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ABSTRACT

Deep supervised hashing is essential for efficient storage and search in large-scale
image retrieval. Traditional deep supervised hashing models generate single-length
hash codes, but this creates a trade-off between efficiency and effectiveness for
different code lengths. To find the optimal length for a task, multiple models must
be trained, increasing time and computation. Furthermore, relationships between
hash codes of different lengths are often ignored. To address these issues, we
propose the Nested Hash Layer (NHL), a plug-and-play module for deep supervised
hashing models. NHL generates hash codes of multiple lengths simultaneously
in a nested structure. To resolve optimization conflicts from multiple learning
objectives, we introduce a dominance-aware dynamic weighting strategy to adjust
gradients. Additionally, we propose a long-short cascade self-distillation method,
where long hash codes guide the learning of shorter ones, improving overall code
quality. Experiments indicate that the NHL achieves an overall training speed
improvement of approximately 5 to 8 times across various deep supervised hashing
models and enhances the average performance of these models by about 3.4%.

1 INTRODUCTION

With the growing amount of visual data on the Internet, existing databases are becoming vast. To
manage this data in large-scale image databases, hashing represents images as binary hash codes for
efficient storage and search (Luo et al., 2023)). Recently, deep supervised hashing has made significant
progress by extracting deep features and using supervised signals to enhance hash code quality. As
shown in the upper part of Figure[Ta] the traditional approach involves using a deep neural network
to extract features and a hash layer to generate hash codes{ﬂ The hash layer typically consists of
a single-layer perceptron that maps features to the desired hash code length, followed by a binary
operation (e.g., the signum function) to produce the final hash codes.

However, most deep supervised hashing models focus on generating hash codes of a specific length.
This leads to two problems. First, Figure[Tb|shows the performance of four deep supervised hashing
models (Liu et al.,[2016; Wang et al., | 2017;|Cao et al., 2018} [Wang et al.| 2022)) on the CIFAR-10
dataset at different code lengths. There is a clear trade-off between efficiency and effectiveness:
shorter hash codes improve efficiency but reduce effectiveness, while longer hash codes enhance
performance but increase storage and computational costs (Sun et al., [2023). Furthermore, this
trade-off is not entirely inversely proportional, as seen with the DSH model, which suffers a notable
performance drop at 128 bits, a phenomenon known as the dimension curve of hash code. As a
result, multiple models must be trained for different code lengths to find the best fit for a specific task,
greatly increasing training time and resource use (Wu et al., 2022). Second, since these models only
produce single-length hash codes, they overlook the potential relationships between hash codes of
different lengths. This raises a question: is it possible to train a single hashing model capable of
producing hash codes of multiple lengths?

Code expansion and compression-oriented deep hashing methods address the variation in hash code
lengths after training. They generate new codes either through code expansion (Mandal et al.l 2019

"Most deep hashing methods for image retrieval adhere to this paradigm, while some works (Shen et al.,
2017; Jiang & Lil [2018} (Chen et al.,2019; |Wu et al.| 2023) optimize the hash code in the database independently.
Our work focuses on the former.
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Figure 1: (a) A schematic comparison between traditional hash layer methods and our proposed
NHL. The NHL can generate hash codes of multiple lengths simultaneously in a nested manner. (b)
The performance of four deep supervised hashing models on the CIFAR-10 dataset highlights the
uncertainty in effectiveness and efficiency under different code lengths.

Wau et al., 2022;|2024) or compression (Zhao et al.| 2020). However, their primary focus is on learning
a mapping after model training to convert existing hash codes into new ones. MAH (Luo et al.| 2020)
and SDMLH (Nie et al.,[2022) involve the generation of hash codes with multiple lengths, but they
rely on specifically designed models that cannot be generalized to other deep hashing models. Thus,
designing a method capable of being widely applied to deep hashing models for generating hash
codes of multiple lengths remains an unexplored area.

In this work, we propose the Nested Hash Layer (NHL), a plug-and-play module that replaces the
traditional hash layer in deep supervised hashing models to generate hash codes of multiple lengths.
First, we observe that deep supervised hashing models use the same backbone to extract features,
regardless of code length. Additionally, longer hash codes can be seen as extensions of shorter ones.
Based on these insights, the NHL is designed as shown in the lower part of Figure[Ta|to generate hash
codes of different lengths in a nested manner, enabling multiple-length code generation in one model.
Second, while the NHL combines objectives for multiple code lengths, conflicts may arise, as shorter
hash codes are integral to longer ones. Thus, we introduce a Dominance-Aware Dynamic Weighting
strategy. We define a "domination gradient" for each nested parameter, prioritizing the optimization
of shorter hash codes. By monitoring parameter gradients, we dynamically adjust objective weights
to align with the domination gradient and avoid conflicts. Third, unlike the traditional hash layer,
NHL generates multiple-length hash codes. To further enhance code quality, we propose a Long-short
Cascade Self-distillation method, leveraging the relationships in long hash codes to guide and improve
shorter ones.

As evidenced by extensive experiments and analysis, NHL offers the following key advantages: (1)
NHL achieves an overall training speed improvement of approximately 5 to 8 times across various
deep supervised hashing models. (2) While ensuring faster training, NHL enhances the average
performance of these models by about 3.4% and remarkably alleviates the dimensionality curse of
hash codes. (3) NHL demonstrates exceptional flexibility in adapting to scenarios with multiple hash
code length settings and different backbones.

2 RELATED WORK

2.1 DEEP SUPERVISED HASHING

Our work focuses on deep supervised hashing models, which can be roughly divided into pair-wise
methods, ranking-based methods, and proxy-based methods. The objective of pair-wise methods
(Liu et all 2016} [Zhu et all 2016 [2017; |Cao et al., 2018} [Li et al.l |2020; Zheng et al., 2020) is
to ensure similar pairs have similar hash codes while dissimilar pairs have dissimilar hash codes.
Ranking-based methods adopt ranking-based similarity-preserving loss terms. For instance, triplet
loss (Wang et al.,[2017; [Liu et al.l 2018)) and list-wise loss (Cakir et al., [2019) are commonly used to
maintain data ordering. Proxy-based methods (Yuan et al., 2020; [Fan et al., |2020; Hoe et al.| [2021}
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Wang et al.| [2022;|2023), also known as center-based methods, have emerged as a widely acclaimed
approach recently. These methods first generate each category’s proxies (or hash centers). Then, they
force hash codes outputted from the network to approach corresponding proxies (or hash centers).
Most of the current deep supervised hashing models only account for a single model with a specific
code length. This limitation leads to slow training in practical applications due to the need to train
multiple models with different hash code lengths. MAH (Luo et al.| 2020) and SDMLH (Nie et al.,
2022) attempt to solve this problem, but they rely on specifically designed models that cannot be
generalized to other deep hashing models.

2.2 MULTI-TASK LEARNING

The NHL can be seen as a multi-task learning framework (Lee & Seok, |[2023), where multiple related
tasks are trained simultaneously using a shared model. Its primary function is to enable a single hash
model to serve multiple learning objectives for different code lengths. A key aspect of multi-task
learning is architecture design, including hard parameter sharing methods (Kokkinos},2017;|Bragman
et al.,|2019) and soft parameter sharing methods (Ruder et al.l|2019;|Gao et al., 2020; |Liu et al., 2019).
NHL only makes simple adjustments to the hash layer to accommodate various deep hashing models.
MRL (Kusupati et al.l |2022) partly inspired its basic structure, which generates representations
of different lengths for multiple tasks. However, MRL does not address gradient conflicts or the
relationships between representations of different lengths.

