Mean-Shift Distillation for Diffusion Mode Seeking

Vikas Thamizharasan ' > Nikitas Chatzis > Iliyan Georgiev> Matthew Fisher> Evangelos Kalogerakis '+
Difan Liu’? Nanxuan Zhao? Michal Lukaé?

Abstract

We present mean-shift distillation, a novel diffu-
sion distillation technique that provides a provably
good proxy for the gradient of the diffusion output
distribution. This is derived directly from mean-
shift mode seeking on the distribution, and we
show that its extrema are aligned with the modes.
We further derive an efficient product distribution
sampling procedure to evaluate the gradient.

Our method is formulated as a drop-in replace-
ment for score distillation sampling (SDS), requir-
ing neither model retraining nor extensive mod-
ification of the sampling procedure. We show
that it exhibits superior mode alignment as well
as improved convergence in both synthetic and
practical setups, yielding higher-fidelity results
when applied to both text-to-image and text-to-
3D applications with Stable Diffusion.

This work is based on the Arxiv preprint Mean-
Shift Distillation for Diffusion Mode Seeking
(Thamizharasan et al., 2025). See https://
wWww.arxiv.org/abs/2502.15989.

Keywords: Other, Vision and Learning

1. Introduction

Soon after image diffusion (Dhariwal & Nichol, 2021) mod-
els exploded in popularity, DreamFusion (Poole et al., 2022)
and SJC (Wang et al., 2022) concurrently introduced the
idea of using them for image optimization. Intuitively, this
can be expressed as the notion that images more likely to
be generated by a diffusion model are “better” in the sense
of being more faithful to the data distribution the diffusion
model was trained on.

Formally, diffusion models provide a mechanism to sam-
ple images x € Z from a learned distribution p(x). We
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then have a parameter vector ¥ € P, along with an image-
generating model g : P — Z. Given an initialization 9°, we
seek to optimize a ¥* such that p(g(9*)) > p(g(9°)). We
expect this to yield an image g(*) of higher quality, under
the metric the diffusion model is trained for.

We could imagine optimizing ¢ by determining the gradient
Vp(g(1)) and ascending along it. However, while we may
use our diffusion model to sample from p(z), we can nei-
ther easily evaluate p(z) nor determine its gradient V,p(z).
Even though we can formally express p(x) in terms of the
score function €(x, t) through the instantaneous change of
variable formula (Grathwohl et al., 2019), evaluating this
formula requires calculating the divergence of the score
function along the entire ODE path, making this of only
theoretical interest. Evaluating the gradient of this quantity
is even less practical.

Score distillation sampling (SDS) (Poole et al., 2022; Wang
et al., 2022) attempts to address this problem by offering
proxies for the density gradient that are easier to estimate.
However, their theoretical properties are not rigorously es-
tablished, and SDS suffers from significant bias as well
as variance, yielding inaccurate gradients. Examining the
loss landscape of SDS in Figure 1, we indeed see that not
only are the maxima of this function not collocated with the
modes of p(x), but even in the simplest cases the loss cre-
ates “phantom modes” that are well out of distribution. Our
method offers both better alignment with the distribution
and lower variance of the gradient estimate.

Contributions. In this paper, we propose mean-shift dis-
tillation, a distribution-gradient proxy based on a well-
known mode-seeking technique. Furthermore, we show
that:

* This proxy can be implemented easily, with minimal
changes to the diffusion sampling procedure;

* It evaluates with less variance than SDS with improved
mode alignment;

* It has superior behavior, converging to modes of the
trained distribution with a clear termination criterion.
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2. Related Work

Denoising diffusion. In our work we rely most directly
on the mean-shift method of mode seeking (Cheng, 1995;
Comaniciu & Meer, 2002), but our ability to apply it to dif-
fusion rests on a body of theoretical analysis of this process.

Mathematically, denoising diffusion consists of solving an
initial value problem (IVP) on a random variable from a
simple, typically standard normal distribution, where the
time-dependent gradient is learned by reversing the process
of adding noise to the distribution being modeled (Song
et al., 2021b;a). Already in these works authors suggest
ways in which the output distribution may be manipulated
by adding terms to the differential equation underlying the
initial value problem, a property we will rely on to manipu-
late the output to our method’s advantage.

A surprising connection between mean shift and diffu-
sion emerged from the analysis of the optimal denoising
model (Karras et al., 2022; Chen et al., 2024; Je et al., 2024).
Since the forward (noising) process can be expressed as
successive convolutions with a Gaussian kernel, the inter-
mediate distributions are in fact Gaussian-kernel density
estimates of the data distributions, with kernel bandwidth
proportional to the time parameter. Therefore in the ODE
of the reverse (inference) process, the gradient of the de-
noiser is theoretically equal to the mean-shift vector with
appropriate kernel and bandwidth. Mean-shifting on the
IVP time domain does not in fact seek modes of the output
distribution, but we take advantage of this knowledge to
implement mean shift on that domain.

