLfy6KbLivaB9RSkum0DuZFMlFKEfwBt/pp4h/oX3hnnIJaRCckOXPuPWfm3uvFvkil47zmrJnZufmF/GJhaXllda24vtFMoyxhvMEiP0ranptyX4S8IYX0eTtOuBt4Pm95N2cq3rrlSSqi8FKOYt4N3GEoBoK5kqiLWm+/Vyw5ZUcvexpUDCjBrHpUfMEV+ojAkCEARwhJ2IeLlJ4OKnAQE9fFmLiEkNBxjnsUSJtRFqcMl9gb+g5p1zFsSHvlmWo1o1N8ehNS2tghTUR5CWF1mq3jmXZW7G/eY+2p7jaiv2e8AmIlron9SzfJ/K9O1SIxwImuQVBNsWZUdcy4ZLor6ub2l6okOcTEKdyneEKYaeWkz7bWpLp21VtXx990pmLVnpncDO/qljTgys9xToPmXrlyVD48PyhVT82o89jCNnZpnseoooY6GuQ9xCOe8GzVrNDKrLvPVCtnNJv4tqyHD6Ocj/0=</latexit>

H3

<latexit sha1_base64="y1k4aK7VgpgMIZPFrvgco1ujAsg=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy66bKifUAtJZlOa2iahMlEKUXwB9zqp4l/oH/hnXEKahGdkOTMufecmXuvn4RBKh3nNWfNzS8sLuWXCyura+sbxc2tRhpngvE6i8NYtHwv5WEQ8boMZMhbieDeyA950x+eq3jzlos0iKMrOU54Z+QNoqAfME8SdVntut1iySk7etmzwDWgBLNqcfEF1+ghBkOGETgiSMIhPKT0tOHCQUJcBxPiBKFAxznuUSBtRlmcMjxih/Qd0K5t2Ij2yjPVakanhPQKUtrYI01MeYKwOs3W8Uw7K/Y374n2VHcb0983XiNiJW6I/Us3zfyvTtUi0cepriGgmhLNqOqYccl0V9TN7S9VSXJIiFO4R3FBmGnltM+21qS6dtVbT8ffdKZi1Z6Z3Azv6pY0YPfnOGdB46DsHpePLg5LlTMz6jx2sIt9mucJKqiihjp5D/CIJzxbVSuyMuvuM9XKGc02vi3r4QOe3I/7</latexit>

H1
<latexit sha1_base64="8ct+9gOWXKqKP7jg9vjEYh2/qWo=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy66bKifUAtJZlO69A0CclEKUXwB9zqp4l/oH/hnXEKahGdkOTMufecmXuvHwcilY7zmrPm5hcWl/LLhZXVtfWN4uZWI42yhPE6i4IoafleygMR8roUMuCtOOHeyA940x+eq3jzliepiMIrOY55Z+QNQtEXzJNEXVa7B91iySk7etmzwDWgBLNqUfEF1+ghAkOGEThCSMIBPKT0tOHCQUxcBxPiEkJCxznuUSBtRlmcMjxih/Qd0K5t2JD2yjPVakanBPQmpLSxR5qI8hLC6jRbxzPtrNjfvCfaU91tTH/feI2Ilbgh9i/dNPO/OlWLRB+nugZBNcWaUdUx45Lprqib21+qkuQQE6dwj+IJYaaV0z7bWpPq2lVvPR1/05mKVXtmcjO8q1vSgN2f45wFjYOye1w+ujgsVc7MqPPYwS72aZ4nqKCKGurkPcAjnvBsVa3Qyqy7z1QrZzTb+Lashw+hPI/8</latexit>

H2
<latexit sha1_base64="isCCLdBdE1PUd3vFwuiVJdtxrH8=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVVLfy6KbLivaB9RSkum0DuZFMlFKEfwBt/pp4h/oX3hnnIJaRCckOXPuPWfm3uvFvkil47zmrJnZufmF/GJhaXllda24vtFMoyxhvMEiP0ranptyX4S8IYX0eTtOuBt4Pm95N2cq3rrlSSqi8FKOYt4N3GEoBoK5kqiLWm+/Vyw5ZUcvexpUDCjBrHpUfMEV+ojAkCEARwhJ2IeLlJ4OKnAQE9fFmLiEkNBxjnsUSJtRFqcMl9gb+g5p1zFsSHvlmWo1o1N8ehNS2tghTUR5CWF1mq3jmXZW7G/eY+2p7jaiv2e8AmIlron9SzfJ/K9O1SIxwImuQVBNsWZUdcy4ZLor6ub2l6okOcTEKdyneEKYaeWkz7bWpLp21VtXx990pmLVnpncDO/qljTgys9xToPmXrlyVD48PyhVT82o89jCNnZpnseoooY6GuQ9xCOe8GzVrNDKrLvPVCtnNJv4tqyHD6Ocj/0=</latexit>

H3

<latexit sha1_base64="QW1e5838RyYr7NVa9NHD3AFjrXk=">AAAC0HicjVHLSsNAFD2N7/qqunQTLIKrkoivpejGhQsVawtaymQ61cG8TCaiFBG3/oBb/SrxD/QvvDNOwQeiE5KcOfeeM3PvDdJQ5srzXkrOwODQ8MjoWHl8YnJqujIze5QnRcZFnSdhkjUDlotQxqKupApFM80Ei4JQNILzbR1vXIosl0l8qK5T0YrYaSy7kjNFVOskYuqMs7C3e9P225WqV/PMcn8C34Iq7NpLKs84QQcJOApEEIihCIdgyOk5hg8PKXEt9IjLCEkTF7hBmbQFZQnKYMSe0/eUdseWjWmvPXOj5nRKSG9GSheLpEkoLyOsT3NNvDDOmv3Nu2c89d2u6R9Yr4hYhTNi/9L1M/+r07UodLFhapBUU2oYXR23LoXpir65+6kqRQ4pcRp3KJ4R5kbZ77NrNLmpXfeWmfirydSs3nObW+BN35IG7H8f509wtFzz12qr+yvVzS076lHMYwFLNM91bGIHe6iT9wUe8Ign58C5cm6du49Up2Q1c/iynPt3LsCUkQ==</latexit>L1
<latexit sha1_base64="I0B9qJhk7BSWE4Jgog3s+eYtL/E=">AAAC0HicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr6XoxoWLKrYWbJFMjHZwXmYyopQibv0Bt/pV4h/oX3gTU/CBaIaZOTn3npPce/00DDLleS8FZ2h4ZHSsOF6amJyaninPzjWzJJdcNHgSJrLls0yEQSwaKlChaKVSsMgPxZF/saPjR1dCZkESH6qbVHQidh4HZwFniqhOO2Kqy1nY2+ufrJyUK17VM8v9CWoWVGBXPSk/o41TJODIEUEghiIcgiGj5xg1eEiJ66BHnCQUmLhAHyXS5pQlKIMRe0Hfc9odWzamvfbMjJrTKSG9kpQulkiTUJ4krE9zTTw3zpr9zbtnPPXdbujvW6+IWIUusX/pBpn/1elaFM6waWoIqKbUMLo6bl1y0xV9c/dTVYocUuI0PqW4JMyNctBn12gyU7vuLTPxV5OpWb3nNjfHm74lDbj2fZw/QXOlWluvru2vVra27aiLWMAilmmeG9jCLupokPclHvCIJ+fAuXZunbuPVKdgNfP4spz7dzEglJI=</latexit>L2

<latexit sha1_base64="O1bqQwA6+Ji5q4keNGuoqbngu6I=">AAAC0HicjVHJTsMwEH0N+17gyCWiQuJUpezHCi4cOACiFAkq5Bi3jZoNx0FUVYW48gNc4asQfwB/wdgYiUUIHCV5fjPv2TPjp2GQKc97LjgDg0PDI6Nj4xOTU9Mzxdm54yzJJRc1noSJPPFZJsIgFjUVqFCcpFKwyA9F3e/s6Hj9SsgsSOIj1U1FI2KtOGgGnCmiGmcRU23Owt5e/3z1vFjyyp5Z7k9QsaAEu/aT4hPOcIEEHDkiCMRQhEMwZPScogIPKXEN9IiThAITF+hjnLQ5ZQnKYMR26Nui3allY9prz8yoOZ0S0itJ6WKJNAnlScL6NNfEc+Os2d+8e8ZT361Lf996RcQqtIn9S/eR+V+drkWhiS1TQ0A1pYbR1XHrkpuu6Ju7n6pS5JASp/EFxSVhbpQffXaNJjO1694yE38xmZrVe25zc7zqW9KAK9/H+RMcr5QrG+X1g7VSdduOehQLWMQyzXMTVexiHzXyvsQ9HvDoHDrXzo1z+57qFKxmHl+Wc/cGM4CUkw==</latexit>L3

