
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TIMEBASE: THE POWER OF MINIMALISM IN LONG-
TERM TIME SERIES FORECASTING.

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-term time series forecasting (LTSF) has traditionally relied on models with
large parameters to capture extended temporal dependencies. However, time se-
ries data, unlike high-dimensional images or text, often exhibit strong periodicity
and low-rank structures, especially in long forecasting horizons. This charac-
teristic can lead many models focusing on redundant patterns, resulting in inef-
ficient use of computational resources. In this paper, we introduce TimeBase,
an ultra-lightweight network with fewer than 0.4k parameters, designed to har-
ness the power of minimalism in LTSF. TimeBase extracts core periodic features
by leveraging full-rank typical period representations under orthogonality con-
straints, enabling accurate prediction of future cycles. Extensive experiments
on real-world datasets demonstrate that TimeBase not only achieves minimal-
ism in both model size and computational cost, reducing MACs by 35x and
parameter counts by over 1000 times compared to standard linear models, but
also wins state-of-the-art forecasting performance, ranking Top1-Top5 in all 28
prediction settings. Additionally, TimeBase can also serve as a very effective
plug-and-play tool for patch-based forecasting methods, enabling extreme com-
plexity reduction without compromising prediction accuracy. Code is available at
https://anonymous.4open.science/r/TimeBase-fixbug.

1 INTRODUCTION

Long-term time series forecasting (LTSF) has been studied with significant interest in various do-
mains, ranging from energy management, traffic accident preservation, and extreme disaster warn-
ing Wu et al. (2021); Zhou et al. (2023b); Lin et al. (2023a); Wang et al. (2023). With the rapid
advancement of deep learning, an increasing number of models have been proposed, including
MLP-based Liu et al. (2022); Huang et al. (2024a), RNN-based Lin et al. (2023b), and Transformer-
based Liu et al. (2021a); Zhang & Yan (2023), approaches, all of which employ thousands to millions
of parameters to capture long-range dependencies and forecast future outcomes.

Generally, a higher number of parameters increases the model capacity, which can lead to better pre-
dictive performance Zhou et al. (2023a). In the fields of computer vision (CV) and natural language
processing (NLP), large models have achieved significant success He et al. (2016); Liu et al. (2023).
For instance, Vision Transformers (ViT) Dosovitskiy (2020) have demonstrated outstanding capa-
bilities in image recognition, while large language models (LLM) have made breakthrough advances
across various language tasks Devlin (2018); Radford et al. (2019). Recently, large models are be-
ing explored for LTSF to capture complex temporal patterns and long-range dependencies Jin et al.
(2023). For example, some LLM-based methods are proposed with tens of billions of parameters.
However, despite their impressive performance on specific forecasting tasks, these models suffer
from high computational costs, interpretability challenges, and resource-intensive requirements.

In fact, images and text, as high-dimensional data, contain multiple dependencies and complex
underlying physical rules Liu et al. (2021b), which necessitate the use of more parameters to model
their rich semantic structures. However, as shown in Figure 1(a), one-dimensional time series data
is typically much more regular, exhibiting obvious periodicity. Moreover, in long-term time series
data, this regularity can even manifest as low-rank characteristics Liu et al. (2012), as different
cycles often exhibit similar temporal patterns Jones & Brelsford (1967); Hochreiter & Schmidhuber
(1997). This raises an important question: Is it truly necessary to employ such a large number of
parameters to learn these regular time series patterns Tan et al. (2024)?
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Figure 1: (a) Time series of real-world traffic reveals a clear periodicity, with highly similar patterns
recurring in each cycle. (b) Comparison of multiply-add operations (MAC) in log scale. (c) Com-
parison of MSE and parameters between TimeBase and other mainstream methods on the Electricity
dataset, with a forecast horizon of 720. The results from (b) and (c) demonstrate that by leveraging
the periodic characteristics of time series, it is possible to achieve the desired forecasting perfor-
mance using only a minimal model size.

In this study, we design an extremely lightweight time series forecasting network, TimeBase, which
is centered around basis period extraction and period-level forecasting. As illustrated in Figure 1(b)
and (c), TimeBase utilizes only 0.39k parameters, reducing MACs by 35 times and parameter count
by more than 103 times compared to vanilla linear model. In seven real-world datasets, TimeBase
demonstrates superior predictive performance. Additionally, TimeBase can also serve as a very
effective plug-and-play tool for patch-based forecasting methods, enabling extreme complexity re-
duction, i.e., 77.74%∼93.03% for PatchTST in MACs, without compromising prediction accuracy.
Our contributions can be summarized as follows:

• Considering the periodic characteristics of time series and the similarities between cycles,
we demonstrate that basis period extraction is an effective approach for LTSF. This method
can significantly reduce the unavoidable ultra-high complexity and large model parameters
associated with current LTSF models.

• Based on basis period extraction, we propose TimeBase, which is currently the lightest time
series forecasting model. It requires only 0.39k parameters, achieving a threefold reduction
in MAC compared to the previously lightest model and a 2.4-fold decrease in the number
of parameters, making it highly applicable to real-world forecasting scenarios.

• TimeBase not only maintains an extremely small model size but also achieves competitive
forecasting performance across seven real-world datasets. Specifically, TimeBase ranks in
the Top1–Top5 in all 28 prediction settings when compared to the ten state-of-the-art base-
lines, and it also achieves state-of-the-art performance in few-shot and zero-shot scenarios.

2 RELATED WORK

Long-term time series forecasting (LTSF) aims to predict future sequences of considerable length
using extended historical windows. The advancement of deep learning has significantly enhanced
the accuracy of LTSF, with various foundational models, such as Transformers Zhou et al. (2021);
Zhang & Yan (2023), Temporal Convolutional Networks (TCNs) Luo & Wang (2024), and Recur-
rent Neural Networks (RNNs) Lin et al. (2023b), being employed to design long-term forecasting
networks.

These models are designed based on the inherent properties of time series, such as series decompo-
sition Wu et al. (2021), frequency domain Xu et al. (2024), and periodic characteristics Wu et al.
(2023). As to series decomposition, for instance, Autoformer Wu et al. (2021) introduces a se-
ries decomposition block that utilizes moving average techniques to decompose complex temporal
variations into seasonal and trend components, each undergoing separate time series modeling. Ad-
ditionally, FEDformer Zhou et al. (2022) further enhances the representation capabilities of the
series decomposition block by employing multiple kernels moving average to decompose data at
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various granularities, thereby improving forecasting performance. Considering the frequency do-
main characteristics of time series, FITS Xu et al. (2024) operates on the principle that time series
can be manipulated through interpolation in the complex frequency domain, achieving performance
comparable to state-of-the-art models for time series forecasting. On the other hand, periodicity
is a significant factor considered by many LTSF methods. TimesNet Wu et al. (2023)proposes
the use of Fourier Transform to capture multiple periodic lengths of time series, expanding one-
dimensional time series into several two-dimensional components, which are processed through
two-dimensional networks to handle high-dimensional data. CrossGNN Huang et al. (2024b) em-
ploys moving average techniques based on periodicity to expand single-granularity time series data
into multi-granularity data, enriching the information contained within the dataset. SparseTSF Lin
et al. (2024) directly utilizes the prior periodicity of time series to transform LTSF at the time-point
level into segmented prediction tasks at the periodic level, thereby reducing the scale of network
parameters.

