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Abstract001

In this paper, we introduce DiscoGP, a novel002
framework for extracting self-contained mod-003
ular units, or sheaves, within LMs. These004
sheaves correspond to the models’ impressive005
zero-shot performance across a variety of tasks.006
Our DiscoGP framework extends the concept007
of functional circuits, widely explored in in-008
terpretability research, by introducing sheaves009
— subsets of connection edges and weight pa-010
rameters in an LM’s computation graph — as011
interpretation units. Our framework identifies012
these sheaves through a differentiable pruning013
algorithm that operates on both the computa-014
tion graph’s edge connections and the model’s015
weight parameters. This process reduces the016
LM to a sparse skeleton while preserving its017
core capabilities. Experimental results demon-018
strate that across a range of linguistic and rea-019
soning tasks, DiscoGP extracts sheaves that020
preserve 93-100% of the model’s task perfor-021
mance while comprising only 1-7% of the orig-022
inal weights and connections. Furthermore, our023
analysis reveals that, compared to previously024
identified LM circuits, the sheaves discovered025
by DiscoGP exhibit superior modularity and026
functional fidelity. Extending our method to027
the neuron level also unveiled novel insights028
into the inner workings of LLMs.1029

1 Introduction030

Transformer language models (LMs; Vaswani et al.,031

2017; Devlin et al., 2019; Radford et al., 2019; Raf-032

fel et al., 2020; OpenAI, 2023; Touvron et al., 2023)033

have demonstrated their incredible capabilities in034

solving various natural language tasks across dif-035

ferent fields. Yet, the exact mechanisms by which036

these models solve tasks remain largely unknown.037

Researchers in the field of interpretability therefore038

aim to provide human-understandable explanations039

of the computational mechanisms of these “black-040

boxed” LMs. Should the interpretation of LMs041

1Code for DiscoGP will be made publicly available online.
GitHub URL withdrawn for submission.
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Figure 1: Illustration of DiscoGP. By combining edge
and weight parameter pruning, DiscoGP enables better
performance and a neuron-level granularity.

become possible, it could lead to the improvement 042

of LMs with better controllability and performance, 043

and even germinate the next generation of explain- 044

able artificial intelligence (XAI) systems. 045

Now, a nascent “circuit”-based framework aim- 046

ing at explaining this process has emerged and pro- 047

vides the most convincing explanation of LM be- 048

haviours to date. Several approaches within this 049

framework decompose the computation process 050

of an LM into a directed acyclic graph (DAG) and 051

aim to identify the subset of model components and 052

connections (information flow) that correspond to 053

specific model behaviours, phenomena, and pro- 054

cesses. Initially, these circuits were identified man- 055

ually using various activation or attention patching 056

methods (Wang et al., 2022), and ACDC (Conmy 057

et al., 2023) automated the circuit discovery pro- 058

cess. Since then, several follow-up attempts have 059

been proposed to further advance the state-of-the- 060

art circuit discovery methods. 061

The term circuit, however, is used to refer to 062

several distinct concepts, even within the LM in- 063

terpretability community. We provide a survey of 064

the nomenclature (§2) and clarify our intention to 065

interpret the model. With a thorough and rigorous 066

definition of the computation graph, edge pruning, 067

and weight pruning, we introduce the new con- 068

cept of a sheaf : a subset of connection edges and 069

weight parameters in the computation graph that, 070

when executed in isolation, can preserve the orig- 071

inal model’s behaviour. Simply put, we seek to 072
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identify the interpretable sheaf of model compo-073

