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ABSTRACT

Differential equation-based neural networks perform well in a variety of deep
learning fields. Among those many methods, neural ordinary differential equa-
tions (NODEs) are one of the most fundamental work. NODEs have been applied
to general downstream tasks such as image classification, time series classifica-
tion, and image generation. The ODE function of NODEs can be understood as a
special type of differential operators, which had been overlooked before. In this
paper, therefore, we study the feasibility of modeling NODEs (or the ODE func-
tion of NODEs) as neural operators. Our neural operator-based methods are more
rigorous than existing approaches when it comes to learning the differential oper-
ator (or the ODE function). To this end, we design a new neural operator structure
called branched Fourier neural operator (BFNO), which is suitable for modeling
the ODE function. It shows improved performance for several general machine
learning tasks, as compared to existing various NODE models.

1 INTRODUCTION

Neural networks based on differential equations now show state-of-the-art performance in various
deep learning fields (Chen et al., 2018; Song et al., 2020; Kidger et al., 2020; Morrill et al., 2021;
Choi et al., 2021; Jhin et al., 2022; Kim et al., 2022). One exemplary work is neural ordinary
differential fquations (NODEs (Chen et al., 2018)). NODEs are continuous-depth neural networks
that learn the dynamics of hidden state h(t) from data. The following ODE function, f(h(t), t;θf )
with learnable parameters θf , resides in their core parts:

dh(t)

dt
= f(h(t), t;θf ). (1)

We then solve the initial value problem (IVP) in Equation 2 with the initial value h(t0) with ODE
solvers to produce the hidden state h(t1) which can be used for downstream tasks:

h(t1) = h(t0) +

∫ t1

t0

f(h(t), t;θf )dt. (2)

Neural operators, which are often used for modeling operators for partial differential equations
(PDEs), deal with mappings from a function space to another — these function spaces can be in-
finite dimensional under the regime of neural operators (Li et al., 2020b; Cao, 2021; Gupta et al.,
2021; Rahman et al., 2022). Fourier neural operators (FNOs), one of the most prominent models
in this realm, parameterize operators on the Fourier domain using kernel integral operators, which
show fast and accurate inference. Interestingly, neural operators have been recently adopted to many
other fields, e.g., FNOs have been recently used for designing a better vision transformer (Guibas
et al., 2021).

Our approach: The ODE function in Equation 1 can be considered as applying the differential
operator to h(t) in order to represent the right-hand side of ODEs. Therefore, we redesign NODEs
by defining the ODE function f using the neural operator method. Researchers have habitually used
conventional neural networks, such as convolutional neural networks (CNNs) and fully-connected
networks (FCNs), to learn the differential operator (or the ODE function). In comparison with them,
we employ neural operators that are able to more accurately learn the differential operator. However,
we found that the naı̈ve adaptation of recent neural operator methods, such as FNO, to NODEs does
not improve model accuracy. Therefore, we propose our own neural operator architecture.

1



Under review as a conference paper at ICLR 2023

For empirical evaluations, we apply our method to various applications including image classifi-
cation, time series classification, and image generation. For each task, we compare our method
with state-of-the-art NODE and non-NODE-based baselines. In particular, our main competitors are
enhanced NODE models, such as heavy ball NODE (HBNODE). Our branched Fourier neural op-
erator Neural ODE (BFNO-NODE) outperforms all those advanced NODE models and some other
non-NODE-based baselines. We summarize our contributions as follows:

1. Branched Fourier neural operator (BFNO): We design the ODE function of NODEs
using our proposed branched Fourier neural operator (BFNO) method. Our BFNO is spe-
cialized for being used as ODE functions. In particular, we do not use the fixed architecture
of FNOs, i.e., applying a low-pass filter to the Fourier transform outcome, followed by a
convolutional operation, since it is rather restrictive to be used for general machine learning
tasks. Therefore, our BFNO uses dynamic global convolutional operations with multiple
kernels. To our knowledge, we are the first using neural operators to design the ODE func-
tion of NODEs.

2. High performance in general machine learning tasks: In comparison with existing non-
operator-based approaches, our BFNO is able to more accurately learn the ODE function,
which is basically a differential operator, for various tasks. To this end, we experiment with
various general machine learning tasks of image classification, time series classification,
and image generation. Our method outperforms various existing NODE and non-NODE-
based methods by 7 percent point in image classification, 3 percent point in time series
classification about test accuracy, and 9.2% in image generation (in terms of those tasks’
standard metrics).