On the other hand, many MLP-based models have emerged, aiming to achieve lightweight forecast-
ing solutions Wang et al. (2024a). DLinear Zeng et al. (2023) introduces a linear model based on
trend and seasonal decomposition, whose competitive forecasting performance empirically demon-
strated the feasibility of using MLPs for LTSF. Following this, TiDE Das et al. provides theoretical
proof that the simplest linear analogue could achieve near-optimal error rates for linear dynami-
cal systems. Later, numerous Mixer-based works emerge, such as MTS-Mixer Li et al. (2023),
TSMixer Ekambaram et al. (2023) and HDMixer Huang et al. (2024a), which stack standard MLP
layers to efficiently capture correlations across different dimensions of multivariate time series. Fur-
thermore, Koopa Liu et al. (2024b) addresses the challenge of dynamic and unstable time series
systems by disentangling time-variant and time-invariant components using Fourier filters and de-
signing a Koopman Predictor to advance the respective dynamics. TimeMixer Wang et al. (2024b)
tackles the issue of different granularity levels in micro and macro series by proposing mixing
blocks, fully leveraging disentangled multi-scale series in both past extraction and future prediction
phases. These works represent efficient time series forecasting models based on MLP structures
(1.03 M ∼ 31.07 M). However, it still remains challenging when faced with stricter deployment
constraints on edge devices and higher efficiency demands Chatfield (2013). To address this, We
propose TimeBase to sigficantly reduce data complexity by extracting basis periods, transforming
time-step-level prediction tasks into segment-level (or period-level) forecasting tasks. Our approach
requires only 0.06 k ∼ 0.39 k parameters to achieve competitive predictive performance. More
detailed differences between TimeBase and MLP-based models is summarized at Appendix A

3 METHOD

3.1 PROBLEM DEFINITION

In LTSF, the objective is to predict future values over an extended time horizon based on very long
look-back windows. Formally, let X = [x1, x2, ..., xT ] ∈ RT denote the historical time series
data, where T ≫ 1 is the length of look-back window. The goal is to forecast the future values
Y = [xT+1, xT+2, ..., xT+L] ∈ RL with a forecasting horizon L ≫ 1. However, the exceptionally
long horizon scale T and L substantially increases model size, leading to a rapid and considerable
growth in the number of parameters, which may be unnecessary for time series data that follow
simple and regular patterns. Consequently, our focus shifts to designing models that not only deliver
robust and efficient performance but also remain extremely lightweight.

3.2 TIMEBASE

In practical, regular time series often exhibit prominent periodic patterns Lin et al. (2024), with
approximate low-rank structures across these periods Jones & Brelsford (1967). For example, traffic
flow typically follows a daily period, with similar patterns recurring each day. To effectively leverage
period characteristics and accomplish efficient forecasting, we propose TimeBase, implemented
through Basis Extraction and Period Forecasting by two extremely small-scale linear layers. This
approach drastically reduces the model parameters to the hundred level while maintaining state-
of-the-art (SOTA) forecasting performance. Most existing multivariate time series are homogeneous,
meaning that each sequence within the dataset exhibits similar periodicity. This characteristic allows
them to be organized as a unified multivariate time series. Based on this property, we employ
the Channel Independence Nie et al. (2023) to simplify the forecasting of MTS data into separate
univariate forecasting tasks. An overview of TimeBase is shown in Figure 2.
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Figure 2: Overview of TimeBase. The core of TimeBase lies in extracting basis periods, utilizing
full-rank typical period features under orthogonality constraints to accomplish segmentation-level
forecasting.

3.2.1 BASIS PERIOD RECONSTRUCTION
First, we extract the period P from the time series, which can be categorized into two scenarios: (1)
The time series has a predefined prior period: For instance, in domains like electricity or traffic,
the cyclic patterns often follow a daily periodicity, allowing us to directly assign P = 24 as the
known period from hourly sampled data. (2) The time series lacks significant prior knowledge
of its period: In this case, we can perform a period analysis, i.e., Fast Fourier Transformation (FFT),
on the available dataset, such as the training set Xtrain, to determine the corresponding period Wu
et al. (2023). Based on the period P , we segment the one-dimensional time series X ∈ RT into
N =

⌈
T
P

⌉
sub-sequences, denoted as Xhis = [X1, X2, ..., XN ] ∈ RN×P , each of length P . When

the length of XN is insufficient to meet P , the corresponding values from XN−1 will be used to fill
in the gaps. The segmentation operation can be represented as:

Xhis = Segment[N,P ](X) (1)

where N and P in Segment[N,P ](·) represent the number of rows and columns of the transformed
2D matrix. The maximized rank of the matrix Xhis is Rmax = min(N,P ). Given that typical
time series exhibit similar temporal patterns across periods, we have R ≪ min(N,P ) Jones &
Brelsford (1967). However, directly utilizing low-rank time-series data for prediction can result in
unnecessary resource consumption and an oversized model. Fortunately, in structured time series
data, a representative periodic pattern can be identified, referred to as the basis period Xbasis ∈ RR×P

which can be utilized to capture compact information and minimize the model size. Just as any
vector in a coordinate system can be represented as a linear combination of its basis vectors, the
combination of basis periods in specific time series can represent its any periodic pattern Hochreiter
& Schmidhuber (1997). Conversely, we can approximate the full-rank basis periods using the low-
rank temporal periods:

Xbasis = BasisExtract(Xhis) (2)
where BasisExtract(·) is implemented by a simple linear layer. Formally, Xhis can be expressed as a
linear combination of basis components, represented as X⊤

his = X⊤
basisWE +B, where WE ∈ RR×N

is the combined weight and the bias term B ∈ RR×N denote the temporal noise ϵ. By rearranging,
we derive XT

basis = X⊤
hisW

† − BW †. Thus, the objective of Eq. (2) is to learn a linear layer of
Whis = W † and Bhis = −BW †, allowing for an accurate approximation of the basis periods. Next,
we combine the period basis to generate the future periods as forecasting:

Xpred = PeriodForecast(Xbasis) (3)

Here, Xpred ∈ RN ′×P represents the future periods, where N ′ =
⌈
L
P

⌉
denotes the number of future

periods. The operation PeriodForecast(·), implemented also through a linear layer, aggregates the
basis periods for forecasting. Finally, Xpred is unfolded to produce the prediction result Y ∈ RL:

Y = Flatten(Xpred)1:L (4)

3.2.2 BASIS ORTHOGONAL RESTRICTION

To ensure the learned Xbasis effectively captures the essential temporal patterns and serves as a true
set of basis periods, an orthogonal constraint is needed. In this context, enforcing orthogonality on

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Xbasis not only promotes a more interpretable representation but also improves model robustness by
encouraging decorrelated temporal features.

