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Abstract. Hierarchical multi-label classification is a relatively new research topic in the field of classifier induction. What dis-
tinguishes it from earlier tasks is that it allows each example to belong to two or more classes at the same time, and by assuming
that the classes are mutually related by generalization/specialization operators. The paper first investigates the problem of per-
formance evaluation in these domains. After this, it proposes a new induction system, HR-SVM, built around support vector
machines. In our experiments, we demonstrate that this system’s performance compares favorably with that earlier attempts,
and then we proceed to an investigation of how HR-SVM’s individual modules contribute to the overall system’s behavior. As
a testbed, we use a set of benchmark domains from the field of gene-function prediction.
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1. Introduction

In its baseline problem statement, the field of classifier induction seeks to develop mechanisms capable
of assigning an example to one (and only one) out of a set of mutually independent classes. Some recent
applications, though, have generalized this scenario in two significant aspects: (1) an example is allowed
to belong to two or more classes at the same time, and (2) the classes are hierarchically organized. In
this paper, we refer to this task by the acronym HMC (Hierarchical Multi-label Classification).

Among the applications of HMC, perhaps the most typical are web repositories/digital libraries (e.g.,
Dmoz, Wikipedia,1 Yahoo [26,27], LookSmart [10], EUROVOC [34], Reuters [24], OHSUMED [16])
and image recognition [40]. Our own work deals with gene-function prediction. Here, genes represent
examples, each gene function is a different class, and the class-to-class relations are specified by a
directed acyclic graph (DAG) such as the one in Fig. 1 (note that each node in a DAG can have more
than one parent).

∗Corresponding author: Peerapon Vateekul, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn
University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand. Tel.: +66 2218 6989; E-mail: peerapon.v@chula.ac.th.

1The data sets from Wikipedia (www.wikipedia.org) and the ODP Web directory data (www.dmoz.org) are available through
the 2nd Pascal Challenge on Large Scale Hierarchical Text Classification (LSHTC2).
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Fig. 1. An example class hierarchy of immune system processes in the field
of Gene Ontology (GO).
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Fig. 2. An example of a DAG-structured class hier-
archy.

Due to the relative novelty of the field, it is to be expected that existing induction systems for HMC
domains are still far from perfect, and leave ample space for further research. In particular, we focus
here on the top-down approach that begins by inducing a classifier for each class at the highest level of
the DAG, and then proceeds downward, always employing the higher-level classifiers when creating the
training sets for lower-level classifiers.

The performance of existing systems is limited by three problems. First, misclassifications committed
at higher levels of the class hierarchy tend to get propagated downwards, making it hard to induce
accurate classifiers for the lowest-level classes. Second, the decision to induce a separate binary classifier
for each class often means that the training data for classifier induction tend to be imbalanced (negative
examples outnumbering positive examples). Third, since different classes are characterized by different
sets of attributes, it is necessary to run attribute-selection techniques separately for each of them.

To test the hypothesis that explicit treatment of these aspects will improve classification performance,
we developed our own induction system. The baseline technique we used for the induction of the binary
classifiers is R-SVM [45], our earlier version of a Support Vector Machine (SVM) [19,44,48], tailored
to domains with imbalanced classes. Throughout the text, we refer to our new system by the acronym
HR-SVM, where H stands for hierarchical). Having experimented with several benchmark domains,
we observed that HR-SVM compared favorably with the best of the existing “competitors,” including
the hierarchical version of the traditional SVM (H-SVM)2 [12,13] and another well-known approach,
Clus-HMC [3,35,47].

In the course of the work, we have realized that HMC’s performance has to be evaluated along some-
what different criteria than those used in classical machine learning. Let x be an example, and let C
be the set of classes to which x belongs. A perfect classifier will label x with all classes from C , never
suggesting any class from outside C; moreover, HMC usually requires that any x that has been labeled
with ci should also be labeled with all ancestors of ci in the class hierarchy. To be able to reflect these

2H-SVM is originally called “TreeSVM” with the “siblings policy”.
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requirements in performance evaluation, we developed novel crieria based on precision, recall, and F1

that are commonly used in information retrieval.
The rest of the paper is organized as follows. Section 2 defines the HMC task, and Section 3 briefly

surveys related work. Section 4 discusses diverse aspects of HMC performance and develops novel crite-
ria reflecting these aspects. Our own induction system, HR-SVM, is detailed in Section 5. Experimental
data are summarized in Section 6, and experimental results are reported in Section 7.

2. Hierarchical classification: A formal problem statement

A graph consists of a set of nodes, N , and a set of edges, E , where an edge is an ordered pair of nodes,
(Np, Nc) ∈ E ⊆ {N×N}. In this pair, Np is referred to as a parent, and Nc as a child. A path, Na → Nc,
from an ancestor, Na, to a child, Nc, is a series of edges, {(N1, N2), (N2, N3), . . . , (Nn−1, Nn)} such
that N1 = Na and Nn = Nc. In a directed acyclic graph (DAG) the existence of a path, Na → Nc,
guarantees the non-existence of the opposite-direction path, Nc → Na. A node without any child is
called a leaf node, and a node without any parent is called a root node.

In the task addressed by this paper, we consider a set of class labels, C, whose mutual relations are
specified by a class hierarchy, H, that has the form of a DAG in which each node represents one and only
one class. The path Cg → Cs is interpreted as meaning that Cg is a generalization of Cs (or, equivalently,
that Cs is a specialization of Cg).

Let X⊂Rp be a finite set of examples, each described by p numeric attributes. We assume that each
xi ∈ X is assigned a set of class labels, L = {C1, . . . , Cl} ⊆ H (all classes belong to the given class
hierarchy). From these data, we want to induce a classifier to carry out the mapping Φ : X → 2C in a
way that maximizes classification performance. Moreover, an example belonging to class Cc is expected
to belong also to all Cc’s ancestor classes, Ca. This property is called “hierarchical constraint”.

Two versions of this task exist. In the mandatory leaf-node problem (MLNP), only the leaf-node
classes are used. By contrast, in the non-mandatory leaf node problem (NMLNP), an example can be
labeled with any class from the given class hierarchy. Considering the class hierarchy from Fig. 2, MLNP
permits an example to be labeled only with a subset of {C1.1, C2.1, C2.2.1, C2.2.2}, but NMLNP
allows also the other class labels (e.g., C1 or C2.2). Our own research focuses on the more general
NMLNP.

3. Related work

Surveying existing solutions to the HMC problem, [39] distinguishes three fundamental strategies:
(i) flat classification, (ii) the top-down approach (local classifiers), and (iii) the “big-bang” approach
(global classifiers).