Further related to the analysis of modes in particular, (Kar-
ras et al., 2024; Bradley & Nakkiran, 2024) suggest that
applying classifier-free guidance (CFG) (Ho & Salimans,
2021) to diffusion has the effect of sharpening the modes
of the output distribution. This guidance does not explicitly
seek modes, but we have found that using CFG synergizes
well with both SDS and our method.

Distilling diffusion priors. Score distillation sampling
(SDS) (Poole et al., 2022; Wang et al., 2022) has emerged
as a useful technique for leveraging the priors learned by
large-scale image models beyond 2D raster images. SDS
provides an optimization procedure to estimate the param-
eters of a differentiable image generator, such that the ren-
dered image is pushed towards a higher-probability region
of a pre-trained prompt-conditioned image diffusion model.
Originally proposed to optimize volumetric representations
like NeRFs, it has been extended to other non-pixel-based
representations (Jain et al., 2023; Yi et al., 2024; Bahmani
et al., 2024; Thamizharasan et al., 2024).

The tendency of SDS to produce over-smoothened results
due to high variance is well documented. A plethora of

works have been proposed to mitigate this behavior, e.g. to
factorize the gradient to reduce the bias (Hertz et al., 2023;
Yu et al., 2024; Katzir et al., 2024; Alldieck et al., 2024), or
to replace the uniform noise sampling in SDS with noise
obtained by running DDIM inversion (Liang et al., 2023;
Lukoianov et al., 2024). SteinDreamer (Wang et al., 2023a)
propose a control variate for SDS, (Xu et al., 2024; Yan
et al., 2025) improve diversity of generations, and (Wang
et al., 2024) alleviate the multi-view inconsistency problem.

VSD (Wang et al., 2023b) tackle the low-fidelity problem
by treating the target parameters as a random variable and
estimate the variational distribution to produce diverse, high-
fidelity results. SDI (Lukoianov et al., 2024), on the other
hand and unlike previous variance-reduction methods, find
a better approximation of the added noise term, eliminating
one of the root causes of the excessive variance. These
methods attribute SDS/SJC to be mode-seeking; we show it
is not and introduce mode-seeking behavior to address the
excessive variance and low-fidelity results.

We draw the distinction between the above methods to
knowledge distillation works designed for one-step infer-
ence (Yin et al., 2024; Luo et al., 2023; Xie et al., 2024).
Diff-Instruct (Luo et al., 2023) show that SDS is a spe-
cial case of their distillation formulation when the genera-
tor’s output is a Dirac’s Delta distribution and the marginal
of the variational score is Gaussian. While the derived
gradients resemble SDS and VSD, these methods require
training an auxiliary score network to estimate the vari-
ational score— challenging to generalize beyond text-to-
image generation— and have been targeted for different
use cases, namely faster inference, model compression, and
dataset privacy-preserving.

3. Mean-Shift Distillation

In this section we derive the mean-shift vector for the diffu-
sion output distribution, and show how it approximates the
gradient thereof. We further show how an efficient estimate
of this vector may be obtained with a minimal modification
of diffusion sampling. We begin with a motivation of our
development by illustrating the pitfalls of SDS.

3.1. Motivation

Given a pre-trained diffusion model €4, the SDS loss penal-
izes the KL-divergence of a unimodal Gaussian distribution
centered around x and the data distribution py (2¢; ¢, t) cap-
tured by the frozen diffusion model conditioned on text
embeddings ¢. With 2z = g(¢), an image rendered by ¢ via
a differentiable renderer g, (Poole et al., 2022) derive the
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Figure 1: Mode-seeking simulated in a fractal-like 2D distribution with two ( ,
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loss landscape

(d) Our MSD

) classes, adapted from (Karras

et al., 2024). We compare the behavior of diffusion sampling (DDIM) to optimization-based diffusion distillation, in a

class-conditional setting. With class=
All methods are run without guidance.

gradient of the loss Lgpg with respect to J:
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To illustrate the pitfalls of SDS, we simulate it in 2D us-
ing a small denoising diffusion network (Figure 1). This
allows us to set ¥ = 2 € R? (where g becomes an iden-
tity map). We construct a fractal-like dataset as shown by
(Karras et al., 2024), with analytic ground-truth probability
density and score. This data distribution is a mixture of
highly anisotropic Gaussians, where most of the probability
mass resides in narrow regions, emulating the low intrinsic
dimensionality of natural images (Roweis & Saul, 2000;
Belkin & Niyogi, 2003). For a baseline, we compare it
with DDIM (Song et al., 2021a), a popular first-order sam-
pling algorithm, with classifier-free guidance (CFG) (Ho &
Salimans, 2021). More details can be found in Section 4.2.