<latexit sha1_base64="FBNwCP9Tf99e5fDnJg/ZP+4Np0c=">AAAC2HicjVHLSsNAFD2N7/qqdukmWARXJRFfS9GNCxcVbCtqLZNxWoOTB8lEKKXgTtz6A271i8Q/0L/wzhhBLaITkpw5954zc+/1YumnynFeCtbI6Nj4xORUcXpmdm6+tLDYSKMs4aLOIxklxx5LhfRDUVe+kuI4TgQLPCma3tWejjevRZL6UXikerFoBawb+h2fM0VUu1Q+C5i65Ez2DwZt97wveTpolypO1THLHgZuDirIVy0qPeMMF4jAkSGAQAhFWIIhpecULhzExLXQJy4h5Ju4wABF0maUJSiDEXtF3y7tTnM2pL32TI2a0ymS3oSUNlZIE1FeQlifZpt4Zpw1+5t333jqu/Xo7+VeAbEKl8T+pfvM/K9O16LQwbapwaeaYsPo6njukpmu6JvbX6pS5BATp/EFxRPC3Cg/+2wbTWpq171lJv5qMjWr9zzPzfCmb0kDdn+Ocxg01qruZnXjcL2ys5uPehJLWMYqzXMLO9hHDXXy7uEBj3iyTqwb69a6+0i1CrmmjG/Lun8H8qeXlg==</latexit>

Llcs
1

<latexit sha1_base64="j2mQNUWsEE54lYaVkmnPcelaJaI=">AAAC2HicjVHLSsNAFD3G97vq0k2wCK5KWnwtRTcuXCjYB9ZaJtOpDZ08SCZCKQV34tYfcKtfJP6B/oV3xhTUIjohyZlz7zkz9143kl6iHOd1zBqfmJyanpmdm19YXFrOraxWkjCNuSjzUIZxzWWJkF4gyspTUtSiWDDflaLqdo90vHoj4sQLg3PVi0TDZ9eB1/Y4U0Q1c2uXPlMdzmT/ZNAsXfUlTwbNXN4pOGbZo6CYgTyydRrmXnCJFkJwpPAhEEARlmBI6KmjCAcRcQ30iYsJeSYuMMAcaVPKEpTBiO3S95p29YwNaK89E6PmdIqkNyaljU3ShJQXE9an2SaeGmfN/ubdN576bj36u5mXT6xCh9i/dMPM/+p0LQpt7JsaPKopMoyujmcuqemKvrn9pSpFDhFxGrcoHhPmRjnss200iald95aZ+JvJ1Kze8yw3xbu+JQ24+HOco6BSKhR3Cztn2/mDw2zUM1jHBrZonns4wDFOUSbvHh7xhGfrwrq17qz7z1RrLNOs4duyHj4A9Q2Xlw==</latexit>

Llcs
2

Figure 2: (a): The Nested Hash Layer (NHL) can generate m (here, m = 3) hash codes with varying
lengths in one training procedure. (b) The illustration of the Dominance-Aware Dynamic Weighting
strategy. Taking the W(1) as an example. (c) The Long-short Cascade Self-distillation transfer
relationship from long hash codes to short hash codes.

3.3 BASIC STRUCTURE OF NESTED HASH LAYER

Although the predefined code lengths differ, the same backbone is employed for a specific deep
hashing model. Inspired by this observation, we propose the basic structure of NHL to help deep
hashing models generate hash codes with different code lengths in one training procedure.

As shown in Figure 2a, NHL uses a nested parameter {W(k)}mk=1 to achieve this goal without adding
additional parameters to the neural network. The parameter W(k) = W(m)

[1:bk]
∈ Rl×bk is in a nested

structure, which means W(k) ⊂ W(k+1). It uses the first bk vectors of the parameter W(m) ∈ Rl×bm .
We can obtain the hash codes with different lengths {h(k)}mk=1 through h(k) = ϕ(W(k)vT). Then,
we aim to minimize the following objective.

L =

N∑
i=1

m∑
k=1

Lk(h
(k)
i , yi; θF ,W(k)), (2)

where θF is the parameter of backbone, and Lk is the objective of a specific deep hashing model for
code length bk. In most deep hashing models, Lk can be a combination of multiple objectives, such
as the central similarity loss and quantization loss. As it simply involves adding the original objective
of the deep hashing model, it does not alter the original optimization method. By minimizing Eq.(2),
we force hash codes with different lengths to ensure their performance.

3.4 DOMINANCE-AWARE DYNAMIC WEIGHTING STRATEGY

Although basic NHL can generate hash codes with different lengths, we are unable to predict whether
the gradients for different objectives {Lk}mk=1 are mutually beneficial or detrimental. For example,
in the left part of Figure 2b, the parameter W(1) is updated by three gradients g

(1)
1 = ∂L1

∂W(1) ,

g
(1)
2 = ∂L2

∂W(1) , and g
(1)
3 = ∂L3

∂W(1) . Due to the impact of g(1)2 , g(1)3 , optimizing the parameters tends to

proceed in a direction unfavourable to g
(1)
1 because the negative inner product between g

(1)
1 and g

(1)
2 ,

g
(1)
3 . However, The quality of the hash code h(1) is determined by objective L1, which updates W(1)

using the gradient g(1)1 based on the target’s outcomes. Therefore, if the final optimization direction
of W(1) diverges from g

(1)
1 , it is highly probable that such a deviation will lead to a deterioration in

the quality of h(1) because the wrong optimization direction for it.

Some multi-task learning works (Yu et al., 2020; Chen et al., 2020; Liu et al., 2021; Javaloy & Valera,
2022; Guangyuan et al., 2022) propose modifying the gradient on the parameter update procedure
to prevent gradient conflicts. However, there exists a difference between these multi-task learning
settings and NHL. Multi-task learning treats diverse learning objectives as equally important, aiming
to balance various learning objectives. In NHL, the objectives corresponding to shorter hash codes
appear to hold greater significance, as shorter hash codes are shared by a larger number of longer
hash codes. To address this problem, we propose a dominance-aware dynamic weighting strategy to
adjust the weight αk of each objective Lk by monitoring the gradients. Then the objective Eq. (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

becomes follows:

L =

N∑
i=1

m∑
k=1

αkLk(h
(k)
i , yi; θF ,W(k)). (3)

Since shorter hash codes should be given higher optimization priority, we are motivated to introduce
the following definitions.
Definition 1 (Dominant gradient). Assume the gradient of Li for W(k) is denoted as gki = ∂Li

∂W(k) .

We define g
(k)
k = ∂Lk

∂W(k) is the dominant gradient, and k = 1, 2...,m. For example, g(1)1 is the
dominant gradient in Figure 2b.
Definition 2 (Anti-domination & Align-domination). Assume the gradient of L for W(k) is gk =

∂L
∂W(k) . We define anti-domination for the update of W(k) if the inner product is negative between

g(k) and the dominant gradient g(k)k , whereas a positive inner product is termed align-domination.

The dominant gradient g(k)k serves as a guiding principle for the optimization of the parameter W(k).
Anti-domination and align-domination are thus employed to ascertain whether the update result of
W(k) is congruent with or divergent from the dominant gradient g(k)k . For example, the left part
of Figure 2b shows that the update of W(1) is anti-domination because the negative inner product
between the gradient g(1) and g

(1)
1 . We conducted an analysis to observe the occurrence of anti-

domination as training progressed. Figure 3 depicts the likelihood of anti-domination occurring about
parameter W(1) at each epoch. These results reveal the probability of anti-domination steadily rises
over time, eventually stabilizing at a level exceeding 90%. This trend signifies a growing prevalence
of anti-domination scenarios as the training progresses.

0

0.5

1.0

epoch
0 5 10 15 20

(a) CIFAR-10

0

0.5

1.0

epoch
0 5 10 15 20

(b) ImageNet100

0.4

0.6

0.8

1.0

epoch
0 5 10 15 20

(c) MSCOCO

Figure 3: The probability of anti-domination occurring
on the parameter W(1) at each epoch. We set the code
lengths m = 5 and use CSQ as the deep hashing mod-
els on three datasets. This trend signifies a growing
prevalence of anti-domination scenarios as the training
progresses.

Our goal is to avert anti-domination for
each W(k). We propose the following
proposition:

Proposition 1. Assume θ
(k)
ij is the angle

between two gradients g(k)i and g
(k)
j , and

∥·∥ denotes the Frobenius norm, if the fol-
lowing inequality holds:

αk∥g(k)k ∥+
∑

k<i≤m

αicosθ
(k)
ik ∥g(k)i ∥ ≥ 0,

(4)
then the update of W(k) is guaranteed to
be align-domination.

The proof is provided in Appendix B. How-
ever, the linear programming Eq.(4) is chal-
lenging to optimize and will incur additional time expenditure. Hence, we propose the following
target and proposition:
Proposition 2. If the following inequality holds for all k < i ≤ m, then Eq. (4) also holds.

αicosθ
(k)
ik ∥g(k)i ∥+ αk

m− k
∥g(k)k ∥ ≥ 0. (5)

We provide the proof in Appendix B and introduce a method to solve Eq. (5) in Appendix C. Here,
for arbitrary k ≤ i ≤ m, we directly provide the results:

αi = min(α
(1)
i , α

(2)
i , ..., α

(i)
i). (6)

α
(k)
i =

 1 if g
(k)
i · g(k)k ≥ 0

αk

k−m

∥g(k)
k ∥2

g
(k)
i g

(k)
k

if g
(k)
i · g(k)k < 0.