3.1. Flat classification

This ignores the class hierarchy altogether, and deals only with the leaf-node classes (as if the problem
were MLNP), whether by a single multi-label classifier or by a set of binary classifiers (a separate one
for each leaf node). The advantage is that this makes it possible to rely on traditional machine-learning
techniques such as neural networks, decision trees, or SVM, and indeed such attempts have been reported
by several authors [18,33,49].
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720 P. Vateekul et al. / Hierarchical multi-label classification with SVMs

This approach, of course, only makes sense if the leaf-node class label is known for each example,
and if the nature of the application is such that the users are willing to tolerate their inability to identify
non-terminal classes. This is not the case of the domains addressed in this paper, and we will therefore
not go into any further details.

3.2. Top-down approach (local classifier)

This is the most common approach in HMC induction. In the simplest case, a separate (local) classifier
is induced for each node in the DAG-specified class hierarchy, starting at the top levels, and then pro-
ceeding downwards, creating in the process a whole hierarchy of classifiers. The advantage is the relative
simplicity. On the other hand, the approach tends to suffer from “error propagation”: misclassifications
of the higher-level classes are propagated to lower levels.

Koller and Sahami [22] were perhaps the first to experiment with local classifiers, choosing Naive
Bayes as the baseline learner used to induce each individual class. The authors experimented with tree-
structured class hierarchies (no more than one parent for any node) that were limited to just two levels.

Fagni and Sebastiani [12,13] compared four different policies to generate the binary training data from
which to induce the local classifiers: Sibling, ALL, BestGlobal, and BestLocal. They used tree-structured
hierarchical versions of boosting and SVM, called TreeBoost and TreeSVM, respectively, achieving the
best results by the use of the Sibling policy in which the negative training examples of the i-th node are
all positive examples of its sibling nodes in the hierarchy. In our paper, we refer to TreeSVM with the
Sibling policy as “H-SVM” because it can be regarded as a hierarchical algorithm that uses SVM.

Sun and Lim [41] applied this strategy to text classification where the class hierarchy was a plain tree
structure. For each class, they induced two SVMs: a local classifier and a subtree classifier. An example
is labeled as ci by the local classifier, while the latter one decides whether or not this example should be
passed to ci’s subclassifiers. Nguyen et al. [28] extended the approach to domains with DAG-structured
class hierarchies by transforming the DAG hierarchy into a set of tree hierarchies. Experimental results
indicated high classification performance, but also high computational costs.

Seeking to further improve the performance, Secker et al. [36] used several different induction algo-
rithms for each node of the hierarchy: Naive Bayes, SMO, 3-NN, etc. For each node, they trained ten
classifiers, and then selected the one with the best classification results. This improved classification
accuracy, but also further increased computational costs.

Addressing the problem of the very high number of classes in the hierarchy, Bi and Kwok [2] applied
the kernel dependency estimation (KDE) to reduce the number of the classes during the training process.
In particular, they proposed an algorithm called “Condensing Sort and Selection Algorithm (CSSA)” for
the tree-structured hierarchies, and then extended it to the DAG-structured hierarchies. They did not
report induction time or the amount of class-number reduction.

Recently, Alaydie et al. [1] proposed a framework called HiBLADE (Hierarchical multi-label Boost-
ing with Label Dependency), applied to tree-structured hierarchies. The baseline classifier for each class
is a boosting algorithm, such as ADABOOST, where the model for each boosting iteration is updated by
a method utilizing Baysian correlation.

3.3. The “big-bang” approach (global classifier)

Instead of inducing a separate binary classifier for each node, some authors prefer to induce one big
(global) classifier for the entire class hierarchy. In this way, mutual interdependencies of the classes are
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more easily taken into account, and the global classifier is sometimes smaller than the sum of the local
classifiers.

Clare and King [6] developed a hierarchical extension to the decision-tree generator C4.5 [31] and
applied it to functional-genomics data (they called their system HC4.5). To give higher priority to more
specific classes, they introduced a mechanism to weigh, accordingly, the entropy formula.

Another attempt to apply the decision-tree paradigm to HMC domains was reported by Blockeel et
al. [3] whose Clus-HMC is a hierarchical version of the earlier “predictive clustering tree” (PCT) [4]. Ven
et al. [47] improved Clus-HMC so that it could be used in DAG-specified class hierarchies. An ensemble
version of the algorithm, Clus-HMC-ENS, was proposed by Schietgat et al. [35]. Unfortunately, although
the ensemble concept does improve classification performance, its computational costs are much higher
than those of the original Clus-HMC.

Pandey et al. [29] proposed a global-approach hierarchical framework based on the k-nearest neighbor
classifier (k-NN). There are many improvements in the system. First, the distance function is Lin’s
semantic similarity measure. Second, the prediction function of the i-th class incorporates the inter-
relationship score of the i-th class to other classes in the hierarchy. Finally, the mechanism to filter
insignificant class inter-relationships was suggested.

4. Performance evaluation

How to evaluate performance in HMC is not an easy question, and the research community has not
reached a consensus. In this section, we attempt to improve the situation by developing evaluation criteria
that we believe are sufficiently objective and robust.

4.1. Classical approach

We begin with the two-class case where each example is either positive and negative. Classical ma-
chine learning literature evaluated these classifiers by error-rate estimates obtained by the comparison
of testing examples’ known class labels with those recommended by the classifier. Error rate, however,
is inadequate in domains where one class significantly outnumbers the other [23]. For instance, if only
1% of the examples are positive, then a classifier that labels all examples as negative will achieve 99%
accuracy, and yet it is virtually useless.

For this latter case, other criteria have been used; the most popular among them are precision and
recall. Let us denote by TP the number of true positives, by FN the number of false negatives, by FP
the number of false positives, and by TN the number of true negatives. Precision and recall are defined
as follows:

Pr =
TP

TP + FP
Re =

TP

TP + FN
(1)

In plain English, precision is the percentage of truly positive examples among those labeled as such
by the classifier; recall is the percentage of positive examples that have been recognized as such (“re-
called”) by the classifier. Which of the two is more important depends on the specific needs of the con-
crete domain. Seeking to combine them in a single formula, [43] proposed Fβ , where the user-specified
parameter, β ∈ [0,∞), quantifies each component’s relative importance:

Fβ =
(β2 + 1)× Pr ×Re

β2 × Pr +Re
(2)
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Table 1
Macro-averaging and micro-averaging of performance
criteria in domains with l classes
Average Criteria Equation
Macro Precision

PrM =

∑l
j=1 Prj

l

Recall
ReM =

∑l
j=1 Rej

l

F1
FM
1 =

∑l
j=1 F1,j

l

Micro Precision
Prµ =

∑l
j=1 TPj

∑l
j=1 (TPj + FPj)

Recall
Reµ =

∑l
j=1 TPi

∑l
j=1 (TPj + FNj)

