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Abstract

In this paper, we introduce DiscoGP, a novel
framework for extracting self-contained mod-
ular units, or sheaves, within LMs. These
sheaves correspond to the models’ impressive
zero-shot performance across a variety of tasks.
Our DiscoGP framework extends the concept
of functional circuits, widely explored in in-
terpretability research, by introducing sheaves
— subsets of connection edges and weight pa-
rameters in an LM’s computation graph — as
interpretation units. Our framework identifies
these sheaves through a differentiable pruning
algorithm that operates on both the computa-
tion graph’s edge connections and the model’s
weight parameters. This process reduces the
LM to a sparse skeleton while preserving its
core capabilities. Experimental results demon-
strate that across a range of linguistic and rea-
soning tasks, DiscoGP extracts sheaves that
preserve 93-100% of the model’s task perfor-
mance while comprising only 1-7% of the orig-
inal weights and connections. Furthermore, our
analysis reveals that, compared to previously
identified LM circuits, the sheaves discovered
by DiscoGP exhibit superior modularity and
functional fidelity. Extending our method to
the neuron level also unveiled novel insights
into the inner workings of LLMs.!

1 Introduction

Transformer language models (LMs; Vaswani et al.,
2017; Devlin et al., 2019; Radford et al., 2019; Raf-
fel et al., 2020; OpenAl, 2023; Touvron et al., 2023)
have demonstrated their incredible capabilities in
solving various natural language tasks across dif-
ferent fields. Yet, the exact mechanisms by which
these models solve tasks remain largely unknown.
Researchers in the field of interpretability therefore
aim to provide human-understandable explanations
of the computational mechanisms of these “black-
boxed” LMs. Should the interpretation of LMs

!Code for DiscoGP will be made publicly available online.
GitHub URL withdrawn for submission.

Pruned Edge
Retained Edge —>»

Pruned Weight (O
Retained Weight @

&)

Figure 1: Illustration of DiscoGP. By combining edge
and weight parameter pruning, DiscoGP enables better
performance and a neuron-level granularity.

become possible, it could lead to the improvement
of LMs with better controllability and performance,
and even germinate the next generation of explain-
able artificial intelligence (XAI) systems.

Now, a nascent “circuit”’-based framework aim-
ing at explaining this process has emerged and pro-
vides the most convincing explanation of LM be-
haviours to date. Several approaches within this
framework decompose the computation process
of an LM into a directed acyclic graph (DAG) and
aim to identify the subset of model components and
connections (information flow) that correspond to
specific model behaviours, phenomena, and pro-
cesses. Initially, these circuits were identified man-
ually using various activation or attention patching
methods (Wang et al., 2022), and ACDC (Conmy
et al., 2023) automated the circuit discovery pro-
cess. Since then, several follow-up attempts have
been proposed to further advance the state-of-the-
art circuit discovery methods.

The term circuit, however, is used to refer to
several distinct concepts, even within the LM in-
terpretability community. We provide a survey of
the nomenclature (§2) and clarify our intention to
interpret the model. With a thorough and rigorous
definition of the computation graph, edge pruning,
and weight pruning, we introduce the new con-
cept of a sheaf: a subset of connection edges and
weight parameters in the computation graph that,
when executed in isolation, can preserve the orig-
inal model’s behaviour. Simply put, we seek to



identify the interpretable sheaf of model compo-
nents within the LM “haystack.” This novel sheaf
discovery task fills a gap in current mechanistic
interpretability research and complements ongoing
automatic circuit discovery efforts. It enables us to
identify a self-contained collection of model units
that can perform a particular LM function in iso-
lation. These sheaves offer a unique opportunity
to manipulate self-contained units and gain novel
insights into LMs’ internal workings.

Moreover, prior automatic sheaf and circuit dis-
covery methods share a crucial limitation: the com-
putational power required is prohibitively large
because the number of edges in the computa-
tion graph grows quadratically (O(n?)) with the
number of model components. This prohibits re-
searchers to conduct sheaf and circuit discovery at
the neuron level. Nonetheless, extending circuit
analysis to the neuron level is particularly valuable,
as recent investigations into the properties of MLP
neurons (Geva et al., 2021; Dai et al., 2022; Meng
et al., 2022; Niu et al., 2024; Hong et al., 2024)
indicate a high degree of idiosyncrasy in the type
of information and function associated with each
neuron. For instance, Niu et al. (2024) and Dai et al.
(2022) showed that modifying just a few neurons,
or even a single neuron, can lead to substantial
changes in the model’s behaviour. Therefore, refin-
ing the granularity of interpretation to the neuron
level could reveal important novel insights.

Therefore, we introduce the Differentiable Sheaf
Discovery with Joint Computation Graph Pruning
(DiscoGP) framework, a novel method that ad-
dresses the granularity and scaling problem by ap-
plying joint edge and weight parameter pruning
with differentiable masking. While the computa-
tion graph is still defined at the relatively coarse
level of attention heads and MLPs, as in other cir-
cuit discovery methods, DiscoGP extends this ap-
proach by introducing weight pruning within each
individual computation graph node to enable finer,
neuron-level interpretability.

DiscoGP achieves state-of-the-art performance
in sheaf detection: it identifies the sheaves for
a wide range of tasks with the fewest edges and
weight parameters while maintaining near-perfect
performance compared to the original model’s per-
formance. By extending the granularity to the neu-
ron level, we unveil several critical insights into the
model that was previously unavailable.

Contribution: We begin with a proper defini-
tion of sheaves, and provide a survey that aim at

clarifying the various different usage of the term
circuit in relevant literature (§2). Then, we intro-
duce DiscoGP, a novel sheaf discovery framework
with joint pruning of weight parameters and com-
putation graph edges that enables individual neuron
level granularity (§3). Using DiscoGP, we can ob-
tain sheaves across a wide range of tasks that are
sparser and more faithful to the original model
compared to common baselines.