VoLsps = By [a(t) (es(a(t)z + 1) — €)

with ¢t ~ U(0,T), €

It is immediately apparent how even in this simple setting,
the optima to which SDS converges do not model the output
distribution well. Furthermore, the convergence itself is
problematic due to very high variance of SDS, which we
will address later.

3.2. Mean-shift Gradient Approximation

We start by convolving the data density p with a radial
Gaussian kernel G, (z) = cxe~® /> with bandwidth ),
normalized by a constant cy. This convolution yields a
smoothed density p} (z):

px(x) =

p* Ga(z /G)\x— (ydy. (2

, (@) Ground truth distribution, (b) DDIM sampling , (¢) SDS, and (d) our MSD.

We now take the gradient V,p3 (x) of the smoothed density
and substitute the Gaussian kernel’s gradient:

Vapi (2 /VGAUU— p(y)dy 3)

_ / ex(@ —y)Gale —y)p(y)dy. @)

We then take the stationary-point equation and reorganize it
as a fixed-point iteration:

,_ JYGa(z —y)p(y)dy
[ Gz —y)p(y)dy

Vapi(z) =0 = (&)

where the constant ¢, cancels out. We will discuss the
practical estimation of the integrals in Section 3.3 below.

The iterative process in Equation (5) is a continuous version
of mean shift (Comaniciu & Meer, 2002). We may turn
this into gradient proxy with several desirable properties.
Defining the mean-shift vector mi(x) = 2’ — z, it follows
from Equation (3) that

mi(z) o< p3(€)Vepi (2). (6)

Since the smoothed density p3 () is always non-negative,
m(x) is always aligned with its gradient Vp3 (). It is also
aligned with the gradient of the true density p as A — 0
(when such gradient exists). This means that a differential
step along the vector 77(x) will improve the likelihood of x,
making this a good proxy for the kernel density estimation
gradient. Furthermore, it implies that 77:(x) will be zero at
the modes of p} (z), giving us a convergence criterion.
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3.3. Gradient Estimation via Product Sampling

The integrals in Equation (5) can be both estimated using
samples y from the density p; such estimation yields the
classical mean-shift expression

o 2 yimp G (@ — Y)Y o

Eyiwp Gi(z — i)

In our case, we do not have such samples readily available.
We could in theory use images from the training dataset as
these samples, or else use the diffusion model to generate
them — either as a pre-process or on-the-fly during iteration.
Unfortunately, that would be prohibitively costly as the
datasets are typically quite large and accurate estimation
would require a very large number of samples for practical
(i.e. small) kernel bandwidths A.

Our key insight is that the right-hand side of Equation (5)
can be viewed as an expectation with respect to a density
Py that is the product of p and the kernel GG centered at x:

x' = / yoa(ylz)dy = Eyop, (yla) [W]- ®)

To generate samples y from this product density, we exploit
the fact that diffusion models employ score-based sampling
(Song et al., 2021b; Dhariwal & Nichol, 2021). Instead of
using the score Vlog p of the density p in DDIM sampling,
we use the score of our product density:

V. log(pa(y|z)) = V., log p(z) + V., log Gz — 2¢)

T — Zt
9
o (€))
where z; = «(t)x + e. This is the sum of the density
score (provided by the diffusion model) and the score of our
Gaussian kernel. Having the ability to generate samples y;
from the product density, we can estimate the mean-shift

iterate (8) as
1
/ ~ .
TR N g Y- (10)

yi~pa(ylz)

= V. logp(z) —

In practice we use a single sample y, which simplifies our
mean-shift vector to

m(z) =y — . (11)
We can thus step along 7 to seek the modes of the data
density p. Substituting a learned score model into 9 gives

us
Xr — Z¢

)\2

ét = EQ(Zt;t) - (12)

3.4. Practical Considerations

As noted in SJIC (Wang et al., 2022), distillation with
unconditioned diffusion models is challenging in high-
dimensional settings like images. While we show uncon-
ditioned diffusion distillation is practical in simple 2D toy

datasets below, we operate in the conditional setting through-
out.

Impact of guidance. Conditional score estimates from
diffusion models, €g(z, ¢) = —0:V,, log p(z:|c), are im-
proved in practice with classifier-free guidance (CFG) (Ho
& Salimans, 2021), which sharpens the distribution around
the modes:

€o(zt,¢) = (1 + w)eg(2t, ¢) — wep(2t). (13)

We may directly substitute this for the denoiser term in
Equation (12). Despite its practical success, the denoising
direction induced by CFG does not provide theoretical guar-
antees in producing samples from pg ,,(z|c) (Bradley &
Nakkiran, 2024). Even in simple settings, as observed in
Figure 1(b), CFG can lead to mode drops. While alternative
guidance strategy exists (Karras et al., 2024), we stick with
the dominant practice of using CFG (Equation (13)). We
have found that this synergizes well with mode-seeking by
mean-shift, and show the effects of this in evaluation below.
See discussion in Appendix B.