Thus, we introduce an orthogonal regularization term into the loss function. Specifically, we pe-
nalize the deviation of Xbasis from an orthogonal set by adding a regularization loss Lorth, defined
as:

G = X⊤
basisXbasis (5)

Lorth = ∥G− diag(G)∥2F (6)

where G is the gram matrix of Xbasis and ∥ · ∥F denotes the Frobenius norm. This term encourages
Xbasis to approach an orthogonal configuration, ensuring that each basis vector captures unique and
uncorrelated temporal patterns. The overall training objective is then updated to:

L = Lprediction + λorthLorth (7)

Here, Lprediction represents the original prediction loss, i.e., mean squared error (MSE) for regression,
and λorth is a hyperparameter that controls the weight of the orthogonal regularization term. By
tuning λorth, we balance the trade-off between prediction accuracy and enforcing the orthogonality
constraint.

3.3 PARAMETER SCALE OF TIMEBASE

Theorem 1 (Parameter Scale of TimeBase). Let T denote the length of look-back window, L is the
length of the forecast period, P represents the length of the periodicity, and R gives the number of
basis periods. The parameter scale of TimeBase can be expressed as:

Number = ⌈T + L+ P

P
⌉ ×R+ ⌈L

P
⌉ (8)

where ⌈·⌉ denotes the ceiling function, which rounds up to the nearest integer. Detailed derivation
is available in Appendix B.

Theorem 1 demonstrates that the parameter scale of TimeBase is linearly dependent on both the
length of the look-back window and the forecast horizon. In LTSF, where T and L are both set to
720, the parameter number of TimeBase, given by ⌈T+L+P

P ⌉ × R + ⌈L
P ⌉, is significantly smaller

than both T×L
P 2 of SparseTSF Lin et al. (2024) and 2× T × L of DLinear Zeng et al. (2023).

4 EFFECTIVENESS ANALYSIS OF TIMEBASE

In this section, we provide an effectiveness analysis of TimeBase on long-term time series with
obvious period, and error bound on more general time series (i.e., non-period). Detailed derivation
is available in Appendix B.
Definition 1. For a long-term time series X = [x1, x2, . . . , xT ] ∈ RT , where the time length T
is very large and a periodicity P exists, the series can be divided into N = ⌈T

P ⌉ sub-sequences
[X1, X2, . . . , XN ], and can be represented as Xhis ∈ RN×P .

Low Rank Characteristics Let Xhis ∈ RN×P be a matrix with singular value decomposition
(SVD) given by Xhis = UΣV T , where U is an N ×N orthogonal matrix, Σ is an N × P diagonal
matrix containing the singular values, and V is an P × P orthogonal matrix. We can establish a
threshold to compute the approximate rank of this matrix.

Rank(Xhis) ≈ #{σi ∈ Σ : σi > ϵ} (9)

where σi is the singular values of Xhis for a small threshold ϵ > 0, and #{·} is the number.

Figure 3 illustrates the singular value distribution from real-world long-term time series data. The
rapid decay of the singular values indicates that a large portion of the matrix’s information is cap-
tured by only a few dominant components, thereby confirming its low-rank nature. Thus, Due to the
extreme similarity in temporal patterns across periods, long-term time series Xhis ∈ RN×P often
exhibits approximate low-rank characteristics:

Rank(Xhis) ≪ min(N,P ) (10)
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Definition 2. For a period Xn ∈ RP , it can be decomposed into a set of basis periods E =
[e1, e2, . . . , eR] ∈ RR×P , along with a noise (or residual) term ϵn ∈ R:

Xn =

R∑
i=1

ei + ϵn (11)

where R denotes the number of basis period in specific time series data.

Figure 3: The singular value distri-
bution of real-world period-segmented
long-term time series. The rapid decay
indicates the low-rank characteristics.

Effectiveness of TimeBase Based on Definitions 1 and
2, the predicted time series XT

pred can be obtained as:

XT
pred = ET×Wpred+Bpred ≈ (XT

his×Whis+Bhis)×Wpred+Bpred
(12)

where Whis = W †
E and Bhis = −B×W †

E in XT
his = ET ×

WE + B. It demonstrates that TimeBase transforms the
time series forecasting task into a basis period learning
problem. By approximating XT

his × Whis + Bhis to ET ,
the model learns well-represented periodic basis vectors,
which are then used to reconstruct Xpred based on ET .

Generalization of TimeBase Given any historical se-
quence Xhis ∈ RN×P , and its corresponding learned
basis vectors E ∈ RR×P , the upper fitting error of the
model can be expressed as:

∥XT
pred −ETWpred −Bpred∥2 ≤ 1

λmin(EET )
∥Xpred∥2,

(13)
where λmin(EET ) denotes the smallest eigenvalue of the
Gram matrix EET . This result highlights that the generalization capability of TimeBase to arbitrary
time series relies on learning a well-repres’ented basis matrix E. If E exhibits a favorable eigenvalue
distribution (i.e., λmin(EET ) is large), the upper bound on prediction error is lower, highlighting
the importance of a high-quality basis vector space and the necessity of orthogonal constraint.

5 EXPERIMENT

In this section, we demonstrate the advantages of TimeBase on mainstream LTSF benchmarks, both
in prediction performance and running efficiency. Additionally, we conduct further analysis through
basis visualization, parameter count, and model architecture to validate the effectiveness of Time-
Base. Experimental results showcasing TimeBase as a plug-and-play tool for significant complexity
reduction in patch-based methods are provided in Appendix M.

5.1 EXPERIMENT SETUPS

Datasets and Baselines We conduct experiments on seven widely-used and publicly available
real-world datasets, including ETTh1, ETTh2, ETTm1, ETTm21, Weather2, Electricity3, and Traf-
fic4. To validate the effectiveness of TimeBase, we compare it against 10 state-of-the-art time
series models, including ITransformer Liu et al. (2024a), FITS Xu et al. (2024), SparseTSF Lin
et al. (2024), TimeLLM Jin et al. (2024), PatchTST Nie et al. (2023), DLinear Zeng et al. (2023),
TimesNet Wu et al. (2023), FEDformer Zhou et al. (2022), Autoformer Wu et al. (2021), and In-
former Zhou et al. (2021). To ensure fair comparison, we have addressed the following concerns:
(1) the "drop last=True" bug in "test loader" is corrected to "drop last=False"
in all models to avoid insufficient evaluation; (2) input lengths of all models are set to 720.