(7)

In each training step, we dynamically compute the {αk}mk=1 using Eq. (6) and Eq. (7). Similar to
(Chen et al., 2018), we don’t consider the full network weights and focus on the parameter in NHL.
The computation complex is O(lbmm2), where l is the dimension of data feature v and bm is the
longest code length. Our experiment shows that the additional training time for each step is around
11.15%.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.5 LONG-SHORT CASCADE SELF-DISTILLATION

Unlike the traditional hash layer, the deep hashing model with NHL can generate hash codes of
different lengths simultaneously. This leads us to explore the connections among these hash codes
of different lengths. We observe a teacher-student relationship between long and short hash codes.
Thus, as illustrated in Figure 2c, we propose the long-short cascade self-distillation method, which
uses long hash codes to improve the performance of short hash codes in a cascading manner.

Specifically, for arbitrary image xi, through the NHL we can get its corresponding hash codes
{h(k)

i }mk=1. Let Hk = [h
(k)
1 , h

(k)
2 , ..., h

(k)
B] ∈ {−1, 1}B×bk denote the matrix of hash codes with

length bk in current training batch, and B is the batch size. Then the self-distillation objectives can
be formulated as:

Llcs
k =

1

B

∥∥∥∥∥∥ h
(k)
i HT

k

∥h(k)
i HT

k ∥
−

h
(k+1)
i HT

(k+1)

∥h(k+1)
i HT

(k+1)∥

∥∥∥∥∥∥
2

. (8)

Eq.(8) can be viewed as transferring the relationship between h
(k+1)
i and other hash codes of length

bk+1 to the relationship between h
(k)
i and other hash codes of length bk. Besides, we stop the gradient

propagation of the long hash codes h(k+1)
i and H(k+1) to ensure that the learning of relationships is

unidirectional. In other words, we only allow the shorter hash codes to learn from the relationships of
the longer hash codes. By introducing the long-short cascade self-distillation into the optimization
procedure, the objective Eq.(3) becomes:

L =

N∑
i=1

m−1∑
k=1

αk(Lk + λLlcs
k) +

N∑
i=1

αmLm, (9)

where λ is a hyper-parameter. This method readily allows for expansion. For instance, one could
explore the relationship between hk and hk+a, where a is an integer, but this is not the central concern
of our work.

We renormalize the weights αk in each step so that
∑m

k=1 αk = m to decouple gradient re-weight
from the global learning rate. Besides, in the training procedure, note that the minimum of L does not
necessarily imply that each {Lk}mk=1 is at its minimal value during the training process. Therefore,
we propose a trick for our training procedure. Throughout the training, we monitor the value of each
Lk and save the model parameters when each Lk reaches its minimum to output the corresponding
hash codes h(k). We summarize the whole algorithm in Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

We evaluated our method on three widely used datasets in deep hashing: CIFAR-10 (Krizhevsky
et al., 2009), ImageNet100 (Deng et al., 2009), and MSCOCO (Lin et al., 2014). We compared our
approach against several state-of-the-art deep supervised hashing baselines: DSH (Liu et al., 2016),
DHN (Zhu et al., 2016), DTSH (Wang et al., 2017), LCDSH (Zhu et al., 2017), DCH (Cao et al.,
2018), DBDH (Zheng et al., 2020), CSQ (Yuan et al., 2020), SHCIR (Wang et al., 2022), DPN (Fan
et al., 2020), and MDSH (Wang et al., 2023). For all the above models, we adopted ResNet50 (He
et al., 2016) as the backbone. The primary evaluation metric was mean Average Precision at top K
(mAP@K). Unless otherwise specified, we set the hash code lengths b ∈ {8, 16, 32, 64, 128} for
the following experiments, as these lengths are prevalently used in previous works. Details regarding
datasets, implementation, and evaluation settings are presented in Appendix A.

4.2 PERFORMANCE ON DEEP HASHING MODELS

In this experiment, we first compared the mAP@K of different deep supervised hashing models
on three datasets. Table 1 shows the results. We use “w/o NHL” to denote the deep hashing model
without using NHL and use “w/ NHL” to denote the deep hashing model that uses NHL to replace the
traditional hash layer. Besides, we use bold numbers to indicate statistically significant improvements
when utilizing NHL compared to not using NHL, with p < 0.05 based on a two-tailed paired t-test.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: The mAP@K comparison results on CIFAR-10, ImageNet100, and MSCOCO datasets when
different deep hashing models used the original hash layer (w/o NHL) or NHL (w/ NHL). We employ
bold numbers to indicate statistically significant enhancements when utilizing NHL compared to
when not using NHL, with p < 0.05 based on a two-tailed paired t-test.

Data Model w/o NHL (The Original Model) w/ NHL
8 bits 16 bits 32 bits 64 bits 128 bits avg. 8 bits 16 bits 32 bits 64 bits 128 bits avg.

CIFAR-10
(mAP@ALL)

DSH 0.690 0.731 0.740 0.727 0.381 0.654 0.717 0.732 0.744 0.743 0.749 0.737 (+12.8%)
DTSH 0.754 0.778 0.799 0.831 0.811 0.745 0.766 0.790 0.802 0.822 0.836 0.771 (+3.51%)
DHN 0.718 0.765 0.813 0.837 0.853 0.797 0.739 0.776 0.824 0.835 0.866 0.808 (+1.38%)

LCDSH 0.715 0.771 0.817 0.826 0.854 0.797 0.775 0.799 0.825 0.839 0.868 0.821 (+3.08%)
DCH 0.776 0.802 0.829 0.830 0.825 0.812 0.787 0.810 0.833 0.843 0.844 0.823 (+1.36%)

DBDH 0.737 0.771 0.796 0.829 0.829 0.792 0.748 0.785 0.804 0.825 0.844 0.801 (+1.12%)
CSQ 0.762 0.786 0.798 0.798 0.807 0.790 0.792 0.802 0.818 0.828 0.838 0.816 (+3.21%)
DPN 0.703 0.757 0.790 0.804 0.819 0.775 0.729 0.765 0.795 0.826 0.824 0.788 (+1.71%)

SHCIR 0.754 0.791 0.820 0.844 0.828 0.807 0.758 0.797 0.824 0.849 0.848 0.815 (+0.99%)
MDSH 0.755 0.808 0.829 0.844 0.832 0.814 0.762 0.811 0.838 0.852 0.861 0.825 (+1.40%)

ImageNet100
(mAP@1000)

DSH 0.703 0.808 0.827 0.828 0.822 0.797 0.755 0.816 0.829 0.838 0.841 0.817 (+2.41%)
DTSH 0.432 0.710 0.770 0.784 0.803 0.794 0.552 0.714 0.766 0.788 0.792 0.803 (+1.11%)

LCDSH 0.248 0.395 0.542 0.608 0.692 0.450 0.422 0.568 0.628 0.657 0.692 0.593 (+19.4%)
DCH 0.776 0.834 0.845 0.859 0.848 0.832 0.809 0.842 0.855 0.860 0.863 0.846 (+1.65%)
CSQ 0.456 0.822 0.860 0.877 0.878 0.778 0.495 0.825 0.873 0.880 0.882 0.787 (+1.59%)
DPN 0.436 0.827 0.864 0.870 0.877 0.775 0.487 0.829 0.860 0.877 0.881 0.787 (+1.50%)

SHCIR 0.789 0.861 0.879 0.883 0.881 0.858 0.798 0.881 0.889 0.893 0.898 0.872 (+1.63%)
MDSH 0.785 0.845 0.874 0.895 0.894 0.859 0.794 0.851 0.878 0.884 0.896 0.861 (+0.23%)

MSCOCO
(mAP@5000)

DSH 0.685 0.722 0.757 0.779 0.769 0.743 0.714 0.735 0.764 0.779 0.789 0.756 (+1.77%)
DTSH 0.706 0.770 0.810 0.823 0.831 0.788 0.751 0.793 0.819 0.826 0.823 0.803 (+1.86%)
DHN 0.659 0.751 0.786 0.810 0.832 0.768 0.724 0.760 0.794 0.819 0.837 0.787 (+2.47%)

LCDSH 0.687 0.769 0.787 0.825 0.836 0.781 0.713 0.773 0.794 0.820 0.828 0.786 (+0.55%)
DCH 0.695 0.756 0.762 0.777 0.734 0.745 0.723 0.769 0.786 0.788 0.789 0.771 (+3.51%)

DBDH 0.655 0.727 0.760 0.769 0.800 0.742 0.692 0.748 0.778 0.803 0.809 0.766 (+3.23%)
CSQ 0.596 0.750 0.847 0.877 0.871 0.788 0.659 0.778 0.847 0.878 0.881 0.809 (+2.58%)
DPN 0.575 0.757 0.828 0.862 0.863 0.777 0.638 0.769 0.837 0.863 0.872 0.796 (+2.44%)

We can find the following observations: (i) Globally, the implementation of the NHL leads to an
average improvement of 3.398% (3.619% in CIFAR-10, 4.364% in ImageNet100, and 2.158% in
MSCOCO). Besides, there are 72% of cases that achieve a significant performance boost based on
the two-tailed paired t-test. Conversely, only a few cases achieve a decline, with most drops of 1.37%
occurring in the DTSH model when NHL is applied to the ImageNet100 dataset using a 128-bit
code. Thus, we can demonstrate that NHL can yield significant improvements in the majority of
cases. (ii) Deep hashing models with NHL improve significantly when the hash code length is short
in some datasets. For example, in the case of 8-bit, employing NHL can increase 18.7% and 7.32%
enhancement on ImageNet100 and MSCOCO datasets, respectively. (iii) It is delightful to note that
NHL can address the dimensionality curse of hash code, signifying that as the code length expands
to a certain dimension, the code quality commences to deteriorate in some deep hashing models.
For example, without NHL, the quality of hash codes in DSH experiences a marked decline when
transitioning from 64 bits to 128 bits on the CIFAR-10 dataset. In contrast, with the incorporation of
the NHL, this result undergoes a substantial improvement.