2 RELATED WORK

Continuous-depth neural networks: Continuous-depth neural networks allow greater modeling
flexibility and have been investigated as a potential replacement for traditional deep feed-forward
neural networks (Weinan, 2017; Haber & Ruthotto, 2017; Lu et al., 2018). Neural ODEs (Chen
et al., 2018) can model continuous depth neural networks. By the continuous depth property,
NODEs describe the change of the hidden state h(t) over time. In particular, NODEs use the adjoint
sensitivity method to address the main technical challenge of training continuous-depth networks.
Many continuous-depth models that use the same computational formalism, such as neural con-
trolled differential equations (NCDEs (Kidger et al., 2020)), neural stochastic differential equations
(NSDEs (Liu et al., 2019)), and so on, have been proposed. In addition, NODE-based models with
enhanced ODE function architectures have achieved significant improvements in various tasks in
comparison with the original NODE design. Augmented NODEs (ANODEs (Dupont et al., 2019))
suggested solving the homeomorphic limitation of ODEs with adding extra dimensions. Second-
order NODEs (SONODEs (Norcliffe et al., 2020)) showed that they can expand the adjoint sensi-
tivity approach to the second-order ODEs efficiently. In order to further enhance the training and
inference of NODEs, heavy ball NODEs (HBNODEs (Xia et al., 2021)) model the dynamics with
the conventional momentum method. Adaptive moment estimation NODEs (AdamNODEs (Cho
et al., 2022)) use an enhanced momentum-based method to define the ODE function. In this pa-
per, we propose a novel continuous-depth NODE architecture with the infinite dimensional property
based on our proposed BFNO. Our enhanced NODE architecture, called BFNO-NODE, outperforms
existing NODE enhancements.

Neural operators: Expressing and analyzing changes in phenomena over time and space as PDEs
are an important issue in natural science and engineering. However, solving PDE problems is a
mathematically difficult task. In the field of numerical analysis, these problems are approached
using various numerical methods (Smith & Smith, 1985; Reddy, 2019). These methods perform
well in many areas where PDE problems need to be analyzed, but there are fundamental challenges:
i) it takes a lot of computational cost to solve the problem, ii) the higher its required accuracy, the
longer its computation time, and iii) finally, it is difficult to analyze various input functions.

To overcome these limitations, neural operators (Lu et al., 2019; Kovachki et al., 2021) have recently
been proposed in the field of deep learning. Neural operators aim to learn the (inverse) differential
operator of PDEs. Furthermore, they also have the infinite dimensional property.
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Recently, models with repetitive operator-based layers have been proposed in the field of neural op-
erators (Li et al., 2020b;c; Wen et al., 2022). Typically, FNOs first define a kernel integral operator
layer in the Fourier domain and repeatedly stack multiple such layers. In the field of computer vi-
sion, there was a study that improved the vision transformer (Dosovitskiy et al., 2020) using FNOs.
Adaptive Fourier neural operator (AFNO) was proposed in Guibas et al. (2021) by replacing the
self-attention layers of the vision transformer with adaptive FNO layers. However, these opera-
tor architectures do not perform well when they are used in the ODE function in our preliminary
experiments. Therefore, we propose our branched Fourier neural operator concept.

3 PRELIMINARIES

Neural ordinary differential equations (NODEs): In order to determine h(t1) from h(t0),
NODEs solve the integral problem in Equation 2, where the ODE function f(h(t), t;θf ) is a neural
network used to approximate dh(t)

dt (cf. Equation 1). Once f is trained, NODEs rely on numerical
ODE solvers to solve the integral problem, such as the explicit Euler method, the Dormand-Prince
(DOPRI (Dormand & Prince, 1980)) method. ODE solvers discretize the time variable t and trans-
form an integral into numerous additions. One distinguished characteristic of NODEs is that the
gradient of loss w.r.t. θf , denoted ∇θf

C = dC
dθf

, where C is a task-dependent cost function, can be
calculated by a reverse-mode integration, which has O(1) space complexity. This gradient calcula-
tion method is known as the adjoint sensitivity method.