F1
Fµ
1 =

2× Prµ ×Reµ

Prµ +Reµ

Table 2
The hierarchical version of precision, recall, and F1 for an example i

Precision Recall F1

hPri =
|P̂i ∩ T̂i|

|P̂i|
hRei =

|P̂i ∩ T̂i|
|T̂i|

hF1,i =
2× hPri × hRei
hPri + hRei

Table 3
The micro-averaging version of precision, recall, and F1 of n exam-
ples

Criteria Macro-equation
Precision

hPrµ =

∑n
i=1 |P̂i ∩ T̂i|
∑n

i=1 |P̂i|
Recall

hReµ =

∑n
i=1 |P̂i ∩ T̂i|
∑n

i=1 |T̂i|
F1

hF1
µ =

2× hPrµ × hReµ

hPrµ + hReµ

It would be easy to show that β > 1 apportions more weight to recall while β < 1 emphasizes precision.
Moreover, Fβ converges to recall if β → ∞, and to precision if β = 0. If we do not want to give more
weight to either of them, we use the neutral β = 1:

F1 =
2× Pr ×Re

Pr +Re
(3)

All this, however, applies only to domains where each example is labeled with one and only one
class. For multi-label domains, [51] proposed two methods to average the above metrics over multiple
classes: (1) macro-averaging, where precision and recall are first computed separately for each class
and then averaged; and (2) micro-averaging, where precision and recall are obtained by summing over
all individual decisions. Which of the two approaches is better depends on the concrete application.
Generally speaking, micro-F1 weighs the classes by their relative frequency, whereas macro-F1 gives
equal weight to each class. The formulas are summarized in Table 1 where Prj , Rej , and F1,j stand for
precision, recall, and F1 for the j-th class (from l classes).

4.2. Hierarchical classification

In domains with hierarchically organized classes, the above-defined classical metrics do not suf-
fice. [7,41] surveyed several alternatives, such as distance-based, semantics-based, and hierarchy-based
measures.

Among these, we prefer the metrics proposed by Kiritchenko et al. [21] as extended versions of, again,
precision, recall, and F1. In the hierarchical context, each example belongs not only to a given class, but
also to all ancestors of this class in the class hierarchy. The metrics for the i-th example are summarized
in Table 2, where Pi and Ti represent sets of predicted and true classes respectively, and P̂i and T̂i stand
for Pi and Ti plus their ancestors. Hierarchical precision (hPri) is the accuracy of the prediction path,
hierarchical recall (hRei) is the accuracy of the true path, and hierarchicalF1 (hF1,i) is an equal-weight
combination of hPri and hRei.

For illustration, referring to the hierarchy from Fig. 2, let Pi = {C2.2} and Ti = {C2.2.1}. This yields
P̂i = {C2, C2.2} and T̂i = {C2, C2.2, C2.2.1}, so that hPri =

2
2 = 1, hRei =

2
3 , and hF1,i = 0.8.

AU
TH

O
R 

CO
PY

AU
TH

O
R 

CO
PY



P. Vateekul et al. / Hierarchical multi-label classification with SVMs 723

Table 4
The macro-averaging version of precision, recall,
and F1 of n examples

Criteria Micro-equation
Precision

hPrM =

∑n
i=1 hPri

n
Recall

hReM =

∑n
i=1 hRei

n
F1

hFM
1 =

∑n
i=1 hF 1,i

n

Table 5
An example of hierarchical-classification results

Example True class Predicted class
x1 C1.1 C1.2
x2 C2.2.1 C1.1, C2.2.1
x3 C1, C2.2 C2.2
x4 C1 C1.1
x5 C1.1 C1

Table 6
The true class matrix T (top) and the predicted class matrix P (bot-
tom) for the examples from Table 5

C1 C1.1 C1.2 C2 C2.1 C2.2 C2.2.1 C2.2
x1 1 1 0 0 0 0 0 0
x2 0 0 0 1 0 1 1 0
x3 1 0 0 1 0 1 0 0
x4 1 0 0 0 0 0 0 0
x5 1 1 0 0 0 0 0 0

C1 C1.1 C1.2 C2 C2.1 C2.2 C2.2.1 C2.2
x1 1 0 1 0 0 0 0 0
x2 1 1 0 1 0 1 1 0
x3 0 0 0 1 0 1 0 0
x4 1 1 0 0 0 0 0 0
x5 1 0 0 0 0 0 0 0

Suppose we want to evaluate the performance measured on a data set with n examples labeled with
l hierarchically organized classes. If we combine the performance of all examples by micro-averaging
(Table 3), the value is biased towards examples with longer paths. To see why, consider the following
data set where the true labels are as follows: S = {(x1, C2.2), (x2, C1), (x3, C2)}. Let the classes
be organized according to the hierarchy from Fig. 2. Suppose there are two classifiers, Φ1 and Φ2,
where Φ1(S) = {(x1, C2.2), (x2, C2), (x3, C1)} (correctly predicting the class of x1), and Φ2(S) =
{(x1, C1.1), (x2, C1), (x3, C2)} (correctly predicting classes of x2 and x3).3 While it seems obvious
that Φ2 is better than Φ1, micro-averaging seems to indicate that the performance of both classifiers is
about the same, hPrμ = hReμ = hF1

μ = 1
2 .

To reasonably evaluate the classifiers in the previous example, we propose to apply macro-averaging
to merge hierarchical measures of all examples as shown in Table 4. This averaging method then evalu-
ates the performance of Φ2 higher than that of Φ1. For Φ1, hPrM = hReM = hF1

M = 1
3 , and, for Φ2,

hPrM = hReM = hF1
M = 2

3 .

4.3. A more advanced approach

To see the limitation of the above criteria, consider the domain from Table 5 and the class hierarchy
from Fig. 2. For five examples, the table lists their true class labels as well as the labels assigned to them
by the classifier.

This information is expressed in the matrix form in Table 6 (top) for the true classes, and in Table 6
(bottom) for the classes predicted by the classifier. Note that each row represents an example, and each
column represents a class. The value of a given field is “1” if the example belongs to the class and “0” if
it does not.

The hierarchical criterion from Section 4.2 evaluates the performance separately across each row of
the matrix, and then averages the results. By contrast, the multi-label criterion from Section 4.1 evaluates

3The class correctly predicted by the classifier is underlined.
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724 P. Vateekul et al. / Hierarchical multi-label classification with SVMs

the performance separately for each column, and then averages the results. We want to combine the two
approaches.

Incidently, such combination was encouraged by the organizers of a recent competition to develop the
best system on “Large Scale Hierarchical Text Classification (LSHTC2)”.4 In their notation, the multi-
label criteria are referred to as “Label-based (Macro)” (LbMa),5 so that LbPr, LbRe, and LbF1 refer
to multi-label precision, recall, and F1, respectively. Similarly, the hierarchical (Example-based) criteria
are denoted by EbPr, EbRe, and EbF1, respectively.