2 Sheaves and Circuits

In this section, we present a comprehensive def-
inition of the main task of sheaf discovery, and
discuss its similarities and differences compared to
the broad range of tasks often referred to as “cir-
cuit discovery” in the literature, as the term is used
inconsistently and can sometimes cause confusion.
In short, we aim to identify the self-contained set of
LM components that, when executed in isolation,
reproduce some behaviour or capability exhibited
by the full model. We start with a survey of the
different definitions of circuit discovery (§2.1), and
then introduce our sheaf-based framework by fram-
ing weight pruning (§2.2) and edge pruning (§2.3).

2.1 Survey: Circuits and Circuit Discovery

Circuit The term “circuit” has various meanings
within the LM interpretability community, depend-
ing on the context. Nanda (2022) described it as “a
fairly fuzzy and poorly defined term” that roughly
refers to “the sub part [sic] of a model that does
some understandable computation to produce some
interpretable features from prior interpretable fea-
tures.” Olah et al. (2020) considered circuits as a set
of features and the weighted connections between
them. Elhage et al. (2021) used the term “circuit”
to refer to the separable parts of the computation
process within each attention head. Because the
computation of a transformer model can generally
be considered linear, Elhage et al. (2021) argued
that the computation of the query and key matrices
and the output and value matrices can be consid-
ered as two largely independent circuits: the QK
circuit and the OV circuit. More recently, work
in the field typically decomposes an LM into its
“building blocks” and considers the collection of
these blocks and a subset of their connections as a
circuit; however, what constitutes building blocks
may differ from work to work. Wang et al. (2022)
referred to a circuit as the collection of attention
heads, while ACDC used the term “circuit” to refer



to the subset of edges between attention heads and
MLPs in the computation graph.

Circuit Discovery The task of identifying the
aforementioned circuits in pre-trained transformer
LMs is called circuit discovery. Early studies typi-
cally search for circuits manually on simple tasks
such as rudimentary anaphora resolution (Wang
et al., 2022) or simple arithmetic reasoning (Hanna
et al., 2023), using a combination of interpretabil-
ity tools including causal interventions (Vig et al.,
2020; Meng et al., 2022) and logit lens (Geva
et al., 2022, 2023; Yu et al., 2024a). More recently,
ACDC (Conmy et al., 2023) automated the circuit
discovery process. Specifically, they used the acti-
vation patching technique (Goldowsky-Dill et al.,
2023; Zhang and Nanda, 2023), or its approxima-
tions (Nanda, 2023), to assess a connection edge’s
importance by first knocking it out and observing
its effect on the model’s final output. Beginning at
the output node and proceeding in reverse topologi-
cal order, they evaluate the effect of removing each
of the node’s incoming edges individually. If the
removal of an edge has a greater effect than a prede-
termined threshold (7), the edge is included in the
circuit; otherwise, it is pruned. Syed et al. (2024)
extended ACDC and applied attribution patching
to achieve improved results.

Recent work has also explored other notions of
a circuit, such as formulating circuits as collections
of human-interpretable neural activation features
(Huben et al., 2023; Marks et al., 2024; Yu et al.,
2024b), or as distributed neural representations of
proposed symbolic algorithms (Geiger et al., 2021;
Wau et al., 2023). Most automated circuit discov-
ery studies evaluate their methods based on their
structural overlap with previously discovered or
manually hardwired circuits (Conmy et al., 2023;
Syed et al., 2024). While we concur with recent
critiques of this evaluation metric (Hanna et al.,
2024), we argue that the functional fidelity? met-
ric (measuring how well the circuit reproduces the
original model’s performance) is a more appropri-
ate criterion for this task.

2.2 Weight Pruning

Weight pruning is a technique widely used in the
model interpretability community to identify sub-
networks (a subset of a model’s weight parameters)
associated with specific functions of a neural net-
work (Cao et al., 2021; Csordds et al., 2021; Zhang

The term is also referred to as functional faithfulness.

et al., 2021; Guo et al., 2021; De Cao et al., 2022).
More recently, Lepori et al. (2023) extended this
work to transformer-based language models. Fig-
ure 2a provides an overview of weight pruning.
This line of research was encouraged by Frankle
and Carbin’s (2018) the Lottery Ticket Hypothesis,
which states that it is possible to identify a much
smaller subnetwork within a model. When this
subnetwork is trained from scratch with a similar
computational budget, it can achieve performance
comparable to that of the original model. Using
the continuous sparsification method (Figure 2a),
Savarese et al. (2020) demonstrated that a subnet-
work can be directly extracted from a neural net-
work that maintains task performance without the
need for retraining, as originally suggested in the
hypothesis. The method is also referred to as dif-
ferentiable masking (De Cao et al., 2022).

2.3 Computation Graph and Edge Pruning

Computation Graph Elhage et al. (2021) intro-
duced the concept of the residual stream, providing
a clear and concise view of the computation within
a transformer block. Each block consists of an at-
tention module followed by an MLP module. Let
xél) be the input to the ¢-th transformer block, with
H() representing the set of attention heads and
fi denoting the MLP module, we can write the
computation of a Transformer layer (i-th layer) as:

mid
Ty

Tiy1 = T; + Z h(z:) +fi(z™). (D)

heH )

To demonstrate the concept of a computation graph,
let us consider a simple one layer transformer
model with the input embedding xg. We can “un-
roll” the residual stream (Nanda and Bloom, 2022)
as shown in (2). From the result, we can tell that
final output of the transformer block consists of 4
input sources: the original word embedding input
x0, the output of the two attention heads /()
and ho (), as well as the output of the MLP mod-
ule fi(zo + hi(xo) + ha(wo)).

:Ugl) =x0 + hl(ﬂ?o) + hz(l‘o)
J;él) = xgl) + f1 (azgl)) =20+ hi(zo)+ @
ho(xo) + fi(zo + h1(xo) + ha(xp)).