Operator learning and discretization of function: Let S be a bounded, open set which is a sub-
space of Rd, and let P = P (S;Rdp) and Q = Q(S;Rdq ) be Banach spaces which define a function
mapping from input x ∈ S to output whose dimensions are dp and dq respectively. Then, a non-
linear operator L : P −→ Q, where P and Q are the continuous function spaces, can be defined.
By discretizing with finite numbers of observations, the function spaces can be represented in grid
forms. At the end, neural operators learn a parameterized mapping Lθ : P −→ Q such that:

Lθ(P )(x) = Q(x), ∀x ∈ S. (3)

For the given two functions, P (x) and Q(x) with x ∈ S, the operator Lθ can map these function
spaces. As such, NODE’s time-derivative operator Df = d(·)

dt can be understood as a function
mapping from h(t) to dh(t)

dt , where t denotes a temporal coordinate. This differential operator can
be regarded as a special case of the general operator representation. Therefore, we can design the
ODE function f of NODEs as an operator-based network.

Kernel integral operators: As a way of expressing an operator, one can define the kernel integral
operator K as following:

K(q)(x) :=

∫
S

κ(x, y)q(y)dy, ∀x ∈ S, (4)

where κ is a continuous kernel function. If we use the Green’s kernel κ(x, y) = κ(x−y), Equation 4
becomes the following special global convolution operator:

K(q)(x) :=

∫
S

κ(x− y)q(y)dy, ∀x ∈ S. (5)

Fourier neural operators (FNOs): For an efficient parameterization of the kernel κ, FNOs rely on
the Fourier transform as a projection of a function onto the Fourier domain (Li et al., 2020a). Given
an input function g(x), for instance, FNOs use the following kernel integral operator K parameter-
ized by ψ (Li et al., 2020a):

(K(ψ)g)(x) = F−1(Rψ ⊙F(g))(x), ∀x ∈ S, (6)

where F denotes the fast Fourier transform and F−1 its inverse. ⊙ denotes the elementwise multipli-
cation, and Rψ denotes a tensor representing a global convolutional kernel. The global convolutional
kernel Rψ is the only trainable parameter, i.e., ψ ≡ Rψ .
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Figure 1: The overall architecture of BFNO-NODE

4 PROPOSED METHODS

In this section, we describe our motivations, followed by the detailed model architecture.

4.1 MOTIVATIONS

The ODE function f in Equation 1 is to learn the time-derivative operator of the hidden state h(t),
in which case we can consider that f is a special operator suitable for defining NODEs. Therefore,
our proposed NODE concept can be written as follows:

h(t1) = h(t0) +

∫ t1

t0

Df (h(t), t;θf )dt, (7)

where Df is the time-derivative operator. However, we found that FNO (Equation 6) is not suitable
for use in general machine learning tasks (see Section 5.4 for detailed discussion). Therefore, we
propose our own extended FNO method, called branched Fourier neural operator (BFNO).

Many NODE-based papers have habitually used conventional architectures, e.g., fully-connected
layers, convolutional layers, and rectified linear units (ReLUs), to define the ODE function (Dupont
et al., 2019; Norcliffe et al., 2020; Xia et al., 2021; Cho et al., 2022). In comparison with them,
our method provides a more rigorous way for defining the ODE function (or the time-derivative
operator). Our main goal in this paper is to enhance the model accuracy by learning the ODE
function more accurately.

4.2 BFNO-NODE

The overall model architecture of our proposed BFNO-NODE is shown in Figure 1. There are three
major points in our design in contrast to the original NODE design: i) the neural operator-based
ODE function, ii) the BFNO layer, and iii) the dynamic global convolution.

Neural operator-based ODE functions: We propose the following ODE function with our newly
designed BFNO layer:

g0 = TimeEnc(h(t), t),

gk+1 = BFNOk(gk), 0 ≤ k ≤ N − 1,

dh(t)

dt
= TimeDec(gN ),

(8)

whereBFNOk is the k-th BFNO layer. Both the time-dependent encoder (TimeEnc) and the time-
dependent decoder (TimeDec) consist of a fully-connected layer, respectively. The size of encoded
vector gk, 0 ≤ k ≤ N , is a hyperparameter. We use dim(g) to denote the size of gk. The output
size of the decoder is the size of h(t). The size of h(t), denoted dim(h), is also a hyperparameter.