Integrating kernel score. Because the magnitude of the
kernel term in Equation (12) can be quite high when |y — 2|
is high relative to )\, directly implementing this can result
in instability while denoising particularly with explicit inte-
grators. Higher-order integrators are generally capable of
dealing with this instability, but require many more score
function evaluations.

To address this, we note that in isolation the kernel term
has the form of a negative exponential centered on y, or
explicitly:
At
Zeyar =Y+ (2 — y)er?, (14)
where At is negative. We take advantage of this to formulate
a stable approximation that avoids the stability issues with
a minimal change to the integration process. Instead of
feeding the full composite score function to the integrator,
in each time step we first integrate only the score function
with the existing integrator to get z’; A;. Immediately after,
we separately account for the kernel term by computing the
final output as
A72t

Zigar =Y+ (Zipar — y)ert. (15)

We note such numerically instability has been observed
when using high CFG values. A remedy is to apply guid-
ance in a limited interval (Kynkdidnniemi et al., 2024). We
leverage similar ad-hoc tricks by applying the kernel term
in limited interval through the sampling chain.

4. Practical Implementation and Evaluation

In this section, we construct synthetic examples on which
we demonstrate that our proposed method behaves as theory
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low dimension <=

(a) DDIM (b) SDS

(c) vSD
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Figure 2: We juxtapose diffusion sampling vs diffusion distillation in low-dimensional (R?) and high-dimensional
(RO4x64x4) getting, using guidance via CFG (Ho & Salimans, 2021). Top: (a) text-conditioned generation of image
via DDIM with 32 steps, (b) - (e) optimized coordinate-based neural implicit image for SDS, VSD, SDI, and our MSD
respectively with StableDiffusion (CFG=7.5, § 4.4). Bottom: (a) class-conditioned generation of 2D points via DDIM with
32 steps, (b) - (e) optimized 2D points for SDS, VSD, SDI, and our MSD respectively (CFG=4, § 4.2). Text-prompts in
clockwise order: “A DSLR photo of a ... hamburger, squirrel dressed as a samurai weighing a katana, knight in silver

armor, and bluejay on basket of macarons”.

predicts, alleviating the issues SDS exhibits even in these
simple scenarios. We further explain the issues encoun-
tered when translating this theory into practice, and describe
adaptations we designed to make our method work with real-
world diffusion models, retaining desirable properties. We
make comparisons with two strong baselines that improve
the convergence and performance of SDS; SDI (Lukoianov
et al., 2024), who propose a better noise term to reduce
late-stage stochasticity, yet, retain the same gradient compu-
tation of SDS, and VSD (Wang et al., 2023b), who propose
to learn the variational score as opposed to assuming it to
be a known analytic score like in SDS.

4.1. Idealized Setting

In order to manage large data dimensionality as well as
massive training datasets, diffusion in practice employs a
trained neural network to represent the denoiser D. How-
ever, (Karras et al., 2022; Je et al., 2024) have identified
an analytical solution to minimizing the denoiser error, the
ideal denoiser D*(x;t):

2 wilV (@ wi, o (1))
2N (@ ui o)
where ug . . . u, are samples in our training set. Attentive

readers will notice that this is in fact the discrete mean shift
formula (Comaniciu & Meer, 2002), with training samples

D*(a:t) = (16)

taking the place of data samples and noise magnitude o (t)
taking place of the kernel bandwidth \. This expression is
feasible to compute in practice for small datasets, and by

setting
D *(Zt' t) — Zt
i) = —— 227 70
€¢(Zt7 ) o )
we may substitute it into the SDS formula (1) to get an
explicit solution for the SDS gradient

Zt — D*(Zt, O't) ox
ViLsps = By 2, in(aia,021) w(t)a—t% :
We can brute force numerically evaluate this integral. We
can compare both methods on synthetic datasets, eliminating
any error introduced by training and evaluating a neural
model to show that the theoretical properties hold.

4.2. Toy Distributions in R?

In addition to the fractal dataset (Figure 1), we extend our
analysis to other 2D datasets, with ;" ; C M € R? sam-
pled from various challenging toy 2D densities (van der
Walt et al., 2014; Rozen et al., 2021). For each, we sample
10* points from the data distribution and initialize our target
points densely across a grid [—1.5, 1.5]2. With 10°> Monte
Carlo samples, we benchmark SDS, VSD, SDI, and our
MSD (Algorithm 2) using both an ideal denoiser (16) and a
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Table 1: Metrics for class-conditional distillation on 2D Fractal dataset. For each metric, left to right: ideal denoiser (D*),
learned denoiser (Dy) without guidance, learned denoiser with CFG (Ho & Salimans, 2021), and learned denoiser with
Autoguidance (Karras et al., 2024). 1% and 2™ best among distillation-based methods for each column, highlighted.