From the unrolled residual stream, we can under-
stand how information flows within the transformer
block. Using (2) as an example, the output (:ngl)) is
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(a) Weight pruning is performed by directly
setting the value of a weight parameter to zero.
In practice, previous work has shown that dif-
ferentiable masking is one of the most effec-
tive methods for weight pruning. Specifically,
a differentiable binary mask is applied to each
weight parameter, and the algorithm optimises
the value of these masks to identify the subnet-
work that achieves the best task performance.

input:

(b) The computation graph of the
single-layer transformer block exam-
ple. This graphical representation cor-
responds to the unrolling of the resid-
ual stream in (2). The top-level terms
are colour-coded to match those in (2).

MLP
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input: o

xél) = 9 + h1(x0) + ha(xo)

(c) “Cutting off” an edge is equivalent
to removing a term from the residual
stream in the zero-ablation setting. In
other settings (mean or interchange),
the term is replaced with a new value.

Figure 2: Tllustration of the formulation of sheaf discovery: computation graph, weight pruning and edge pruning.

derived from the outputs of the two attention heads
(h1, h1), the MLP (f;) output, and the original in-
put embedding (zg). The attention heads only take
x¢ as input, while f; receives both the outputs of
the attention heads and xy. Based on this informa-
tion flow, we can construct a computation graph as
shown in Figure 2b.

Edge Pruning The introduction of computation
graphs allows us to analyse the impact of informa-
tion flow between model components. By pruning?
a connection edge, we can examine how this modi-
fication affects the model’s final output, revealing
the importance of that specific information flow. As
shown in Figure 2c, the pruning of an edge is equiv-
alent to the removal of a term in the unrolled resid-
ual stream, which can be achieved either through
greedily applying causal mediation methods (Vig
et al., 2020; Finlayson et al., 2021; Meng et al.,
2022) to identify important edges (Conmy et al.,
2023), or by leveraging gradient-based techniques
to mask out unessential component connections
(Bhaskar et al., 2024).

3 DiscoGP: Sheaf Discovery

Weight pruning and circuit pruning are not mu-
tually exclusive, so why not apply both? Here,
we introduce the term “sheaf” to describe the in-
tersection of circuit pruning (edge pruning) and
subnetwork pruning (weight pruning). Let G =
{E,V} represent the computation graph, and let
©® denote the set of all parameters of the lan-
guage model. The task of identifying a sheaf
involves searching for two binary masks, m =
(mg, mp) € {0,1}19+1Fl which correspond to

3Also referred to as knockout, cut-off, or ablation.

the pruned weights and edges, respectively. Simi-
lar to prior weight pruning approaches, DiscoGP
makes both binary masks differentiable, enabling
the search for a globally optimal solution across
weight and edge pruning. This section outlines the
sheaf discovery task and the DiscoGP joint edge
and weight pruning algorithm.
In summary, sheaf discovery has three steps:
1. For an LM capability, define a task correspond-
ing to the capability by constructing a dataset;

2. Search for a sheaf (a collection of edges and
weight parameters) corresponding to the dataset;

3. Evaluate the sheaf to determine whether the
model can still perform the task using only the
sheaf, i.e., with all other components or connec-
tions turned off.

These three steps of sheaf discovery share some

superficial resemblance to the three steps of the

“automatic circuit discovery workflow” proposed by

Conmy et al. (2023). They argue that researchers

should “perform an extensive and iterative series

of patching experiments with the goal of removing
as many unnecessary components and connections

from the model as possible” (Conmy et al., 2023).

Our framework differs in two key aspects: (1) we

do not impose any restrictions on patching-based

approaches; and (2) we aim to identify sheaves that
are self-contained — in other words, while ACDC’s
goal is to identify the most salient components and
edges, it does not consider whether the resulting
“circuits” can perform the task by itself.

3.1 Joint Weight and Edge Pruning

Similar to previous work on differentiable mask
learning (Louizos et al., 2018; Csordés et al., 2021;



Cao et al., 2021; De Cao et al., 2022; Bayazit et al.,
2023), DiscoGP models each mask m; € m as a
random variable, parameterised by a hard-concrete
or gumbel-sigmoid distribution. We first compute

a continuous score s; € [0, 1]:
l; — log et
si= o (), 3)

where 7 € (0, inf) is a temperature hyperparame-
ter, [; is a learnable logit parameter of a sigmoid
distribution o (-), and Uy, Us ~ Uniform(0, 1) are
random variables drawn from a uniform distribu-
tion. We then use the straight-through estimator
(Bengio et al., 2013) to convert the sampled s; into
a binary mask variable:

mi = [Ls,;>0.5 — Si|detach + Si “4)

where 1 represents the indicator function, and
[‘]detach 1S an operator that blocks gradient flow dur-
ing backpropagation. This approach makes the
binary mask m; a differentiable function of the
logit /;, allowing it to be optimised through back-
propagation for specific objectives.

Sheaf Searching Objectives Given a task dataset
D = {x,y}, where x represents the input and y
is the output of the original model, our aim is to
identify a set of masks m on weights and edges,
such that the pruned sheaf produces results as close
to the original model as possible. To achieve this,
we define the functional fidelity loss as the nega-
tive log-likelihood of the original model’s predicted
label in the output distribution of the pruned circuit:

ﬁﬁdelity = - Z logpm(gi‘xi)' (5)

%

Moreover, we want the sheaf to contain as much
function-specific weight and edges as possible. In
other words, when the detected sheaf is removed
from the original model, the remaining computa-
tional graph should perform at near-random levels
on D. Let m = 1 — m denote the reverse mask of
m, we define the completeness loss as the cross-
entropy between the output distribution of the com-
plementary sheaf and a uniform distribution over
the label space {y; }< ;:

K
1
Ecomplete = - E E ? log pm(yk‘xl) (0)
i k=1

Dataset | Example Prompt | Correct | Incorrect

BLiMP | Raymond is selling this __ | sketch | sketches

101 When Mary and John went to the | Mary John
store, John gave a drink to
OQA | The capital city of Canada is _ |Ottawa | *not unique

Table 1: An overview of the tasks and datasets.