Branched Fourier neural operator (BFNO) layers: Figure 2 (a) shows the structure of the BFNO
layer. The update process between the input value gk and the output value gk+1 of the k-th BFNO
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(Equation 13)
(b) Dynamic global convolution

Figure 2: The detailed proposed architecture. We perform the Fourier transform, the dynamic global
convolutional operation, and the inverse Fourier transform to process gk in conjunction with one
additional transformation by the transformation matrix W. (cf. Equation 12)

layer is expressed as follows:

gk+1(x) = BFNOk
(
gk(x)

)
, (9)

⇒ σ
(
(K(h, t;ψ)gk)(x) +Wgk(x)

)
, (10)

⇒ σ
(
F−1(ρ(F(gk)))(x) +Wgk(x)

)
, (11)

where the first term is a kernel integral operator parameterized by ψ, and the second term is a
linear transformation parameterized by W. σ is an activation function. ρ is the dynamic global
convolutional operation for the input gk, which we will describe shortly.

Under the regime of our proposed BFNO, g is theoretically a spatial function. However, infinite-
dimensional spatial functions cannot be processed by modern computers and therefore, all neural
operator methods implement their discretized versions, which is also the case for our method. As a
result, our actual implementations are as follows:

gk+1 = σ
(
F−1(ρ(F(gk))) +Wgk

)
, (12)

where gk (resp. gk+1) is an input (resp. output) tensor. W ∈ Rdim(g)×dim(g) is a linear transfor-
mation matrix, whose input and output sizes are all the same as that of gk.

Dynamic global convolution ρ: We note that in our method, the dynamic global convolutional
operation ρ is defined by the following method:

ρ(F(gk)) = FC(O1,O2, · · · ,OL), (13)
Oi = Ri⊙F(gk), (14)

where FC means a fully-connected layer, and Oi is the elementwise multiplication between the i-th
global convolutional kernel Ri and F(gk). Therefore, FC is to learn how to dynamically aggregate
the L different global convolutional processing outcomes, i.e., {O1,O2, · · · ,OL}, where L is a
hyperparameter. The learnable parameters (kernels) in Ri, 1 ≤ i ≤ L and FC constitute our
proposed dynamic global convolutional operation with respect to the input F(gk).

5 EXPERIMENTS

In this section, we compare our model with existing baseline models for three general machine
learning tasks: image classification, time series classification, and image generation. In comparison
with the experiment set of HBNODE (Xia et al., 2021), our experiment set covers more general
machine learning tasks and several more datasets. Our software and hardware environments are
as follows: UBUNTU 18.04 LTS, PYTHON 3.6, TORCHDIFFEQ, PYTORCH 1.10.2, CUDA 11.4,
NVIDIA Driver 470.74, i9 CPU, and NVIDIA RTX A6000.
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(a) Train loss in MNIST (b) Test accuracy in MNIST

(c) Train loss in CIFAR-10 (d) Test accuracy in CIFAR-10

(e) Train loss in CIFAR-100 (f) Test accuracy in CIFAR-100

(g) Train loss in STL-10 (h) Test accuracy in STL-10

Figure 3: Train loss and test accuracy of various methods

5.1 IMAGE CLASSIFICATION

Datasets: We test baselines and our model with the following four image classification benchmarks:
MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,
2009), and STL-10 (Coates et al., 2011).

Experimental environments: In this experiment, NODE (Chen et al., 2018), ANODE (Dupont
et al., 2019), SONODE (Norcliffe et al., 2020), HBNODE, GHBNODE (Xia et al., 2021), and
AdamNODE (Cho et al., 2022) are used as baselines, which covers a prominent set of enhancements
for NODEs.

For MNIST, we use a learning rate of 0.0001 and a batch size of 32, and for other datasets, a learning
rate of 0.001 and a batch size of 64. In all datasets, we use DOPRI with its default tolerance settings
to solve the integral problem. For HBNODE and GHBNODE, the damping parameter γ is set to
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Table 1: Time series classification (HumanAct.)