To address gradient or task conflicts, some methods re-weight the task losses based on specific criteria
such as uncertainty (Kendall et al., 2018]), gradient norm (Chen et al., 2018), or difficulty (Guo et al.,
2018)). Other methods leverage gradient information to modify the gradient on the parameter update
procedure (Yu et al., 2020; |Chen et al., 2020; |Liu et al., [ 2021; Javaloy & Valeral 2022). Nevertheless,
these multi-task learning methods assume the importance of different objectives is equivalent. In
NHL, the weights of objectives are different because the short hash codes appear to hold greater
significance. Resolving this problem remains a further exploration.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Given a database X = {x;}¥| comprising N images and Y = {y;}¥, is the corresponding label
set, deep supervised hashing targets to learn a hash function f : z; — h; that maps each data z; € X
to a binary hash code h; € {—1,1}®, where b denotes the length of hash code. This mapping aims to
preserve the pairwise similarities between the images x; and z; in the Hamming space, characterized
by the Hamming distance for hash codes h; and h;. In this work, we aim to generate hash codes with
m code lengths b = {b; }}*_,. Without loss of generality, we define by, < bjy1. Then, the image z; is

mapped to m different lengths of hash codes, denoted as {hgk) R

3.2 HASH CODE GENERATION

The process of acquiring hash codes of most deep supervised hashing methods is divided into two
parts. First, a deep neural network is employed to extract the feature v = F(x) € R! given the data
x; € X, where [ is the dimension of v. Then, a hash layer is utilized to derive the hash code h. In
most cases, the hash layer consists of a single-layer perceptron to map the data features to a length
equivalent to that of the hash code, and an operation ¢ for acquiring the hash codes. The whole
process to get the hash code h can be formulated as follows:

h= f(x) = oWF(z) + ), (1

where W € R?*! and ¢ € R? are the parameters in the single-layer perception to be learned. Current
deep hashing methods usually predefine a code length by, and then train a hash model fj accordingly.
However, in practice, the selection of an appropriate code length depends on the specific task at hand,
which means we need to train multiple deep hashing models { f }}*; for different code lengths and
select the most suitable one. Such an approach will increase both the training time and computational
resources required. To solve this problem, we introduce NHL to replace the original hash layer in
deep hashing models. In the following section, we omit the bias ¢ and the operation ¢ for conciseness.
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Figure 2: (a): The Nested Hash Layer (NHL) can generate m (here, m = 3) hash codes with varying
lengths in one training procedure. (b) The illustration of the Dominance-Aware Dynamic Weighting

strategy. Taking the YW1 as an example. (c) The Long-short Cascade Self-distillation transfer
relationship from long hash codes to short hash codes.

3.3 BASIC STRUCTURE OF NESTED HASH LAYER

Although the predefined code lengths differ, the same backbone is employed for a specific deep
hashing model. Inspired by this observation, we propose the basic structure of NHL to help deep
hashing models generate hash codes with different code lengths in one training procedure.

As shown in Figure , NHL uses a nested parameter {W(k) }7, to achieve this goal without adding
additional parameters to the neural network. The parameter W) = W[(ﬁ)k] € R is in a nested
structure, which means W) ¢ W(+1) Tt uses the first by, vectors of the parameter wim) ¢ RExbm,

We can obtain the hash codes with different lengths {h(*)}7 | through h(¥) = ¢(W*F)4T). Then,
we aim to minimize the following objective.

N m
£=5"5"£i(n, yi0m, W), @)

=1 k=1

where 0 is the parameter of backbone, and L is the objective of a specific deep hashing model for
code length by. In most deep hashing models, £; can be a combination of multiple objectives, such
as the central similarity loss and quantization loss. As it simply involves adding the original objective
of the deep hashing model, it does not alter the original optimization method. By minimizing Eq.(2),
we force hash codes with different lengths to ensure their performance.

3.4 DOMINANCE-AWARE DYNAMIC WEIGHTING STRATEGY

Although basic NHL can generate hash codes with different lengths, we are unable to predict whether
the gradients for different objectives { L }}"_, are mutually beneficial or detrimental. For example,

in the left part of Figure , the parameter W) is updated by three gradients g( ) = 8%(11),
51) = 8%(21) ,and g(l) = a%:a) Due to the impact of gé ), g§ ), optimizing the parameters tends to

1) (1)

proceed in a direction unfavourable to g, () because the negative inner product between g; ’ and g5 ’,

:g ), However, The quality of the hash code h(!) is determined by objective £;, which updates W)

using the gradient gil) based on the target’s outcomes. Therefore, if the final optimization direction

of W) diverges from g( ) itis highly probable that such a deviation will lead to a deterioration in
the quality of A(!) because the wrong optimization direction for it.

Some multi-task learning works (Yu et al.,2020; (Chen et al.} 2020; [Liu et al.| 2021} Javaloy & Valera]
2022;|Guangyuan et al., 2022) propose modifying the gradient on the parameter update procedure
to prevent gradient conflicts. However, there exists a difference between these multi-task learning
settings and NHL. Multi-task learning treats diverse learning objectives as equally important, aiming
to balance various learning objectives. In NHL, the objectives corresponding to shorter hash codes
appear to hold greater significance, as shorter hash codes are shared by a larger number of longer
hash codes. To address this problem, we propose a dominance-aware dynamic weighting strategy to
adjust the weight «, of each objective £, by monitoring the gradients. Then the objective Eq.
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becomes follows:

N m
L= ali(® gz 00, WH). 3)

i=1 k=1
Since shorter hash codes should be given higher optimization priority, we are motivated to introduce
the following definitions.
oW -
We define g(k) a%(k’w is the dominant gradient, and £ = 1,2...,m. For example, ggl) is the
dominant gradient in Figure Zp.

Definition 1 (Dominant gradient). Assume the gradient of £; for W) is denoted as gF =

Deﬁnltlon 2 (Anti-domination & Align-domination). Assume the gradient of £ for W) is g*

6W< - We define anti-domination for the update of W) if the inner product is negative between
(k)

g™*) and the dominant gradient gy ~» whereas a positive inner product is termed align-domination.

The dominant gradient g( ) serves as a guiding principle for the optimization of the parameter WW(*)
Anti-domination and align-domination are thus employed to ascertain whether the update result of
W) is congruent with or divergent from the dominant gradient g, *) " For example, the left part
of Flgure shows that the update of W) is anti-domination because the negative inner product
between the gradient ¢(*) and g( ). We conducted an analysis to observe the occurrence of anti-
domination as training progressed. Figure[3|depicts the likelihood of anti-domination occurring about
parameter YW(1) at each epoch. These results reveal the probability of anti-domination steadily rises

over time, eventually stabilizing at a level exceeding 90%. This trend signifies a growing prevalence
of anti-domination scenarios as the training progresses.