Lastly, we want the sheaf to be as sparse as possible.
Therefore, we minimize the sparsity loss:

Espzu‘se = Esparse—e + £sparse—E
|| Img| @)

\me! Z !mE\ Z

The final objective function is then comprised of a
weighted mixture of the three loss terms:

EGP = £ﬁdelity + )\cﬁcomplete + )\s[/sparsey (8)

where \., A, are hyperparameters that regulate rel-
ative loss importance.

DiscoGP Implementation Details Due to page
limitations, other optimisation techniques we im-
plemented, including post-hoc sheaf pruning and
split QKV pruning, are introduced in Appendix A.

4 Experimental Setup

Evaluation: We evaluate DiscoGP and the base-
lines across three tasks (Table 1): syntactic agree-
ment from the BLiMP corpus (Warstadt et al.,
2020), the indirect object identification (IOI) task
introduced by Wang et al. (2022), and factual in-
formation from open-domain question answering
(OQA) with the PARAREL (Elazar et al., 2021)
dataset. These three tasks provide a comprehensive
coverage of syntactic, semantic and factual infor-
mation. See Appendix B for more information.
Metric-wise, we report the functional fidelity:
this includes the sheaf’s accuracy and the KL diver-
gence of the sheaf’s output (sheaf accuracy refers
to the task accuracy when all pruned components
are “turned off” and sheaf KL divergence is mea-
sured between the sheaf’s output and that of the
original model). We also report completeness or
the complement sheaf accuracy (i.e., the accuracy
when the sheaf is turned off and all other model
components are kept on), as well as sparsity (both
edge and weight sparsity). These evaluation met-
rics follows the typical fidelity, completeness and
sparisty scheme used by other mechanistic inter-
pretability work (Wang et al., 2022; Conmy et al.,
2023; Syed et al., 2024; Bhaskar et al., 2024).



Task Discovery Sheaf Acc. (%) KL Div. Comp. Acc. (%) | Weight Density (%) Edge Density (%)
Method (higher is better) (lower is better) (random™ is better) (lower is better) (lower is better)

ACDC 83.3 0.121 42.7 100 6.48
EAP 89.3 0.091 53.9 100 4.88
anaphor gender agr. Edge Pruning 88.4 0.137 49.7 100 6.62
(AGA) Weight Pruning 97.1 0.078 50.2 3.01 100
DiscoGP (Ours) 98.5 0.074 49.9 1.58 3.88
ACDC 81.0 0.250 67.0 100 6.26
EAP 95.3 0.049 56.3 100 8.66
anaphor number agr. | Edge Pruning 87.9 0.178 39.3 100 2.78
(ANA) Weight Pruning 97.7 0.076 40.3 2.79 100
DiscoGP (Ours) 99.7 0.043 39.2 1.36 1.94
ACDC 85.3 0.129 46.3 100 7.35
EAP 85.7 0.138 40.6 100 9.83
det. noun agr. 1 Edge Pruning 83.7 0.114 59.3 100 2.27
(DNA) Weight Pruning 95.3 0.099 53.0 0.280 100
DiscoGP (Ours) 95.3 0.098 51.7 0.187 1.92
ACDC 62.7 0.419 39.3 100 6.61
EAP 60.0 0.434 383 100 8.92
det. noun irr. 1 Edge Pruning 67.1 0.374 48.0 100 2.46
(DNA i) Weight Pruning 94.3 0.103 53.6 0.263 100
DiscoGP (Ours) 95.8 0.102 47.2 0.244 1.68
ACDC 82.4 0.169 523 100 7.04
EAP 83.5 0.153 45.7 100 9.90
det. noun adj. 1 Edge Pruning 50.3 0.412 47.6 100 7.14
(DNA a) Weight Pruning 94.7 0.136 49.9 0.565 100
DiscoGP (Ours) 95.5 0.118 45.3 0.520 5.71
ACDC 50.2 0.120 41.4 100 9.46
EAP 60.7 0.128 44.7 100 6.89
det. noun adj. irr. 1 Edge Pruning 56.3 0.348 47.8 100 12.9
(DNA ai) Weight Pruning 94.6 0.127 49.9 0.569 100
DiscoGP (Ours) 95.1 0.118 45.3 0.496 6.22
ACDC 51.6 0.730 50.6 100 2.45
EAP 58.3 0.756 552 100 3.48
101 Edge Pruning 100 0.032 49.9 100 2.97
Weight Pruning 98.4 0.043 57.5 1.87 100
DiscoGP (Ours) 100 0.020 49.2 1.79 2.03
ACDC 1.0 0.379 0.6 100 5.35
EAP 0.9 0.341 0.6 100 5.92
PARAREL Average* Edge Pruning 90.4 0.039 0.7 100 2.97
Weight Pruning 91.8 0.032 0.8 2.83 100
DiscoGP (Ours) 93.1 0.023 0.62 2.77 291

Table 2: Sheaf Discovery Performance Comparison. DiscoGP achieves the best performance across all tasks, using
the fewest weight parameters and edges. The best-performing methods are highlighted in bold. *: For complement
sheaf accuracy, successful searches are expected to yield random performance. Therefore, scores close to random
indicate good performance, and direct comparison of complement scores is not meaningful. BLiMP and 10I's
expected random performance is 50%, and PARAREL’s expected random performance is 0%. : Due to page limits,
the full PARAREL results are listed in Appendix D. The PARAREL results support the same findings.

LM Selection: We compare to the baseline
methods using GPT-2 base (small) model, as it
is the only model supported by the original imple-
mentation of every baseline method.