1https://github.com/zhouhaoyi/ETDataset
2https://www.bgc-jena.mpg.de/wetter
3https://archive.ics.uci.edu/ml/datasets
4https://pems.dot.ca.gov/
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Implementation Details In TimeBase, Channel Independence Nie et al. (2023) is involved to
simplify the multivariate forecasting process to univariate time series forecasting. For datasets with
shorter periodicity, such as ETTh1, ETTh2, Electricity, and Traffic, we use a prior period P = 24 for
subsequence segmentation and set the number of basis periods R = 6 for efficient basis extraction.
For datasets with extremely long periods (which exceed the look-back window), such as ETTm1,
ETTm2, and Weather, we use smaller P values and larger R values for effective basis extraction.
For the orthogonality loss weight λorth, due to varying loss scales across datasets, we perform hy-
perparameter searches over λorth ∈ [0.04, 0.08, 0.12, 0.16, 0.2] for each dataset. Due to TimeBase’s
extremely small parameter count, and the need to reconstruct the basis period based on respectively
longer historical information, we choose a larger input length , i.e., L = 720. Section 5.4 presents
the sensitivity analysis on the number of basis periods R and the orthogonality loss weight λorth.
More implementation details are provided in the Appendix F.

5.2 MAIN RESULTS

Table 1: MSE results of long-term time series forecasting comparing TimeBase with other baselines
on short-period datasets, i.e. P = 24, shorter than the input length L = 720. The top 4 results are
highlighted in bold.

Dataset ETTh1 ETTh2 Electricity Traffic
Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

Informer(2021) 1.269 1.487 1.544 1.481 5.189 6.514 5.284 4.955 0.395 0.405 0.404 0.429 0.829 0.902 0.949 1.430
Autoformer(2021) 0.555 0.599 0.853 0.899 0.541 1.207 0.825 1.772 0.225 0.223 0.233 0.261 0.668 0.703 0.666 0.697
FEDformer(2022) 0.485 0.481 0.522 0.604 0.401 0.425 0.427 0.462 0.226 0.220 0.224 0.271 0.664 0.613 0.612 0.664
TimesNet(2023) 0.437 0.456 0.494 0.632 0.349 0.500 0.445 0.438 0.202 0.218 0.232 0.299 0.605 0.627 0.631 0.700
PatchTST(2023) 0.377 0.413 0.436 0.455 0.276 0.342 0.364 0.395 0.141 0.156 0.172 0.207 0.363 0.382 0.399 0.432
DLinear(2023) 0.378 0.415 0.449 0.507 0.294 0.412 0.471 0.740 0.141 0.155 0.170 0.209 0.396 0.404 0.420 0.457

iTransformer(2024a) 0.389 0.424 0.456 0.545 0.305 0.405 0.411 0.448 0.135 0.155 0.169 0.204 0.374 0.393 0.409 0.450
FITS∼\cite{xufits} 0.380 0.415 0.439 0.433 0.271 0.332 0.355 0.378 0.147 0.159 0.169 0.214 0.402 0.419 0.423 0.459

TimeLLM(2024) 0.390 0.427 0.459 0.452 0.300 0.365 0.367 0.411 0.135 0.156 0.160 0.197 0.377 0.385 0.399 0.436
SparseTSF(2024) 0.362 0.404 0.435 0.426 0.294 0.340 0.360 0.383 0.139 0.155 0.167 0.208 0.389 0.399 0.417 0.449
TimeBase(ours) 0.349 0.387 0.408 0.439 0.292 0.341 0.358 0.400 0.139 0.153 0.169 0.208 0.394 0.403 0.417 0.456

Table 2: The MSE results for long-term time series forecasting compare TimeBase with other base-
lines on datasets with a period much larger than the input, indicating that there is no periodicity in
the input. The top four results are highlighted in bold.

Dataset ETTm1 ETTm2 Weather
Horizon 96 192 336 720 96 192 336 720 96 192 336 720

Informer (2021) 0.632 1.131 1.391 1.397 1.870 2.807 4.442 5.258 0.283 0.445 0.587 0.953
Autoformer (2021) 0.455 0.562 0.737 0.503 0.325 0.369 0.418 0.612 0.323 0.389 0.497 0.573
FEDformer (2022) 0.406 0.450 0.436 0.462 0.339 0.397 0.449 0.451 0.289 0.340 0.370 0.420
TimesNet (2023) 0.359 0.368 0.429 0.477 0.200 0.274 0.340 0.384 0.176 0.219 0.277 0.344
PatchTST (2023) 0.298 0.335 0.366 0.420 0.165 0.219 0.268 0.352 0.149 0.193 0.240 0.312
DLinear (2023) 0.307 0.347 0.367 0.415 0.163 0.223 0.291 0.407 0.176 0.216 0.262 0.326

iTransformer (2024a) 0.315 0.349 0.381 0.437 0.179 0.239 0.309 0.387 0.159 0.203 0.253 0.317
FITS (2024) 0.313 0.339 0.367 0.417 0.166 0.218 0.271 0.352 0.176 0.217 0.261 0.325

TimeLLM (2024) 0.316 0.338 0.368 0.430 0.183 0.241 0.292 0.362 0.155 0.191 0.246 0.313
SparseTSF (2024) 0.314 0.348 0.368 0.419 0.167 0.219 0.271 0.353 0.174 0.216 0.260 0.325
TimeBase(ours) 0.310 0.338 0.364 0.413 0.166 0.218 0.270 0.352 0.174 0.215 0.260 0.323

In our experiments, we evaluated the Mean Squared Error (MSE) performance of TimeBase against
several state-of-the-art baselines on both short and long-term datasets. As indicated in Tables 1
and 2, TimeBase consistently outperform other models across different forecasting horizons. Even
with an extremely small number of parameters, TimeBase remains competitive with other mod-
els that have significantly larger parameter counts, achieving top-four rankings nearly throughout all
settings. Notably, on short-period datasets, TimeBase excels on the ETTh1 dataset, and even demon-
strating an average 6% improvement in term of MSE, significantly outperforming some large-scale
benchmark models. The full forecasting results are provided in Appendix N.
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Table 3: Efficiency comparison of TimeBase and other state-of-the-art models on the Electricity
dataset with a forecasting length of 720. To ensure fair comparison, the look-back window is set as
720 for all models.