Method NLL |

DDIM -1.85 -1.51 -1.59 -1.67
SDS 36.15 9.12 1596 11.33
VSD 997 988 1897 11.52
SDI 2428 -2.87 2737 0.65
Ours -1.32 202 -1.15 -1.99
Method Precision 1

DDIM 097 095 097 096
SDS 0.08 0.01 017 0.04
VSD 0.05 0.10 0.21 0.03
SDI 027 097 030 051
Ours 092 097 094 097

Method MMD | (scaled by 10™%)
DDIM 0.860 0.007 257.43 0.25
SDS 3280 87.04 3875.11 [71.05
VSD 2309 94.68 384541 70.25
SDI 2993 4599  69.23 15089
Ours 3046 12.79 13341 12294
Method Recall 1

DDIM 0.93 0.96 0.44 0.79
SDS 0.03 0.00 0.03 0.03
VSD 0.02 0.05 0.05 0.03
SDI 0.01 0.12 0.48 0.51
Ours 0.33 0.42 0.40 0.43

Table 2: Metrics for unconditional distillation on 2D toy datasets. For each metric, left to right: ideal denoiser (D*) and

learned denoiser (Dg). MMD scaled by 104,

Dataset  Method NLL | Precision 1 Recall 1 MMD |
DDIM -1.39  -1.32 0.97 0.96 0.93 0.96 0.410 1.160
Spiral SDS 30.37 8.13 0.02 0.04 0.03 0.11 13.85 2743
VSD 10.15 8.90 0.04 0.07 0.09 0.14 2346 271.8
SDI 35.64 19.16 0.10 0.12 0.90 042 39.51 2008
Ours -1.28 -1.51 0.99 0.98 0.18 0.18 4490 18.41
DDIM -1.19  -1.1 0.97 0.97 0.94 097 1.05 0.270
Pinwheel SDS 229  2.00 0.85 0.90 0.03 0.01 5.18 36.37
VSD 334 228 0.65 0.97 0.04 0.02 6.78 33.36
SDI 28.31 17.33 0.17 0.51 0.001 0.15 6.13  98.09
Ours -1.94  -2.19 0.99 0.99 0.01 0.13 5.83 7.250

learned denoiser (13). For the fractal dataset the denoiser is
class-conditioned; its score is either left unchanged (without
guidance) or guided via CFG or Autoguidance. For the
other datasets, the denoiser is unconditioned.

We visualize the generated samples produced by all methods
after the optimization in Figures 2 and 3. We also visualize
the reconstructed loss functions. This makes the behavior
of all methods particularly obvious; the peaks of this re-
constructed function are out of distribution for all methods
except our MSD. Numerical evaluations in Tables 1 and 2
show our method outperform baselines. We suspect that this
bias persists in SDS in higher dimensional settings and is
what causes SDS optimized results to be blurry and exhibit
other artifacts (top row of Figure 2).

For the learned denoiser, we use the architecture and training
setup used by (Karras et al., 2024) and similarly represent
the densities as mixtures of Gaussians. We use the Adam

optimizer (Kingma & Ba, 2015) and run the optimization
procedure for 150 steps with a learning rate of 0.08. For our
MSD, we set an initial bandwidth of 0.316 ~ /0.1 which
is linearly decayed over the course of the optimization. For
the ideal denoiser, due to it’s high cost requirements in time
and memory, we instead opt to use a few steps of gradient
descent with high learning rate.

In addition to optimizing samples, we evaluate both SDS,
VSD, SDI, and our MSD gradients across the domain and
then numerically integrate them to reconstruct the loss func-
tions they represent.

In addition to bias, we are interested in evaluating the vari-
ance of the gradient estimate. This is an important factor
for convergence, since ascending a stochastic estimate of
the gradient is essentially a random walk. In such, high
variance of the estimate may make the walk take longer to
converge — indeed, with sufficiently high variance we may
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Input Samples

Figure 3: Unconditional distillation on two toy density datasets, Pinwheel (top) and Spiral (bottom), given an ideal denoiser
(D*) and a learned denoiser (Dy). For each method and denoiser, we show the optimized samples (left) and the loss

landscape (right). Zoom in for clarity.

find the iteration often taking backwards steps with respect
to the true gradient. Furthermore, a walk with high variance
may not stay converged at an optima, and instead randomly
oscillate around them.

To quantify the variance of an estimate §(x) of the gradi-
ent g(x), we employ a slight variation of the Monte Carlo
estimator efficiency formula

l9(2)?
S MSEG(@) contG@) )

We measure cost as number of invocations of the score
model, since that is the typical bottleneck in diffusion.