Baseline Methods: We compare DiscoGP with
all the major prior automatic sheaf discovery
methods. We categorize the methods into (1)
threshold-based greedy search algorithms that in-
cludes ACDC (Conmy et al., 2023) and EAP (Syed
et al., 2024); and (2) differentiable-masking-based
algorithms including the weight pruning (WP)
methods (Louizos et al., 2018; Cao et al., 2021;

Sanh et al., 2020; De Cao et al., 2022), edge prun-
ing (EP) method (Bhaskar et al., 2024), and our
novel joint pruning method. See Appendix C for
our reproduction details.

S Experiment Results

Table 2 shows the results of DiscoGP compared
to the baseline methods. Due to page limits,
full results for the OQA task are shown in Ap-
pendix D; the breakdown supports the same find-
ings. For each experiment, we run the sheaf dis-



covery method five times and report average perfor-
mance. GPT-2 achieves near-perfect performance
on all BLiMP and IOI tasks, so we conduct our
experiments on the full datasets. However, GPT-2
performs worse on the OQA PARAREL tasks, so
we run experiments only on data samples where
the original model answers the question correctly,
discarding prompts where it fails, as it is unclear
whether searching for a sheaf over a function the
LM does not have would yield meaningful results.

Overall, we can find that DiscoGP outperforms
all baseline sheaf discovery methods. It achieves
the highest functional fidelity — either measured
in task accuracy or KL divergence — compared
to other baselines while using the fewest weight
parameters or connection edges.

Discussion: Greedy threshold-based methods
may not be suitable for sheaf discovery. In-
terestingly, we observe that the performance of
greedy threshold-based methods (ACDC and EAP)
is less stable across tasks. For the more complex
tasks, these methods reach near-random perfor-
mance when given the same sparsity budget as
DiscoGP. This is especially true for the PARAREL
tasks (Appendix D). These surprising results, pace
ACDC and EAP, do not argue for the validity
of their respective methods, but rather highlight
the difference between sheaf discovery and their
patching-based automatic circuit discovery.

Now, we want to take the opportunity to elab-
orate on the difference between sheaf discovery
and automatic circuit discovery. First and fore-
most, the two tasks differ in their goals and motiva-
tions. Let us revisit the famous example studied by
Wang et al. (2022): “When Mary and John went to the
store, John gave a drink to __", where Mary is the
correct answer and John is the incorrect one. The
automatic circuit discovery task aims to identify all
the important connection edges and components
that, when perturbed, cause the greatest change to
the final output, and potentially steering the model
away from responding Mary to John. Our results
show that simply taking the collection of these im-
portant components does not always yield a self-
contained mechanism that can perform the task in
isolation. Sheaf discovery, on the other hand, aims
to capture and identify that self-contained mecha-
nism (the sheaf) and fill this research gap.

Therefore, it is appropriate for ACDC and EAP
to apply ablation-based methods for automatic cir-
cuit discovery. These include mean ablation, which

Task Clean-Ablated Edge similarity

Mean  Interchange =~ Random
Agreement 0.878 0.907 0.582
101 0.943 0.996 0.597
OQA PARAREL  0.951 0.960 0.556

Table 3: Average cosine similarity between clean and
corrupted edge hidden representations across three
datasets. Mean and interchange ablations do not sub-
stantially affect the models’ overall performance.

Task Evaluation Tasks

AGA ANA DNA DNAi DNAa DNAai

AGA - 98.0 99.7 99.7 91.9 94.8
ANA 94.0 - 99.7 100 91.9 92.0
DNA 923 86.3 - 93.0 90.3 91.2
DNA i 91.3 80.3 93.7 - 94.4 93.1
DNA a 93.0 94.6 94.2 90.5 - 94.9
DNA ia 91.7 90.1 92.3 94.5 94.2 -

Orig. | 99.0 100 94.7 95.3 96.0 95.7

Table 4: Composing sheaves can largely preserve func-
tional performance. Each entry shows the performance
(accuracy in %) of a composed circuit (row + column)
evaluated on the task associated with the column. For
example, the value in column AGA, row ANA shows
the performance of the composed circuit (ANA + AGA)
on the AGA task. Original (non-composed) sheaf per-
formance is listed in the final row for reference.

sets the activation to the average output across a
reference distribution obtained by running a sample
dataset through the model, and interchange abla-
tion, which replaces the activation with its value
from a corrupted input, created by modifying spe-
cific input tokens. However, these ablation methods
may not be suitable for sheaf discovery, as they still
retain a large amount of task-related information
(Table 3). This observation is supported by recent
work (Adolfi et al., 2025; Shi et al., 2024) showing
that these ablation- and patching-based methods
may not achieve optimal functional fidelity.

6 Analyses and Findings

Finding 1: Sheaves identified by DiscoGP can
be composed while preserving the functionality.
We find that functional composition of sheaves is
possible under the DiscoGP framework. That is,
suppose we have two sheaves that perform task A
and task B, respectively. Simply composing their
masks, m = ma Ump, can yield a new sheaf that
performs both tasks with largely the same perfor-
mance. Table 4 shows the performance of such
compositions across different BLiMP paradigms.
Overall, we observe good composition perfor-
mance, with the composed sheaves’ accuracies
reaching 80-100% across all BLIMP tasks. To



Sheaf 2 Edge Overlap ~ Weight Overlap

AGA DNA 14.86% (251)  2.69% (8020)
ANA DNA 16.19% (277)  1.12% (14816)
ANA AGA 18.32% (266)  0.91% (17693)
DNA DNA irr 21.07% 317)  4.72% (69364)
DNA DNA adj 18.46% (332)  4.96% (74782)
DNA DNAirradj  18.24% (323)  6.06% (96727)

Table 5: Sheaf overlap across different BLiIMP tasks.
The results indicate a trend where similar tasks exhibit
higher sheaf overlaps. The overlap percentage are fol-
lowed by the exact number of overlaps in brackets.

the best of our knowledge, our result is the first
successful sheaf or circuit composition in the wild.
Mondorf et al. (2025) studied circuit composition,
but their experiments were limited to synthetic toy
models generated using Tracr (Lindner et al., 2023).
We show that sheaves in real-world transformer
models can also be composed to achieve task unity.
This suggests that some degree of modularity has
emerged in LMs through the pre-training process.
We hope this finding will motivate future work on
modularity and sheaf composition.