Table 2: The comparison of average mAP@K results with
the original model is shown for NHL variants.

Data NHL-basic NHL w/o D NHL w/o L w/ NHL
CIFAR-10 +1.088% +1.316% +2.097% +3.619%

ImageNet100 +2.209% +2.823% +2.434% +4.364%
MSCOCO +0.421% +0.859% +0.978% +2.158%

avg. +1.228% +1.639% +1.856% +3.398%

Besides, to analyze the influence of
each component in the NHL, we con-
ducted an ablation study on these mod-
els to investigate their impact. We
devised several variants for the NHL,
namely (i) NHL-basic: directly use
E.q (2) to optimize the deep hashing
model, (ii) NHL w/o D: without using
the dominance-aware dynamic weighting strategy, (iii) NHL w/o L: without using the long-short
cascade self-distillation. Table 2 presents the average performance changes across datasets for the
models mentioned above. Overall, implementing NHL-basic, NHL w/o D, and NHL w/o L results
in average performance improvements of 1.228%, 1.639%, and 1.856%, respectively. Employing
only the dominance-aware dynamic weighting strategy (NHL w/o L) achieves the most significant
improvement, highlighting the critical role of gradient optimization in this context. In Appendix F,
we present the details of various deep hashing models when utilizing the different variants of NHL.

4.3 EFFICIENCY ANALYSIS

In this experiment, we evaluated the deep hashing model’s training time and memory usage. We
recorded the total training time for the hashing model of five code lengths and recorded the maximal

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: We evaluate efficiency on three datasets
by recording the total training time for the deep
hashing model with five code lengths and the
maximum memory usage.

Data Model Time (hours) Memory (GiB)
w/o NHL w/ NHL w/o NHL w/ NHL

CIFAR-10 CSQ 0.455 0.083 (5.48×) 12.822 12.868
DCH 0.543 0.085 (6.39×) 12.820 12.836

ImageNet100 CSQ 4.520 0.664 (6.81×) 12.923 13.139
DCH 6.025 1.161 (5.19×) 12.914 12.956

MSCOCO CSQ 1.019 0.202 (5.05×) 12.906 13.067
DCH 5.475 0.981 (5.58×) 12.886 12.926

w/o NHL
NHL-basic
NHL w/o D
NHL w/o L
w/ NHL

se
co

nd
s

0

10

20

CIFAR-10 ImageNet100 MSCOCO

(a) CSQ

w/o NHL
NHL-basic
NHL w/o D
NHL w/o L
w/ NHL

se
co

nd
s

0

10

20

30

CIFAR-10 ImageNet100 MSCOCO

(b) DCH

Figure 4: The average training time per epoch
for CSQ and DCH across three datasets, using
the traditional hash layer, NHL, or NHL variants.

memory usage. Table 3 displays the results, where we selected CSQ and DCH as the deep hashing
models. These results demonstrate that the employment of the NHL incurs negligible additional
memory expenses. This is attributed to the fact that during the training process, the primary memory
usage stems from the parameters of the neural network, while the additional memory occupied by the
target loss is relatively minimal. Meanwhile, the incorporation of the NHL can significantly enhance
the overall training speed. It achieved an average training speedup of 5.94×, 6×, and 5.31× on the
CIFAR-10, ImageNet-100, and MSCOCO datasets, respectively, across the two deep hashing models.
In conjunction with the conclusions drawn from the previous experiment, this evidences that NHL
can effectively expedite the training procedure without compromising the quality of hash codes.

Besides, we further analyze the average time per epoch during training across different NHL variants.
Figure 4a and Figure 4b display the results of CSQ and DCH. Compared to deep hashing models
without NHL (w/o NHL), incorporating NHL-basic, NHL w/o D, NHL w/o L, and w/ NHL led to a
modest increase in training time of just 3.37%, 6.87%, 11.15%, and 13.75%, respectively.

4.4 MODULE ANALYSIS

In this experiment, we conducted a comprehensive analysis of the Nested Hash Layer (NHL) from
multiple perspectives, including (i) hyperparameter analysis and (ii) various code length settings. We
utilize CSQ as the deep hashing model for the subsequent analysis. Additionally, we validated the
performance of the Nested Hash Layer (NHL) under different backbone extractors, including other
variants of ResNet and different architectures of Vision Transformers (ViT) (Dosovitskiy et al., 2020).
For further details, please refer to Appendix E.2.

4.4.1 PARAMETER SENSITIVITY

In Eq.(9), λ serves as a hyperparameter that balances two objectives. We evaluated its values from
{101, 100, 10−1, 10−2, 10−3} to calculate the mAP@K across three datasets. Figure 5 illustrates
the results, highlighting that the performance of NHL demonstrates overall robustness to changes in
λ. Generally, the optimal value is achieved when λ = 1. Additionally, we conducted a parameter
analysis on the learning rate, which is presented in Appendix E.1. The analysis indicates that the
optimal range for the learning rate is {10−4, 10−5}.

4.4.2 MORE CODE LENGTH SETTINGS

This section explores the results under a broader range of code length settings. We established three
scenarios for code length: Case 1 sets a code length at every 32-bit interval, that is, b = {32× k}4k=1
and m = 4. Case 2 sets a code length at every 16-bit interval, that is, b = {16× k}8k=1 and m = 8.
Case 3 sets a code length at every 8-bit interval, that is, b = {8 × k}16k=1 and m = 16. Figure 6
presents the corresponding results. Here, the blue bars represent the average ratio of mAP@K at
various lengths with and without using NHL. The yellow bars indicate the time cost ratio to complete
training with and without using NHL. We observe that even with different code length settings, the
use of NHL ensures a reduction in overall training time and improves the code quality. Moreover, it
is noteworthy that the total training time does not monotonically increase with the number of output
code lengths. For instance, the efficiency enhancement ratio in Case 3 is not as high as in Case 2.
This is attributed to the requirement for the model to undergo more training iterations in Case 3 to
ensure favorable outcomes across a greater number of code lengths.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

λ=10
λ=1
λ=10-1

λ=10-2

λ=10-3
0.75

0.80

0.85

code length
816 32 64 128

(a) CIFAR-10

λ=10
λ=1
λ=10-1

λ=10-2

λ=10-3

0.4

0.6

0.8

code length
816 32 64 128

(b) ImageNet100

λ=10
λ=1
λ=10-1

λ=10-2

λ=10-30.6

0.7

0.8

0.9

code length
816 32 64 128

(c) MSCOCO

Figure 5: The mAP@K results across three
datasets under varying λ values demonstrate that
NHL is robust to λ to some extent.

1.04×

5.19×

1.03×

8.74×

1.03×

7.21×

0

2

4

6

8

10

Case 1 Case 2 Case 3

(a) CIFAR-10

1.03×

4.51×

1.01×

8.11×

1.03×

7.92×

0

2

4

6

8

Case 1 Case 2 Case 3

(b) ImageNet100

1.01×

4.82×

1.01×

7.79×

1.02×

6.01×

0

2

4

6

8

Case 1 Case 2 Case 3

(c) MSCOCO

Figure 6: Impact of NHL on average mAP@K ra-
tio (blue bars) and training time cost ratio (yellow
bars) across various code length settings.

Table 4: The mAP@K results across three datasets using different gradient conflict resolution
strategies, with CSQ as the deep semantic hashing model. The best results are highlighted in bold,
while the second-best results are underlined.