Whether to prefer example-based criteria or label-based ones may be a matter of some dispute, but
a good classifier should satisfy both. In line with this argument, we propose a simple way to accom-
plish just that. Denoting the criterion by the acronym ELb (Example-Label-based), we define it by the
following formula:

ELbFunc(Eb,Lb) =
2× Eb× Lb

Eb+ Lb
(4)

where Eb is an example-based metric (precision, recall, or F1) and Lb is a class-label-based metric.
For instance, ELbPr is our equivalent of precision, ELbRe is our equivalent of recall, and ELbF1 is our
equivalent of F1.

Finally, let us remark that, in some domains, the closer a class is to the root of the class hierarchy, the
more important it is deemed. In the work reported here, this factor is ignored.

5. HR-SVM: Induction of class hierarchies

Let us now proceed to the description of HR-SVM, our induction system designed for the needs of
multi-label domains with classes organized in DAG-specified class hierarchies. In all illustrative exam-
ples below, we will assume that the class hierarchy is the DAG from Fig. 2 that we reprint here for the
reader’s convenience as Fig. 3. Each example can be labeled with leaf nodes as well as with the internal
nodes of the DAG. Following the top-down approach, HR-SVM uses a “baseline learner” to induce a
local classifier for each non-root node in the class hierarchy.

Care is taken to follow the hierarchical constraint. For instance, if classifier C2 (associated with node
‘1’ in Fig. 3) labels x as negative, then x has to be labeled as negative also by the classifiers corresponding
to C2’s subclasses: {C2.1, C2.2, C2.2.1, C2.2.2}. Conversely, x is classified as C2.2.2 if the classifiers
{C2, C2.2, C2.2.2} all issue the positive label for x. HR-SVM also addresses the imbalanced nature of
the training sets from which the “node” classifiers are induced, and it attempts to deal with the fact that
errors committed by higher-level classifiers are propagated down the hierarchy.

As indicated in Fig. 4, HR-SVM consists of four modules; three of them for data pre-processing and
the last for induction from imbalanced data.

5.1. Exclusive-Parent Training Policy (EPT)

For individual-node class induction, the first step is the generation of the corresponding (binary) train-
ing set. Several methods have been proposed in the literature so far [11–13,39]. The one we use in

4http://lshtc.iit.demokritos.gr/.
5Since this paper considers only macro-average, we will ignore “Macro (Ma).”
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Table 7
Comparing the training sets generated by EPT and EAT

Class The number of positive examples
versus the number of all training examples

EPT EAT
C2 100/1000 100/1000
C2.2 50/100 50/1000
C2.2.2 10/50 10/1000

0

1

1.1 1.2

2

2.1

2.2

2.2.1 2.2.2

Fig. 3. A class hierarchy used to explain the HR-SVM’s framework. Fig. 4. HR-SVM’s general architecture.

HR-SVM is referred to as EPT (Exclusive Parent Training Policy).6 Let us now describe it in detail as
follows.

Let Tr be the set of all training examples, let Tr(Ci) denote the set of training examples used for the
induction of class Ci, and let Tr+(Ci), and Tr−(Ci) denote the sets of the positive and negative training
examples of Ci, respectively. |Ci| denotes the number of examples representing Ci, and ↑ Ci is the set
of the parents of Ci. Finally, “\” is the set exclusion operator.

HR-SVM’s way of choosing the training examples for the induction of Ci is defined as follows:

Tr(Ci) = Tr+(↑ (Ci))

Tr−(Ci) = Tr(Ci)\Tr+(Ci)
(5)

HR-SVM thus includes in this training set all positive examples of Ci’s parent class(es).
Let us illustrate the process by two examples.
– Example 1: A one-parent node (e.g., C2.2):

∗ Tr(C2.2) = Tr(↑ (C2.2)) = Tr+(C2).
∗ Tr−(C2.2) = Tr(C2.2)\Tr+(C2.2),

(Note that Tr−(C2.2) 	= Tr+(C2.1) because if this is an NMLNP problem, some examples in
C2 may belong to neither C2.1 nor C2.2.)

– Example 2: A multiple-parents node (e.g., C2.1):
∗ Tr(C2.1) = Tr+(↑ (C2.1)) = (Tr+(C1.2)

⋃
Tr+(C2))

∗ Tr−(C2.1) = Tr(C2.1)\Tr+(C2.1).

6EPT is similar to the “siblings policy” in [12,13] which was shown to be the best method to create training sets.
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The advantages of EPT are best illustrated by the comparison with another policy that has been used
in the past, namely EAT (Exclusive All Training Policy) [12,13]7 where each node classifier is trained
using the entire training set: Tr(Ci) = Tr, and Tr−(Ci) = Tr\Tr+(Ci). Assuming that the root node
represents |C0| = |Tr| = 1000 examples, we have |C2| = 100 examples, |C2.2| = 50 examples, and
|C2.2.2| = 10 examples. The sizes of the training sets generated by EPT and EAT, respectively, are
given in Table 7. The reader can see that, at the lower-level classes, EPT generates smaller and more
balanced training sets than EAT. For instance, when inducing C2.2, EPT creates a training set of size
100, whereas EAT uses 1000 examples.

Note also that it is unnecessary to train the classifier C2.2 by C1’s examples because C2.2’s parent
classifier, C2, has the responsibility to remove those C1’s examples.

5.2. Local Feature Selection (LFS)

In our domains, the examples are often described by thousands of attributes, which can lead not only
to prohibitive induction costs, but also to performance degradation if many of the attributes are irrele-
vant. Importantly, the relevance of the individual attributes can vary from class to class. Many scientists
have studied attribute-selection techniques (see, e.g., [15]). Choosing from these, we need one that is
computationally efficient, and we need to apply it separately to each class.

In our previous work [9,46], we made a good experience with ordering the attributes by their gain
ratio,8 and then selecting a certain percentage of the highest ones. This means that the number of selected
attributes is fixed and equal in every class. Experiments indicated that the best performance of multi-label
classifiers was in our domains obtained when only the top 25% of attributes are retained. However, this
strategy cannot be directly applied to the HMC domain from that preliminary experiment. Moreover, in
terms of computational cost, the number of classes in the HMC domain can be much higher than in the
multi-label domain, so it is more efficient to allow that the number of attributes be different for each
class node.

In HR-SVM, we improved this (rather simplistic) approach by choosing those attributes that satisfy
the following two conditions: the minimum accumulated gain ratio (or G% of total gain ratio) and the
minimum number of attributes (or P% of the total number of attributes).