Our goal is to avert anti-domination for
each W), We propose the following

1.0

proposition: 05
Proposition 1. Assume G(f) is the angle 0 0 4
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
between two gradients g( ) and g(k) nd cpoch cpoch cpoch
|I|| denotes the Frobenius norm, lf the fol- (a) CIFAR-10  (b) ImageNet100  (c) MSCOCO

lowing inequality holds:
Figure 3: The probability of anti-domination occurring

(k) o epB) (R
akllgy Il + Z aicosti g Il =0, (e parameter W1 at each epoch. We set the code
k<i<m 4 lengths m =5 and use CSQ as the deep hashing mod-

) els on three datasets. This trend signifies a growing

(k) ; . S - .
Zhenl{he Z,p ‘W O,f W is guaranteed to prevalence of anti-domination scenarios as the training
e align-domination. progresses.

The proof is provided in Appendix [B] How-

ever, the linear programming Eq.() is chal-

lenging to optimize and will incur additional time expenditure. Hence, we propose the following
target and proposition:

Proposition 2. If the following inequality holds for all k < i < m, then Eq. also holds.
aicosty g || + ——lg” || > 0. 5)

We provide the proof in Appendix [B|and introduce a method to solve Eq. (3) in Appendix [C] Here,
for arbitrary k < ¢ < m, we directly provide the results:

a; = min(q; @ 52),...,a1(-i)). ©)
. k k
(k) *) Ll g7 g 20 (7
QL = o 2 . k k
! i J&’ggglk) if ( ) g,(C ) <.

In each training step, we dynamically compute the {a }}" ; using Eq. (@) and Eq. . Similar to
(Chen et al.,|2018)), we don’t consider the full network weights and focus on the parameter in NHL.
The computation complex is O(lb,,m?), where [ is the dimension of data feature v and b, is the
longest code length. Our experiment shows that the additional training time for each step is around
11.15%.
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3.5 LONG-SHORT CASCADE SELF-DISTILLATION

Unlike the traditional hash layer, the deep hashing model with NHL can generate hash codes of
different lengths simultaneously. This leads us to explore the connections among these hash codes
of different lengths. We observe a teacher-student relationship between long and short hash codes.
Thus, as illustrated in Figure 2k, we propose the long-short cascade self-distillation method, which
uses long hash codes to improve the performance of short hash codes in a cascading manner.

Specifically, for arbitrary image x;, through the NHL we can get its corresponding hash codes
{hgk)}g;l. Let Hy, = [hgk), h;k), sy hg)] € {—1,1}P*" denote the matrix of hash codes with
length by, in current training batch, and B is the batch size. Then the self-distillation objectives can
be formulated as:

k+1
1| »H Hy h(' )H(Tk+1)

(
‘Clcs — 9
* ®pr =T

®)
Bl|n

(|

Eq. can be viewed as transferring the relationship between hg 1) and other hash codes of length
by.+1 to the relationship between hgk) and other hash codes of length by,. Besides, we stop the gradient

propagation of the long hash codes hEkH) and H ;1) to ensure that the learning of relationships is
unidirectional. In other words, we only allow the shorter hash codes to learn from the relationships of
the longer hash codes. By introducing the long-short cascade self-distillation into the optimization
procedure, the objective Eq.(3) becomes:

N m-—1

L= a(Li+ALJ®) +Zam s ©)

i=1 k=1

where ) is a hyper-parameter. This method readily allows for expansion. For instance, one could
explore the relationship between hy, and hy,, where a is an integer, but this is not the central concern
of our work.

We renormalize the weights ay, in each step so that k’ 10 =mto decouple gradient re-weight
from the global learning rate. Besides, in the training procedure, note that the minimum of £ does not
necessarily imply that each {£; }}* , is at its minimal value during the training process. Therefore,
we propose a trick for our training procedure. Throughout the training, we monitor the value of each
L}, and save the model parameters when each £, reaches its minimum to output the corresponding
hash codes h(¥). We summarize the whole algorithm in Appendix @

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

We evaluated our method on three widely used datasets in deep hashing: CIFAR-10 (Krizhevsky
et al., [2009), ImageNet100 (Deng et al., 2009), and MSCOCO (Lin et al.,[2014). We compared our
approach against several state-of-the-art deep supervised hashing baselines: DSH (Liu et al., |2016),
DHN (Zhu et al., 2016), DTSH (Wang et al., 2017), LCDSH (Zhu et al.l [2017), DCH (Cao et al.,
2018), DBDH (Zheng et al.,2020), CSQ (Yuan et al., 2020), SHCIR (Wang et al.,2022), DPN (Fan
et al.}2020), and MDSH (Wang et al.| [2023). For all the above models, we adopted ResNet50 (He
et al.,2016) as the backbone. The primary evaluation metric was mean Average Precision at top K
(mAPQK). Unless otherwise specified, we set the hash code lengths b € {8, 16, 32, 64,128} for
the following experiments, as these lengths are prevalently used in previous works. Details regarding
datasets, implementation, and evaluation settings are presented in Appendix [A]

4.2 PERFORMANCE ON DEEP HASHING MODELS

In this experiment, we first compared the m APQK of different deep supervised hashing models
on three datasets. Table|[l|shows the results. We use “w/o NHL” to denote the deep hashing model
without using NHL and use “w/ NHL” to denote the deep hashing model that uses NHL to replace the
traditional hash layer. Besides, we use bold numbers to indicate statistically significant improvements
when utilizing NHL compared to not using NHL, with p < 0.05 based on a two-tailed paired t-test.
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Table 1: The mAP@XK comparison results on CIFAR-10, ImageNet100, and MSCOCO datasets when
different deep hashing models used the original hash layer (w/o NHL) or NHL (w/ NHL). We employ
bold numbers to indicate statistically significant enhancements when utilizing NHL compared to
when not using NHL, with p < 0.05 based on a two-tailed paired t-test.

w/o NHL (The Original Model) w/ NHL

8bits 16bits 32bits 64 bits 128 bits avg. | 8bits 16bits 32 bits 64 bits 128 bits avg.
DSH 0.690 0.731 0.740 0.727 0381 0.654 [ 0.717 0.732 0.744 0.743 0.749 0.737 (+12.8%)
DTSH | 0.754 0.778 0.799 0.831 0.811 0.745 | 0.766 0.790 0.802 0.822 0.836 0.771 (+3.51%)
DHN | 0718 0.765 0.813 0.837 0.853 0797 | 0.739 0.776 0.824 0.835 0.866 0.808 (+1.38%)
LCDSH | 0.715 0.771  0.817  0.826 0.854  0.797 | 0.775 0.799 0.825 0.839 0.868 0.821 (+3.08%)
CIFAR-10 DCH | 0.776  0.802 0.829  0.830 0.825 0812 | 0.787 0.810 0.833 0.843 0.844 0.823 (+1.36%)
(mAP@ALL) | DBDH | 0.737 0.771 0.796 0.829 0.829 0.792 | 0.748 0.785 0.804 0.825 0.844 0.801 (+1.12%)
CSQ 0.762 0.786  0.798  0.798 0.807  0.790 | 0.792 0.802 0.818 0.828 0.838 0.816 (+3.21%)
DPN 0.703 0.757 0.790  0.804 0.819 0775 | 0.729 0.765 0.795 0.826 0.824 0.788 (+1.71%)
SHCIR | 0.754 0.791 0.820  0.844 0.828  0.807 | 0.758 0.797 0.824  0.849  0.848 0.815 (+0.99%)
( )
( )
( )
( )
( )
( )
( )
( )