nents within the LM “haystack.” This novel sheaf074

discovery task fills a gap in current mechanistic075

interpretability research and complements ongoing076

automatic circuit discovery efforts. It enables us to077

identify a self-contained collection of model units078

that can perform a particular LM function in iso-079

lation. These sheaves offer a unique opportunity080

to manipulate self-contained units and gain novel081

insights into LMs’ internal workings.082

Moreover, prior automatic sheaf and circuit dis-083

covery methods share a crucial limitation: the com-084

putational power required is prohibitively large085

because the number of edges in the computa-086

tion graph grows quadratically (O(n2)) with the087

number of model components. This prohibits re-088

searchers to conduct sheaf and circuit discovery at089

the neuron level. Nonetheless, extending circuit090

analysis to the neuron level is particularly valuable,091

as recent investigations into the properties of MLP092

neurons (Geva et al., 2021; Dai et al., 2022; Meng093

et al., 2022; Niu et al., 2024; Hong et al., 2024)094

indicate a high degree of idiosyncrasy in the type095

of information and function associated with each096

neuron. For instance, Niu et al. (2024) and Dai et al.097

(2022) showed that modifying just a few neurons,098

or even a single neuron, can lead to substantial099

changes in the model’s behaviour. Therefore, refin-100

ing the granularity of interpretation to the neuron101

level could reveal important novel insights.102

Therefore, we introduce the Differentiable Sheaf103

Discovery with Joint Computation Graph Pruning104

(DiscoGP) framework, a novel method that ad-105

dresses the granularity and scaling problem by ap-106

plying joint edge and weight parameter pruning107

with differentiable masking. While the computa-108

tion graph is still defined at the relatively coarse109

level of attention heads and MLPs, as in other cir-110

cuit discovery methods, DiscoGP extends this ap-111

proach by introducing weight pruning within each112

individual computation graph node to enable finer,113

neuron-level interpretability.114

DiscoGP achieves state-of-the-art performance115

in sheaf detection: it identifies the sheaves for116

a wide range of tasks with the fewest edges and117

weight parameters while maintaining near-perfect118

performance compared to the original model’s per-119

formance. By extending the granularity to the neu-120

ron level, we unveil several critical insights into the121

model that was previously unavailable.122

Contribution: We begin with a proper defini-123

tion of sheaves, and provide a survey that aim at124

clarifying the various different usage of the term 125

circuit in relevant literature (§2). Then, we intro- 126

duce DiscoGP, a novel sheaf discovery framework 127

with joint pruning of weight parameters and com- 128

putation graph edges that enables individual neuron 129

level granularity (§3). Using DiscoGP, we can ob- 130

tain sheaves across a wide range of tasks that are 131

sparser and more faithful to the original model 132

compared to common baselines. 133

2 Sheaves and Circuits 134

In this section, we present a comprehensive def- 135

inition of the main task of sheaf discovery, and 136

discuss its similarities and differences compared to 137

the broad range of tasks often referred to as “cir- 138

cuit discovery” in the literature, as the term is used 139

inconsistently and can sometimes cause confusion. 140

In short, we aim to identify the self-contained set of 141

LM components that, when executed in isolation, 142

reproduce some behaviour or capability exhibited 143

by the full model. We start with a survey of the 144

different definitions of circuit discovery (§2.1), and 145

then introduce our sheaf-based framework by fram- 146

ing weight pruning (§2.2) and edge pruning (§2.3). 147

2.1 Survey: Circuits and Circuit Discovery 148

Circuit The term “circuit” has various meanings 149

within the LM interpretability community, depend- 150

ing on the context. Nanda (2022) described it as “a 151

fairly fuzzy and poorly defined term” that roughly 152

refers to “the sub part [sic] of a model that does 153

some understandable computation to produce some 154

interpretable features from prior interpretable fea- 155

tures.” Olah et al. (2020) considered circuits as a set 156

of features and the weighted connections between 157

them. Elhage et al. (2021) used the term “circuit” 158

to refer to the separable parts of the computation 159

process within each attention head. Because the 160

computation of a transformer model can generally 161

be considered linear, Elhage et al. (2021) argued 162

that the computation of the query and key matrices 163

and the output and value matrices can be consid- 164

ered as two largely independent circuits: the QK 165

circuit and the OV circuit. More recently, work 166

in the field typically decomposes an LM into its 167

“building blocks” and considers the collection of 168

these blocks and a subset of their connections as a 169

circuit; however, what constitutes building blocks 170

may differ from work to work. Wang et al. (2022) 171

referred to a circuit as the collection of attention 172

heads, while ACDC used the term “circuit” to refer 173
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to the subset of edges between attention heads and174

MLPs in the computation graph.175

Circuit Discovery The task of identifying the176

aforementioned circuits in pre-trained transformer177

LMs is called circuit discovery. Early studies typi-178

cally search for circuits manually on simple tasks179

such as rudimentary anaphora resolution (Wang180

et al., 2022) or simple arithmetic reasoning (Hanna181

et al., 2023), using a combination of interpretabil-182

ity tools including causal interventions (Vig et al.,183

2020; Meng et al., 2022) and logit lens (Geva184

et al., 2022, 2023; Yu et al., 2024a). More recently,185

ACDC (Conmy et al., 2023) automated the circuit186

discovery process. Specifically, they used the acti-187

vation patching technique (Goldowsky-Dill et al.,188

2023; Zhang and Nanda, 2023), or its approxima-189

tions (Nanda, 2023), to assess a connection edge’s190

importance by first knocking it out and observing191

its effect on the model’s final output. Beginning at192

the output node and proceeding in reverse topologi-193

cal order, they evaluate the effect of removing each194

of the node’s incoming edges individually. If the195

removal of an edge has a greater effect than a prede-196

termined threshold (τ ), the edge is included in the197

circuit; otherwise, it is pruned. Syed et al. (2024)198

extended ACDC and applied attribution patching199

to achieve improved results.200

Recent work has also explored other notions of201

a circuit, such as formulating circuits as collections202

of human-interpretable neural activation features203

(Huben et al., 2023; Marks et al., 2024; Yu et al.,204

2024b), or as distributed neural representations of205

proposed symbolic algorithms (Geiger et al., 2021;206

Wu et al., 2023). Most automated circuit discov-207

ery studies evaluate their methods based on their208

structural overlap with previously discovered or209

manually hardwired circuits (Conmy et al., 2023;210

Syed et al., 2024). While we concur with recent211

critiques of this evaluation metric (Hanna et al.,212

2024), we argue that the functional fidelity2 met-213

ric (measuring how well the circuit reproduces the214

original model’s performance) is a more appropri-215

ate criterion for this task.216

2.2 Weight Pruning217

Weight pruning is a technique widely used in the218

model interpretability community to identify sub-219

networks (a subset of a model’s weight parameters)220

associated with specific functions of a neural net-221

work (Cao et al., 2021; Csordás et al., 2021; Zhang222

2The term is also referred to as functional faithfulness.

et al., 2021; Guo et al., 2021; De Cao et al., 2022). 223

More recently, Lepori et al. (2023) extended this 224

work to transformer-based language models. Fig- 225

ure 2a provides an overview of weight pruning. 226

This line of research was encouraged by Frankle 227

and Carbin’s (2018) the Lottery Ticket Hypothesis, 228

which states that it is possible to identify a much 229

smaller subnetwork within a model. When this 230

subnetwork is trained from scratch with a similar 231

computational budget, it can achieve performance 232

comparable to that of the original model. Using 233

the continuous sparsification method (Figure 2a), 234

Savarese et al. (2020) demonstrated that a subnet- 235

work can be directly extracted from a neural net- 236

work that maintains task performance without the 237

need for retraining, as originally suggested in the 238

hypothesis. The method is also referred to as dif- 239

ferentiable masking (De Cao et al., 2022). 240

2.3 Computation Graph and Edge Pruning 241

Computation Graph Elhage et al. (2021) intro- 242

duced the concept of the residual stream, providing 243

a clear and concise view of the computation within 244

a transformer block. Each block consists of an at- 245

tention module followed by an MLP module. Let 246

x
(i)
0 be the input to the i-th transformer block, with 247

H(i) representing the set of attention heads and 248

fi denoting the MLP module, we can write the 249

computation of a Transformer layer (i-th layer) as: 250

xi+1 =

xmid
i︷ ︸︸ ︷

xi +
∑

h∈H(i)

h(xi)+fi(x
mid
i ). (1) 251

To demonstrate the concept of a computation graph, 252

let us consider a simple one layer transformer 253

model with the input embedding x0. We can “un- 254

roll” the residual stream (Nanda and Bloom, 2022) 255

as shown in (2). From the result, we can tell that 256

final output of the transformer block consists of 4 257

input sources: the original word embedding input 258

x0, the output of the two attention heads h1(x0) 259

and h2(x0), as well as the output of the MLP mod- 260

ule f1(x0 + h1(x0) + h2(x0)). 261

x
(1)
1 = x0 + h1(x0) + h2(x0)

x
(1)
2 = x

(1)
1 + f1(x

(1)
1 ) = x0 + h1(x0)+

h2(x0) + f1(x0 + h1(x0) + h2(x0)).