Normalization by the squared norm of g is included to ac-
count for the fact that, due to bias and scaling, different
estimators may converge to gradients of different magni-
tude, and the normalized MSE then roughly describes the
probability of the estimated gradient pointing the “right”
way. MSE and cost are accumulated over many independent
estimations, and average over many values of z.

The result of these efficiency comparisons are in Table 3
(in log-scale). Although getting a single estimate with our
method requires more score model invocations, the effi-
ciency of our method is significantly higher than SDS and
VSD, and comparable to SDI.

Table 3: Efficiency (1) on 2D toy density datasets. Left:
ideal denoiser / Right: learned denoiser.

Fractal Spiral Pinwheel
SDS -7.37/-6.89 -848/-7.57 -7.82/-6.99
VSD -592/-3.83 -6.85/-4.45 -6.36/-3.93
SDI 14.18/14.21 13.94/14.17 14.19/14.18
Ours 13.44/7.65 13.38/6.32 13.76/7.08

4.3. Practical Setting

For large-scale image datasets, idealized denoiser is no
longer tractable and we contend with a learned denoising
function, and the associated machinery. This introduces
numerical issues. Namely, the magnitude of the kernel term
may grow to where the standard first or second order integra-
tors can no longer manage it (Section 3.4); but conversely,
so does the magnitude of the learned score when z; is far out
of distribution, because the ideal denoiser (Section 4.1) uses
the same equation as mean shift. Start of the optimization,
it is likely in a high-dimensional space that « will be out of
distribution and we have to choose between the integration
failing because the denoiser term has a high magnitude, or
because the kernel term has a high magnitude.

To alleviate this, we use two heuristic approximations: ap-
plying guidance in limited interval (Section 3.4) and scaling
our sample in Equation (15) by noise corresponding to time
step ¢. In practice, we apply inversion to get the latter. These
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Table 4: Text-to-2D quantitative comparison. We evaluate fi-
delity with FID and CLIP-SIM. TFID measured with DDIM
as ground truth.

Method FID| CLIP-SIM (L/14) 1

DDIM' - 441+ 2.8
SDS 198.90 277+ 1.9
VDS 130.22 30.8+ 1.4
SDI 166.16 31.0+ 0.7
Ours 114.12 32.6+ 0.8

are designed to keep the iterate in a region with reasonable
score magnitude and still sample a distribution that is an
approximation of the product distribution.

4.4. Pre-trained Stable Diffusion

We use the latent-space diffusion model, Stable Diffusion,
as the diffusion prior for text-conditioned optimization of
parameters of differentiable image generators. Specifically,
we optimize parameters ¢ of generator g, a rendering func-
tion that maps ¢ to an image Z. The rendered image 7 is fed
to the image encoder to get 2*, our latent at optimization
step k, over which the gradient is computed. We define
two settings where 1J (1) represents an RGB image, and (2)
represents a 3D volume. Specifically:

1. Text-to-2D. We represent 2D images via a coordinated-
based MLP f with learnable parameters ¥ that takes
as input a 2D point p in the unit square p = (z,y) €
[0,1]? and outputs RGB € [0,1]%; f(p;9) : R? —
RGB. We use this non pixel-based representation of an
image for two reasons, (1) to prevent our method and
the baselines from taking the exact gradient step i.e.
running diffusion sampling and setting z* to the de-
noised latent 2, and (2) we can directly compare with
images sampled via DDIM, an unconstrained image
generation setting.

2. Text-to-3D. We represent 3D volumes as NeRFs, fol-
lowing (Poole et al., 2022). The NeRF is parameterized
by two MLPs, one for foreground and one for back-
ground. The former has 64 hidden nodes and 2 layers,
with input (z, y, z) coordinates encoded via HashGrid
(Miiller et al., 2022).

Implementation details. We implement all our code in
PyTorch, on a single NVIDIA A100 gpu. We use the Three-
studio (Guo et al., 2023) framework for experiments in-
volving pre-trained Stable Diffusion. We use AdamW opti-
mizer with Ir= 1072, We set optimization steps to 400 for
text-to-2D and 10k for text-to-3D. We use a monotonically
decreasing schedule for the bandwidth .

—e— MSD
—&— SDS
—*— VDS
—&— SDI

FID

300 A

200 A

100 A

0 50 100 150 200 250 300 350 400
Optimization iterations

Figure 4: FID vs optimization iterations for text-to-2D gen-
eration.

Figure 5: Impact of bandwidth (\) on the denoised latent
(20). We set A3 = 103, Ay = 10, A\; = 1072, Highlighted
images show the optimal bandwidth value corresponding to
the k' optimization.

4.5. Evaluation

Dataset. We use a subset of the prompts curated by (Poole
et al., 2022; Hertz et al., 2023). We include all prompts in
Appendix D.