Method CIFAR-10 ImageNet100 MSCOCO
8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits 8 bits 16 bits 32 bits 64 bits 128 bits

NHL w/o D 0.707 0.773 0.815 0.823 0.831 0.451 0.803 0.846 0.873 0.884 0.638 0.769 0.822 0.866 0.877
+ PCGrad 0.742 0.781 0.802 0.815 0.830 0.467 0.814 0.852 0.870 0.862 0.632 0.772 0.823 0.852 0.872

+ GradDrop 0.739 0.764 0.805 0.802 0.828 0.461 0.815 0.859 0.872 0.861 0.636 0.776 0.827 0.861 0.875
+ CAGrad 0.720 0.775 0.793 0.811 0.815 0.455 0.815 0.867 0.865 0.873 0.639 0.770 0.825 0.858 0.869

+ RotoGrad 0.735 0.762 0.813 0.819 0.822 0.473 0.808 0.863 0.874 0.877 0.641 0.778 0.830 0.859 0.871
NHL 0.792 0.802 0.818 0.828 0.838 0.495 0.825 0.873 0.880 0.882 0.659 0.778 0.847 0.878 0.881
MAH 0.636 0.649 0.683 0.705 0.714 0.628 0.652 0.689 0.692 0.691 0.567 0.573 0.589 0.599 0.612

SDMLH 0.617 0.684 0.723 0.748 0.763 0.526 0.557 0.618 0.623 0.644 0.602 0.646 0.737 0.761 0.814

4.5 COMPARED WITH GRADIENT CONFLICTS METHODS AND MULTI-LENGTH HASHING

In this section, we compare our proposed dominance-aware dynamic weighting strategy with other
methods aimed at resolving gradient conflicts and two multi-length hashing. Specifically, we evaluate
classic gradient conflicts approaches including PCGrad (Yu et al., 2020), GradDrop (Chen et al.,
2020), CAGrad (Liu et al., 2021), and RotoGrad (Javaloy & Valera, 2022). The comparison is
conducted by replacing the dominance-aware dynamic weighting strategy in our NHL method with
the gradient update strategies of these methods and then calculating the mAP@K results across three
datasets, using CSQ as the deep hashing model. Besides, we also compared two multi-length hashing
models MAH (Luo et al., 2020) and SDMLH (Nie et al., 2022). Table 4 presents the results. It can
be observed that, compared to other gradient conflict resolution approaches, our method achieves
the best results in more cases. Furthermore, we notice that incorporating these methods often results
in negative effects compared to not using any gradient conflict resolution strategy (NHL w/o D).
We believe this is due to the nested structure of our parameters, which these classical methods
fail to account for adequately. Additionally, the performance of the two multi-code length hashing
models, MAH and SDMLH, under most scenarios lags behind that of the CSQ model combined with
NHL. This underscores the importance of designing a plug-and-play module, as it allows seamless
integration with more advanced deep hashing models to achieve superior retrieval results.

5 CONCLUSION

In this paper, we introduce the plug-and-play module NHL for deep hashing models. NHL allows
these models to generate hash codes of different lengths simultaneously, simplifying training and
reducing computational load. Additionally, the dominance-aware dynamic weighting strategy and
long-short cascade self-distillation enhance NHL’s effectiveness. We performed extensive experiments
on three datasets to assess NHL’s performance. The results show that NHL speeds up training while
maintaining or improving retrieval effectiveness across various deep supervised hashing models.
Our work mainly focuses on common symmetric deep supervised hashing methods, where both the
database and query data use the same deep hashing network for generating hash codes. In contrast,
NHL is limited to asymmetric deep supervised hashing methods (Shen et al., 2017; Jiang & Li, 2018;
Chen et al., 2019; Wu et al., 2023). They use deep neural networks only for processing query, while
direct or indirect optimization of hash codes in the database. Thus, simply changing the hash layer
isn’t enough for these methods. We believe that adding optimization designs for the database hash
codes could be a promising solution.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We confirm that our work adheres to the ICLR Code of Ethics. All datasets used in this research
are publicly available and are appropriately cited in the paper. Our study does not involve human
subjects, the collection of private user data, or the generation of personally identifiable or sensitive
content. Therefore, our work raises no direct ethical concerns regarding privacy, security, or fairness.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. The source code is included in the
supplementary materials and will be made publicly available upon publication. All datasets used in
this paper are publicly available.

REFERENCES

Felix JS Bragman, Ryutaro Tanno, Sebastien Ourselin, Daniel C Alexander, and Jorge Cardoso.
Stochastic filter groups for multi-task cnns: Learning specialist and generalist convolution kernels.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1385–1394,
2019.

Fatih Cakir, Kun He, Sarah Adel Bargal, and Stan Sclaroff. Hashing with mutual information. IEEE
transactions on pattern analysis and machine intelligence, 41(10):2424–2437, 2019.

Yue Cao, Mingsheng Long, Bin Liu, and Jianmin Wang. Deep cauchy hashing for hamming space
retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
1229–1237, 2018.

Yudong Chen, Zhihui Lai, Yujuan Ding, Kaiyi Lin, and Wai Keung Wong. Deep supervised hashing
with anchor graph. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 9796–9804, 2019.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International conference
on machine learning, pp. 794–803. PMLR, 2018.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. Advances in Neural Information Processing Systems, 33:2039–2050, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2020.

Lixin Fan, Kam Woh Ng, Ce Ju, Tianyu Zhang, and Chee Seng Chan. Deep polarized network for
supervised learning of accurate binary hashing codes. In IJCAI, pp. 825–831, 2020.

Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and Wei Liu. Mtl-nas: Task-agnostic neural
architecture search towards general-purpose multi-task learning. In Proceedings of the IEEE/CVF
Conference on computer vision and pattern recognition, pp. 11543–11552, 2020.

SHI Guangyuan, Qimai Li, Wenlong Zhang, Jiaxin Chen, and Xiao-Ming Wu. Recon: Reducing
conflicting gradients from the root for multi-task learning. In The Eleventh International Conference
on Learning Representations, 2022.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task priori-
tization for multitask learning. In Proceedings of the European conference on computer vision
(ECCV), pp. 270–287, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Jiun Tian Hoe, Kam Woh Ng, Tianyu Zhang, Chee Seng Chan, Yi-Zhe Song, and Tao Xiang. One
loss for all: Deep hashing with a single cosine similarity based learning objective. Advances in
Neural Information Processing Systems, 34:24286–24298, 2021.

Adrian Javaloy and Isabel Valera. Rotograd: Gradient homogenization in multitask learning. In The
Tenth International Conference on Learning Representations (Virtual), 2022.

Qing-Yuan Jiang and Wu-Jun Li. Asymmetric deep supervised hashing. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7482–7491, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Iasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and
high-level vision using diverse datasets and limited memory. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 6129–6138, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
representation learning. Advances in Neural Information Processing Systems, 35:30233–30249,
2022.

Taeho Lee and Junhee Seok. Multi task learning: A survey and future directions. In 2023 International
Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 232–235.
IEEE, 2023.

Y Li, W Pei, Yufei Zha, and JC van Gemert. Push for quantization: Deep fisher hashing. In 30th
British Machine Vision Conference, BMVC 2019, 2020.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Bin Liu, Yue Cao, Mingsheng Long, Jianmin Wang, and Jingdong Wang. Deep triplet quantization.
In Proceedings of the 26th ACM international conference on Multimedia, pp. 755–763, 2018.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for
multi-task learning. Advances in Neural Information Processing Systems, 34:18878–18890, 2021.

Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. Deep supervised hashing for fast
image retrieval. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2064–2072, 2016.

Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning with attention.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1871–1880, 2019.

Xiao Luo, Haixin Wang, Daqing Wu, Chong Chen, Minghua Deng, Jianqiang Huang, and Xian-Sheng
Hua. A survey on deep hashing methods. ACM Transactions on Knowledge Discovery from Data,
17(1):1–50, 2023.

Yadan Luo, Zi Huang, Yang Li, Fumin Shen, Yang Yang, and Peng Cui. Collaborative learning for
extremely low bit asymmetric hashing. IEEE Transactions on Knowledge and Data Engineering,
33(12):3675–3685, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Devraj Mandal, Yashas Annadani, and Soma Biswas. Growbit: Incremental hashing for cross-modal
retrieval. In Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth,
Australia, December 2–6, 2018, Revised Selected Papers, Part IV 14, pp. 305–321. Springer, 2019.

Xiushan Nie, Xingbo Liu, Jie Guo, Letian Wang, and Yilong Yin. Supervised discrete multiple-length
hashing for image retrieval. IEEE Transactions on Big Data, 9(1):312–327, 2022.

Zexuan Qiu, Qinliang Su, Zijing Ou, Jianxing Yu, and Changyou Chen. Unsupervised hashing with
contrastive information bottleneck. In Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pp.
959–965, 2021.

Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and Anders Søgaard. Latent multi-task
architecture learning. In Proceedings of the AAAI conference on artificial intelligence, volume 33,
pp. 4822–4829, 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520, 2018.

Fumin Shen, Xin Gao, Li Liu, Yang Yang, and Heng Tao Shen. Deep asymmetric pairwise hashing.
In Proceedings of the 25th ACM international conference on Multimedia, pp. 1522–1530, 2017.

Yuan Sun, Dezhong Peng, Jian Dai, and Zhenwen Ren. Stepwise refinement short hashing for image
retrieval. In Proceedings of the 31st ACM International Conference on Multimedia, pp. 6501–6509,
2023.

Liangdao Wang, Yan Pan, Hanjiang Lai, and Jian Yin. Image retrieval with well-separated semantic
hash centers. In Proceedings of the Asian Conference on Computer Vision, pp. 978–994, 2022.