Data Model

MDSH | 0755 0.808 0.829  0.844 0.832 0814 | 0.762 0.811 0.838 0.852 0.861 0.825 (+1.40%
DSH 0.703 0.808 0.827 0.828 0.822  0.797 | 0.755 0.816 0.829 0.838 0.841 0.817 (+2.41%
DTSH | 0432 0.710 0.770 0.784 0.803 0.794 | 0.552 0.714 0.766 0.788 0.792  0.803 (+1.11%
LCDSH | 0.248 0.395 0.542  0.608 0.692 0450 | 0.422 0.568 0.628 0.657 0.692  0.593 (+19.4%
ImageNet100 DCH | 0.776 0.834 0845 0.859 0.848  0.832 | 0.809 0.842 0.855 0.8600 0.863 0.846 (+1.65%
(mAP@1000) CSQ 0456 0.822 0.860 0.877 0.878 0.778 | 0.495 0.825 0.873 0.880 0.882  0.787 (+1.59%
DPN 0.436 0.827 0.864  0.870 0.877 0775 | 0.487 0.829 0.860 0.877 0.881  0.787 (+1.50%
SHCIR | 0.789 0.861  0.879  0.883 0.881  0.858 | 0.798 0.881 0.889 0.893 0.898 0.872(+1.63%
MDSH | 0.785 0.845 0.874 0.895 0.894 0859 | 0.794 0.851 0878 0.884 0.896 0.861 (+0.23%)
DSH 0.685 0722 0757 0.779 0769 0743 [ 0.714 0.735 0.764 0.779 0.789 0.756 (+1.77%)

DTSH | 0.706 0.770  0.810 0.823  0.831 0.788 | 0.751 0.793 0.819 0.826 0.823  0.803 (+1.86%)

DHN | 0.659 0.751 0.786  0.810 0.832 0.768 | 0.724 0.760 0.794 0.819 0.837  0.787 (+2.47%)

MSCOCO LCDSH | 0.687 0.769 0.787 0.825 0.836 0.781 | 0.713 0.773 0.794 0.820 0.828  0.786 (+0.55%)
(mAP@5000) DCH 0.695 0.756 0762  0.777 0.734  0.745 | 0.723 0.769 0.786 0.788 0.789 0.771 (+3.51%)
( )

( )

( )

DBDH | 0.655 0.727  0.760  0.769 0.800  0.742 | 0.692 0.748 0.778 0.803 0.809 0.766 (+3.23%
CSQ 0.596 0.750 0.847  0.877 0.871  0.788 | 0.659 0.778 0.847 0.878  0.881  0.809 (+2.58%
DPN 0.575 0.757 0.828  0.862 0.863  0.777 | 0.638 0.769 0.837 0.863 0.872  0.796 (+2.44%

We can find the following observations: (i) Globally, the implementation of the NHL leads to an
average improvement of 3.398% (3.619% in CIFAR-10, 4.364% in ImageNet100, and 2.158% in
MSCOCO). Besides, there are 72% of cases that achieve a significant performance boost based on
the two-tailed paired t-test. Conversely, only a few cases achieve a decline, with most drops of 1.37%
occurring in the DTSH model when NHL is applied to the ImageNet100 dataset using a 128-bit
code. Thus, we can demonstrate that NHL can yield significant improvements in the majority of
cases. (ii) Deep hashing models with NHL improve significantly when the hash code length is short
in some datasets. For example, in the case of 8-bit, employing NHL can increase 18.7% and 7.32%
enhancement on ImageNet100 and MSCOCO datasets, respectively. (iii) It is delightful to note that
NHL can address the dimensionality curse of hash code, signifying that as the code length expands
to a certain dimension, the code quality commences to deteriorate in some deep hashing models.
For example, without NHL, the quality of hash codes in DSH experiences a marked decline when
transitioning from 64 bits to 128 bits on the CIFAR-10 dataset. In contrast, with the incorporation of
the NHL, this result undergoes a substantial improvement.

Besides, to analyze the influence of Table 2: The comparison of average mAP@K results with
each component in the NHL, we con-  the original model is shown for NHL variants.
ducted an ablation study on these mod-

els to investigate their impact. We Data NHL-basic NHLw/oD NHLw/oL w/NHL
devised several variants for the NHL, CIFAR-10 +1.088% +1.316% +2.097%  +3.619%
namely (i) NHL-basic: directly use ImageNet100 | +2.209% +2.823% +2.434%  +4.364%
E.q (@) to optimize the deep hashin MSCOCO +0.421% +0.859% +0.978%  +2.158%

4 P p g ave. +12008%  +1.639%  +1.856%  +3.398%

model, (i) NHL w/o D: without using
the dominance-aware dynamic weighting strategy, (iii) NHL w/o L: without using the long-short
cascade self-distillation. Table 2] presents the average performance changes across datasets for the
models mentioned above. Overall, implementing NHL-basic, NHL w/o D, and NHL w/o L results
in average performance improvements of 1.228%, 1.639%, and 1.856%, respectively. Employing
only the dominance-aware dynamic weighting strategy (NHL w/o L) achieves the most significant
improvement, highlighting the critical role of gradient optimization in this context. In Appendix [F}
we present the details of various deep hashing models when utilizing the different variants of NHL.

4.3 EFFICIENCY ANALYSIS

In this experiment, we evaluated the deep hashing model’s training time and memory usage. We
recorded the total training time for the hashing model of five code lengths and recorded the maximal
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Table 3: We evaluate efficiency on three datasets
by recording the total training time for the deep . |@xuwo
hashing model with five code lengths and the ¢
maximum memory usage.

04
CIFAR-10 ImageNet100 MSCOCO CIFAR-10 TmageNetl00 MSCOCO

. Time (hours) Memory (GiB)
Data Model | \/)NHL =~ w/NHL  w/oNHL w/NHL (a) CSQ (b) DCH
CSQ | 0455 0083 (548x) 12822  12.868

CIFAR-10
DCH 0.543 0.085 (6.39x) 12.820 12.836 . .. .
ImazeNetl00 CSQ | 4320 0,664 (68Tx) 12923 13139 Figure 4: The average training time per epoch
magene DCH | 6025  1161(5.19x) 12914 12956 :
S0 | 1019 0202(505x) 12906 13067 for CSQ and DCH across three datasets, using
MSCOCO ) . < : ) L .
DCH | 5475 0981 (558x) 12886 12926 the traditional hash layer, NHL, or NHL variants.

memory usage. Table [3|displays the results, where we selected CSQ and DCH as the deep hashing
models. These results demonstrate that the employment of the NHL incurs negligible additional
memory expenses. This is attributed to the fact that during the training process, the primary memory
usage stems from the parameters of the neural network, while the additional memory occupied by the
target loss is relatively minimal. Meanwhile, the incorporation of the NHL can significantly enhance
the overall training speed. It achieved an average training speedup of 5.94x, 6x, and 5.31x on the
CIFAR-10, ImageNet-100, and MSCOCO datasets, respectively, across the two deep hashing models.
In conjunction with the conclusions drawn from the previous experiment, this evidences that NHL
can effectively expedite the training procedure without compromising the quality of hash codes.

Besides, we further analyze the average time per epoch during training across different NHL variants.
Figure 4] and Figure @] display the results of CSQ and DCH. Compared to deep hashing models
without NHL (w/o NHL), incorporating NHL-basic, NHL w/o D, NHL w/o L, and w/ NHL led to a
modest increase in training time of just 3.37%, 6.87%, 11.15%, and 13.75%, respectively.