Finding 2: Sheaf similarity reflects functional
similarity. Table 5 illustrates the overlap levels
between different sheaves. The overlap percentages
are calculated by dividing the number of overlap
cases by the size of the logical union of the two
masks. In this analysis, we only considered the
agreement tasks as their task similarity is easier
to perceive. BLiMP offers several variants of the
DNA tasks, and we observed a relatively high level
of sheaf overlap in terms of weights and edges
among them. The ANA and AGA tasks exhibit
greater similarity to each other compared to DNA
tasks, as ANA and AGA follow similar templates
(see Appendix B). This similarity is reflected in
the level of edge overlap. Curiously, the weight
overlap between the AGA and the ANA sheaves
is low. We conjecture that this distinction between
weight and edge overlap is due to the different
roles they play: weights store information, while
edges guide the function of the task. While ANA
and AGA share similar templates (and therefore
exhibit higher edge overlap), performing the task
requires distinct parametrized information (result-
ing in lower weight overlap).

Finding 3: Unveiling the factual recall pipeline
in GPT. Lastly, we confirm the factual recall
pipeline hypothesis: that recall occurs in two dis-
tinct stages (Meng et al., 2022; Geva et al., 2023;
Niu et al., 2024; Hernandez et al., 2024). The left
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Figure 3: Left: Number of unmasked MLP and attention
weights at each layer of the capital city OQA sheaf.
Right: Number of edges ending at each layer from
preceeding MLPs to current-layer attention heads and
from preceeding attention heads to current-layer MLP.

panel of Figure 3 illustrates the layer-wise average
number of MLP and attention weight parameters re-
tained in the 12 relation-specific DiscoGP sheaves
learned from PARAREL. We observe that MLPs re-
tain substantially more weights in the OQA sheaves
compared to attention heads, especially in the lower
transformer layers. This finding aligns with recent
work that observed MLP sublayers function as key-
value memory for factual knowledge extraction
(Geva et al., 2022). Conversely, the right panel
of Figure 3 shows the number of sheaf edges at
each layer, detailing connections from lower-layer
attention heads to current-layer MLPs (Attention to
MLP) and from preceding MLPs to current-layer
attention heads (MLP to Attention). Notably, the
set of connections in upper layers is dominated by
MLP-to-attention edges. This observation supports
recent findings in mechanistic interpretability re-
search suggesting that attention heads play a major
role in propagating the retrieved factual knowledge
from early-site MLPs to upper transformer layers,
thereby selecting the most relevant information for
answering questions (Geva et al., 2023).

7 Conclusion

In this work, we propose a novel sheaf discovery
task that addresses the research gap left by previous
automatic circuit discovery studies. We also intro-
duce DISCOGP, a state-of-the-art sheaf discovery
framework that identifies sheaves with the high-
est functional fidelity using the fewest connections
and edges, by combining weight and edge prun-
ing. This method enables neuron-level granularity
and reveals several novel insights into the internal
workings of LLMs (sheaf modularity and overlap),
while also confirming previously observed trends
(the factual recall pipeline). We hope our work
inspires further research into sheaf discovery as we
edge closer to prying open the LM “black box.”



Limitations

While our experimental setup is sufficiently com-
prehensive for the purposes of this study, there is
always room to expand the range of tasks and lan-
guage models evaluated. We focus on GPT-2 to
enable direct comparisons with other publicly avail-
able systems, but future work could consider larger
or more recent models. Additionally, our exper-
iments are limited to English, and extending the
analysis to other languages would help assess the
generality of our findings.
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A DiscoGP Implementation Details

Post-hoc Sheaf Pruning Since the training ob-
jective (8) does not consider graph connectivity,
we can further simplify the model by (1) removing
a node v from the computation graph if all of its
weights have been pruned, and (2) performing a re-
verse BFS from the output node to eliminate edges
that do not contribute to the final result.

Split QKV Pruning Following Conmy et al.
(2023), we separate the query (Q), key (K) and
value (V) activations and introduce an “output”
node within each attention head. Figure 4 shows
an illustration of the configuration.

B Evaluation Tasks & Data

BLiMP BLiMP (Warstadt et al., 2020) consists
of 67 individual datasets, each containing mini-
mally different sentence pairs that contrast in gram-
matical acceptability and isolate specific phenom-
ena in syntax, morphology, or semantics. However,
BLiMP was designed for bidirectional LMs such
as BERT, which require the model to attend to both
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Figure 4: Split QKV Pruning.
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Agreement Phenonemon Good sentence Bad sentence Converted input query True answer False answer
Anaphor Gender Agreement Katherine can’t help her-  Katherine can’t help him-  Katherine can’t help herself himself
self. self.
Anaphor Number Agreement Susan revealed herself. Susan revealed them-  Susan revealed herself themselves
selves.
Det Noun Agr. 1 Raymond is selling this ~ Raymond is selling this ~ Raymond is selling this sketch sketches
sketch. sketches.
Det Noun Agr. Irr. 1 Laurie hasn’t lifted those ~ Laurie hasn’t lifted those ~ Laurie hasn’t lifted those cacti cactus
cacti. cactus.
Det Noun Agr. with Adj. 1 Rebecca was criticizing ~ Rebecca was criticizing ~ Rebecca was criticizing ~ documentaries ~ documentary
those good documen- those good documentary. those good
taries.
Det Noun Agr. with Adj. Irr. 1 Some waiters broke this ~ Some waiters broke this Some waiters broke this  foot feet

lost foot.

lost feet.

lost

Table 6: Examples of the BLiMP and their converted data.