Liangdao Wang, Yan Pan, Cong Liu, Hanjiang Lai, Jian Yin, and Ye Liu. Deep hashing with minimal-
distance-separated hash centers. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 23455–23464, 2023.

Xiaofang Wang, Yi Shi, and Kris M Kitani. Deep supervised hashing with triplet labels. In Computer
Vision–ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24,
2016, Revised Selected Papers, Part I 13, pp. 70–84. Springer, 2017.

Dayan Wu, Qinghang Su, Bo Li, and Weiping Wang. Efficient hash code expansion by recycling old
bits. In Proceedings of the 30th ACM International Conference on Multimedia, pp. 572–580, 2022.

Dayan Wu, Qi Dai, Bo Li, and Weiping Wang. Deep uncoupled discrete hashing via similarity matrix
decomposition. ACM Transactions on Multimedia Computing, Communications and Applications,
19(1):1–22, 2023.

Dayan Wu, Qinghang Su, Bo Li, and Weiping Wang. Pairwise-label-based deep incremental hashing
with simultaneous code expansion. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 9169–9177, 2024.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems, 33:
5824–5836, 2020.

Li Yuan, Tao Wang, Xiaopeng Zhang, Francis EH Tay, Zequn Jie, Wei Liu, and Jiashi Feng. Central
similarity quantization for efficient image and video retrieval. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 3083–3092, 2020.

Shu Zhao, Dayan Wu, Wanqian Zhang, Yu Zhou, Bo Li, and Weiping Wang. Asymmetric deep
hashing for efficient hash code compression. In Proceedings of the 28th ACM International
Conference on Multimedia, pp. 763–771, 2020.

Xiangtao Zheng, Yichao Zhang, and Xiaoqiang Lu. Deep balanced discrete hashing for image
retrieval. Neurocomputing, 403:224–236, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Han Zhu, Mingsheng Long, Jianmin Wang, and Yue Cao. Deep hashing network for efficient
similarity retrieval. In Proceedings of the AAAI conference on Artificial Intelligence, volume 30,
2016.

Hao Zhu, Shenghua Gao, et al. Locality constrained deep supervised hashing for image retrieval. In
IJCAI, pp. 3567–3573, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL SETTINGS

A.1 DATASETS

We conducted experiments on three widely used datasets in deep hashing for evaluation. CIFAR-10
(Krizhevsky et al., 2009) consists of 60,000 images from 10 classes. Following (Cao et al., 2018),
we randomly select 1,000 images per class as the query set, and 500 images per class as the training
set, and use all remaining images as the database. ImageNet100 is a subset of ImageNet (Deng
et al., 2009) with 100 classes. We follow the settings from (Fan et al., 2020) and randomly select
100 categories. Then, we use all the images of these categories in the training set as the database
and the images in the validation set as the queries. Furthermore, we randomly select 13,000 as the
training images from the database. MSCOCO (Lin et al., 2014) is a large-scale multi-label dataset.
We consider a subset of 122,218 images from 80 categories, as in previous works (Qiu et al., 2021).
We randomly select 5,000 images from the subset as the query set and use the remaining images as
the database. For training, we randomly select 10,000 images from the database. As in most deep
hashing settings, two samples are viewed as similar if they correspond to the same label on CIFAR-10
and ImageNet100. For multi-label datasets MSCOCO, two samples are considered similar if they
share at least one common label.

A.2 BASELINES AND EVALUATION METRIC

We considered the following deep supervised hashing models: DSH (Liu et al., 2016), DHN (Zhu
et al., 2016), DTSH (Wang et al., 2017), LCDSH (Zhu et al., 2017), DCH (Cao et al., 2018), DBDH
(Zheng et al., 2020), CSQ (Yuan et al., 2020), SHCIR (Wang et al., 2022), DPN (Fan et al., 2020),
and MDSH (Wang et al., 2023). For all the above models, we uniformly adopted ResNet50 (He et al.,
2016) as the backbone to extract 2048-dimensional image features.

We employed the mean Average Precision at the top K (mAP@K) as the evaluation metric. Specif-
ically, we utilized mAP@ALL for CIFAR-10, mAP@5000 for MSCOCO, and mAP@1000 for
ImageNet100, following the settings used in previous studies (Qiu et al., 2021; Fan et al., 2020).
Unless otherwise specified, we set the hash code lengths b ∈ {8, 16, 32, 64, 128} for the following
experiments, as these lengths are prevalently used in previous works.

A.3 TRAINING DETAILS

For the deep hashing models we adopted, we endeavored to implement all models using PyTorch,
based on the code repositories provided in the original papers and the implementation details described
therein. The experiments were conducted on a Linux server equipped with 8 NVIDIA GeForce RTX
4090 GPUs. For each model (including those integrated with NHL), a single NVIDIA GeForce
RTX 4090 GPU was utilized for both training and testing. Among these models, DHN and DBDH
failed to produce valid results on ImageNet100 due to the absence of hyperparameter settings in the
original papers, and our grid search method was unable to identify suitable parameters. Additionally,
the SHCIR and MDSH models did not propose methods for handling multi-label datasets (e.g.,
MSCOCO) in their original publications. The batch size B was set to 64. When applying NHL to
the deep hashing models, we employed the Adam optimizer (Kingma & Ba, 2014) and selected the
learning rate from {10−4, 10−5}. The hyperparameter λ was set to 1. A grid search method was
conducted across different scenarios to identify the optimal combination.

B PROOFS

Proposition 1. Assume θ
(k)
ij is the angle between two gradients g(k)i and g

(k)
j , and ∥·∥ denotes the

Frobenius norm, if the following inequality holds:

αk∥g(k)k ∥+
∑

k<i≤m

αicosθ
(k)
ik ∥g(k)i ∥ ≥ 0, (10)

then the update of W(k) is guaranteed to be align-domination.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. Align-domination is satisfied if the inner product between the total gradient g(k) =∑m
i=k αig

(k)
i and the dominant gradient g(k)k is non-negative:

⟨g(k), g(k)k ⟩ ≥ 0.

Expanding the inner product:

⟨g(k), g(k)k ⟩ = αk∥g(k)k ∥2 +
∑

k<i≤m

αi∥g(k)i ∥∥g(k)k ∥ cos θ(k)ik .

Dividing through by ∥g(k)k ∥ (assuming ∥g(k)k ∥ > 0), we obtain:

αk∥g(k)k ∥+
∑

k<i≤m

αi cos θ
(k)
ik ∥g(k)i ∥ ≥ 0.

Thus, if the inequality holds, the inner product ⟨g(k), g(k)k ⟩ ≥ 0, ensuring that the total gradient g(k)

is aligned with the dominant gradient g(k)k . This confirms align-domination for the update of W(k).

Proposition 2. If the following inequality holds for all k < i ≤ m, then Eq. (10) also holds.

αicosθ
(k)
ik ∥g(k)i ∥+ αk

m− k
∥g(k)k ∥ ≥ 0. (11)

Proof. For any fixed k and k < i ≤ m, Eq. (11) can be rewritten as:

αi cos θ
(k)
ik ∥g(k)i ∥ ≥ − αk

m− k
∥g(k)k ∥. (12)

This inequality establishes a lower bound on the contribution of each term αi cos θ
(k)
ik ∥g(k)i ∥ for

k < i ≤ m. Then, summing Eq. (12) over all k < i ≤ m, we obtain:∑
k<i≤m

αi cos θ
(k)
ik ∥g(k)i ∥ ≥

∑
k<i≤m

− αk

m− k
∥g(k)k ∥. (13)

Since there are exactly m− k terms in the summation over k < i ≤ m, the right-hand side simplifies
to: ∑

k<i≤m

− αk

m− k
∥g(k)k ∥ = −(m− k) · αk

m− k
∥g(k)k ∥ = −αk∥g(k)k ∥. (14)

Thus, we have:
αk∥g(k)k ∥+

∑
k<i≤m

αi cos θ
(k)
ik ∥g(k)i ∥ ≥ 0. (15)

This proves that Eq. (10) holds whenever Eq. (11) holds for all k < i ≤ m.