(2) 262

From the unrolled residual stream, we can under- 263

stand how information flows within the transformer 264

block. Using (2) as an example, the output (x(1)2 ) is 265
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(a) Weight pruning is performed by directly
setting the value of a weight parameter to zero.
In practice, previous work has shown that dif-
ferentiable masking is one of the most effec-
tive methods for weight pruning. Specifically,
a differentiable binary mask is applied to each
weight parameter, and the algorithm optimises
the value of these masks to identify the subnet-
work that achieves the best task performance.

 output:

input:

MLP

Attention
Heads

(b) The computation graph of the
single-layer transformer block exam-
ple. This graphical representation cor-
responds to the unrolling of the resid-
ual stream in (2). The top-level terms
are colour-coded to match those in (2).

 output:

input:

x
(1)
2 = x0 + h1(x0) + h2(x0)

+m1(x0 + h1(x0) + h2(x0))

(c) “Cutting off” an edge is equivalent
to removing a term from the residual
stream in the zero-ablation setting. In
other settings (mean or interchange),
the term is replaced with a new value.

Figure 2: Illustration of the formulation of sheaf discovery: computation graph, weight pruning and edge pruning.

derived from the outputs of the two attention heads266

(h1, h1), the MLP (f1) output, and the original in-267

put embedding (x0). The attention heads only take268

x0 as input, while f1 receives both the outputs of269

the attention heads and x0. Based on this informa-270

tion flow, we can construct a computation graph as271

shown in Figure 2b.272

Edge Pruning The introduction of computation273

graphs allows us to analyse the impact of informa-274

tion flow between model components. By pruning3275

a connection edge, we can examine how this modi-276

fication affects the model’s final output, revealing277

the importance of that specific information flow. As278

shown in Figure 2c, the pruning of an edge is equiv-279

alent to the removal of a term in the unrolled resid-280

ual stream, which can be achieved either through281

greedily applying causal mediation methods (Vig282

et al., 2020; Finlayson et al., 2021; Meng et al.,283

2022) to identify important edges (Conmy et al.,284

2023), or by leveraging gradient-based techniques285

to mask out unessential component connections286

(Bhaskar et al., 2024).287

3 DiscoGP: Sheaf Discovery288

Weight pruning and circuit pruning are not mu-289

tually exclusive, so why not apply both? Here,290

we introduce the term “sheaf” to describe the in-291

tersection of circuit pruning (edge pruning) and292

subnetwork pruning (weight pruning). Let G =293

{E, V } represent the computation graph, and let294

Θ denote the set of all parameters of the lan-295

guage model. The task of identifying a sheaf296

involves searching for two binary masks, m =297

(mθ,mE) ∈ {0, 1}|θ|+|E|, which correspond to298

3Also referred to as knockout, cut-off, or ablation.

the pruned weights and edges, respectively. Simi- 299

lar to prior weight pruning approaches, DiscoGP 300

makes both binary masks differentiable, enabling 301

the search for a globally optimal solution across 302

weight and edge pruning. This section outlines the 303

sheaf discovery task and the DiscoGP joint edge 304

and weight pruning algorithm. 305

In summary, sheaf discovery has three steps: 306

1. For an LM capability, define a task correspond- 307

ing to the capability by constructing a dataset; 308

2. Search for a sheaf (a collection of edges and 309

weight parameters) corresponding to the dataset; 310

3. Evaluate the sheaf to determine whether the 311

model can still perform the task using only the 312

sheaf, i.e., with all other components or connec- 313

tions turned off. 314

These three steps of sheaf discovery share some 315

superficial resemblance to the three steps of the 316

“automatic circuit discovery workflow” proposed by 317

Conmy et al. (2023). They argue that researchers 318

should “perform an extensive and iterative series 319

of patching experiments with the goal of removing 320

as many unnecessary components and connections 321

from the model as possible” (Conmy et al., 2023). 322

Our framework differs in two key aspects: (1) we 323

do not impose any restrictions on patching-based 324

approaches; and (2) we aim to identify sheaves that 325

are self-contained — in other words, while ACDC’s 326

goal is to identify the most salient components and 327

edges, it does not consider whether the resulting 328

“circuits” can perform the task by itself. 329

3.1 Joint Weight and Edge Pruning 330

Similar to previous work on differentiable mask 331

learning (Louizos et al., 2018; Csordás et al., 2021; 332
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Cao et al., 2021; De Cao et al., 2022; Bayazit et al.,333

2023), DiscoGP models each mask mi ∈ m as a334

random variable, parameterised by a hard-concrete335

or gumbel-sigmoid distribution. We first compute336

a continuous score si ∈ [0, 1]:337

si = σ
( li − log logU1

logU2

τ

)
, (3)338

where τ ∈ (0, inf) is a temperature hyperparame-339

ter, li is a learnable logit parameter of a sigmoid340

distribution σ(·), and U1,U2 ∼ Uniform(0, 1) are341

random variables drawn from a uniform distribu-342

tion. We then use the straight-through estimator343

(Bengio et al., 2013) to convert the sampled si into344

a binary mask variable:345

mi = [1si>0.5 − si]detach + si, (4)346

where 1 represents the indicator function, and347

[·]detach is an operator that blocks gradient flow dur-348

ing backpropagation. This approach makes the349

binary mask mi a differentiable function of the350

logit li, allowing it to be optimised through back-351

propagation for specific objectives.352

Sheaf Searching Objectives Given a task dataset353

D = {x, ŷ}, where x represents the input and ŷ354

is the output of the original model, our aim is to355

identify a set of masks m on weights and edges,356

such that the pruned sheaf produces results as close357

to the original model as possible. To achieve this,358

we define the functional fidelity loss as the nega-359

tive log-likelihood of the original model’s predicted360

label in the output distribution of the pruned circuit:361

Lfidelity = −
∑
i

log pm(ŷi|xi). (5)362

Moreover, we want the sheaf to contain as much363

function-specific weight and edges as possible. In364

other words, when the detected sheaf is removed365

from the original model, the remaining computa-366

tional graph should perform at near-random levels367

on D. Let m̃ = 1−m denote the reverse mask of368

m, we define the completeness loss as the cross-369

entropy between the output distribution of the com-370

plementary sheaf and a uniform distribution over371

the label space {yk}Kk=1:372

Lcomplete = −
∑
i

K∑
k=1

1

K
log pm(yk|xi). (6)373

Dataset Example Prompt Correct Incorrect

BLiMP Raymond is selling this sketch sketches

IOI When Mary and John went to the
store, John gave a drink to

Mary John

OQA The capital city of Canada is Ottawa *not unique

Table 1: An overview of the tasks and datasets.