Templates

Then, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT] to [A]

[
Then, [B] and [A] had a lot of fun at the [PLACE]. [B] gave a [OBJECT] to [A]
Then, [B] and [A] were working at the [PLACE]. [B] decided to give a [OBJECT] to [A]

Then, [B] and [A] were thinking about going to the [PLACE]. [B] wanted to give a [OBJECT] to [A]

Then, [B] and [A] had a long argument, and afterwards [B] said to [A]

After [B] and [A] went to the [PLACE], [B] gave a [OBJECT] to [A]

When [B] and [A] got a [OBJECT] at the [PLACE], [B] decided to give it to [A]

When [B] and [A] got a [OBJECT] at the [PLACE], [B] decided to give the [OBJECT] to [A]

While [B] and [A] were working at the [PLACE], [B] gave a [OBJECT] to [A]

While [B] and [A] were commuting to the [PLACE], [B] gave a [OBJECT] to [A]

After the lunch, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT] to [A]

Afterwards, [B] and [A] went to the [PLACE]. [B] gave a [OBJECT] to [A]

Then, [B] and [A] had a long argument. Afterwards [B] said to [A]

The [PLACE] [B] and [A] went to had a [OBJECT]. [B] gave it to [A]

Friends [B] and [A] found a [OBJECT] at the [PLACE]. [B] gave it to [A]

Table 7: Sentence templates for generating the 101 dataset.

Placeholder Type

Candidate Infilling Words

[A] and [B

] (names)

Michael, Christopher, Jessica, Matthew, Ashley, Jennifer, Joshua

Daniel, David, James, Robert, John, Joseph, Andrew, Ryan,
Bran Justin, Sarah, William, Jonathan, Stephanie, Brian, Nicole,
Nicho Heather, Eric, Elizabeth, Adam, Megan, Melissa, Kevin,
Steven, Timothy, Christina, Kyle, Rachel, Laura, Lauren, Am-
ber, Brittan Richard, Kimberly, Jeffrey, Amy, Crystal, Michelle,
Tiffany, Jere Mark, Emily, Aaron, Charles, Rebecca, Jacob,
Stephen, Patrick, Kelly, Samantha, Nathan, Sara, Dustin, Paul,
Angela, Tyler, Scot Andrea, Gregory, Erica, Mary, Travis, Lisa,
Kenneth, Bryan, Lin Jose, Alexander, Jesse, Katie, Lindsay,
Shannon, Vanessa, Court Alicia, Cody, Allison, Bradley, Samuel.

[PLACE]

store, garden, restaurant, school, hospital, office, house, station.

[OBJECT]

ring, kiss, bone, basketball, computer, necklace, drink, snack.

Table 8: Candidate infilling words of IOI sentence templates.
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Relation ID Relation No. of queries

Sample Query True answer

P103 native language 977
P138 named after 645
P159 headquarters location 967
P176 manufacturer 982
P264 record label 429
P279 subclass of 964
P30 continent 975
P407 language of work or name 877
P449 original network 881
P495 country of origin 909
P1376 capital of 234
P36 capital 703

The mother tongue of Victor Horta is

Dutch

Rawlings Gold Glove Award, which is named for glove

The headquarter of Strait Shipping is located in Wellington
Honda RA272 is produced by Honda
Johnny Carroll’s record label is Decca
Nucleoporin 62, a type of protein
Romulus Glacier is located in Antarctica
Ten Years Gone is a work written in English
Himalaya with Michael Palin was originally aired on ~ BBC
Mundo Obrero was from Spain
Guangzhou is the capital of Guangdong

The capital city of Porto District is

Porto

Table 9: PARAREL relations and sample queries used for circuit discovery.

preceding and following context. Therefore, we use
the six BLiMP paradigms applicable to decoder-
only LMs (specifically GPT-2). See Table 6 for
example contrasting sentence pairs and their corre-
sponding query prompts for circuit discovery.

Indirect object identification Wang et al. (2022)
created dataset samples for IOl using templates
with random single-token names, places and items.
We follow their data curation pipeline by taking
the same set of 15 templates and candidate infilling
words to generate our circuit discovery dataset. At
each trial, we randomly draw a template and a set
of infilling tokens to construct a full sentence. We
then convert the generated sentence into a binary
classification question, where the input prompt is
the sentence prefix without the last indirect object,
and the two candidate next tokens are the indirect
object and the subject tokens. See Table 7 and 8
for a complete list of I0I sentence templates and
candidate infilling words.

PARAREL We use the PARAREL dataset by
Elazar et al. (2021) that consists of 38 relation types
and 27,738 (subject, relation, object) fact triples
such as (Canada, capital city, Ottawa). We then
use the templates created by (Dai et al., 2022) to
convert each fact triple into multiple query prompts
(e.g. “The capital city of Canada is _"). We take
prompts generated from triples with 12 out of 38
PARAREL relations that satisfy the following two
conditions: 1) there is a unique object entity an-
swer for each (subject, relation) pair; and 2) the ob-
ject word always comes at the end of the template-
generated sentence so that it can be predicted by
an autoregressive language model. We finally ob-
tained a total of 9,543 queries as our dataset of
open-domain question answering, and we learn a
circuit for each relational dataset for every circuit
discovery method. See Table 9 for a list of the 12
relations we used together with the example fact
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triples and queries.

C Baseline Methods

We obtain the original implementations released by
the authors and adapt them to work with the same
task and configurations as DiscoGP.*

For the threshold-based greedy search algo-
rithms, since performance is not an objective in the
circuit discovery process, we can obtain circuits
with any level of sparsity by adjusting the thresh-
olds. Therefore, we tune the threshold 7 for each
task and report the result that has a comparable —
and larger — sparsity budget than DiscoGP. This
puts ACDC and EAP at an advantage compared
to DiscoGP in the sparsity—performance trade-off,
yet our results show that DiscoGP still outperforms
both.