Method Accuracy
RNN-∆t 0.797 ± 0.003
RNN-Impute 0.795 ± 0.008
RNN-D 0.800 ± 0.010
GRU-D 0.806 ± 0.007
RNN-VAE 0.343 ± 0.040
ODE-RNN 0.829 ± 0.016
HBNODE-RNN 0.821 ± 0.015
Latent-ODE (RNN enc.) 0.835 ± 0.010
Latent-ODE (ODE enc.) 0.846 ± 0.013
Latent-BFNO-NODE (ODE enc.) 0.874 ± 0.004

Table 2: Time series classification (PhysioNet)

Method AUROC
RNN-∆t 0.787 ± 0.014
RNN-Impute 0.764 ± 0.016
RNN-D 0.807 ± 0.003
GRU-D 0.818 ± 0.008
RNN-VAE 0.515 ± 0.040
ODE-RNN 0.833 ± 0.009
HBNODE-RNN 0.513 ± 0.001
Latent-ODE (RNN enc.) 0.781 ± 0.018
Latent-ODE (ODE enc.) 0.829 ± 0.004
Latent-BFNO-NODE (ODE enc.) 0.834 ± 0.005

sigmoid(π), where π is trainable and initialized to -3. For all NODE-based baselines, we use 3
convolutional layers to define their ODE functions and for our method, we use 2 BFNO layers and
L = 2. For fair comparison, their model sizes (in terms of the number of parameters) are almost
same. (cf. Table 4 in Appendix B).

In order to evaluate in various aspects, we consider the following evaluation metrics: i) the conver-
gence speed of train loss, and most importantly ii) test accuracy. The number of function evaluations
(NFEs) is an effective metric to measure the complexity of the forward and backward computation
for NODE-based models. However, our work’s main focus is not to reduce NFEs but to improve
accuracy. Thus, we refer readers to Appendix A for additional analyses on NFEs.

Experimental results: Figure 3 shows the train loss curve and the test accuracy in each dataset. Our
method, highlighted in red, shows the fastest convergence speed while achieving smaller loss values
from the beginning of the training process in many cases. For MNIST and CIFAR-100, our method
shows far better train curves than those of other baselines. Other baselines’ train loss values are much
higher than those of our method in MNIST. Our method also show good results for the test accuracy.
In CIFAR-10, CIFAR-100 and STL-10, our method method consistently outperforms other baselines
from the beginning of the training process to the end. For MNIST, however, HBNODE shows a
higher accuracy than ours (although its final loss is worse than ours).

5.2 TIME SERIES CLASSIFICATION

Datasets: HumanActivity (Kaluža et al., 2010) and Physionet (Silva et al., 2010) benchmark
datasets are used to train and evaluate models for time series classification. The HumanActivity
dataset includes the information from five persons with four sensors at their left ankle, right ankle,
belt, and chest while performing a variety of activities (such as walking, falling, lying down, rising
from a lying position, etc). We let them to repeat five times in order to gather trustworthy data. In
this experiment, we classify each person’s input into one of the seven activities.

PhysioNet consists of 8,000 time series samples and is used to forecast the mortality of intensive care
unit (ICU) populations. The dataset had been compiled from 12,000 ICU stays. They documented
up to 42 variables and removed brief stay of less then 48 hours. Additionally, the data recorded in
this way have a timestamp of the time elapsed since admission to the ICU. In this task, the patient’s
life or death is determined based on records.

Experimental environments: We consider a variety set of RNN-based models, ODE-RNN, and
Latent-ODE, following the evaluation protocol in Rubanova et al. (2019). In addition, we build
one more baseline by replacing the ODE function of ODE-RNN with the HBNODE-based design,
denoted HBNODE-RNN in our experimental result table. Our model, Latent-BFNO-NODE, is
implemented by replacing the ODE function of Latent-ODE (ODE enc.) with the BFNO-NODE-
based design. In this process, the hyperparameter L is fixed to 1 for efficiency.

We use accuracy for HumanActivity (since the dataset is balanced). AUROC is used for Physionet,
considering its imbalanced nature.
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Table 3: Negative log-likelihood (in bits/dim) on test images. Lower is better.

Method MNIST CIFAR-10
REALNVP (Dinh et al., 2016) 1.06 3.49
I-RESNET (Behrmann et al., 2019) 1.05 3.45
GLOW (Kingma & Dhariwal, 2018) 1.05 3.35
FFJORD (Grathwohl et al., 2018) 0.99 3.40
FFJORD-RNODE (Finlay et al., 2020) 0.97 3.38
FFJORD-BFNO-RNODE 0.88 3.33

(a) Real images (MNIST) (b) Real images (CIFAR-10)

(c) FFJORD-RNODE (MNIST) (d) FFJORD-RNODE (CIFAR-10)

(e) FFJORD-BFNO-RNODE (MNIST) (f) FFJORD-BFNO-RNODE (CIFAR-10)

Figure 4: Real and produced samples from models. MNIST (left) and CIFAR-10 (right).