Lastly, we want the sheaf to be as sparse as possible. 374

Therefore, we minimize the sparsity loss: 375

Lsparse = Lsparse−θ + Lsparse−E

=
1

|mθ|

|mθ |∑
i=1

σ(li) +
1

|mE |

|mE |∑
i=1

σ(li).
(7) 376

The final objective function is then comprised of a 377

weighted mixture of the three loss terms: 378

LGP = Lfidelity + λcLcomplete + λsLsparse, (8) 379

where λc, λs are hyperparameters that regulate rel- 380

ative loss importance. 381

DiscoGP Implementation Details Due to page 382

limitations, other optimisation techniques we im- 383

plemented, including post-hoc sheaf pruning and 384

split QKV pruning, are introduced in Appendix A. 385

4 Experimental Setup 386

Evaluation: We evaluate DiscoGP and the base- 387

lines across three tasks (Table 1): syntactic agree- 388

ment from the BLiMP corpus (Warstadt et al., 389

2020), the indirect object identification (IOI) task 390

introduced by Wang et al. (2022), and factual in- 391

formation from open-domain question answering 392

(OQA) with the PARAREL (Elazar et al., 2021) 393

dataset. These three tasks provide a comprehensive 394

coverage of syntactic, semantic and factual infor- 395

mation. See Appendix B for more information. 396

Metric-wise, we report the functional fidelity: 397

this includes the sheaf’s accuracy and the KL diver- 398

gence of the sheaf’s output (sheaf accuracy refers 399

to the task accuracy when all pruned components 400

are “turned off” and sheaf KL divergence is mea- 401

sured between the sheaf’s output and that of the 402

original model). We also report completeness or 403

the complement sheaf accuracy (i.e., the accuracy 404

when the sheaf is turned off and all other model 405

components are kept on), as well as sparsity (both 406

edge and weight sparsity). These evaluation met- 407

rics follows the typical fidelity, completeness and 408

sparisty scheme used by other mechanistic inter- 409

pretability work (Wang et al., 2022; Conmy et al., 410

2023; Syed et al., 2024; Bhaskar et al., 2024). 411
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Task Discovery Sheaf Acc. (%) KL Div. Comp. Acc. (%) Weight Density (%) Edge Density (%)
Method (higher is better) (lower is better) (random∗ is better) (lower is better) (lower is better)

ACDC 83.3 0.121 42.7 100 6.48
EAP 89.3 0.091 53.9 100 4.88

anaphor gender agr. Edge Pruning 88.4 0.137 49.7 100 6.62
(AGA) Weight Pruning 97.1 0.078 50.2 3.01 100

DiscoGP (Ours) 98.5 0.074 49.9 1.58 3.88

ACDC 81.0 0.250 67.0 100 6.26
EAP 95.3 0.049 56.3 100 8.66

anaphor number agr. Edge Pruning 87.9 0.178 39.3 100 2.78
(ANA) Weight Pruning 97.7 0.076 40.3 2.79 100

DiscoGP (Ours) 99.7 0.043 39.2 1.36 1.94

ACDC 85.3 0.129 46.3 100 7.35
EAP 85.7 0.138 40.6 100 9.83

det. noun agr. 1 Edge Pruning 83.7 0.114 59.3 100 2.27
(DNA) Weight Pruning 95.3 0.099 53.0 0.280 100

DiscoGP (Ours) 95.3 0.098 51.7 0.187 1.92

ACDC 62.7 0.419 39.3 100 6.61
EAP 60.0 0.434 38.3 100 8.92

det. noun irr. 1 Edge Pruning 67.1 0.374 48.0 100 2.46
(DNA i) Weight Pruning 94.3 0.103 53.6 0.263 100

DiscoGP (Ours) 95.8 0.102 47.2 0.244 1.68

ACDC 82.4 0.169 52.3 100 7.04
EAP 83.5 0.153 45.7 100 9.90

det. noun adj. 1 Edge Pruning 50.3 0.412 47.6 100 7.14
(DNA a) Weight Pruning 94.7 0.136 49.9 0.565 100

DiscoGP (Ours) 95.5 0.118 45.3 0.520 5.71

ACDC 50.2 0.120 41.4 100 9.46
EAP 60.7 0.128 44.7 100 6.89

det. noun adj. irr. 1 Edge Pruning 56.3 0.348 47.8 100 12.9
(DNA ai) Weight Pruning 94.6 0.127 49.9 0.569 100

DiscoGP (Ours) 95.1 0.118 45.3 0.496 6.22

ACDC 51.6 0.730 50.6 100 2.45
EAP 58.3 0.756 55.2 100 3.48

IOI Edge Pruning 100 0.032 49.9 100 2.97
Weight Pruning 98.4 0.043 57.5 1.87 100
DiscoGP (Ours) 100 0.020 49.2 1.79 2.03

ACDC 1.0 0.379 0.6 100 5.35
EAP 0.9 0.341 0.6 100 5.92

PARAREL Average† Edge Pruning 90.4 0.039 0.7 100 2.97
Weight Pruning 91.8 0.032 0.8 2.83 100
DiscoGP (Ours) 93.1 0.023 0.62 2.77 2.91

Table 2: Sheaf Discovery Performance Comparison. DiscoGP achieves the best performance across all tasks, using
the fewest weight parameters and edges. The best-performing methods are highlighted in bold. ∗: For complement
sheaf accuracy, successful searches are expected to yield random performance. Therefore, scores close to random
indicate good performance, and direct comparison of complement scores is not meaningful. BLiMP and IOI’s
expected random performance is 50%, and PARAREL’s expected random performance is 0%. †: Due to page limits,
the full PARAREL results are listed in Appendix D. The PARAREL results support the same findings.