Metrics. For toy density dataset (Section 4.2), we com-
pute negative log-likelihood scores (NLL), generative preci-
sion and recall (Kynkdénniemi et al., 2019), and maximum
mean discrepancy (MMD). For text-to-2D, we use images
produced by DDIM to represent the ground truth distribu-
tion. To evaluate fidelity of the images, FID (Heusel et al.,
2017) is computed for each baseline (SDS, VSD, SDI) and
ours against this ground truth image set. We also compute
CLIP scores (cli) to measure prompt-generation alignment.

Quantitative comparisons. Table 4 reports results for
FID and CLIP-based similarity, comparing our method with
SDS, VSD, and SDI. We outperform all baselines in image
fidelity and achieve faster convergence, as measure via fid
vs iterations in Figure 4.

Qualitative comparisons. Figure 2 (top row) and Fig-
ure 8 compares our method with SDS, VSD, and SDI on
text-to-2D generation, qualitatively. We show the impor-
tance of the two heuristics (Section 4.3) to resolve numerical
instabilities, absence of which can result in visual artifacts
in Figure 9. SDS, as discussed, produces low-fidelity results
while SDI’s inversion accumulates numerical errors during
early stages of optimization. In Figure 6, we qualitatively
compare results for text-to-3D optimization. We restrict to
qualitative comparison for this task as quantitative metrics
have high variance due to the absence of a ground truth
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SDS

VSD

»

“ta hamburger

”

“fa tulip

“ta statue }'”

SDI Ours

Figure 6: Comparison of 3D generation with other score distillation methods. Full prompt: T “A DSLR photo of a ...”, *“a

Michelangelo statue of a man on a chair”.

dataset.

Impact of bandwidth. Figure 5 shows the impact of the
bandwidth (\) term on the denoising process. First, we sam-
ple three parameters {¥*} from our text-to-2D optimization
pipeline at iterations & = {100, 200, 400} and also sample
three discrete A values {\; < Ay < A3}. Then, we run our
forward pass once for each )\;, independently. We visualize
four decoded denoised latents zy (with different random
seeds). The highlighted images show the optimal choices of
A for each ¥ (the encoded latent for 19%). At high bandwidth
value A3, the influence of the kernel term in the product sam-
pling is negligible. This degenerates to vanilla denoising
and we observe high variance in the output, irrespective of
our current z*. This is ideal at early stages of optimization.
As bandwidth is annealed, we observe reduction in variance.
Yet, the quality of the outputs can degrade if the kernel
term dominates while z* is not “in-distribution”. As x*
approaches the mode of the distribution corresponding to
the input text-prompt at final stages of optimization (when
k = 400), with a low bandwidth A1, our denoised latent
29 ~ x*. This provides us with a convergence criteria and
we terminate when ) is below the threshold ;.

5. Conclusion

In this paper, we have reframed diffusion distillation in terms
of explicitly ascending the gradient of the data distribution.

We have derived mean-shift distillation as a proxy that prov-
ably aligns with this gradient, and in the limit its maxima
are collocated with the modes of the data distribution.

We have demonstrated that compared to SDS, this method
achieves better mode alignment as well as lower gradient
variance, which in practice translates to more realistic op-
timization results as well as improved convergence rate.
Since this method simply provides optimization gradient
much like SDS does, it may be used as a one-to-one replace-
ment without retraining of the underlying model, or indeed
substantial code modification.

While the basic algorithm works as the theory predicts in
synthetic scenarios, with real-world models we have to con-
tend with integrator error due to large score magnitudes.
We have designed heuristics to alleviate this and achieve
improvements on SDS in practice, but we hope future work
will be able to improve the integration and/or sampling
procedure, obviating the need for heuristics, in-addition to
using adaptive bandwidth annealing strategies.

As a more or less straightforward substitute of an existing
method (SDS), our method inherits ethical concerns of the
diffusion models it is being applied to, and the applications
it is being put towards. It remains important to take care
with sourcing training data to avoid copyright issues, bias
issues, and training harmful content into the model. On
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the output side, generative models improve accessibility to
creative expression, which however also makes it easier to
produce harmful content including, but not limited to, mis-
information, defamatory and obscene images. Ultimately
these issues are impossible to fully solve on the tooling side
and we must rely on other methods to analyse content and
establish authenticity thereof to compensate.