Experimental results: In Table 1, we summarize the results for HumanActivity. In general, RNN-
based models do not show good accuracy. RNN-VAE shows the worst accuracy. NODE-based
models significantly outperforms them. Our proposed Latent-BFNO-NODE shows the best accu-
racy, followed by Latent-ODE. Similar patterns can be observed in Table 2 for PhysioNet.

5.3 IMAGE GENERATION

Datasets: For our image generation task, we use MNIST and CIFAR10. These two datasets are the
most widely used for conducting generative task experiments for NODE-based and invertible neural
network-based models (Grathwohl et al., 2018).

Experimental environments: We consider the baselines in Finlay et al. (2020), which cover a
prominent set of NODE-based and invertible neural network-based models. The ODE function
f(h(t), t;θf ) in these baselines consist of 4 convolutional layers with 3 × 3 kernels and softplus
activations. These layers contain 64 hidden units, and the time t is concatenated to the spatial input
vector h(t) (as a side channel). The Gaussian Monte-Carlo trace estimator is used to calculate the
log-probability of a generated sample via the change of variable theorem. Using the Adam optimizer
with a learning rate of 0.001, we train on a single GPU with a batch size of 200 and for 100 epochs.
We use a model with the kinetic regularization proposed in Finlay et al. (2020), and we propose
FFJORD-BFNO-RNODE by replacing ODE function f of FFJORD-RNODE with BFNO structure.
Our model consists of 3 BFNO layers and softplus activation in between them. The hyperparameter
L is fixed to 3. In addition, the transformation W of BFNO is replaced to a convolutional operation
with a 3×3 kernel since this task is a generation.

Experimental results: In Table 3, it can be seen that the negative log-likelihood (NLL) of our model
is better than those of all other baselines by large margins. In Figure 4, in addition, we show real
images and fake images by our method and FFJORD-RNODE. All methods show acceptable fake
images (although their quality is worse than other large-scale generative models, such as diffusion
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Figure 5: Ablation study on the two key design options of BFNO. Other figures are in Appendix F.

models (Song et al., 2020; Ho et al., 2020)). In general, NODE-based and invertible neural network-
based models do not show better generations than diffusion models.

5.4 ABLATION STUDIES

We conduct two key ablation studies: 1) checking the model accuracy by changing the number of
parallelized global convolutions in BFNO, denoted L, and 2) comparing BFNO with existing neural
operator methods, such as FNO and AFNO.

Accuracy by the number of parallelized global convolutions (L) in BFNO: As shown in Figure 2
(b), a BFNO layer has multiple parallelized global convolutions which will be later merged by a
fully-connected layer. The number of parallelized global convolutions in BFNO, denoted L, is a
key hyperparameter. Figure 5 (a) shows the model accuracy for various settings for L on image
classification with STL-10. Too many or small settings lead to sub-optimal outcomes and L = 2 is
the best configuration in this ablation study. We think that using too many convolutions results in
overfitting, which degrades the model accuracy.

Comparison with FNO and AFNO: Figure 5 (b) compares our method with FNO and AFNO.
As shown, our BFNO-NODE consistently outperforms them throughout the entire training epoch.
FNO was developed to model PDE operators, and AFNO aims at improving the vision transformer
by replacing its spatial mixer with a special neural operator. Since not being designed for NODEs,
however, they fail to show effectiveness in our experiments when being used to define the ODE
function of NODEs. Similar patterns are observed in other datasets as well, and the results are
shown in Appendix F.

6 CONCLUSIONS

Enhancing NODEs by adopting advanced ODE function architectures has been one active research
trend for the past couple of years. However, existing approaches did not pay attention to the fact
that the ODE function learns a special differential operator. In this work, we presented how neural
operators can be used to define the ODE function and learn the differential operator. However, the
naı̈ve adoption of existing neural operators, such as FNO and AFNO, does not enhance NODEs. To
this end, we designed a special neural operator architecture, called branched Fourier neural operators
(BFNOs). Our dynamic global convolutional method with multiple parallelized global convolutions
significantly improves the efficacy of various NODE-based models for three general machine learn-
ing tasks: image classification, time series classification, and image generation. Since the role of
the ODE function is, in fact, applying a differential operator to the input h(t), our operator-based
approach naturally shows the best fit in our experiments.