LM Selection: We compare to the baseline412

methods using GPT-2 base (small) model, as it413

is the only model supported by the original imple-414

mentation of every baseline method.415

Baseline Methods: We compare DiscoGP with416

all the major prior automatic sheaf discovery417

methods. We categorize the methods into (1)418

threshold-based greedy search algorithms that in-419

cludes ACDC (Conmy et al., 2023) and EAP (Syed420

et al., 2024); and (2) differentiable-masking-based421

algorithms including the weight pruning (WP)422

methods (Louizos et al., 2018; Cao et al., 2021;423

Sanh et al., 2020; De Cao et al., 2022), edge prun- 424

ing (EP) method (Bhaskar et al., 2024), and our 425

novel joint pruning method. See Appendix C for 426

our reproduction details. 427

5 Experiment Results 428

Table 2 shows the results of DiscoGP compared 429

to the baseline methods. Due to page limits, 430

full results for the OQA task are shown in Ap- 431

pendix D; the breakdown supports the same find- 432

ings. For each experiment, we run the sheaf dis- 433
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covery method five times and report average perfor-434

mance. GPT-2 achieves near-perfect performance435

on all BLiMP and IOI tasks, so we conduct our436

experiments on the full datasets. However, GPT-2437

performs worse on the OQA PARAREL tasks, so438

we run experiments only on data samples where439

the original model answers the question correctly,440

discarding prompts where it fails, as it is unclear441

whether searching for a sheaf over a function the442

LM does not have would yield meaningful results.443

Overall, we can find that DiscoGP outperforms444

all baseline sheaf discovery methods. It achieves445

the highest functional fidelity — either measured446

in task accuracy or KL divergence — compared447

to other baselines while using the fewest weight448

parameters or connection edges.449

Discussion: Greedy threshold-based methods450

may not be suitable for sheaf discovery. In-451

terestingly, we observe that the performance of452

greedy threshold-based methods (ACDC and EAP)453

is less stable across tasks. For the more complex454

tasks, these methods reach near-random perfor-455

mance when given the same sparsity budget as456

DiscoGP. This is especially true for the PARAREL457

tasks (Appendix D). These surprising results, pace458

ACDC and EAP, do not argue for the validity459

of their respective methods, but rather highlight460

the difference between sheaf discovery and their461

patching-based automatic circuit discovery.462

Now, we want to take the opportunity to elab-463

orate on the difference between sheaf discovery464

and automatic circuit discovery. First and fore-465

most, the two tasks differ in their goals and motiva-466

tions. Let us revisit the famous example studied by467

Wang et al. (2022): “When Mary and John went to the468

store, John gave a drink to ”, where Mary is the469

correct answer and John is the incorrect one. The470

automatic circuit discovery task aims to identify all471

the important connection edges and components472

that, when perturbed, cause the greatest change to473

the final output, and potentially steering the model474

away from responding Mary to John. Our results475

show that simply taking the collection of these im-476

portant components does not always yield a self-477

contained mechanism that can perform the task in478

isolation. Sheaf discovery, on the other hand, aims479

to capture and identify that self-contained mecha-480

nism (the sheaf) and fill this research gap.481

Therefore, it is appropriate for ACDC and EAP482

to apply ablation-based methods for automatic cir-483

cuit discovery. These include mean ablation, which484

Task Clean-Ablated Edge similarity

Mean Interchange Random

Agreement 0.878 0.907 0.582
IOI 0.943 0.996 0.597
OQA PARAREL 0.951 0.960 0.556

Table 3: Average cosine similarity between clean and
corrupted edge hidden representations across three
datasets. Mean and interchange ablations do not sub-
stantially affect the models’ overall performance.

Task Evaluation Tasks
AGA ANA DNA DNA i DNA a DNA ai

AGA - 98.0 99.7 99.7 91.9 94.8
ANA 94.0 - 99.7 100 91.9 92.0
DNA 92.3 86.3 - 93.0 90.3 91.2
DNA i 91.3 80.3 93.7 - 94.4 93.1
DNA a 93.0 94.6 94.2 90.5 - 94.9
DNA ia 91.7 90.1 92.3 94.5 94.2 -

Orig. 99.0 100 94.7 95.3 96.0 95.7

Table 4: Composing sheaves can largely preserve func-
tional performance. Each entry shows the performance
(accuracy in %) of a composed circuit (row + column)
evaluated on the task associated with the column. For
example, the value in column AGA, row ANA shows
the performance of the composed circuit (ANA + AGA)
on the AGA task. Original (non-composed) sheaf per-
formance is listed in the final row for reference.

sets the activation to the average output across a 485

reference distribution obtained by running a sample 486

dataset through the model, and interchange abla- 487

tion, which replaces the activation with its value 488

from a corrupted input, created by modifying spe- 489

cific input tokens. However, these ablation methods 490

may not be suitable for sheaf discovery, as they still 491

retain a large amount of task-related information 492

(Table 3). This observation is supported by recent 493

work (Adolfi et al., 2025; Shi et al., 2024) showing 494

that these ablation- and patching-based methods 495

may not achieve optimal functional fidelity. 496

6 Analyses and Findings 497

Finding 1: Sheaves identified by DiscoGP can 498

be composed while preserving the functionality. 499

We find that functional composition of sheaves is 500

possible under the DiscoGP framework. That is, 501

suppose we have two sheaves that perform task A 502

and task B, respectively. Simply composing their 503

masks, m = mA ∪mB , can yield a new sheaf that 504

performs both tasks with largely the same perfor- 505

mance. Table 4 shows the performance of such 506

compositions across different BLiMP paradigms. 507

Overall, we observe good composition perfor- 508

mance, with the composed sheaves’ accuracies 509

reaching 80-100% across all BLiMP tasks. To 510
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Sheaf 1 Sheaf 2 Edge Overlap Weight Overlap

AGA DNA 14.86% (251) 2.69% (8020)
ANA DNA 16.19% (277) 1.12% (14816)

ANA AGA 18.32% (266) 0.91% (17693)
DNA DNA irr 21.07% (317) 4.72% (69364)
DNA DNA adj 18.46% (332) 4.96% (74782)
DNA DNA irr adj 18.24% (323) 6.06% (96727)