That said, improved convergence properties of our method
mean that less computation is required to achieve the same
result, alleviating some of the environmental impacts asso-
ciated with these generative methods.
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A. Implementation details

Input :pre-trained diffusion model ey : R4 X xde — RAxXdr target parameters 1 € R?, condition ¢, mapping
function g(1) : R? — Ré1>X*dk time-dependent functions w(t), a(t), Monte Carlo sample size N.
Output :¢)*

Algorithm 1: Distillation via SDS Algorithm 2: Distillation via MSD (Ours)
fork=1,..., steps do function ODESolver(x, \) (eq 12)
2 g(y) 20« N(0,1)
fori=1,...,Ndo fort=1T,...,1do
t+ U(0,1) | ze1 + eg(ze,t,0) — (2 — 2¢) /N
L 2z — at)z® + e L return zo
yi < w(t)[eo(ze, 1, ¢) — €] function ODESolver(z, A, stable) (eq 15)
VyLsps ﬁ (v — mk) {Zf}thl + inversion(x) [
// zr 27 + (e — z})efm/)‘z
N fort=1T,...,1do
L zi—1 < zi + (€o(zt,t,¢) — zt")e_m/)‘2
| return zg
//
for k =1,..., steps do
a* — g(y)

fori=1,...,N do
| yi < ODESolver(z", \)

VyLusp < % 3 (yi — 2%)
//

//

if A\ < Apin then

L/

Figure 7: Pseudocode of SDS and our procedure, MSD. We additionally show the numerically stable solver, ODESolver(. . .,
stable), which is used for experiments with Stable Diffusion. Note, there is stochasticity in the ODESolver.

B. Discussions

Why mode-seeking? The desirability of mode seeking varies between applications. When trying to directly sample
images from the trained model, we wish to sample from the full variety of the distribution instead of getting only the
mode— we want sampling to interpolate between mode-seeking and mode-covering. Methods like DDIM aim for this.
On the other hand, when we are optimizing an image (or using the image as a proxy to optimize, e.g. NeRF parameters),
any gradient-based optimization will converge to a set of sparse points - local extrema - where the gradients are zero (if it
converges at all). This is the intended use-case for SDS, VSD, SDI, and our method, and in this case, it is not possible in
general to have the optimization process converge to a distribution of points. Given that, the best we can guarantee is that
the points the process converges to are aligned with the distribution. Mode-seeking is our proposed way of achieving that.

Compatibility with other guidance schemes. In low-dimensional settings (eg, our toy experiments), our method can
recover the modes and reconstruct the data distribution well without any guidance (See Figures 1 and 3). This is aided by
the fact that the conditional score estimates parameterized as €y(2¢, ¢) (predicted noise from the pre-trained network) is
good by itself, without guidance i.e. éy(z;, ¢). Empirically, we observe that without guidance, ancestral sampling techniques
like DDIM produce samples that lie on the data manifold, albeit with few outliers.

This is not the case in the high-dimensional setting with experiments on Stable Diffusion. Here eg(z:,¢) samples are
noticeably bad and are predominantly outliers. Currently, the best fix is to augment these noise estimates with guidance to
produce éy(z¢, ¢), the strategy prevalent in sampling algorithms. We inherit these practices when performing distillation.

Guidance mechanisms alternative to CFG (Ho & Salimans, 2021) have been proposed, like Autoguidance (Karras et al.,
2024). As these methods pair well with DDIM (and other ancestral sampling techniques), we believe the benefits will extend
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to distillation-based methods like ours. Ultimately from the perspective of distillation, different guidance simply changes the
shape of the output distribution but does not fundamentally change the mechanics of diffusion. While we show results using
Autoguidance in Table 1, we used CFG in all the remaining experiments as it is more widely used, has hyperparameters
(guidance scale) that have been more rigorously tested by the community, and was used in all our baselines (SDS, VSD, and
SDI).

C. Ablations and More Results

-

)

Figure 8: We also show additional results for our method (full), SDI, VSD, and SDS.

D. List of prompts
“A DSLR photo of a hamburger”

“A blue jay standing on a large basket of rainbow macarons”

“A DSLR photo of a squirrel dressed as a samurai weighing a katana”

“A DSLR photo of a knight in silver armor”

“Line drawing of a Lizard dressed up like a victorian woman, lineal color”

“A photo of a car made out of sushi”

14



Mean-Shift Distillation for Diffusion Mode Seeking

ours (without guidance in limited interval)
Figure 9: We extend Figure 2 with two ablations; applying guidance in the entire denoising trajectory (row 1) and noise
scaled sample in the kernel term (row 2) (§ 4.3).

“A DSLR photo of a tulip”
“A DSLR photo of a Pumpkin head zombie, skinny, highly detailed, photorealistic”
“A watercolor painting of a sparrow, trending on artstation”

“Michelangelo style statue of man sitting on a chair”

E. Licenses

Here we provide the URL, citations and licenses of the open-sourced assets we use in this work.

Table 5: URL, citations and licenses of the open-sourced assets we use in this work.

URL Citation License
https://github.com/threestudio-project/threestudio [39] Apache License 2.0
https://github.com/Stability-AI/stablediffusion [39] MIT License
https://github.com/NVlabs/edm2 [12] CCBY-NC-SA 4.0
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