Limitations: Although significantly enhancing the efficacy of NODEs for various tasks, our ap-
proach sometimes increases NFEs, resulting in larger computation in comparison with existing ap-
proaches (see Appendix A). It is not straightforward to achieve both the high efficacy and the low
computation at the same time. However, we believe that there exists an operator-based ODE function
definition which simultaneously enhances the efficacy and the efficiency of NODEs.
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7 ETHICS STATEMENT

There is no particular ethically problematic element in our paper.

8 REPRODUCIBILITY STATEMENT

All implementations of our proposed method can be reproduced by referring to the attached
README.md. The best hyperparameters and detailed model architectures are recorded in Ap-
pendix C, D, E. The source code used in our paper will be made available to contribute to the
community.
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A FORWARD AND BACKWARD NFE IN IMAGE CLASSIFICATION

In general, our BFNO-NODE’s NFE values are comparable to those of NODE and ANODE. Since
our main focus is not decreasing NFEs but increasing the model effectiveness by learning the dif-
ferential operation f in a rigorous manner, we consider that it is normal that our method marks
comparable NFEs to existing methods.

(a) Train forward NFE (b) Train backward NFE

Figure 6: Image classification MNIST result

(a) Train forward NFE (b) Train backward NFE

Figure 7: Image classification CIFAR-10 result

(a) Train forward NFE (b) Train backward NFE

Figure 8: Image classification CIFAR-100 result

(a) Train forward NFE (b) Train backward NFE

Figure 9: Image classification STL-10 result
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B MODEL SIZE

Table 4: Model size in terms of the number of parameters

NODE ANODE SONODE HBNODE GHBNODE AdamNODE BFNO-NODE
MNIST 85,315 85,462 86,179 85,931 85,235 85,832 85,019
CIFAR-10 173,611 172,452 171,635 172,916 172,916 173,070 171,133
CIFAR-100 646,021 645,121 645,081 646,338 646,338 643,776 644,547
STL-10 521,512 520,180 521,532 521,248 521,247 525,946 514,291

In the image classification task, we confirm the model performance on four datasets: MNIST,
CIFAR-10, CIFAR-100, and STL-10. To compare the performance of our model with six NODE
baselines, we set the size of the models as shown in Table 4.

C DETAILED SETTINGS FOR IMAGE CLASSIFICATION EXPERIMENTS

C.1 ARCHITECTURE OF THE ODE FUNCTION f

Table 5: MNIST structure

Layer Desgin Input size Output size
1 TimeEnc 2 × 28 × 28 47 × 28 × 28
2 ReLU(BFNO) 47 × 28 × 28 47 × 28 × 28
3 ReLU(BFNO) 47 × 28 × 28 47 × 28 × 28
4 BFNO 47 × 28 × 28 47 × 28 × 28
5 TimeDec 47 × 28 × 28 1 × 28 × 28

Table 6: CIFAR-10 structure

Layer Desgin Input size Output size
1 TimeEnc 4 × 32 × 32 76 × 32 × 32
2 ReLU(BFNO) 76 × 32 × 32 76 × 32 × 32
3 ReLU(BFNO) 76 × 32 × 32 76 × 32 × 32
4 BFNO 76 × 32 × 32 76 × 32 × 32
5 TimeDec 76 × 32 × 32 3 × 32 × 32

Table 7: CIFAR-100 structure

Layer Desgin Input size Output size
1 TimeEnc 4 × 32 × 32 118 × 32 × 32
2 ReLU(BFNO) 118 × 32 × 32 118 × 32 × 32
3 ReLU(BFNO) 118 × 32 × 32 118 × 32 × 32
4 BFNO 118 × 32 × 32 118 × 32 × 32
5 TimeDec 118 × 32 × 32 3 × 32 × 32

Table 8: STL-10 structure

Layer Desgin Input size Output size
1 TimeEnc 4 × 96 × 96 99 × 96 × 96
2 ReLU(BFNO) 99 × 96 × 96 99 × 96 × 96
3 ReLU(BFNO) 99 × 96 × 96 99 × 96 × 96
4 BFNO 99 × 96 × 96 99 × 96 × 96
5 TimeDec 99 × 96 × 96 3 × 96 × 96