Table 5: Sheaf overlap across different BLiMP tasks.
The results indicate a trend where similar tasks exhibit
higher sheaf overlaps. The overlap percentage are fol-
lowed by the exact number of overlaps in brackets.

the best of our knowledge, our result is the first511

successful sheaf or circuit composition in the wild.512

Mondorf et al. (2025) studied circuit composition,513

but their experiments were limited to synthetic toy514

models generated using Tracr (Lindner et al., 2023).515

We show that sheaves in real-world transformer516

models can also be composed to achieve task unity.517

This suggests that some degree of modularity has518

emerged in LMs through the pre-training process.519

We hope this finding will motivate future work on520

modularity and sheaf composition.521

Finding 2: Sheaf similarity reflects functional522

similarity. Table 5 illustrates the overlap levels523

between different sheaves. The overlap percentages524

are calculated by dividing the number of overlap525

cases by the size of the logical union of the two526

masks. In this analysis, we only considered the527

agreement tasks as their task similarity is easier528

to perceive. BLiMP offers several variants of the529

DNA tasks, and we observed a relatively high level530

of sheaf overlap in terms of weights and edges531

among them. The ANA and AGA tasks exhibit532

greater similarity to each other compared to DNA533

tasks, as ANA and AGA follow similar templates534

(see Appendix B). This similarity is reflected in535

the level of edge overlap. Curiously, the weight536

overlap between the AGA and the ANA sheaves537

is low. We conjecture that this distinction between538

weight and edge overlap is due to the different539

roles they play: weights store information, while540

edges guide the function of the task. While ANA541

and AGA share similar templates (and therefore542

exhibit higher edge overlap), performing the task543

requires distinct parametrized information (result-544

ing in lower weight overlap).545

Finding 3: Unveiling the factual recall pipeline546

in GPT. Lastly, we confirm the factual recall547

pipeline hypothesis: that recall occurs in two dis-548

tinct stages (Meng et al., 2022; Geva et al., 2023;549

Niu et al., 2024; Hernandez et al., 2024). The left550
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Figure 3: Left: Number of unmasked MLP and attention
weights at each layer of the capital city OQA sheaf.
Right: Number of edges ending at each layer from
preceeding MLPs to current-layer attention heads and
from preceeding attention heads to current-layer MLP.

panel of Figure 3 illustrates the layer-wise average 551

number of MLP and attention weight parameters re- 552

tained in the 12 relation-specific DiscoGP sheaves 553

learned from PARAREL. We observe that MLPs re- 554

tain substantially more weights in the OQA sheaves 555

compared to attention heads, especially in the lower 556

transformer layers. This finding aligns with recent 557

work that observed MLP sublayers function as key- 558

value memory for factual knowledge extraction 559

(Geva et al., 2022). Conversely, the right panel 560

of Figure 3 shows the number of sheaf edges at 561

each layer, detailing connections from lower-layer 562

attention heads to current-layer MLPs (Attention to 563

MLP) and from preceding MLPs to current-layer 564

attention heads (MLP to Attention). Notably, the 565

set of connections in upper layers is dominated by 566

MLP-to-attention edges. This observation supports 567

recent findings in mechanistic interpretability re- 568

search suggesting that attention heads play a major 569

role in propagating the retrieved factual knowledge 570

from early-site MLPs to upper transformer layers, 571

thereby selecting the most relevant information for 572

answering questions (Geva et al., 2023). 573

7 Conclusion 574

In this work, we propose a novel sheaf discovery 575

task that addresses the research gap left by previous 576

automatic circuit discovery studies. We also intro- 577

duce DISCOGP, a state-of-the-art sheaf discovery 578

framework that identifies sheaves with the high- 579

est functional fidelity using the fewest connections 580

and edges, by combining weight and edge prun- 581

ing. This method enables neuron-level granularity 582

and reveals several novel insights into the internal 583

workings of LLMs (sheaf modularity and overlap), 584

while also confirming previously observed trends 585

(the factual recall pipeline). We hope our work 586

inspires further research into sheaf discovery as we 587

edge closer to prying open the LM “black box.” 588
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Limitations589

While our experimental setup is sufficiently com-590

prehensive for the purposes of this study, there is591

always room to expand the range of tasks and lan-592

guage models evaluated. We focus on GPT-2 to593

enable direct comparisons with other publicly avail-594

able systems, but future work could consider larger595

or more recent models. Additionally, our exper-596

iments are limited to English, and extending the597

analysis to other languages would help assess the598

generality of our findings.599
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A DiscoGP Implementation Details 882

Post-hoc Sheaf Pruning Since the training ob- 883

jective (8) does not consider graph connectivity, 884

we can further simplify the model by (1) removing 885

a node v from the computation graph if all of its 886

weights have been pruned, and (2) performing a re- 887

verse BFS from the output node to eliminate edges 888

that do not contribute to the final result. 889

Split QKV Pruning Following Conmy et al. 890

(2023), we separate the query (Q), key (K) and 891

value (V) activations and introduce an “output” 892

node within each attention head. Figure 4 shows 893

an illustration of the configuration. 894

B Evaluation Tasks & Data 895

BLiMP BLiMP (Warstadt et al., 2020) consists 896

of 67 individual datasets, each containing mini- 897

mally different sentence pairs that contrast in gram- 898

matical acceptability and isolate specific phenom- 899

ena in syntax, morphology, or semantics. However, 900

BLiMP was designed for bidirectional LMs such 901

as BERT, which require the model to attend to both 902

Figure 4: Split QKV Pruning.

11

https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.18653/v1/2024.findings-emnlp.466
https://doi.org/10.18653/v1/2024.findings-emnlp.466
https://doi.org/10.18653/v1/2024.findings-emnlp.466


Agreement Phenonemon Good sentence Bad sentence Converted input query True answer False answer

Anaphor Gender Agreement Katherine can’t help her-
self.

Katherine can’t help him-
self.

Katherine can’t help herself himself

Anaphor Number Agreement Susan revealed herself. Susan revealed them-
selves.

Susan revealed herself themselves

Det Noun Agr. 1 Raymond is selling this
sketch.

Raymond is selling this
sketches.