D Detailed PARAREL Results

Table 10 lists our PARAREL results. Again,
DiscoGP achieves the best performance across all
tasks while mostly using the fewest weight param-
eters and edges. The PARAREL task differs from
the BLiMP and IOl tasks in that test set and train-
ing set performance diverge significantly. This is
expected, as factual information tends to be more
dispersed. For example, Dai et al. (2022); Niu et al.
(2024) found that each piece of factual information
(e.g., Canada’s capital is Ottawa) can be attributed
to a handful of neurons, while Niu et al. (2024)
found that the entire determiner—noun agreement
can be attributed to the same amount of neurons.

4Edge pruning: https://github.com/princeton-nlp/
Edge-Pruning, ACDC: https://github.com/
ArthurConmy/Automatic-Circuit-Discovery/
and EAP https://github.com/Aaquib111/
edge-attribution-patching.


https://github.com/princeton-nlp/Edge-Pruning
https://github.com/princeton-nlp/Edge-Pruning
https://github.com/ArthurConmy/Automatic-Circuit-Discovery/
https://github.com/ArthurConmy/Automatic-Circuit-Discovery/
https://github.com/Aaquib111/edge-attribution-patching
https://github.com/Aaquib111/edge-attribution-patching

Task Discovery | Test Set Acc. Train Set Acc. KL Div. Comp. Acc. (%)  Weight Density (%) Edge Density (%)
Method | (higher is better) (higher is better) (lower is better) | (random™ is better) (lower is better) (lower is better)
ACDC 0.30 0.27 0.3194 1.20 100 4.57
EAP 1.18 1.63 0.3900 0.08 100 6.42
P30 Edge 92.1 89.5 0.0115 0.90 100 2.34
Weight 86.8 92.6 0.0093 0.23 3.86 100
DiscoGP 95.6 92.6 0.0076 0.35 3.64 3.01
ACDC 0.72 0.86 0.3706 0.42 100 5.99
EAP 1.18 1.86 0.3272 1.21 100 4.59
P36 Edge 62.7 90.5 0.0164 0.86 100 3.45
Weight 67.3 90.3 0.0191 1.04 4.54 100
DiscoGP 69.2 91.1 0.0094 0.85 4.17 3.22
ACDC 0.54 1.16 0.2913 0.36 100 5.18
EAP 0.93 0.57 0.3329 0.51 100 5.32
P103 Edge 914 88.1 0.0345 0.88 100 2.02
Weight 83.0 87.4 0.0231 0.96 4.35 100
DiscoGP 93.5 89.7 0.0202 0.15 4.7 3.36
ACDC 0.96 0.59 0.3096 1.29 100 4.99
EAP 1.98 0.78 0.2429 0.31 100 5.40
P138 Edge 64.9 96 0.022 1.52 100 2.33
Weight 63.3 92.4 0.0375 0.73 1.57 100
DiscoGP 68.0 94.9 0.029 0.46 1.34 1.9
ACDC 0.56 1.64 0.3630 0.35 100 4.92
EAP 1.78 1.44 0.3011 0.30 100 6.41
P159 Edge 57.3 84.2 0.0552 0.91 100 2.05
Weight 58.8 88.7 0.0276 0.59 3.38 100
DiscoGP 62.5 89.8 0.0168 0.57 3.79 2.81
ACDC 0.53 1.77 0.3823 0.48 100 6.99
EAP 0.91 1.39 0.3050 1.26 100 4.89
P176 Edge 86.5 98.6 0.0117 0.47 100 3.04
Weight 86.0 99.2 0.0095 0.88 1.34 100
DiscoGP 95.6 99.4 0.0104 0.85 1.01 2.73
ACDC 1.51 0.51 0.2250 0.57 100 4.48
EAP 0.27 0.39 0.2165 1.26 100 6.24
P264 Edge 77.3 89.4 0.0297 0.16 100 245
Weight 82.3 90.8 0.0266 1.24 3.58 100
DiscoGP 82.9 90.3 0.0245 0.77 3.36 243
ACDC 1.30 0.54 0.3590 0.77 100 4.69
EAP 0.74 0.55 0.3153 0.52 100 6.34
P279 Edge 69.5 87.0 0.0562 0.68 100 4.98
Weight 75.5 93.9 0.0337 0.13 2.53 100
DiscoGP 76.9 95.2 0.0200 0.47 2.14 3.57
ACDC 1.41 1.51 0.3492 0.32 100 4.96
EAP 0.49 0.66 0.2036 0.03 100 5.78
P407 Edge 80.1 93.9 0.0085 0.55 100 2.1
Weight 71.0 94.1 0.0097 0.29 1.94 100
DiscoGP 83.3 95.0 0.0073 0.97 2.24 2.89
ACDC 0.59 1.20 0.5230 0.20 100 6.88
EAP 0.87 0.33 0.4976 0.82 100 6.87
P449 Edge 70.4 93.3 0.0090 0.95 100 3.36
Weight 714 93.7 0.0098 1.39 2.7 100
DiscoGP 74.7 93.7 0.0099 1.09 2.58 3.43
ACDC 0.22 0.22 0.5130 0.21 100 4.37
EAP 1.30 0.47 0.4058 0.43 100 6.12
P495 Edge 65.8 86.1 0.115 0.76 100 3.92
Weight 65.4 87.1 0.102 0.70 2.54 100
DiscoGP 70.7 90.3 0.082 0.63 2.08 2.17
ACDC 1.22 1.76 0.5535 0.65 100 6.14
EAP 0.38 0.76 0.5551 0.40 100 6.66
P1376 Edge 494 89.3 0.101 0.77 100 3.57
Weight 55.2 92.5 0.082 0.24 1.68 100
DiscoGP 57.7 94.6 0.047 0.28 2.13 3.36

Table 10: Sheaf Discovery Performance Comparison across PARAREL relations. Again, DiscoGP achieves the
best performance across all tasks while mostly using the fewest weight parameters and edges. The best-performing
methods are highlighted in bold. *: For complement sheaf accuracy, successful searches are expected to yield
random performance. Therefore, scores in the vicinity of random indicate good performance, and direct comparison
of complement scores is not meaningful. 14
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