C.2 BEST HYPERPARAMETERS

For each of the reported results, we list the best hyperparameter as follows:

• For MNIST, learning rate = 0.0001, relative tolerance = 0.001, absolute tolerance = 0.001,
L = 2, N = 3;

• For CIFAR-10, learning rate = 0.001, relative tolerance = 0.001, absolute tolerance = 0.001,
L = 2, N = 3;

• For CIFAR-100, learning rate = 0.001, relative tolerance = 0.001, absolute tolerance =
0.001, L = 2, N = 3;

• For STL-10, learning rate = 0.001, relative tolerance = 0.001, absolute tolerance = 0.001,
L = 2, N = 3;
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D DETAILED SETTINGS FOR TIME SERIES CLASSIFICATION EXPERIMENTS

D.1 ARCHITECTURE OF THE ODE FUNCTION f

Table 9: Human Activity structure

Layer Desgin Input size Output size
1 TimeEnc 15 × 3 × 50 500 × 3 × 50
2 Tanh(BFNO) 500 × 3 × 50 500 × 3 × 50
3 TimeDec 500 × 3 × 50 15 × 3 × 50

Table 10: PhysioNet structure

Layer Desgin Input size Output size
1 TimeEnc 15 × 3 × 50 50 × 3 × 50
2 Tanh(BFNO) 50 × 3 × 50 50 × 3 × 50
3 TimeDec 50 × 3 × 50 15 × 3 × 50

D.2 BEST HYPERPARAMETERS

For each of the reported results, we list the best hyperparameter as follows:

• For Human Activity, learning rate = 0.0001, relative tolerance = 0.001, absolute tolerance
= 0.0001, L = 1, N = 1.

• For PhysioNet, learning rate = 0.0001, relative tolerance = 0.001, absolute tolerance =
0.0001, L = 1, N = 1.

E DETAILED SETTINGS FOR IMAGE GENERATION EXPERIMENTS

E.1 ARCHITECTURE OF THE ODE FUNCTION f

Table 11: MNIST structure

Layer Desgin Input size Output size
1 TimeEnc 2 × 28 × 28 100 × 28 × 28
2 SoftPlus(BFNO) 100 × 28 × 28 100 × 28 × 28
3 SoftPlus(BFNO) 100 × 28 × 28 100 × 28 × 28
4 SoftPlus(BFNO) 100 × 28 × 28 100 × 28 × 28
5 TimeDec 100 × 28 × 28 1 × 28 × 28

Table 12: CIFAR-10 structure

Layer Desgin Input size Output size
1 TimeEnc 4 × 32 × 32 100 × 32 × 32
2 SoftPlus(BFNO) 100 × 32 × 32 100 × 32 × 32
3 SoftPlus(BFNO) 100 × 32 × 32 100 × 32 × 32
4 SoftPlus(BFNO) 100 × 32 × 32 100 × 32 × 32
5 TimeDec 100 × 32 × 32 3 × 32 × 32

E.2 BEST HYPERPARAMETERS

For each of the reported results, we list the best hyperparameter as follows:

• For MNIST, learning rate = 0.0001, relative tolerance = 0.001, absolute tolerance = 0.001,
L = 3, N = 1.

• For CIFAR-10, learning rate = 0.0001, relative tolerance = 0.001, absolute tolerance =
0.001, L = 3, N = 1.
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F DETAILED ABLATION STUDIES

(a) Ablation study on the neural op-
erator type (MNIST)

(b) Ablation study on the neural
operator type (CIFAR-10)

(c) Ablation study on the neural op-
erator type (CIFAR-100)

Figure 10: Ablation study on the two key design options of BFNO

As shown in Figure 5, the performance of the BFNO structure as the ODE function f is superior
to that of the other two baselines, FNO and AFNO in other datasets. In this section, we compare
the performance of the models for three additional datasets used in the image classification task.
The experimental settings for FNO-NODE, AFNO-NODE, and BFNO-NODE are the same as those
in section 5.1. However, AFNO-NODE has too long training time in CIFAR-100. Therefore, we
contrast the performance of small-sized models (# of parameters of FNO: 310807, AFNO: 311015,
BFNO: 312503).
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