4.4 MODULE ANALYSIS

In this experiment, we conducted a comprehensive analysis of the Nested Hash Layer (NHL) from
multiple perspectives, including (i) hyperparameter analysis and (ii) various code length settings. We
utilize CSQ as the deep hashing model for the subsequent analysis. Additionally, we validated the
performance of the Nested Hash Layer (NHL) under different backbone extractors, including other
variants of ResNet and different architectures of Vision Transformers (ViT) (Dosovitskiy et al.| [2020).
For further details, please refer to Appendix

4.4.1 PARAMETER SENSITIVITY

In Eq.(9), X serves as a hyperparameter that balances two objectives. We evaluated its values from
{10%,10°,1071,1072,10~3} to calculate the mAPQK across three datasets. Figure |S|illustrates
the results, highlighting that the performance of NHL demonstrates overall robustness to changes in
A. Generally, the optimal value is achieved when A\ = 1. Additionally, we conducted a parameter
analysis on the learning rate, which is presented in Appendix [E.I] The analysis indicates that the
optimal range for the learning rate is {107%,10°}.

4.4.2 MORE CODE LENGTH SETTINGS

This section explores the results under a broader range of code length settings. We established three
scenarios for code length: Case 1 sets a code length at every 32-bit interval, that is, b = {32 x k}}_,
and m = 4. Case 2 sets a code length at every 16-bit interval, thatis, b = {16 x k}§_, and m = 8.
Case 3 sets a code length at every 8-bit interval, that is, b = {8 x k}1%, and m = 16. Figure@
presents the corresponding results. Here, the blue bars represent the average ratio of mAPQK at
various lengths with and without using NHL. The yellow bars indicate the time cost ratio to complete
training with and without using NHL. We observe that even with different code length settings, the
use of NHL ensures a reduction in overall training time and improves the code quality. Moreover, it
is noteworthy that the total training time does not monotonically increase with the number of output
code lengths. For instance, the efficiency enhancement ratio in Case 3 is not as high as in Case 2.
This is attributed to the requirement for the model to undergo more training iterations in Case 3 to
ensure favorable outcomes across a greater number of code lengths.
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Figure 5: The mAPQK results across three Figure 6: Impact of NHL on average mAP@K ra-
datasets under varying \ values demonstrate that tio (blue bars) and training time cost ratio (yellow
NHL is robust to A to some extent. bars) across various code length settings.

Table 4: The mAPQK results across three datasets using different gradient conflict resolution
strategies, with CSQ as the deep semantic hashing model. The best results are highlighted in bold,
while the second-best results are underlined.

Method CIFAR-10 ImageNet100 MSCOCO
8bits 16 bits 32 bits 64 bits 128 bits | 8 bits 16 bits 32 bits 64 bits 128 bits | 8 bits 16 bits 32 bits 64 bits 128 bits

NHLw/oD | 0.707 0.773  0.815  0.823 0.831 | 0451 0.803 0.846 0.873 0.884 | 0.638 0.769 0.822  0.866 0.877
+PCGrad | 0742 0.781 0.802 03815 0.830 | 0.467 0814 0.852 0870 0862 | 0.632 0.772 0.823  0.852 0.872
+ GradDrop | 0.739  0.764  0.805  0.802 0.828 | 0.461 0.815 0859 0.872 0.861 0.636 0.776  0.827  0.861 0.875
+CAGrad | 0.720 0775 0.793  0.811 0815 | 0455 0.815 0.867 0.865 0.873 | 0.639 0.770 0.825 0.858 0.869
+RotoGrad | 0.735 0.762  0.813  0.819 0.822 | 0473 0.808 0.863  0.874 0877 | 0.641 0.778 0.830  0.859 0.871
NHL 0.792 0.802 0.818 0.828 0.838 | 0495 0.825 0.873  0.880 0.882 | 0.659 0.778 0.847 0.878 0.881
MAH 0.636  0.649 0.683  0.705 0.714 ] 0.628 0.652 0.689  0.692 0.691 0.567 0.573 0589 0.599 0.612
SDMLH 0.617 0.684 0.723  0.748 0.763 | 0.526  0.557 0.618  0.623 0.644 | 0.602 0.646 0.737  0.761 0.814

4.5 COMPARED WITH GRADIENT CONFLICTS METHODS AND MULTI-LENGTH HASHING

In this section, we compare our proposed dominance-aware dynamic weighting strategy with other
methods aimed at resolving gradient conflicts and two multi-length hashing. Specifically, we evaluate
classic gradient conflicts approaches including PCGrad (Yu et al., |2020), GradDrop (Chen et al.,
2020), CAGrad (Liu et al) 2021), and RotoGrad (Javaloy & Valera, [2022). The comparison is
conducted by replacing the dominance-aware dynamic weighting strategy in our NHL method with
the gradient update strategies of these methods and then calculating the m A PQK results across three
datasets, using CSQ as the deep hashing model. Besides, we also compared two multi-length hashing
models MAH (Luo et al., [2020) and SDMLH (Nie et al., 2022). Tablepresents the results. It can
be observed that, compared to other gradient conflict resolution approaches, our method achieves
the best results in more cases. Furthermore, we notice that incorporating these methods often results
in negative effects compared to not using any gradient conflict resolution strategy (NHL w/o D).
We believe this is due to the nested structure of our parameters, which these classical methods
fail to account for adequately. Additionally, the performance of the two multi-code length hashing
models, MAH and SDMLH, under most scenarios lags behind that of the CSQ model combined with
NHL. This underscores the importance of designing a plug-and-play module, as it allows seamless
integration with more advanced deep hashing models to achieve superior retrieval results.

5 CONCLUSION

In this paper, we introduce the plug-and-play module NHL for deep hashing models. NHL allows
these models to generate hash codes of different lengths simultaneously, simplifying training and
reducing computational load. Additionally, the dominance-aware dynamic weighting strategy and
long-short cascade self-distillation enhance NHL’s effectiveness. We performed extensive experiments
on three datasets to assess NHL’s performance. The results show that NHL speeds up training while
maintaining or improving retrieval effectiveness across various deep supervised hashing models.
Our work mainly focuses on common symmetric deep supervised hashing methods, where both the
database and query data use the same deep hashing network for generating hash codes. In contrast,
NHL is limited to asymmetric deep supervised hashing methods (Shen et al.| 2017; |Jiang & Li, [2018};
Chen et al.;|2019; |Wu et al., [2023). They use deep neural networks only for processing query, while
direct or indirect optimization of hash codes in the database. Thus, simply changing the hash layer
isn’t enough for these methods. We believe that adding optimization designs for the database hash
codes could be a promising solution.
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A  EXPERIMENTAL SETTINGS

A.1 DATASETS

We conducted experiments on three widely used datasets in deep hashing for evaluation. CIFAR-10
(Krizhevsky et al., |2009) consists of 60,000 images from 10 classes. Following (Cao et al.,[2018)),
we randomly select 1,000 images per class as the query set, and 500 images per class as the training
set, and use all remaining images as the database. ImageNet100 is a subset of ImageNet (Deng
et al., 2009) with 100 classes. We follow the settings from (Fan et al.,|2020) and randomly select
100 categories. Then, we use all the images of these categories in the training set as the database
and the images in the validation set as the queries. Furthermore, we randomly select 13,000 as the
training images from the database. MSCOCO (Lin et al.,|2014) is a large-scale multi-label dataset.
We consider a subset of 122,218 images from 80 categories, as in previous works (Qiu et al., 2021).
We randomly select 5,000 images from the subset as the query set and use the remaining images as
the database. For training, we randomly select 10,000 images from the database. As in most deep
hashing settings, two samples are viewed as similar if they correspond to the same label on CIFAR-10
and ImageNet100. For multi-label datasets MSCOCO, two samples are considered similar if they
share at least one common label.