C THE METHOD TO SOLVE LINEAR PROGRAMMING PROBLEM EQ. 5

In the dominance-aware dynamic weighting strategy, we propose the following target for the objective
weights {αk}mk=1:

αicosθ
(k)
ik ∥g(k)i ∥+ αk

m− k
∥g(k)k ∥ ≥ 0; k ≤ i ≤ m. (16)

This section describes how to solve it. Without loss of generality, we first set α1 = 1 for the shortest
code’ objective L1, as normalization can subsequently be applied. Then we introduce α

(k)
i denote

only consider to ensure that Li and Lk satisfy Eq. (16) on W(k). Using cosθ
(k)
ik =

g
(k)
i g

(k)
k

∥g(k
i ∥∥g(k)

k ∥
and

re-arranging terms, we then get:

α
(k)
i (−g

(k)
i g

(k)
k) ≤ αk

m− k
∥g(k)k ∥2; k ≤ i ≤ m. (17)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 The training algorithm with NHL

Input: training samples X = {x1, x2, ...xN}, the hyper-parameters λ.
1: Initialization: the parameter of the deep hashing model {θF ,W}, αk = 1 for ∀k.
2: repeat
3: draw a mini-batch {x1, x2, ..., xB} from X to compute {Lk}mk=1 using standard forward

propagation algorithm
4: for each k ∈ {1, 2,,m} do
5: for each i ∈ {1, 2,,m} do
6: obtain g

(k)
i by computing standard gradients g(k)i = ∂Li

∂W(k) {Only calculating the gradi-
ents on {W(k)}mk=1}

7: end for
8: end for
9: compute {αk}mk=1 by Eq. (7) and Eq. (6)

10: renormalize {αk}mk=1 so that
∑m

k=1 αk = m
11: update parameters of the deep hashing model by minimizing Eq. (9) using the standard

backpropagation algorithm
12: if achieved a smaller Lk then
13: record the current model parameters θ(k)F , W(k) for the model of length bk.
14: end if
15: until converged
Output: parameters of deep hashing model {θ(k)F }mk=1 and {W(k)}mk=1

If g(k)i g
(k)
k ≥ 0, because αj > 0 for j = 1, 2, ...,m, the inequality invariably holds. Then we set

α
(k)
i = 1. If the case that g(k)i g

(k)
k < 0, we can get:

α
(k)
i ≤ αk

k −m

∥g(k)k ∥2

g
(k)
i g

(k)
k

; k ≤ i ≤ m. (18)

Since our target is to minimize the impact on other optimization objectives while avoiding anti-
domination as much as possible, we equate the terms on both sides of Eq.18, ultimately deriving the
solution:

α
(k)
i =

 1 if g
(k)
i · g(k)k ≥ 0

αk

k−m

∥g(k)
k ∥2

g
(k)
i g

(k)
k

if g
(k)
i · g(k)k < 0; k ≤ i ≤ m

(19)

Then, consider Li and all Lk, k < i, the αi is as follows:

αi = min(α
(1)
i , α

(2)
i , ..., α

(i)
i). (20)

It is evident that the computational complexity of calculating α
(k)
i is O(lbk), where l represents the

dimension of the data feature v. Consequently, the overall computational complexity amounts to
O(lbmm2), where the bm is the longest code length.

D THE TRAINING ALGORITHM

In this section, we first present the training algorithm of our proposed NHL in Algorithm 1. Then,
we elaborate on the details of our training process. As we discussed in Section 3.5, throughout the
training procedure, we monitor the value of each Lk and save the model parameters when each Lk

reaches its minimum to output the corresponding hash codes h(k). In lines 12-14 of Algorithm 1,
when a smaller Lk is achieved, We record the current model parameters θF and W as the parameters
of the model with a length of bk, denoted as θ(k)F and W(k).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

m
A

P

0.2

0.4

0.6

0.8

code length
816 32 64 128

(a) CIFAR-10

λ=10-1

λ=10-2

λ=10-3

λ=10-4

λ=10-5

λ=10-6

m
A

P

0.4

0.6

0.8

code length
816 32 64 128

(b) ImageNet100

m
A

P

0.2

0.4

0.6

0.8

code length
816 32 64 128

(c) MSCOCO

Figure 7: The mAP@K results across three datasets under different learning rates.

Table 5: The mAP@K evaluation when using different feature extraction networks as the backbone
of CSQ across three datasets. We compared the results of using NHL (w/ NHL) with those of not
using NHL (w/o NHL) on these three datasets.

Data Backbone w/o NHL (The Original Model) w/ NHL
8 bits 16 bits 32 bits 64 bits 128 bits avg. 8 bits 16 bits 32 bits 64 bits 128 bits avg.

CIFAR-10
(mAP@ALL)

ResNet18 0.654 0.710 0.743 0.717 0.739 0.712 0.664 0.718 0.762 0.793 0.817 0.750 (+5.36%)
ResNet34 0.682 0.700 0.724 0.730 0.722 0.711 0.691 0.724 0.757 0.787 0.826 0.757 (+6.37%)
ResNet50 0.762 0.786 0.798 0.798 0.807 0.790 0.792 0.802 0.818 0.828 0.838 0.816 (+3.21%)

MobileNetV2 0.661 0.725 0.750 0.774 0.788 0.739 0.677 0.735 0.779 0.799 0.816 0.761 (+2.92%)
ViT_B_16 0.891 0.903 0.907 0.912 0.913 0.905 0.895 0.909 0.919 0.931 0.937 0.918 (+1.44%)

ImageNet100
(mAP@1000)

ResNet18 0.375 0.727 0.754 0.773 0.795 0.684 0.413 0.722 0.774 0.804 0.815 0.705 (+3.03%)
ResNet34 0.398 0.773 0.815 0.836 0.839 0.732 0.465 0.784 0.828 0.850 0.855 0.756 (+3.31%)
ResNet50 0.456 0.822 0.860 0.877 0.878 0.778 0.495 0.825 0.873 0.880 0.882 0.787 (+1.59%)

MobileNetV2 0.414 0.679 0.745 0.788 0.802 0.685 0.422 0.708 0.759 0.800 0.819 0.701 (+2.33%)
ViT_B_16 0.523 0.888 0.910 0.915 0.915 0.830 0.533 0.887 0.906 0.918 0.925 0.834 (+0.43%)

MSCOCO
(mAP@5000)

ResNet18 0.532 0.653 0.745 0.792 0.811 0.706 0.576 0.679 0.760 0.807 0.824 0.729 (+3.19%)
ResNet34 0.554 0.715 0.789 0.830 0.836 0.744 0.591 0.731 0.802 0.840 0.847 0.762 (+2.33%)
ResNet50 0.596 0.750 0.847 0.877 0.871 0.788 0.659 0.778 0.847 0.878 0.881 0.809 (+2.58%)

MobileNetV2 0.543 0.668 0.742 0.806 0.823 0.716 0.578 0.691 0.766 0.815 0.836 0.737 (+2.90%)
ViT_B_16 0.638 0.790 0.883 0.895 0.906 0.822 0.675 0.794 0.889 0.898 0.902 0.831 (+1.12%)

E MORE EXPERIMENTAL ANALYSES

E.1 HYPER-PARAMETERS

We further conducted experimental validation on the CSQ model under different learning rate settings.
We set the learning rates to {10−1, 10−2, 10−3, 10−4, 10−5, 10−6} and performed experiments across
three datasets. Figure 7 presents the results. Based on this experiment, we determined the optimal
learning rate range to be {10−4, 10−5}.

E.2 BACKBONE ANALYSIS

The NHL is designed for versatile integration with various deep supervised hashing models. To
rigorously validate the generalizability of NHL, we extended this investigation by incorporating it into
the CSQ deep hashing model while utilizing a diverse range of alternative backbone architectures for
feature extraction. Specifically, we experimented with ResNet variants of different scales, including
ResNet18 and ResNet34. We also present the results of ResNet50 used previously for comparison.
Furthermore, to assess NHL’s compatibility with distinct network structures, we also employed
the Vision Transformer (ViT_B_16) (Dosovitskiy et al., 2020) and the lightweight MobileNetV2
architecture (Sandler et al., 2018). As demonstrated in Table 5, NHL consistently maintains its
effectiveness when paired with these varied backbones. This underscores NHL’s broad applicability
and its robustness in enhancing hashing performance across different types and scales of feature
extractors, from various CNNs to transformer-based models.

F ABLATION STUDY

This section presents the comprehensive results of NHL variants applied to deep hashing models.
Figures 8, 6, and 7 showcase the outcomes for CIFAR-10, ImageNet100, and MSCOCO, respectively.
The best results are highlighted in bold, while the second-best results are underlined. From these

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

results, it is evident that in the vast majority of cases, employing the complete NHL method achieves
optimal performance. Additionally, in certain scenarios, using variants of NHL yields the best results,
which can be attributed to the inherent differences among various deep hashing models, as well as the
influence of different hash code lengths and datasets. As a plug-and-play module, NHL demonstrates
sufficient robustness and adaptability across diverse applications.

Table 6: The mAP@K comparison results on the ImageNet100 dataset when different deep hashing
models use the original hash layer, NHL, or the variants of NHL. The best results are highlighted in
bold, while the second-best results are underlined.