Model Parameters MACs Max Mem.(MB) Epoch Time(s) Infer Time (CPU)
Informer(2021) 22.45M 7.85G 1424.99 143.05 72.67ms

Autoformer(2021) 22.14M 8.97G 4348.89 225.78 126.75ms
FEDformer(2022) 22.14M 10.48G 2361.76 558.03 203.31ms
PatchTST (2023) 8.69M 14.17G 18034.33 827.34 249.02ms
DLinear(2023) 1.04M 333.04M 158.21 41.08 3.25ms

FITS (2024) 10.5K 79.9M 496.7 35.00 2.85ms
iTransformer(2024a) 5.47M 1.79G 828.32 65.62 30.41ms

SparseTSF(2024) 1.0K 12.71M 125.2 31.30 2.59ms
TimeBase(ours) 0.39K 2.77M 88.89 20.6 0.98ms
Reduction(%) 61.0% 78.2% 29.0% 34.2% 62.2%

5.3 EFFICIENCY ANALYSIS

Main Efficiency Comparision In addition to its impressive predictive performance, TimeBase
offers another major advantage: its exceptionally lightweight design. Here, we provide a more
comprehensive comparison, examining both static and runtime metrics, which include (1) Param-
eters: The total number of trainable parameters, reflecting the model’s size. (2) MACs (Multiply-
Accumulate Operations): A standard measure of computational complexity in neural networks,
representing the number of multiply-accumulate operations required by the model. (3) Max Mem-
ory: The peak memory usage during training. (4) Epoch Time:The time required to train the model
for one epoch, averaged over three runs. (5) Infer Time: Infer Time indicates the average inference
time per sample on CPU.

The look-back window for each model are set as 720 for all models, and the max memory is recorded
with a constant batch size of 12. The FFT operation, which takes only 0.08 seconds (for electric-
ity) to determine period length and is not utilized during training and inferring, is negligible due
to its minimal computational overhead. Moreover, most real-world time series data typically come
with sufficient prior information on periodicity. The efficiency analysis presented in Table 3 high-
lights the remarkable advantages of TimeBase over other state-of-the-art models in terms of both
static and runtime metrics. TimeBase achieves a substantial reduction in the number of parameters
and computational complexity (MACs) compared to more parameter-heavy models like Informer
and FEDformer. Specifically, TimeBase reduces the parameter count by up to 61% and the MACs
by over 78%, while also using significantly less memory (29% reduction) and training faster (34%
reduction in epoch time). These results demonstrate that TimeBase not only maintains strong predic-
tive performance but also offers superior efficiency, making it well-suited for resource-constrained
environments.

Figure 4: Comparison of efficiency metrics between TimeBase and other lightweight models with
varying look-back windows. (a) Running time per iteration (s/iter), (b) GPU memory consumption,
and (c) Parameter count as the look-back window increases from 720 to 6480.

Efficiency in Ultra-long Look-back Window Additionally, we evaluate the efficiency of Time-
Base under ultra-long look-back windows, comparing it with lightweight models (i.e., SparseTSF
and DLinear), the current most lightweight model. The comparison focuses on three key metrics:
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running time per iteration, GPU memory usage, and parameter count, as shown in Figure 4. As the
look-back window increases from 720 to 6480, with a fixed batch size of 12 and prediction length
of 720, TimeBase consistently demonstrates its lightweight nature. Even with a ninefold increase
in input sequence length, TimeBase’s running time only increases by 0.05 seconds, GPU memory
usage expands by a factor of 3.8, and the number of parameters grows by only 3.1 times. These
results highlight the model’s extreme efficiency and scalability in handling ultra-long sequences.

5.4 HYPERPARAMETER ANALYSIS

Figure 5: Effect of basis number R on MSE across Traffic, Electricity, ETTh1, and ETTh2.

Figure 6: Effect of orthogonal loss weight λorth across Traffic, Electricity, ETTh1, and ETTh2.

This section explores the impact of two key hyperparameters on the performance of TimeBase: the
number of basis functions R and the orthogonal loss weight λorth. In Figure 5, the number of basis
number R is varied from [2, 4, 6, 12, 18, 24, 30], and the corresponding MSE results for Traffic,
Electricity, ETTh1, and ETTh2 datasets are reported. The results indicate that, in most cases, in-
creasing R has minimal impact on the model’s performance. This suggests that R = 6 is sufficient
to capture the essential basis information without degrading prediction accuracy. TimeBase is able
to maintain strong performance with a small number of basis functions, demonstrating the model’s
efficiency in extracting representative components. Figure 6 shows the MSE results as the orthogo-
nal loss weight λorth is varied across [0, 0.04, 0.08, 0.12, 0.16, 0.20]. For datasets such as ETTh1,
and ETTh2, prediction performance fluctuates with different values of λorth. However, for Traffic
and Electricity, the performance remains relatively stable. Overall, increasing λorth tends to im-
prove performance to some extent, though its impact is dataset-dependent. These findings suggest
that careful tuning of λorth can lead to performance gains, particularly for certain datasets.

5.5 ABLATION STUDY

Figure 7: MSE comparison with and without orthogonal constraint across different prediction
lengths for Traffic, Electricity, ETTh1, and ETTh2 datasets.

9
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Figure 7 illustrates the MSE results for various prediction lengths, both with and without the orthog-
onal constraint. The inclusion of the orthogonal constraint consistently leads to improvements across
all datasets, with gains up to 0.036 in MSE. This indicates that the orthogonal constraint helps the
model learn more representative basis periods, enhancing both the model’s representational capacity
and predictive performance. The positive impact across multiple datasets and forecasting horizons
demonstrates the value of incorporating the orthogonal constraint into the training process.

5.6 FORECASTING WITH LOW-QUALITY DATA

Table 4: Few-shot Forecasting

Methods TimeBase TimeLLM iTransformer

Metric MSE MAE MSE MAE MSE MAE
ETTh1 0.571 0.524 0.572 0.531 0.591 0.523
ETTh2 0.392 0.419 0.401 0.412 0.396 0.422
ETTm1 0.403 0.423 0.409 0.433 0.461 0.439
ETTm2 0.284 0.322 0.289 0.336 0.289 0.336

Table 5: Transfer Learning

Methods TimeBase TimeLLM iTransformer

Source Target MSE MAE MSE MAE MSE MAE
ETTh1 ETTh2 0.313 0.357 0.359 0.390 0.406 0.422
ETTh2 ETTh1 0.436 0.438 0.478 0.471 0.757 0.578
ETTm1 ETTm2 0.254 0.316 0.272 0.333 0.313 0.348
ETTm2 ETTm1 0.449 0.433 0.422 0.438 0.663 0.563

This section examines forecasting performance under low-quality data conditions, focusing on the
performance of few-shot forecasting (training with 10% data) and transfer learning tasks (train-
ing on source data and testing on target data). Average forecasting performance among L =
[96, 196, 336, 720] in Table 4 and Table 5 shows that TimeBase outperforms SOTA models in both
scenarios. Notably, it shows that basis period extraction technique of TimeBase really does well
in data-scarce and transfer learning settings, demonstrating its robustness and adaptability when
dealing with low-quality data.

5.7 BASIS VISUALIZATION

Figure 8: Visualization of the learned basis periods on
the Electricity dataset and the corresponding Pearson
correlation coefficients.