Raymond is selling this sketch sketches

Det Noun Agr. Irr. 1 Laurie hasn’t lifted those
cacti.

Laurie hasn’t lifted those
cactus.

Laurie hasn’t lifted those cacti cactus

Det Noun Agr. with Adj. 1 Rebecca was criticizing
those good documen-
taries.

Rebecca was criticizing
those good documentary.

Rebecca was criticizing
those good

documentaries documentary

Det Noun Agr. with Adj. Irr. 1 Some waiters broke this
lost foot.

Some waiters broke this
lost feet.

Some waiters broke this
lost

foot feet

Table 6: Examples of the BLiMP and their converted data.

Templates

Then, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT] to [A]

Then, [B] and [A] had a lot of fun at the [PLACE]. [B] gave a [OBJECT] to [A]

Then, [B] and [A] were working at the [PLACE]. [B] decided to give a [OBJECT] to [A]

Then, [B] and [A] were thinking about going to the [PLACE]. [B] wanted to give a [OBJECT] to [A]

Then, [B] and [A] had a long argument, and afterwards [B] said to [A]

After [B] and [A] went to the [PLACE], [B] gave a [OBJECT] to [A]

When [B] and [A] got a [OBJECT] at the [PLACE], [B] decided to give it to [A]

When [B] and [A] got a [OBJECT] at the [PLACE], [B] decided to give the [OBJECT] to [A]

While [B] and [A] were working at the [PLACE], [B] gave a [OBJECT] to [A]

While [B] and [A] were commuting to the [PLACE], [B] gave a [OBJECT] to [A]

After the lunch, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT] to [A]

Afterwards, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT] to [A]

Then, [B] and [A] had a long argument. Afterwards [B] said to [A]

The [PLACE] [B] and [A] went to had a [OBJECT]. [B] gave it to [A]

Friends [B] and [A] found a [OBJECT] at the [PLACE]. [B] gave it to [A]

Table 7: Sentence templates for generating the IOI dataset.

Placeholder Type Candidate Infilling Words

[A] and [B] (names) Michael, Christopher, Jessica, Matthew, Ashley, Jennifer, Joshua
Daniel, David, James, Robert, John, Joseph, Andrew, Ryan,
Bran Justin, Sarah, William, Jonathan, Stephanie, Brian, Nicole,
Nicho Heather, Eric, Elizabeth, Adam, Megan, Melissa, Kevin,
Steven, Timothy, Christina, Kyle, Rachel, Laura, Lauren, Am-
ber, Brittan Richard, Kimberly, Jeffrey, Amy, Crystal, Michelle,
Tiffany, Jere Mark, Emily, Aaron, Charles, Rebecca, Jacob,
Stephen, Patrick, Kelly, Samantha, Nathan, Sara, Dustin, Paul,
Angela, Tyler, Scot Andrea, Gregory, Erica, Mary, Travis, Lisa,
Kenneth, Bryan, Lin Jose, Alexander, Jesse, Katie, Lindsay,
Shannon, Vanessa, Court Alicia, Cody, Allison, Bradley, Samuel.

[PLACE] store, garden, restaurant, school, hospital, office, house, station.

[OBJECT] ring, kiss, bone, basketball, computer, necklace, drink, snack.

Table 8: Candidate infilling words of IOI sentence templates.
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Relation ID Relation No. of queries Sample Query True answer

P103 native language 977 The mother tongue of Victor Horta is Dutch
P138 named after 645 Rawlings Gold Glove Award, which is named for glove
P159 headquarters location 967 The headquarter of Strait Shipping is located in Wellington
P176 manufacturer 982 Honda RA272 is produced by Honda
P264 record label 429 Johnny Carroll’s record label is Decca
P279 subclass of 964 Nucleoporin 62, a type of protein
P30 continent 975 Romulus Glacier is located in Antarctica
P407 language of work or name 877 Ten Years Gone is a work written in English
P449 original network 881 Himalaya with Michael Palin was originally aired on BBC
P495 country of origin 909 Mundo Obrero was from Spain
P1376 capital of 234 Guangzhou is the capital of Guangdong
P36 capital 703 The capital city of Porto District is Porto

Table 9: PARAREL relations and sample queries used for circuit discovery.