A.2 BASELINES AND EVALUATION METRIC

We considered the following deep supervised hashing models: DSH (Liu et al., 2016), DHN (Zhu
et al.|[2016), DTSH (Wang et al.,[2017)), LCDSH (Zhu et al.l 2017), DCH (Cao et al.,. 2018), DBDH
(Zheng et al.| 2020), CSQ (Yuan et al., [2020), SHCIR (Wang et al.,[2022), DPN (Fan et al., [2020),
and MDSH (Wang et al.,[2023). For all the above models, we uniformly adopted ResNet50 (He et al.,
2016) as the backbone to extract 2048-dimensional image features.

We employed the mean Average Precision at the top K (mAPQK) as the evaluation metric. Specif-
ically, we utilized mAPQALL for CIFAR-10, mAP@5000 for MSCOCO, and mAP@1000 for
ImageNet100, following the settings used in previous studies (Qiu et al., 2021} |[Fan et al., 2020).
Unless otherwise specified, we set the hash code lengths b € {8, 16, 32,64, 128} for the following
experiments, as these lengths are prevalently used in previous works.

A.3 TRAINING DETAILS

For the deep hashing models we adopted, we endeavored to implement all models using PyTorch,
based on the code repositories provided in the original papers and the implementation details described
therein. The experiments were conducted on a Linux server equipped with 8 NVIDIA GeForce RTX
4090 GPUs. For each model (including those integrated with NHL), a single NVIDIA GeForce
RTX 4090 GPU was utilized for both training and testing. Among these models, DHN and DBDH
failed to produce valid results on ImageNet100 due to the absence of hyperparameter settings in the
original papers, and our grid search method was unable to identify suitable parameters. Additionally,
the SHCIR and MDSH models did not propose methods for handling multi-label datasets (e.g.,
MSCOCO) in their original publications. The batch size B was set to 64. When applying NHL to
the deep hashing models, we employed the Adam optimizer (Kingma & Ba, |2014) and selected the
learning rate from {10~%,1075}. The hyperparameter \ was set to 1. A grid search method was
conducted across different scenarios to identify the optimal combination.

B PROOFS
Proposition 1. Assume 01(]]?) is the angle between two gradients ggk) and g;k), and ||-|| denotes the
Frobenius norm, if the following inequality holds:
k k k
aclg 1+ " aicost 9] > 0, (10)

k<i<m

then the update of W'¥) is guaranteed to be align-domination.
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Proof. Align domination is satisfied if the inner product between the total gradient ¢(¥) =

ZZ'L & QG g( and the dominant gradient g( ) is non-negative:

(g™, gy > 0.

Expanding the inner product:

k (k k k
(g* )agl(g )> —(Jzk||g,(C )||2+ Z Ozz||gl )H||g( )HCOSG( ),

k<i<m

Dividing through by || g,(ck) || (assuming || g,gk) || > 0), we obtain:

k By (k
ak”g/(c )|| + Z 1% Cosefk)Hgl( )H > 0.
k<i<m

Thus, if the inequality holds, the inner product (g™, g™y > 0, ensuring that the total gradient g( )

is aligned with the dominant gradient g,, (!) This confirms align-domination for the update of W(*
O

Proposition 2. If the following inequality holds for all k < i < 'm, then Eq. ({I0) also holds.

aicosty g ||+ ———llg” | = 0. (1)

Proof. For any fixed k and k& < ¢ < m, Eq. can be rewritten as:

1 cos 0P g® )| > — 2ok 12
oo tff g >~ gf¥) 12

This inequality establishes a lower bound on the contribution of each term «; cos 01(:) I ggk) || for
k < ¢ < m. Then, summing Eq. over all k£ < i < m, we obtain:

(k g k
P e e [ | (13)

k<i<m k<i<m

Since there are exactly m — k terms in the summation over k < ¢ < m, the right-hand side simplifies

to:
ag (k
> = —m—k) =g = —arllg”. (14)
k<i<m
Thus, we have:
oo+ 32 aicostillg] 2 0. (s)
k<i<m
This proves that Eq. holds whenever Eq. holds for all k < i < m. O

C THE METHOD TO SOLVE LINEAR PROGRAMMING PROBLEM EQ. 5

In the dominance-aware dynamic weighting strategy, we propose the following target for the objective
weights {ax }i

aiCOSQ(k)ng | k)|| >0; k<i<m. (16)

_kgk

This section describes how to solve it. Without loss of generality, we first set «; = 1 for the shortest
(k)

code’ objective L1, as normalization can subsequently be applied. Then we introduce o~ denote
*) (k)
only consider to ensure that L; and Ly, satisfy Eq. on W) Using cost) = % and
9" lllgy;
re-arranging terms, we then get:
k k) (k Qg k .
o (~gg") < S llg P k< i <m. (a7)
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Algorithm 1 The training algorithm with NHL

Input: training samples X = {x1, 22, ...z}, the hyper-parameters .
1: Initialization: the parameter of the deep hashing model {67, W}, a, = 1 for Vk.
2: repeat
3:  draw a mini-batch {x1, 9, ...,zp} from X to compute {L;}}7" , using standard forward
propagation algorithm
4: foreachk € {1,2,...,m} do
5: foreachi € {1,2,....,m} do

obtain 91( ) by computing standard gradients g,

ents on {WF) 1}
end for
end for

7
8:
9:  compute {oy }7-; by Eq. (7) and Eq. (6)
0:
1

(k) _

A

BW( %5 {Only calculating the gradi-

renormalize {ak}k (sothat Y ;" ap =m

update parameters of the deep hashlng model by minimizing Eq. (9) using the standard
backpropagation algorithm

12:  if achieved a smaller £;, then

13: record the current model parameters 9%6), W) for the model of length by,.

14:  endif

15: until converged

Output: parameters of deep hashing model {9%6) }mand {WRIpm

If g(k) g(k) > 0, because a; > 0 for j = 1,2, ..., m, the inequality invariably holds. Then we set

(k) = 1. If the case that g(k) (k) 0, we can get:

k
(k) o O Hg( 12

Q;
k

{ sk <i<m. (18)
gk

Since our target is to minimize the impact on other optimization objectives while avoiding anti-
domination as much as possible, we equate the terms on both sides of Eq[T8] ultimately deriving the
solution:

1 it g™ . g >0

= 1 19
“ kak;n j(%c)g,(ilk) if gl-(k) (k) <0 k<i<m (19)

Then, consider £; and all L, k < i, the «; is as follows:
a; = min(q; (1) EQ), ey ozl(»i)). (20)

It is evident that the computational complexity of calculating agk) is O(lby), where [ represents the
dimension of the data feature v. Consequently, the overall computational complexity amounts to
O(lb,,m?), where the b, is the longest code length.