Data Length NHL DSH DTSH LCDSH DCH CSQ DPN SHCIR MDSH

ImageNet100
(mAP@1000)

8bit

w/o 0.703 0.432 0.248 0.776 0.456 0.436 0.789 0.785
-basic 0.630 0.544 0.407 0.809 0.424 0.453 0.744 0.697
w/o D 0.688 0.512 0.413 0.810 0.451 0.456 0.764 0.787
w/o L 0.663 0.535 0.426 0.797 0.487 0.453 0.777 0.756

w/ 0.755 0.552 0.422 0.809 0.495 0.487 0.798 0.794

16bit

w/o 0.808 0.710 0.395 0.834 0.822 0.827 0.861 0.845
-basic 0.787 0.682 0.571 0.845 0.781 0.830 0.831 0.812
w/o D 0.797 0.701 0.597 0.846 0.803 0.832 0.822 0.836
w/o L 0.784 0.721 0.554 0.839 0.820 0.825 0.828 0.827

w/ 0.816 0.714 0.568 0.842 0.825 0.829 0.881 0.851

32bit

w/o 0.827 0.770 0.542 0.845 0.860 0.864 0.879 0.874
-basic 0.814 0.765 0.622 0.856 0.847 0.862 0.867 0.859
w/o D 0.808 0.721 0.645 0.858 0.846 0.861 0.867 0.846
w/o L 0.807 0.749 0.601 0.850 0.848 0.858 0.861 0.860

w/ 0.829 0.766 0.628 0.855 0.873 0.860 0.889 0.878

64bit

w/o 0.828 0.784 0.608 0.859 0.877 0.870 0.883 0.895
-basic 0.825 0.773 0.671 0.864 0.874 0.875 0.881 0.879
w/o D 0.818 0.760 0.679 0.863 0.873 0.874 0.885 0.872
w/o L 0.820 0.769 0.631 0.854 0.864 0.870 0.882 0.879

w/ 0.838 0.788 0.657 0.860 0.880 0.877 0.893 0.884

128bit

w/o 0.822 0.803 0.692 0.848 0.878 0.877 0.881 0.894
-basic 0.827 0.782 0.703 0.863 0.888 0.878 0.887 0.888
w/o D 0.820 0.764 0.714 0.866 0.884 0.880 0.884 0.883
w/o L 0.825 0.770 0.665 0.857 0.878 0.877 0.887 0.886

w/ 0.841 0.792 0.692 0.863 0.882 0.881 0.898 0.896

Table 7: The mAP@K comparison results on the MSCOCO dataset when different deep hashing
models use the original hash layer, NHL, or the variants of NHL. The best results are highlighted in
bold, while the second-best results are underlined.

Data Length NHL DSH DHN DTSH LCDSH DCH DBDH CSQ DPN

MSCOCO
(mAP@1000)

8bit

w/o 0.685 0.659 0.706 0.687 0.695 0.655 0.596 0.575
-basic 0.693 0.714 0.737 0.708 0.720 0.676 0.635 0.621
w/o D 0.662 0.705 0.738 0.727 0.721 0.690 0.638 0.633
w/o L 0.688 0.708 0.734 0.703 0.692 0.688 0.636 0.646

w/ 0.714 0.724 0.751 0.713 0.723 0.692 0.659 0.638

16bit

w/o 0.722 0.751 0.770 0.769 0.756 0.727 0.750 0.757
-basic 0.730 0.757 0.769 0.757 0.768 0.732 0.735 0.747
w/o D 0.705 0.751 0.775 0.771 0.773 0.737 0.769 0.779
w/o L 0.726 0.764 0.789 0.761 0.736 0.747 0.749 0.774

w/ 0.735 0.760 0.793 0.773 0.769 0.748 0.778 0.769

32bit

w/o 0.757 0.786 0.810 0.787 0.762 0.760 0.847 0.828
-basic 0.747 0.789 0.791 0.774 0.788 0.764 0.822 0.820
w/o D 0.731 0.783 0.805 0.788 0.787 0.765 0.822 0.835
w/o L 0.749 0.792 0.809 0.789 0.757 0.781 0.811 0.819

w/ 0.764 0.794 0.819 0.794 0.786 0.778 0.847 0.837

64bit

w/o 0.779 0.810 0.823 0.825 0.777 0.769 0.877 0.862
-basic 0.765 0.809 0.796 0.780 0.791 0.783 0.866 0.853
w/o D 0.749 0.804 0.808 0.798 0.789 0.783 0.866 0.860
w/o L 0.765 0.815 0.814 0.826 0.765 0.803 0.857 0.849

w/ 0.789 0.837 0.823 0.828 0.789 0.809 0.881 0.872

128bit

w/o 0.769 0.832 0.831 0.836 0.734 0.800 0.871 0.863
-basic 0.773 0.820 0.797 0.786 0.787 0.799 0.876 0.868
w/o D 0.761 0.822 0.814 0.802 0.787 0.797 0.877 0.872
w/o L 0.774 0.828 0.815 0.839 0.764 0.811 0.873 0.866

w/ 0.789 0.837 0.823 0.828 0.789 0.809 0.881 0.872

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: The mAP@K comparison results on the CIFAR-10 dataset when different deep hashing
models use the original hash layer, NHL, or the variants of NHL. The best results are highlighted in
bold, while the second-best results are underlined.

Data Length NHL DSH DHN DTSH LCDSH DCH DBDH CSQ DPN SHCIR MDSH

CIFAR-10
(mAP@1000)

8bit

w/o 0.690 0.718 0.754 0.715 0.776 0.737 0.762 0.703 0.754 0.755
-basic 0.598 0.724 0.560 0.759 0.779 0.731 0.652 0.731 0.761 0.752
w/o D 0.620 0.730 0.772 0.751 0.772 0.750 0.707 0.727 0.740 0.743
w/o L 0.641 0.752 0.747 0.773 0.781 0.737 0.769 0.632 0.760 0.760

w/ 0.717 0.739 0.766 0.775 0.787 0.748 0.792 0.729 0.758 0.762

16bit

w/o 0.731 0.765 0.778 0.771 0.802 0.771 0.786 0.757 0.791 0.808
-basic 0.688 0.778 0.702 0.782 0.806 0.769 0.758 0.768 0.796 0.788
w/o D 0.667 0.769 0.785 0.766 0.798 0.770 0.773 0.783 0.777 0.775
w/o L 0.710 0.797 0.775 0.785 0.808 0.764 0.777 0.752 0.793 0.801

w/ 0.732 0.776 0.790 0.799 0.810 0.785 0.802 0.765 0.797 0.811

32bit

w/o 0.740 0.813 0.799 0.817 0.829 0.796 0.798 0.790 0.820 0.829
-basic 0.726 0.818 0.777 0.815 0.827 0.797 0.795 0.804 0.834 0.823
w/o D 0.733 0.783 0.814 0.788 0.822 0.799 0.815 0.812 0.812 0.814
w/o L 0.739 0.815 0.796 0.799 0.828 0.793 0.803 0.792 0.828 0.831

w/ 0.744 0.824 0.802 0.825 0.833 0.804 0.818 0.795 0.824 0.838

64bit

w/o 0.727 0.837 0.831 0.826 0.830 0.829 0.798 0.804 0.844 0.844
-basic 0.734 0.834 0.810 0.823 0.834 0.822 0.812 0.819 0.853 0.845
w/o D 0.740 0.802 0.820 0.803 0.827 0.811 0.823 0.817 0.834 0.838
w/o L 0.739 0.833 0.808 0.814 0.835 0.816 0.821 0.819 0.848 0.849

w/ 0.743 0.835 0.822 0.839 0.843 0.825 0.828 0.826 0.849 0.852

128bit

w/o 0.381 0.853 0.811 0.854 0.825 0.829 0.807 0.819 0.828 0.832
-basic 0.752 0.846 0.835 0.835 0.829 0.838 0.824 0.824 0.827 0.852
w/o D 0.744 0.821 0.831 0.824 0.831 0.834 0.831 0.821 0.838 0.845
w/o L 0.736 0.852 0.818 0.828 0.839 0.873 0.832 0.827 0.857 0.858

w/ 0.749 0.866 0.836 0.868 0.844 0.844 0.838 0.824 0.848 0.861

G LLM USAGE STATEMENT

In compliance with the ICLR 2026 policy, we disclose the use of a large language model as an
assistive tool in the preparation of this manuscript.

The model used was Gemini 2.5-Pro. Its role was strictly limited to that of a writing assistant for
polishing parts of the text. Specifically, it was used to improve grammar, clarity, and conciseness for
author-written content. The LLM was not used for core research ideation, experimental design, data
analysis, or the formulation of our conclusions.

Our workflow for using the LLM followed a strict three-step, human-in-the-loop process:

1. Polish: We used the model to suggest alternative phrasing or grammatical corrections for
existing text drafted by the authors.

2. Review: All suggestions provided by the LLM were critically reviewed by the authors to
verify their accuracy and to ensure they did not alter the original scientific meaning or intent.

3. Manual Revision: We manually integrated and modified any useful suggestions to ensure
the final text accurately and precisely reflected our findings and narrative.

The authors take full responsibility for all content presented in this paper, including any text that was
revised with the assistance of the LLM.

19

	Introduction
	Related work
	Deep Supervised Hashing
	Multi-task Learning

	METHODOLOGY
	Problem Definition
	Hash Code Generation
	Basic Structure of Nested Hash Layer
	Dominance-Aware Dynamic Weighting strategy
	Long-short Cascade Self-distillation

	Experiments
	Experiment Settings
	Performance on Deep Hashing Models
	Efficiency Analysis
	Module Analysis
	Parameter Sensitivity
	More Code Length Settings

	Compared with Gradient Conflicts Methods and Multi-length Hashing

	Conclusion
	Experimental Settings
	Datasets
	Baselines and Evaluation Metric
	Training Details

	Proofs
	The Method to Solve Linear Programming Problem Eq. 5
	The Training Algorithm
	More Experimental Analyses
	Hyper-parameters
	Backbone Analysis

	Ablation Study
	LLM Usage Statement