For illustration, suppose the user has set G = 95% and P = 25%; and let the gain ratios of a given
set of ten attributes be as follows: {0.40, 0.30, 0.10, 0.10, 0.05, 0.01, 0.01, 0.01, 0.01, 0.01} (the sum of
total gain ratios is 1.0). Under these conditions, the first five attributes will be chosen because their sum
of gain ratios is 0.95 (which satisfies the requirement of reaching at least 95% of 1.0), and five attributes
represent more than the required 25% of the total 10 attributes.

5.3. False-Positive Correction (FPC)

HR-SVM’s next module seeks to correct the false positives (FP ) – negative examples that are incor-
rectly labeled by the classifier as positive. False positives are responsible for what is known as incorrect-
path errors.

Let us illustrate. The EPT policy ensures that classifier C2.2 is induced from examples belonging to
C2.2’s parent class, C2, and these do not include any examples of C1. Suppose a testing example of C1

7 [12,13], who compare various training policies, EAT is called “ALL” policy.
8In our case, we relied on the formula employed by Quinlan’s C4.5 [32]. The fact that its implementation is available in his

publicly available software facilitates the replicability of our experiments.
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is incorrectly labeled by the C2-classifier as positive. This error is propagated to classifier C2.2, which
has never been trained using C1’s examples, and may therefore fail. This error is then passed to C2.2’s
subclasses, C2.2.1 and C2.2.2, which are likely to make the same mistake as C2.2. In this sense the FP
errors from C2 negatively affect the performance of C2’s subclasses.

HR-SVM addresses this issue by our False-Positive Correction strategy (FPC). The idea is to add to
Ci’s negative training examples, Tr−(Ci), also a set of FP examples at Ci’s superclass(es) (denoted in
Eq. (6) by FP (↑ (Ci))), to give it a chance to learn how to correct the FP ’s inherited from the parents.
Note that FPC cannot be applied to classifiers at the top level; the FPC process begins after the SVM
models of all Ci’s parents have been induced. These classifiers are then tested on their own training data,
and the results are used to identify the FP examples. Finally, a subset of these examples is added to the
set of negative training examples at Ci, Tr−(Ci).

Tr−(Ci) = Tr(Ci)\Tr+(Ci)+FP(↑ (Ci)) (6)

For instance, the potential errors propagated from C2.2’s parents, FP (↑ (C2.2)) = FP (C2), are
added to C2.2’s training set. Note that C2.1 has multiple parents. The extra training examples added by
FPC is determined as FP (↑ (C2.1)) = FP (C1.2)

⋃
FP (2).

We expect that the FPC strategy can potentially decrease the number of false positives, thus improving
precision as well as F1.

5.4. R-SVM

The reader will recall that our system induces a separate binary classifier for each class. To induce the
classifier for the i-th class, the system creates a training set where each example is labeled as positive if
it belongs to the i-th class and as negative if it does not belong to the i-th class. Most of the time, each
class is represented by only a small subset of the examples, which means that the corresponding training
set is imbalanced. Traditional induction algorithms are in similar situations known to be biased towards
the majority class, which results in many false negatives (FN ).

In HMC-domains, the issue becomes even more serious due to the phenomenon called blocking: for
instance, those of C2.2.2’s examples that have been misclassified by C2-classifier as negative will not
be recognized as belonging to classes C2.2 and C2.2.2. In HR-SVM, we mitigate the problem by using
a mechanism borrowed from our earlier work [45]. Let us briefly summarize the essence.

SVM induces a hyperplane, h(�x) = �w · �x + b = 0, whose orientation is determined by �w and offset
by b. The expression can be used to calculate for each example, �x, its “SVM score”:

si = h(�xi) = �w · �xi + b (7)

In domains where one class outnumbers the other, SVM’s bias toward low error rate may result in
high precision, but very low recall (F1 is then low too). This is rectified by threshold adjustment [5,14,
17,25,30,37,42,50], a process that translates the hyperplane (by the modification of b without changing
�w) as depicted in Fig. 5. The task is to find, in the set of all possible thresholds, Θ, the one that gives the
highest value of a user-defined performance criterion, perf (e.g., the F1 metric), over the set of training
data mapped to SVM scores, L = {(s1, C1), . . . , (sn, Cn)}:

{θ ∈ Θ|θ = max(perf(L,Θ))} (8)
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Fig. 5. SVM hyperplanes before (left) and after (right) a threshold adjustment that corrects the classification of three examples.

Fig. 6. The R-SVM based framework.

R-SVM is a threshold-adjustment algorithm shown by [45] to compare favorably with some earlier
attempts, such as SVMF1

[5], SVMCV [5], ScutFBR [24], and BetaGamma [30,37]. The essence is out-
lined in Fig. 6. After inducing the initial SVM model, the first task is to identify a set of candidate
thresholds, Θ. To maintain reasonable computational costs, the system orders the examples by their
scores (Eq. (7)) and then defines candidate thresholds as the middle points between those pairs of neigh-
boring examples that differ in their class labels: Θopt = {θ1, . . . , θK}.

The best threshold from the candidate thresholds is found as follows. First, M auxiliary training
subsets, {L1, . . . , LM}, are created. Next, for each Li, the best threshold, θi, from the set of candidate
thresholds, Θopt, is identified. Finally, the output threshold is obtained as the average of these “winners.”
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5.5. Complexity analysis

[52] presented a complexity analysis of an SVM-based algorithm in hierarchical as well as non-
hierarchical domains. Since HR-SVM uses a threshold-adjusted SVM (R-SVM) as its baseline classifier,
its complexity can be derived using the same kind of analysis.

Let M be the number of classes, let N be the number of training examples, let V be the number
of attributes, and let Lv be the average number of non-zero attributes. In multi-label (non-hierarchical)
classification, the training time of the traditional SVM is O(MN c) (where c ≈ 1.2 ∼ 1.5 is a domain-
specific constant), and its testing time is O(MLv).

The training time of R-SVM is given by Eq. (9), where c1 and c2 are constant times for Box 2.1 and
Box 2.2 from Fig. 6, respectively. Since the process of threshold adjustment is applied after the model
induction, the first term in the equation is the SVM induction time, and the second term is the evaluation
time of the SVM model on training data.

Training Time = O(MN c) +O(MLv) + c1 + c2

= O(M(N c + Lv)) + c1 + c2
(9)

For the hierarchical classification system, the total complexity of the top-down approach, including
HR-SVM, is given by Eq. (10), where h is the depth of the hierarchy, b is the number of branches at the
leaf nodes, mi is the number of classes at the i-th level, i = {0, . . . , h} is an index for the hierarchical
level, j = {1, . . . ,mi} is an index for the class at the i-th level, nij is the number of local training
examples, Ni is the total number of training examples at the i-th level, N0 � Ni, and πij is defined as
nij

Ni
.

b×O(N c
0)

i=0∑

h−1

j=1∑

mi

πc
ij (10)

6. Experimental data

We experimented with several real-world databases from the field of functional genomics available
from the DTAI webpage9 [35]. The task is to predict gene functions of three organisms: Saccharomyces
cerevisiae (S. cerevisiae), Arabidopsis thaliana (A. thaliana), and Mus musculus (M. musculus). In this
paper, we worked with 8 data sets annotated by the functional hierarchy in Gene Ontology (GO) whose
structure forms a DAG. Each data set is described by different aspects (attributes) of the genes that may
originate at diverse sources. The characteristics of the experimental data sets are summarized in Table 8.