D THE TRAINING ALGORITHM

In this section, we first present the training algorithm of our proposed NHL in Algorithm[I] Then,
we elaborate on the details of our training process. As we discussed in Section 3.5, throughout the
training procedure, we monitor the value of each L and save the model parameters when each Ly
reaches its minimum to output the corresponding hash codes h(*). In lines 12-14 of Algorithm
when a smaller Ly, is achieved, We record the current model parameters 6 and W as the parameters

of the model with a length of by, denoted as 9}1” and W),
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Figure 7: The mAP@K results across three datasets under different learning rates.

Table 5: The mAPQK evaluation when using different feature extraction networks as the backbone
of CSQ across three datasets. We compared the results of using NHL (w/ NHL) with those of not
using NHL (w/o NHL) on these three datasets.

w/o NHL (The Original Model) w/ NHL
8bits 16bits 32bits 64 bits 128 bits avg. | 8bits 16 bits 32 bits 64 bits 128 bits avg.
ResNet18 0.654 0.710 0743 0717 0739 0.712 [ 0.664 0.718 0762  0.793 0.817  0.750 (+5.36%)
ResNet34 0.682 0.700 0.724  0.730 0722 0.711 | 0.691 0.724  0.757  0.787 0.826  0.757 (+6.37%)
ResNet50 0.762  0.786  0.798  0.798 0.807  0.790 | 0.792 0.802 0.818  0.828 0.838  0.816 (+3.21%)
MobileNetV2 | 0.661 0.725  0.750  0.774 0.788  0.739 | 0.677 0.735  0.779  0.799 0.816  0.761 (+2.92%)
ViT_B_16 0.891 0903 0.907 0912 0913 0905 | 0.895 0.909 0919 0.931 0.937 0918 (+1.44%)
ResNet18 0375 0727 0754 0.773 0795  0.684 [ 0413 0.722 0774  0.804 0.815  0.705 (+3.03%)
ResNet34 0398 0.773  0.815  0.836 0.839  0.732 | 0.465 0.784  0.828  0.850 0.855  0.756 (+3.31%)
ResNet50 0.456 0.822 0.860  0.877 0.878 0.778 | 0495 0.825 0.873  0.880 0.882  0.787 (+1.59%)
MobileNetV2 | 0414  0.679  0.745  0.788 0.802  0.685 | 0.422 0.708  0.759  0.800 0.819  0.701 (+2.33%)
ViT_B_16 0.523 0.888 0.910 0915 0915 0.830 | 0.533 0.887 0.906 0918 0.925  0.834 (+0.43%)
ResNet18 0532 0.653 0745 0.792 0.8I1  0.706 | 0.576 0.679 0.760  0.807 0.824  0.729 (+3.19%)
ResNet34 0.554  0.715 0.789  0.830 0.836  0.744 | 0.591 0.731  0.802  0.840 0.847  0.762 (+2.33%)
ResNet50 0.596 0.750 0.847  0.877 0.871  0.788 | 0.659 0.778  0.847  0.878 0.881  0.809 (+2.58%)
MobileNetV2 | 0.543  0.668  0.742  0.806 0.823  0.716 | 0.578 0.691 0.766  0.815 0.836  0.737 (+2.90%)
ViT_B_16 0.638 0.790 0.883  0.895 0906  0.822 | 0.675 0.794  0.889  0.898 0.902  0.831 (+1.12%)

Data Backbone

CIFAR-10
(mAP@ALL)

ImageNet100
(mAP@1000)

MSCOCO
(mAP@5000)

E MORE EXPERIMENTAL ANALYSES

E.1 HYPER-PARAMETERS

We further conducted experimental validation on the CSQ model under different learning rate settings.
We set the learning rates to {10~%,1072,1073,107*, 10,1075} and performed experiments across
three datasets. Figure[7]presents the results. Based on this experiment, we determined the optimal
learning rate range to be {1074,1075}.

E.2 BACKBONE ANALYSIS

The NHL is designed for versatile integration with various deep supervised hashing models. To
rigorously validate the generalizability of NHL, we extended this investigation by incorporating it into
the CSQ deep hashing model while utilizing a diverse range of alternative backbone architectures for
feature extraction. Specifically, we experimented with ResNet variants of different scales, including
ResNet18 and ResNet34. We also present the results of ResNet50 used previously for comparison.
Furthermore, to assess NHL’s compatibility with distinct network structures, we also employed
the Vision Transformer (ViT_B_16) (Dosovitskiy et al., [2020) and the lightweight MobileNetV2
architecture (Sandler et al.l 2018). As demonstrated in Table El, NHL consistently maintains its
effectiveness when paired with these varied backbones. This underscores NHL’s broad applicability
and its robustness in enhancing hashing performance across different types and scales of feature
extractors, from various CNNs to transformer-based models.

F ABLATION STUDY

This section presents the comprehensive results of NHL variants applied to deep hashing models.
Figures[8] [6] and [7]showcase the outcomes for CIFAR-10, ImageNet100, and MSCOCO, respectively.
The best results are highlighted in bold, while the second-best results are underlined. From these
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results, it is evident that in the vast majority of cases, employing the complete NHL method achieves
optimal performance. Additionally, in certain scenarios, using variants of NHL yields the best results,
which can be attributed to the inherent differences among various deep hashing models, as well as the
influence of different hash code lengths and datasets. As a plug-and-play module, NHL demonstrates

sufficient robustness and adaptability across diverse applications.

Table 6: The mAP@K comparison results on the ImageNet100 dataset when different deep hashing
models use the original hash layer, NHL, or the variants of NHL. The best results are highlighted in

bold, while the second-best results are underlined.

Data Length | NHL | DSH DTSH LCDSH DCH CSQ DPN SHCIR MDSH
w/o | 0.703 0.432 0248 0.776  0.456 0436 0.789 0.785

-basic | 0.630 0.544 0407 0.809 0.424 0453 0.744 0.697

8bit w/oD | 0.688 0.512 0.413  0.810 0.451 0456 0.764 0.787

w/oL | 0.663  0.535 0426 0.797 0.487 0453 0.777 0.756

w/ 0.755 0.552 0422  0.809 0.495 0.487 0.798 0.794

w/o | 0.808 0.710 0395 0.834 0.822 0.827 0.861 0.845

-basic | 0.787  0.682 0.571 0.845 0.781 0.830  0.831 0.812

16bit | w/oD | 0.797 0.701 0.597 0.846 0.803 0.832 0.822 0.836

wioL | 0.784 0.721 0.554 0.839 0.820 0.825 0.828 0.827

w/ 0.816 0.714 0.568 0.842 0.825 0.829 0.881 0.851

w/o | 0.827 0.770 0542  0.845 0.860 0.864 0.879 0.874

ImageNet100 ) -basic | 0.814  0.765 0.622 0.856 0.847 0.862 0.867 0.859
(mAP@ 1000) 32bit | w/oD | 0.808 0.721 0.645 0.858 0.846 0.861 0.867 0.846
w/oL | 0.807 0.749 0.601 0.850 0.848 0.858 0.861 0.860

w/ 0.829 0.766 0.628 0.855 0.873 0.860 0.889 0.878

w/o | 0.828 0.784 0.608 0.859 0.877 0.870 0.883 0.895

-basic | 0.825 0.773 0.671 0864 0.874 0.875 0.881 0.879

64bit | w/oD | 0.818 0.760 0.679 0.863 0.873 0.874 0.885 0.872

w/oL | 0.820 0.769 0.631 0.854 0.864 0.870 0.882 0.879

w/ 0.838 0.788 0.657 0.860 0.880 0.877 0.893 0.884

w/o | 0.822 0.803 0.692 0.848 0.878 0.877 0.881 0.894

-basic | 0.827  0.782 0.703  0.863 0.888 0.878 0.887 0.888

128bit | w/oD | 0.820 0.764 0.714 0.866 0.884 0.880 0.884 0.883

w/oL | 0.825 0.770 0.665 0.857 0878 0.877 0.887 0.886

w/ 0.841 0.792 0.692 0.863 0.882 0.881 0.898 0.896

Table 7: The mAPQK comparison results on the MSCOCO dataset when different deep hashing
models use the original hash layer, NHL, or the variants of NHL. The best results are highlighted in

bold, while the second-best results are underlined.