Figure 8 displays the basis periods ex-
tracted by TimeBase from the Electric-
ity dataset, along with the Pearson cor-
relation matrix between them. The re-
sults show that the Pearson correlation co-
efficients between most basis periods are
close to zero, indicating low correlation
among them. This suggests that TimeBase
is capable of extracting distinct and repre-
sentative basis periods from the approxi-
mate low-rank structure of long-term time
series data. By identifying these repre-
sentative basis periods, TimeBase can per-
form period-level forecasting using a com-
pact set of period features. This approach significantly reduces the number of parameters required
by the model while maintaining competitive forecasting performance. The ability to leverage such
compact representations is key to TimeBase’s parameter efficiency and contributes to its strong per-
formance on long-term time series forecasting tasks.

6 CONCLUSION

To deploy long-term time series forecasting (LTSF) models in more realistic scenarios such as edge
computing and mobile devices, we focus on exploring lightweight forecasting methods. Given the
periodicity of long time series and the approximate low-rank nature resulting from similar patterns
between adjacent cycles, we propose TimeBase. This model employs basis period extraction to
identify representative periodic features, transforming step-level long-term time series forecasting
into period-level forecasting. Theoretical analysis and extensive empirical results demonstrate that
this approach not only ensures prediction accuracy but also significantly reduces the model size,
achieving the lightest time series forecasting model to date, with only 0.39K parameters.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Christopher Chatfield. The analysis of time series: theory and practice. Springer, 2013.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan K Mathur, Rajat Sen, and Rose Yu. Long-
term forecasting with tide: Time-series dense encoder. Transactions on Machine Learning Re-
search.

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 459–469,
2023.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Qihe Huang, Lei Shen, Ruixin Zhang, Jiahuan Cheng, Shouhong Ding, Zhengyang Zhou, and Yang
Wang. Hdmixer: Hierarchical dependency with extendable patch for multivariate time series
forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
12608–12616, 2024a.

Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and Yang
Wang. Crossgnn: Confronting noisy multivariate time series via cross interaction refinement.
Advances in Neural Information Processing Systems, 36, 2024b.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming
large language models. arXiv preprint arXiv:2310.01728, 2023.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming
large language models. In The Twelfth International Conference on Learning Representations,
2024.

Richard H Jones and William M Brelsford. Time series with periodic structure. Biometrika, 54(3-4):
403–408, 1967.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Zhe Li, Zhongwen Rao, Lujia Pan, and Zenglin Xu. Mts-mixers: Multivariate time series forecasting
via factorized temporal and channel mixing. arXiv preprint arXiv:2302.04501, 2023.

Shengsheng Lin, Weiwei Lin, Wentai Wu, Songbo Wang, and Yongxiang Wang. Petformer: Long-
term time series forecasting via placeholder-enhanced transformer. 2023a.

Shengsheng Lin, Weiwei Lin, Wentai Wu, Feiyu Zhao, Ruichao Mo, and Haotong Zhang. Seg-
rnn: Segment recurrent neural network for long-term time series forecasting. arXiv preprint
arXiv:2308.11200, 2023b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, and Junjie Yang. Sparsetsf: Modeling
long-term time series forecasting with* 1k* parameters. In Forty-first International Conference
on Machine Learning, 2024.

Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. Robust recovery
of subspace structures by low-rank representation. IEEE transactions on pattern analysis and
machine intelligence, 35(1):171–184, 2012.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. Advances in
Neural Information Processing Systems, 35:5816–5828, 2022.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
casting. In International conference on learning representations, 2021a.

Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian, Hao He, Antong
Li, Mengshen He, Zhengliang Liu, et al. Summary of chatgpt-related research and perspective
towards the future of large language models. Meta-Radiology, pp. 100017, 2023.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth Inter-
national Conference on Learning Representations, 2024a.

Yong Liu, Chenyu Li, Jianmin Wang, and Mingsheng Long. Koopa: Learning non-stationary time
series dynamics with koopman predictors. Advances in Neural Information Processing Systems,
36, 2024b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021b.

Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time
series analysis. In The Twelfth International Conference on Learning Representations, 2024.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Mingtian Tan, Mike A Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen. Are language
models actually useful for time series forecasting? arXiv preprint arXiv:2406.16964, 2024.

Binwu Wang, Yudong Zhang, Xu Wang, Pengkun Wang, Zhengyang Zhou, Lei Bai, and Yang
Wang. Pattern expansion and consolidation on evolving graphs for continual traffic prediction. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 2223–2232, 2023.

Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan
Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
analysis. arXiv preprint arXiv:2410.16032, 2024a.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and
JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In The
Twelfth International Conference on Learning Representations, 2024b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. Advances in Neural Information
Processing Systems, 34:22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In International Conference on
Learning Representations, 2023.

Zhijian Xu, Ailing Zeng, and Qiang Xu. Fits: Modeling time series with 10k parameters. In The
Twelfth International Conference on Learning Representations, 2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121–11128, 2023.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for
multivariate time series forecasting. In International Conference on Learning Representations,
2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proc. 39th International
Conference on Machine Learning, 2022.

Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. One fits all: Power general time
series analysis by pretrained lm. 2023a.

Zhengyang Zhou, Qihe Huang, Gengyu Lin, Kuo Yang, LEI BAI, and Yang Wang. GReto: Reme-
dying dynamic graph topology-task discordance via target homophily. In The Eleventh Interna-
tional Conference on Learning Representations, 2023b. URL https://openreview.net/
forum?id=8duT3mi_5n.

A DIFFERENCES BETWEEN TIMEBASE AND OTHER MLP-BASED MODELS

Table 6: Differences between TimeBase and other MLP-based Models

Linear-based Model TimeBase(Ours) TimeMixer Koopa DLinear MTS-Mixer TSMixer HDMixer TiDE

Scale Extremely Light Light Normal Light Light Light Light Normal
(0.39 K) (5.57M) (30.04 M) (1.03M) (2.02M) (1.05M) (4.81M) (31.07M)

Performance Perfect Perfect Perfect Perfect Good Good Good Good
(0.208) (0.206) (0.215) (0.209) (0.213) (0.236) (0.243) (0.241)

Forecasting Type Segment-level Point-level Point-level Point-level Point-level Point-level Point-level Point-level