Since the data contained nominal attributes, and many values were missing, some pre-processing was
necessary.

1. Data cleaning. Assuming that rare classes cannot be reliably induced, we ignored all classes rep-
resented by less than 1% of the total number of examples, which is 50 examples on all data sets,
save the very large domain D19 where this minimum was set to 200 examples. We deleted ex-
amples with missing attribute values, and we also removed attributes that were never used in the
“surviving” examples.

9http://dtai.cs.kuleuven.be/clus/hmcdatasets/.
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Table 8
Properties of the data sets used in our experiments: The numbers of examples |D|, attributes |A|, classes |C|, and hierarchical
levels |H |. “M?” indicates whether a data set includes missing values – yes (Y) or no (N)

Organism Id Feature description |D| |A| |C| |H | M?

S. cerevisiae D0 Joining all sources 3465 5931 132 7 N
A. thaliana D13 Sequence statistics (seq) 11763 4451 629 6 Y

D14 Affy.’s experiments (exprindiv) 10840 1252 626 6 Y
D15 SCOP superfamily (scop) 9843 2004 571 6 N
D16 Secondary structure (struc) 11763 14805 629 6 N
D17 InterProScan (interpro) 11763 2816 629 6 N
D18 All microarray (expr) 11121 72870 622 6 N

M. musculus D19 Joining all sources 21153 18748 5620 13 Y

2. Missing-value imputation. In the case of nominal attributes, we replaced a missing value with the
most common value. In the case of continuous attributes, we used the average (mean).

3. Nominal-to-numerical conversion. Some attributes were nominal, acquiring one out of m different
values. We converted each of these nominal attributes to a set of m binary attributes. For instance,
an attribute with three values, {A,B,C}, was replaced with the triplet of binary attributes whose
possible combinations of values were limited to (0,0,1), (0,1,0), and (1,0,0).

4. Attribute transformation. Some attributes were constrained to very small ranges – for instance, the
D15 were limited to the interval [3.8E-123, 5.6E-108]. In this case, we replaced the values with
their logarithm (base 10).

5. Normalizing the attribute values. We normalized the values of numeric attributes to the interval
[0,1].

Each domain provided by the DTAI website consists of 3 files that were originally intended for train-
ing, validation, and testing, respectively. To facilitate the evaluation of statistical significance of perfor-
mance comparisons, we merged these three files into one, and then used 5-fold cross-validation.

7. Experiments

HR-SVM induces a hierarchical classifier by a mechanism built around the publicly available. svm-
light10 As for the kernel function, preliminary experiments indicated that the linear function gave better
results (in terms of F1) than the radial basis function (RBF). Perhaps this was to be expected: the training
examples being described by thousands of attributes, the individual classes were easy to separate from
each other.

The task of the experiments reported below is twofold. First, we want to show that our system out-
performs earlier attempts. Since it is clearly not possible to compare HR-SVM with every single other
system, we chose two systems that are regarded by the relevant literature as perhaps the most powerful:
H-SVM and Clus-HMC.11

Our second goal is to find out how each of HR-SVM’s modules (see Fig. 4) contributes to the overall
performance. To this end, we added these modules one by one, obtaining the four variants listed in
Table 9 where H-SVM is a hierarchical version of the traditional SVM [12,13], and HR-SVM-ALL is the
complete system. The only exception was domain D18 where only H-SVM-ALL could be experimented

10http://svmlight.joachims.org/.
11The package is available at http://dtai.cs.kuleuven.be/clus/.
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Table 9
Evolution of HR-SVM’s framework

System Descriptions
H-SVM EPT + The baseline SVM
HR-SVM EPT + R-SVM
HR-SVM-FPC EPT + R-SVM + FPC
HR-SVM-ALL EPT + R-SVM + FPC + LFS; (all modules)

Table 10
The total induction time (in seconds) of HR-SVM-ALL
and two other systems, H-SVM and Clus-HMC

Data set HR-SVM-ALL H-SVM Clus-HMC
D0 7.68 10.26 31.04
D13 204.68 357.75 999.27
D14 3,615.49 1,900.42 208.90
D15 13,641.90 17,408.56 159.44
D16 406.99 526.25 1,164.25
D17 141.36 100.76 146.05
D18 2,989.98 N/A 604.06
D19 17,691.80 23,334.07 3,396.86

Fig. 7. Comparing the performance (along F1) of H-SVM,
HR-SVM-ALL, and Clus-HMC. The integers above the verti-
cal bars give the ranks obtained by the ANOVA methodology
followed by Bonferroni multiple comparisons [8].

with – the high number of attributes made it impossible to use SVM-based systems without attribute
selection (LFS).

All results are expressed in terms of the example-label based macro-averaging (ELbMa) version of
the performance criteria from Section 4.3.

7.1. Comparing our system’s performance with that of its predecessors

A new technique is deemed useful if its performance compares favorably with that of other tech-
niques. This is why we compare here HR-SVM-ALL with H-SVM (a hierarchical variant of SVM)
and Clus-HMC (a global approach that relies on decision trees). Both are regarded as perhaps the best
existing HMC-induction systems.

The results in terms of F1 are summarized in Fig. 7, and the CPU times are given in Table 10. The
reader can see that, in terms of F1, HR-SVM-ALL outperforms H-SVM in all domains, the results being
particularly impressive in D0; H-SVM achieved only F1 = 0.0929, whereas HR-SVM-ALL scored
F1 = 0.4811 (an improvement of more than 400%). The new technique induced faster than H-SVM on
all data sets except D14 and D17 – in these, the efficiency of the employed attribute-selection technique
was impaired by the additional time needed to process the FP data sets (FPC).