Data Length | NHL | DSH DHN DTSH LCDSH DCH DBDH CSQ DPN
w/o | 0.685 0.659 0.706 0.687  0.695 0.655 0.596 0.575

-basic | 0.693 0.714 0.737 0.708  0.720 0.676  0.635 0.621

8bit w/oD | 0.662 0.705 0.738 0.727  0.721 0.690 0.638 0.633

w/oL | 0.688 0.708 0.734 0.703  0.692 0.688 0.636 0.646

w/ 0.714 0.724 0.751 0713  0.723  0.692  0.659 0.638

w/o | 0.722 0.751 0.770 0.769  0.756  0.727  0.750 0.757

-basic | 0.730 0.757  0.769 0.757  0.768 0.732  0.735 0.747

16bit | w/oD | 0.705 0.751 0.775 0.771 0.773 0.737 0.769 0.779

w/oL | 0.726 0.764 0.789 0761  0.736  0.747 0.749 0.774

w/ 0.735 0.760 0.793 0.773  0.769 0.748 0.778 0.769

w/o | 0.757 0.786 0.810 0.787  0.762 0.760  0.847 0.828

MSCOCO ) -basic | 0.747 0.789  0.791 0.774  0.788 0.764 0.822 0.820
(mAP@1000) 32bit | w/oD | 0.731 0.783  0.805 0.788  0.787 0.765 0.822 0.835
w/oL | 0.749 0.792  0.809 0.789  0.757 0.781 0.811 0.819

w/ 0.764 0.794 0.819 0.794 0786 0.778 0.847 0.837

w/o | 0.779 0.810 0.823 0.825 0777 0.769 0.877 0.862

-basic | 0.765 0.809 0.796 0780  0.791 0.783 0.866 0.853

64bit | w/oD | 0.749 0.804 0.808 0.798  0.789 0.783  0.866 0.860

w/oL | 0.765 0.815 0.814 0.826 0.765 0.803 0.857 0.849

w/ 0.789 0.837 0.823 0.828 0.789 0.809 0.881 0.872

w/o | 0.769 0.832 0.831 0.836  0.734 0.800 0.871 0.863

-basic | 0.773  0.820 0.797 0.786  0.787 0.799 0.876 0.868

128bit | w/oD | 0.761 0.822 0.814 0802 0.787 0.797 0.877 0.872

wioL | 0.774 0.828 0.815 0839 0764 0811 0.873 0.866

w/ 0.789 0.837 0.823 0.828  0.789 0.809 0.881 0.872
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Table 8: The mAP@K comparison results on the CIFAR-10 dataset when different deep hashing
models use the original hash layer, NHL, or the variants of NHL. The best results are highlighted in
bold, while the second-best results are underlined.

Data Length | NHL | DSH DHN DTSH LCDSH DCH DBDH CSQ DPN SHCIR MDSH
wl/o | 0.690 0.718 0.754 0715 0776 0.737  0.762  0.703  0.754 0.755
-basic | 0.598 0.724  0.560 0.759 0779 0.731  0.652 0.731  0.761 0.752
8bit w/oD | 0.620 0.730 0.772 0.751 0.772 0750  0.707 0.727  0.740 0.743
wioL | 0.641 0.752 0.747 0773 0781 0.737  0.769 0.632  0.760 0.760
w/ 0.717 0.739 0.766 0.775  0.787 0.748 0.792 0.729 0.758 0.762
w/o | 0.731 0.765 0.778 0.771 0802 0.771 0.786 0.757  0.791 0.808
-basic | 0.688 0.778  0.702 0.782 0806 0.769 0.758 0.768  0.796 0.788
16bit | w/oD | 0.667 0.769 0.785 0.766  0.798 0.770  0.773 0.783  0.777 0.775
w/oL | 0.710 0.797 0.775 0.785 0.808 0.764 0.777 0.752  0.793 0.801
w/ 0.732 0776  0.790 0799 0810 0.785 0.802 0.765 0.797 0.811
w/o [ 0.740 0.813 0.799 0817 0.829 0.796 0.798 0.790  0.820 0.829
-basic | 0.726 0.818 0.777 0815 0.827 0.797 0.795 0.804 0.834 0.823
32bit | w/oD | 0.733 0.783  0.814 0.788  0.822 0.799 0.815 0.812 0.812 0.814
w/oL | 0.739 0.815 0.796 0.799  0.828 0.793 0.803 0.792  0.828 0.831
w/ 0.744 0.824 0.802 0825 0.833 0.804 0818 0.795 0.824 0.838
w/o | 0.727 0.837 0.831 0.826 0.830 0.829 0.798 0.804 0.844 0.844
-basic | 0.734 0.834 0.810 0.823 0834 0822 0.812 0.819 0.853 0.845
64bit | w/oD | 0.740 0.802 0.820 0.803  0.827 0.811 0.823 0.817 0.834 0.838
w/oL | 0.739 0.833  0.808 0814 0835 0.816 0.821 0.819 0.848 0.849
w/ 0.743 0.835 0.822 0839 0843 0.825 0.828 0.826 0.849 0.852
w/o | 0381 0.853 0.811 0.854 0.825 0.829 0.807 0.819 0.828 0.832
-basic | 0.752 0.846 0.835 0.835 0.829 0.838 0.824 0.824  0.827 0.852
128bit | w/oD | 0.744 0.821 0.831 0.824 0.831 0.834 0.831 0.821 0.838 0.845
w/ioL | 0.736 0.852 0.818 0.828 0.839 0.873 0.832 0.827 0.857 0.858
w/ 0.749 0.866 0.836 0868 0844 0.844 0.838 0.824 0.848 0.861

CIFAR-10
(mAP@1000)

G LLM USAGE STATEMENT

In compliance with the ICLR 2026 policy, we disclose the use of a large language model as an
assistive tool in the preparation of this manuscript.

The model used was Gemini 2.5-Pro. Its role was strictly limited to that of a writing assistant for
polishing parts of the text. Specifically, it was used to improve grammar, clarity, and conciseness for
author-written content. The LLM was not used for core research ideation, experimental design, data
analysis, or the formulation of our conclusions.

Our workflow for using the LLM followed a strict three-step, human-in-the-loop process:

1. Polish: We used the model to suggest alternative phrasing or grammatical corrections for
existing text drafted by the authors.

2. Review: All suggestions provided by the LLM were critically reviewed by the authors to
verify their accuracy and to ensure they did not alter the original scientific meaning or intent.

3. Manual Revision: We manually integrated and modified any useful suggestions to ensure
the final text accurately and precisely reflected our findings and narrative.

The authors take full responsibility for all content presented in this paper, including any text that was
revised with the assistance of the LLM.
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