We summarize the differences between TimeBase and other MLP/Mixer-based models in the Ta-
ble 6, highlighting key differences across three crucial aspects: model scale, performance, and
forecasting type. These differences underscore the efficiency and unique strengths of TimeBase
in long-term time series forecasting. In terms of scale, TimeBase stands out with an extremely
lightweight architecture that requires only 0.39K parameters for 720-horizon forecasting on the
Electricity dataset. This is a striking contrast to other MLP-based models, whose parameter sizes
range from 1.03M (for DLinear) to 31.07M (for TiDE). This significant reduction in model size—by
a factor of over 1000—allows TimeBase to operate with minimal computational overhead, making
it a highly efficient choice for real-time and resource-constrained applications. The compact size
of TimeBase ensures that it is more suitable for deployment in environments with strict memory
and computation limitations, without sacrificing performance. Regarding forecasting performance,
TimeBase maintains competitive accuracy, achieving an MSE of 0.208 for 720-horizon forecast-
ing, which is comparable to or better than most other models in the comparison. For instance,
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TimeMixer, Koopa, and DLinear all have slightly higher MSE values (ranging from 0.206 to 0.215),
indicating that TimeBase performs just as well, if not slightly better, in terms of predictive accu-
racy. While some models, such as MTS-Mixer and TSMixer, exhibit slightly higher performance,
the differences are relatively small, and the trade-off for using such models—larger parameter sizes
and greater computational costs—becomes more apparent when considering the overall efficiency of
TimeBase. In terms of forecasting type, TimeBase adopts a segment-level approach, which distin-
guishes it from most other models that employ a point-level forecasting strategy. This segment-level
forecasting method allows TimeBase to better capture the temporal dependencies in long-term time
series data by focusing on the relationships between segments of data, rather than predicting indi-
vidual time steps. This can lead to improved generalization and robustness in cases where the time
series exhibits periodic or seasonal behavior, as is often the case in many real-world forecasting
tasks.

B DERIVATION OF PARAMETERS AND EFFECTIVENESS

B.1 DERIVATION OF PARAMETER SCALE IN TIMEBASE

To determine the total number of parameters in TimeBase, we need to account for two components,
i.e., BasisExtract(·) and PeriodForecast(·). BasisExtract(·) is implemented as a linear layer
where the input size is ⌈T

P ⌉ and the output size is R. The number of parameters for this layer is
(⌈T

P ⌉+1)×R wheres ⌈T
P ⌉+1 accounts for the input features plus the bias term, multiplied by the

output size R. PeriodForecast(·) is another linear layer where the input size is R and the output
size is ⌈L

P ⌉. The number of parameters for this layer is given by (R + 1) × ⌈L
P ⌉, where R + 1

accounts for the input features plus the bias term, multiplied by the output size ⌈L
P ⌉.

Adding these two components together, the total parameter scale of TimeBase is given by:

Number = (⌈T
P
⌉+ 1)×R+ (R+ 1)× ⌈L

P
⌉ = ⌈T + L+ P

P
⌉ ×R+ ⌈L

P
⌉ (14)

B.2 DERIVATION OF EFFECTIVENESS ON PERIOD ORIENTED FORECASTING

Each periodic time series Xn ∈ RP can be decomposed into the basis periods {e1, e2, . . . , eR} with
an added residual term ϵn. For the entire matrix representation Xhis, this holds for each row, where
each row corresponds to a time period of length P . Thus, we can represent each row of Xhis as
a linear combination of the basis signals in E, weighted by matrix WE ∈ RR×P , along with the
residual term B. Correspondingly, we have the relationship:

XT
his = ET ×WE +B (15)

Rearranging this equation to solve for ET , we obtain:

ET ≈ Xbasis = (XT
his −B)×W †

E (16)

where W †
E represents the Moore-Penrose pseudoinverse of WE . Thus, the learnable parameters are

given by:
Whis = W †

E and Bhis = −B ×W †
E (17)

Thus, we can predict future time series by applying weights Wpred ∈ RP×P to combine the basis pe-
riods ET appropriately. Additionally, a bias term Bpred ∈ RP is added to account for any remaining
variability. Thus, the prediction equation is:

XT
pred = ET ×WT

pred +Bpred (18)

Substituting the expression for ET of Eq( 16) and Eq(18) , we get:

XT
pred ≈ Xbasis ×WT

pred +Bpred

= (XT
his ×Whis +Bhis)×WT

pred +Bpred
(19)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.3 DERIVATION OF TIMEBASE’S GENERALIZATION

In this section, we analyze the generalization capability of TimeBase. Firstly, we demonstrate that
effective basis vectors can still be extracted from non-periodic data. Subsequently, we prove that the
generalization error of TimeBase is closely related to the quality of the extracted basis vectors.

Effectiveness on Non-periodic Data Assume we have a historical time series matrix Xhis ∈
RN×P , whereN represents the number of time segments (i.e., the time series is divided into N
segments) and P denotes the length of each time segment, not equal to the period length.
According to the definition of SVD, any matrix X ∈ RN×P can be decomposed as follows:

Xhis = UΣV T , (20)

where U ∈ RN×N is the left singular matrix containing the left singular vectors of Xhis, Σ ∈ RN×P

is a diagonal matrix containing the singular values, which describe the ”importance” of the matrix
and V T ∈ RP×P is the right singular matrix containing the right singular vectors of Xhis. The
decomposition provides a structured representation of Xhis in terms of orthogonal bases. Specifi-
cally, in the context of TimeBase, the right singular vectors in V T can be interpreted as candidate
basis vectors E ∈ RR×P , where R ≤ min(N,P ) specifies the number of significant components
to be retained. This dimensionality reduction highlights the inherent structure within the data and
facilitates generalization, even in cases where P does not deviate from the period length. Next, to
reconstruct the time series data Xhis using these basis vectors, it can be achieved by a linear layer in
a deep learning framework, which applies the following transformation: XT

his ≈ ETWE +B. Based
on this, we can get ET ≈ (XT

his −B)×W †
E as stated in Eq( 16).

The Upper Bound of TimeBase’s Error The prediction error is defined as:

r = XT
pred −ETWpred −Bpred (21)

By ignoring the bias term Bpred, the norm of the error is:

∥r∥2 = ∥Xpred −WpredE∥2 (22)

To derive the optimal coefficient matrix Wpred, we need to solve the following optimization problem:

min
Wpred

∥Xpred −WpredE∥22

=min
Wpred

Tr
(
(Xpred −WpredE)(Xpred −WpredE)T

)
=min

Wpred
Tr(XpredX

T
pred)− 2Tr(WpredEXT

pred) + Tr(WpredEETWT
pred)

(23)

Next, we take the derivative:

∇Wpred∥Xpred −WpredE∥22
=∇Wpred Tr(XpredX

T
pred)− 2Tr(WpredEXT

pred) + Tr(WpredEETWT
pred)

=− 2XpredE
T + 2WpredEET

(24)

Setting the derivative equal to zero, we get:

Wpred = XpredE
T (EET )−1 (25)

Substituting the optimal coefficient Wpred into the error expression, we obtain the error:

r = Xpred −XpredE
T (EET )−1E

= Xpred(I−ET (EET )−1E)
(26)

Here, P = I − ET (EET )−1E is a projection matrix. The norm property of the projection matrix
can be bounded using the matrix spectral norm:

P = ∥I−ET (EET )−1E∥2 = 1− σmin, (27)
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where σmin represents the smallest singular value of EET . Since singular values are equivalent to
eigenvalues in this context, we have:

σmin = λmin(EET ) (28)

Next, based on the fact that the spectral norm of the projection matrix is bounded above by
1

λmin(EET )
Golub & Van Loan (2013), and utilizing the inequality property of matrix norms,

∥AB∥2 ≤ ∥A∥2∥B∥2 Horn & Johnson (2012), we obtain:

∥r∥2 ≤ 1

λmin(EET )
∥Xpred∥2 (29)

where λmin(EET ) denotes the smallest eigenvalue of the Gram matrix EET . This result highlights
that the generalization capability of TimeBase to arbitrary time series relies on learning a well-
represented basis matrix E. If E exhibits a favorable eigenvalue distribution (i.e., λmin(EET ) is
large), the upper bound on prediction error is lower, highlighting the importance of a high-quality
basis vector space and the necessity of orthogonal constraint.