When compared with Clus-HMC along F1, HR-SVM-ALL was significantly better in six out of eight
domains. The explanation for the unfavorable F1-results of HR-SVM-ALL in D17 and D18 is that
both domains are described exclusively by categorical attributes with values from {0, 1}. The input data
of SVM must be numeric, while that of the decision tree can be either numeric or categorical. This
means that this kind of data (D17 and D18) is more suitable for decision trees than for SVM. Note that
all attributes of D16 attributes, too, are categorical with values of {0, 1}, but the difference between
the F1-result of H-SVM and Clus-HMC in D16 is not so conspicuous – the mechanisms proposed in
HR-SVM-ALL can overcome the drawback of the traditional SVM on this kind of data. The induction
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Table 11
Hierarchical systems (see also Table 9) whose performance is to be compared

Module System comparison
1. R-SVM HR-SVM vs. H-SVM
2. FPC HR-SVM vs. HR-SVM-FPC
3. LFS HR-SVM-ALL vs. HR-SVM-FPC

Table 12
Induction time (in seconds) of the top-down hierarchical classification systems from Table 9. In each column, the percentages
in the parentheses give the time increase over the previous column

Data set H-SVM HR-SVM HR-SVM-FPC HR-SVM-ALL
D0 10.26 10.33 (+ <1%) 10.95 (+6%) 7.68 (−30%)
D13 357.75 358.24 (+ <1%) 393.01 (+10%) 204.68 (−48%)
D14 1,900.42 1,901.23 (+ <1%) 4,656.21 (+145%) 3,615.49 (−22%)
D15 17,408.56 17,408.77 (+ <1%) 12,002.88 (−31%) 13,641.90 (+14%)
D16 526.25 527.11 (+ <1%) 623.81 (+18%) 406.99 (−35%)
D17 100.76 101.11 (+ <1%) 123.15 (+22%) 141.36 (+15%)
D18 N/A N/A N/A 2,989.98
D19 23,334.07 23,336.36 (+ <1%) 40,320.39 (+73%) 17,691.80 (−56%)

Fig. 8. Comparing HR-SVM with H-SVM in terms of F1.
The stars above some of the bars indicate significant improve-
ments according to t-tests (0.05 level).

Fig. 9. Comparing HR-SVM with H-SVM in terms of recall.
The stars above some of the bars indicate significant improve-
ments according to t-tests (0.05 level).

time is comparable, HR-SVM-ALL being faster than Clus-HMC in D0, D13, D16, and D17, and slower
in D14, D15, D18, and D19.

7.2. Contributions of HR-SVM’s modules

In the next step, we wanted to find out how much each of the modules listed in Fig. 4 contributed to
HR-SVM’s classification performance (see Table 11).

The induction times of the individual consecutive steps are summarized in Table 12. The following
subsections discuss the classification-performance aspects.

7.2.1. The effect of R-SVM
In HR-SVM, SVM was replaced by R-SVM, with the intention to reduce SVM’s bias to the majority

class (recall that our experimental domains were dominated by false negatives). The hypothesis that
R-SVM can help, here is tested by the comparison of HR-SVM’s performance with that of H-SVM.
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Fig. 10. Comparing HR-SVM-FPC with HR-SVM in terms
of F1. The stars above some of the bars indicate significant
improvements according to t-tests (0.05 level).

Fig. 11. Comparing HR-SVM-FPC with HR-SVM in terms
of precision. The stars above some of the bars indicate sig-
nificant improvements according to t-tests (0.05 level).

The results in Fig. 8 show that HR-SVM exhibited better F1 than H-SVM in all domains. In D0,
HR-SVM’s F1 improvement over the baseline SVM was more than 400% (from 0.0929 to 0.4693). As
for the computational costs (Table 12), both systems needed about the same time. This indicates that the
additional thresholding time in HR-SVM is very small (only at most 1% of the SVM induction time).
Especially in D19, our system needed only 2.29 seconds to adjust the separation hyperplane in addition
to the induction time of the traditional SVM, which was 23,334.07 seconds.

HR-SVM’s classification success was largely due to its significant improvement of recall (see Fig. 9),
which was achieved at the cost of slightly reduced precision on some data sets, though the average of
precision on all data sets still increased by 25%. It turns out that R-SVM properly adjusts the class-
separation hyperplane, thus reducing the bias to the majority class, which in turn reduces the number of
false negatives propagated down the class hierarchy.

7.2.2. The effect of FPC
Let us now compare HR-SVM-FPC with HR-SVM, thus finding out how the system’s performance

benefits from the False-Positive Correction. Recall that false positives that occur at higher levels are
propagated to lower levels in the class hierarchy. The total number of false positives can be high, which
means lower precision and F1.

The summary of the experimental results in Fig. 10 indicates that HR-SVM-FPC outperforms
HR-SVM in almost all domains. In 5 out of 7 domains, the improvement is statistically significant. As
seen in Fig. 11, this is due to FPC’s ability to increased precision (in all eight domains). This indicates
that the number of FP -errors propagated throughout the system was indeed reduced.

Table 12 shows how much FPC increases the computational costs (on account of the extra false posi-
tives added to the training data). Note that, in D15, FPC led to reduced induction time because the SVM
model here converged faster in spite of the training data being larger (a phenomenon explained by [38]).

7.2.3. The effect of LFS
The results of the comparisons between HR-SVM-ALL and HR-SVM-FPC give us an idea of the

contribution of the attribute-selection technique (LFS).
Recall that LFS relies on two user-defined parameters: (i) the minimum percentage of accumulated

gain ratio and (ii) the minimum number of attributes. In the experiments reported below, the former
threshold is set to 95% of the overall gain ratio, following the general threshold used in Principal Com-
ponent Analysis (PCA) [20]. The latter threshold is set to 25% of the total number of attributes as
suggested in [9,46].
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Fig. 12. Comparing HR-SVM-ALL with HR-SVM-FPC in
terms of F1. The stars and circles above some of the bars
indicate significant improvements and declines according to
t-tests (0.05 level).

Fig. 13. Comparing HR-SVM-ALL with HR-SVM-FPC in
terms of precision. The stars and circles above some of the
bars indicate significant improvements and decline according
to t-tests (0.05 level).

Comparing to HR-SVM-FPC in terms of F1, Fig. 12 shows that HR-SVM-ALL won in D0, D13,
and D19, but lost in D17. The results of the remaining data sets (D14, D15, and D16) are statistically
indistinguishable. Figure 13 shows that the removal of less relevant attributes indeed improved precision
on all data sets except for D17.

Table 12 shows that LFS reduced the training time in most domains, most remarkably in D19 where
the time was reduced by 56% while F1 also improved by 2%. However, HR-SVM-ALL’s induction costs
increased in D15 and D17. This is caused by SVM’s inverse convergence [38]. LFS is especially useful
in D18 where the number of attributes is so high that memory-resident algorithms cannot load the whole
data set into the computer’s memory.12

In conclusion, attribute selection seems beneficial, especially in our experimental data sets where ex-
amples are described by great many attributes. LFS increases F1 by improving precision; it also reduces
computational costs.

7.3. Performance at different hierarchical levels

Let us now try to gain more insight by comparing the classification performance of HR-SVM-ALL,
H-SVM, and Clus-HMC, at different levels of the class hierarchies.