preceding and following context. Therefore, we use903

the six BLiMP paradigms applicable to decoder-904

only LMs (specifically GPT-2). See Table 6 for905

example contrasting sentence pairs and their corre-906

sponding query prompts for circuit discovery.907

Indirect object identification Wang et al. (2022)908

created dataset samples for IOI using templates909

with random single-token names, places and items.910

We follow their data curation pipeline by taking911

the same set of 15 templates and candidate infilling912

words to generate our circuit discovery dataset. At913

each trial, we randomly draw a template and a set914

of infilling tokens to construct a full sentence. We915

then convert the generated sentence into a binary916

classification question, where the input prompt is917

the sentence prefix without the last indirect object,918

and the two candidate next tokens are the indirect919

object and the subject tokens. See Table 7 and 8920

for a complete list of IOI sentence templates and921

candidate infilling words.922

PARAREL We use the PARAREL dataset by923

Elazar et al. (2021) that consists of 38 relation types924

and 27,738 (subject, relation, object) fact triples925

such as (Canada, capital city, Ottawa). We then926

use the templates created by (Dai et al., 2022) to927

convert each fact triple into multiple query prompts928

(e.g. “The capital city of Canada is ”). We take929

prompts generated from triples with 12 out of 38930

PARAREL relations that satisfy the following two931

conditions: 1) there is a unique object entity an-932

swer for each (subject, relation) pair; and 2) the ob-933

ject word always comes at the end of the template-934

generated sentence so that it can be predicted by935

an autoregressive language model. We finally ob-936

tained a total of 9,543 queries as our dataset of937

open-domain question answering, and we learn a938

circuit for each relational dataset for every circuit939

discovery method. See Table 9 for a list of the 12940

relations we used together with the example fact941

triples and queries. 942

C Baseline Methods 943

We obtain the original implementations released by 944

the authors and adapt them to work with the same 945

task and configurations as DiscoGP.4 946

For the threshold-based greedy search algo- 947

rithms, since performance is not an objective in the 948

circuit discovery process, we can obtain circuits 949

with any level of sparsity by adjusting the thresh- 950

olds. Therefore, we tune the threshold τ for each 951

task and report the result that has a comparable — 952

and larger — sparsity budget than DiscoGP. This 953

puts ACDC and EAP at an advantage compared 954

to DiscoGP in the sparsity–performance trade-off, 955

yet our results show that DiscoGP still outperforms 956

both. 957

D Detailed PARAREL Results 958

Table 10 lists our PARAREL results. Again, 959

DiscoGP achieves the best performance across all 960

tasks while mostly using the fewest weight param- 961

eters and edges. The PARAREL task differs from 962

the BLiMP and IOI tasks in that test set and train- 963

ing set performance diverge significantly. This is 964

expected, as factual information tends to be more 965

dispersed. For example, Dai et al. (2022); Niu et al. 966

(2024) found that each piece of factual information 967

(e.g., Canada’s capital is Ottawa) can be attributed 968

to a handful of neurons, while Niu et al. (2024) 969

found that the entire determiner–noun agreement 970

can be attributed to the same amount of neurons. 971

4Edge pruning: https://github.com/princeton-nlp/
Edge-Pruning, ACDC: https://github.com/
ArthurConmy/Automatic-Circuit-Discovery/
and EAP https://github.com/Aaquib111/
edge-attribution-patching.
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Task Discovery Test Set Acc. Train Set Acc. KL Div. Comp. Acc. (%) Weight Density (%) Edge Density (%)
Method (higher is better) (higher is better) (lower is better) (random∗ is better) (lower is better) (lower is better)

ACDC 0.30 0.27 0.3194 1.20 100 4.57
EAP 1.18 1.63 0.3900 0.08 100 6.42

P30 Edge 92.1 89.5 0.0115 0.90 100 2.34
Weight 86.8 92.6 0.0093 0.23 3.86 100

DiscoGP 95.6 92.6 0.0076 0.35 3.64 3.01

ACDC 0.72 0.86 0.3706 0.42 100 5.99
EAP 1.18 1.86 0.3272 1.21 100 4.59

P36 Edge 62.7 90.5 0.0164 0.86 100 3.45
Weight 67.3 90.3 0.0191 1.04 4.54 100

DiscoGP 69.2 91.1 0.0094 0.85 4.17 3.22

ACDC 0.54 1.16 0.2913 0.36 100 5.18
EAP 0.93 0.57 0.3329 0.51 100 5.32

P103 Edge 91.4 88.1 0.0345 0.88 100 2.02
Weight 83.0 87.4 0.0231 0.96 4.35 100

DiscoGP 93.5 89.7 0.0202 0.15 4.7 3.36

ACDC 0.96 0.59 0.3096 1.29 100 4.99
EAP 1.98 0.78 0.2429 0.31 100 5.40

P138 Edge 64.9 96 0.022 1.52 100 2.33
Weight 63.3 92.4 0.0375 0.73 1.57 100

DiscoGP 68.0 94.9 0.029 0.46 1.34 1.9

ACDC 0.56 1.64 0.3630 0.35 100 4.92
EAP 1.78 1.44 0.3011 0.30 100 6.41

P159 Edge 57.3 84.2 0.0552 0.91 100 2.05
Weight 58.8 88.7 0.0276 0.59 3.38 100

DiscoGP 62.5 89.8 0.0168 0.57 3.79 2.81

ACDC 0.53 1.77 0.3823 0.48 100 6.99
EAP 0.91 1.39 0.3050 1.26 100 4.89

P176 Edge 86.5 98.6 0.0117 0.47 100 3.04
Weight 86.0 99.2 0.0095 0.88 1.34 100

DiscoGP 95.6 99.4 0.0104 0.85 1.01 2.73

ACDC 1.51 0.51 0.2250 0.57 100 4.48
EAP 0.27 0.39 0.2165 1.26 100 6.24

P264 Edge 77.3 89.4 0.0297 0.16 100 2.45
Weight 82.3 90.8 0.0266 1.24 3.58 100

DiscoGP 82.9 90.3 0.0245 0.77 3.36 2.43

ACDC 1.30 0.54 0.3590 0.77 100 4.69
EAP 0.74 0.55 0.3153 0.52 100 6.34

P279 Edge 69.5 87.0 0.0562 0.68 100 4.98
Weight 75.5 93.9 0.0337 0.13 2.53 100

DiscoGP 76.9 95.2 0.0200 0.47 2.14 3.57

ACDC 1.41 1.51 0.3492 0.32 100 4.96
EAP 0.49 0.66 0.2036 0.03 100 5.78

P407 Edge 80.1 93.9 0.0085 0.55 100 2.1
Weight 77.0 94.1 0.0097 0.29 1.94 100

DiscoGP 83.3 95.0 0.0073 0.97 2.24 2.89

ACDC 0.59 1.20 0.5230 0.20 100 6.88
EAP 0.87 0.33 0.4976 0.82 100 6.87

P449 Edge 70.4 93.3 0.0090 0.95 100 3.36
Weight 71.4 93.7 0.0098 1.39 2.7 100

DiscoGP 74.7 93.7 0.0099 1.09 2.58 3.43

ACDC 0.22 0.22 0.5130 0.21 100 4.37
EAP 1.30 0.47 0.4058 0.43 100 6.12

P495 Edge 65.8 86.1 0.115 0.76 100 3.92
Weight 65.4 87.1 0.102 0.70 2.54 100

DiscoGP 70.7 90.3 0.082 0.63 2.08 2.17

ACDC 1.22 1.76 0.5535 0.65 100 6.14
EAP 0.38 0.76 0.5551 0.40 100 6.66

P1376 Edge 49.4 89.3 0.101 0.77 100 3.57
Weight 55.2 92.5 0.082 0.24 1.68 100

DiscoGP 57.7 94.6 0.047 0.28 2.13 3.36

Table 10: Sheaf Discovery Performance Comparison across PARAREL relations. Again, DiscoGP achieves the
best performance across all tasks while mostly using the fewest weight parameters and edges. The best-performing
methods are highlighted in bold. ∗: For complement sheaf accuracy, successful searches are expected to yield
random performance. Therefore, scores in the vicinity of random indicate good performance, and direct comparison
of complement scores is not meaningful.
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