Note that the label-based metrics (Lb) are here better suited than the example-label based ones (ELb).
The ELb-metrics evaluate the performance along the class paths, such as C1 → C1.1 → C1.1.1, which
does not make much sense when evaluating each class-level independently.

Three factors are known to affect an induced classifier’s performance: (i) the training set size, (ii) the
number of positive examples, and (iii) the data distribution (e.g., the degree of imbalance). Hierarchical
domains add one more factor: the “propagated error” – the accuracy of lower-level classifiers is related
to that of the parent classifiers.

Table 13 summarizes the expected tendencies. Note that the accuracies of higher-level classifiers suf-
fer from highly imbalanced training data, and the accuracies of lower-level classifiers suffer from the
scarcity of positive training examples and from the propagated errors. As we go down the hierarchy, the
impact of these factors increases and the performance of the lower-level classifiers declines.

12In the Java implementation of HR-SVM, the attribute value type is a “double” (8 bytes). Therefore, at least 6.5 GB of
memory in the 32-bit system is needed to handle D18. On the other hand, Clus-HMC treats each value as an “integer” (4 bytes),
thus needing less memory space (3.2 GB).
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Table 13
Expected impact of four aspects: (i) the training-set size, (ii) the number positive examples, (iii) the degree of imbalance, and
(iv) the downward-propagated errors. “>” indicates an increase and “<” indicates a decrease

Classes #Training #Positive Imb. ratio Prop. errors
Upper levels > > > <
Lower levels < < < >

Table 14
Statistics for D0’s hierarchical levels

Level #Classes AvgPositive AvgTotal %AvgPositive
1 23 188.39 2,834.00 0.07
2 18 148.94 333.56 0.52
3 13 111.92 313.46 0.40
4 7 72.57 180.00 0.53
5 3 71.33 108.33 0.69

Table 15
The number of classifiers with F1 = 0 in D0

Level #Classes H-SVM HR-SVM-ALL Clus-HMC
1 23 14 0 4
2 18 9 0 1
3 13 5 0 2
4 7 2 0 0
5 3 2 0 0

Fig. 14. Comparing HR-SVM-ALL, H-SVM, and Clus-HMC
at different hierarchical levels in D0.

Fig. 15. Comparing F1 of HR-SVM-ALL, H-SVM, and
Clus-HMC at different class hierarchical levels in D16.

Let us first take a closer look at one of the domains: D0. Figure 14 plots the classification performance
at the different levels. We can see that HR-SVM-ALL outperforms H-SVM and Clus-HMC at all levels,
and H-SVM always lags behind the other two. As seen in Table 14, the performance at the highest level is
negatively affected by the highly imbalanced class representation. The percentage of positive examples
at this level is only 0.07%.

Even more insight is gained from Table 15 which gives the number of classifiers that incorrectly label
all examples as negative (which means that F1 = 0). Since the traditional SVM suffers from imbalanced
class representation, most classifiers in H-SVM have F1 = 0. However, R-SVM was designed in a way
that improves its “reaction” to imbalanced classes, and this is why there are no classifiers with F1 = 0 in
the case of HR-SVM-ALL. On the other hand, Clus-HMC fails to recognize examples of some classes
(resulting in F1 = 0).

In all other domains (apart from D17 and D18), the F1-results were quite similar to those shown in
Fig. 15 for D16. As we proceed to lower levels, F1 gradually decreases. This is caused by the decreasing
numbers of training examples (Table 16) and by the errors propagated from higher levels (Table 17). F1

at the fourth hierarchical level is slightly better than that at the third level because its ratio of imbalance
is lower. Comparing the three hierarchical classification systems, we see that HR-SVM-ALL exhibits
the best classification performance, whereas H-SVM is the worst.

In D17 and D18, Clus-HMC showed the best F1-results at all levels due to their data characteristic as
mentioned in Section 7.1.
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Table 16
Statistics for D16’s hierarchical levels

Level #Classes AvgPositive AvgTotal %AvgPositive
1 11 1093.27 9548.00 0.01
2 28 391.00 2814.82 0.21
3 41 188.22 795.83 0.34
4 34 162.68 318.71 0.56

Table 17
The number of classifiers with F1 = 0 in D16

Level #Classes H-SVM HR-SVM-ALL Clus-HMC
1 11 5 0 0
2 28 11 2 0
3 41 17 3 9
4 34 9 2 4

Based on all these results, we conclude that HR-SVM-ALL handles the imbalanced training sets par-
ticularly well at the upper levels of the class hierarchy where it clearly fares better than other systems.
Our system also takes better care of the propagated errors at the lower levels, which (usually) prevents
the creation of classifiers that fail to correctly predict any positive examples (F1 = 0).

8. Conclusion

The paper presented HR-SVM, a new top-down induction technique for multi-label classifiers in do-
mains with hierarchically organized classes. In designing it, we followed the common strategy that
induces a separate binary classifier for each node in the hierarchy, and employs higher-level classifiers
when creating the training sets for the induction of lower-level classifiers. The paper described our sys-
tem, and then reported experiments illustrating its performance as well as diverse aspects of its overall
behavior.

Top-down approaches often suffer from two problems: imbalanced class representation and top-down
error propagation. HR-SVM addresses them explicitly by the following four techniques: (i) exclusive-
parent training sets (EPT), (ii) attribute-selection module (LFS), (iii) a mechanism to correct false pos-
itives (FPC), and (iv) the correction of the majority-class bias. The first three can be regarded as data
pre-processing techniques that help generate smaller and not-so-imbalanced training sets, “enriched” by
examples misclassified by parent classifiers. The task of the last module, R-SVM, is to induce unbiased
SVM-hyperplanes.

Importantly, we argue that, in hierarchical classification, the usual metrics for performance evaluation
(precision, recall, and F1) are not ideal. By way of rectification, we introduced a new measure, “example-
label based macro-averaging,” that uses the harmonic mean of macro-averaging performances in two
dimensions: per example and per class.

We applied our system to eight real-world domains from the the field of gene-function prediction
of three organisms: S. cerevisiae, A. thaliana, and M. musculus. These data are available at the DTAI
website. In each domain, the data were annotated using their own functional hierarchy in Gene Ontology
(GO), whose structure is a directed acyclic graph (DAG).

Experimenting with these domains, we observed that our system significantly outperformed alternative
hierarchical-classification techniques such as H-SVM (a top-down hierarchical version of SVM) and
Clus-HMC (a “global” approach based on decision trees). Especially in D0, the F1-improvement of
HR-SVM over H-SVM is about 400%, while the induction costs are much lower. The explanation is that
the module EPT creates training sets that are less imbalanced, the module R-SVM reduces the number of
false negatives (which resulted in better recall), the module FPC decreases the number of false positives
(which leads to higher precision), and the module LFS removes irrelevant attributes (which saves a lot
of induction time).
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