C PERIOD MEAN NORMALIZATION

We perform period normalization on the time series data, ensuring that each value within the same
period is centered by subtracting the mean of all values at the same time index across different
periods. Later, during prediction, the corresponding mean will be added back to the predicted values
to restore the original scale. Given a time series matrix Xhis ∈ RN×P , where N is the number of
periods and P is the length of each period, we compute the mean Xmean ∈ RP across all periods at
each time index:

Xmean(j) =
1

N

N∑
i=1

Xhis(i, j) for j = 1, 2, . . . , P (30)

Here, Xmean(j) represents the mean of the data at time index j across all periods. We then subtract
this mean from each element of the matrix Xhis to obtain the normalized matrix Xnorm ∈ RN×P :

Xhis(i, j) = Xhis(i, j)−Xmean(j) (31)

During the prediction phase, when generating the future period matrix Xpred ∈ RN ′×P , where N ′

is the number of future periods, we add the corresponding mean back to restore the original scale:

Xpred(i, j) = Xpred(i, j) +Xmean(j) for i = 1, 2, . . . , N ′ and j = 1, 2, . . . , P (32)

This ensures that the predicted values Xpred maintain the same overall trends as the original time
series data after normalization.

D MORE DESCRIPTION OF DATASETS

We evaluate performance of long-term forecasting on Weather, Traffic, Electricity and four ETT
datasets (i.e., ETTh1, ETTh2, ETTm1, and ETTm2), which have been extensively adopted for
benchmarking long-term forecasting models. Adhering to the established protocol in Wu et al.
(2021), we partition the datasets into training, validation, and test sets with a ratio of 6:2:2 for the
last four ETT datasets and 7:1:2 for the remaining datasets. The input length, prediction length, and
the variable number of each real-world dataset are presented in Table 7. The detailed dataset de-
scriptions are as follows: 1) Weather includes 21 indicators of weather, such as air temperature, and
humidity. Its data is recorded every 10 min for 2020 in Germany. 2) Traffic describes hourly road
occupancy rates measured by 862 sensors on San Francisco Bay area freeways from 2015 to 2016.
3) Electricity contains hourly electricity consumption (in Kwh) of 321 clients from 2012 to 2014. 4)
ETT consists of two hourly-level datasets (ETTh) and two 15minute-level datasets (ETTm). Each
of them contains seven oil and load features of electricity transformers from July 2016 to July 2018.
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Table 7: Dataset Statistics

Dataset Variate Input Length Predict Length Forecastability∗ Information Frequency

ETTh1 7 720 96∼720 0.46 Electricity Hourly

ETTh2 7 720 96∼720 0.46 Electricity Hourly

ETTm1 7 720 96∼720 0.46 Electricity 15mins

ETTm2 7 720 96∼720 0.46 Electricity 15mins

Weather 21 720 96∼720 0.75 Weather 10mins

Electricity 321 720 96∼720 0.77 Electricity Hourly

Traffic 862 720 96∼720 0.68 Transportation Hourly
∗The forecastability is calculated by one minus the entropy of Fourier decomposition of time series. A
larger value indicates better predictability.

E MORE DETAILS OF BASELINES

We compare TimeBase with 10 baselines, which comprise the state-of-the-art long-term forecasting
models: iTransformer Liu et al. (2024a), PatchTST Nie et al. (2023), DLinear Zeng et al. (2023),
TimesNet Wu et al. (2023), FEDformer Zhou et al. (2022), Autoformer Wu et al. (2021), and In-
former Zhou et al. (2021), relatively efficient models: FITS Xu et al. (2024), SparseTSF Lin et al.
(2024), as well as LLM-based methods: TimeLLM Jin et al. (2024). We briefly describe the selected
10 state-of-the-art baselines as follows: 1) iTransformer Liu et al. (2024a) simply inverts the du-
ties of the attention mechanism and the feed-forward network to encode each individual series into
variate tokens and for forecasting. 2) PatchTST Nie et al. (2023) is a strong versatile transformer
baseline using channel-independence and patching. 3) TimesNet Wu et al. (2023) is a task-general
foundational model for time series, reshaping 1-dim temporal data to 2-dim space and using 2-dim
backbone to deal with the data. 4) FEDformer Zhou et al. (2022) introduces a frequency-enhanced
decomposer to model seasonal-trend time series in an efficient manner. 5) Autoformer Wu et al.
(2021) employs an auto-correlation mechanism and series decomposition block to improve long-
sequence forecasting. 6) Informer Zhou et al. (2021) utilizes a sparse self-attention mechanism
and a distilling operation to handle long time series more efficiently. 7) DLinear Zeng et al. (2023)
is a simple linear-based model combined with a decomposition module. 8) FITS Xu et al. (2024)
introduces an innovative method for time series forecasting using a complex-valued neural network,
effectively capturing both the magnitude and phase of the data. This dual representation enables a
more thorough and efficient analysis of time series signals. 9) SparseTSF Lin et al. (2024) simpli-
fies the time series forecasting process by downsampling the original sequences at fixed intervals.
Each downsampled segment is used to predict cross-period trends, reducing the complexity of the
original forecasting task. 10) TimeLLM Jin et al. (2024) adapts large language models for time se-
ries prediction through a reprogramming strategy, keeping the model architecture unchanged while
optimizing for temporal forecasting.

F MORE IMPLEMENTATION DETAILS

We build TimeBase using PyTorch 1.13.0 Paszke et al. (2019). All experiments are conducted on
a single NVIDIA A100 GPU with 40GB of memory. The model is trained with the Adam opti-
mizer Kingma (2014) with L2 loss over 30 epochs. After the first three epochs, a learning rate
decay of 0.8 is applied, and early stopping is employed with a patience threshold of five epochs. In
TimeBase, Channel Independence (CI) Nie et al. (2023) is involved to simplify the multivariate fore-
casting process to univariate time series forecasting. Due to its highly simplistic design, TimeBase
requires minimal hyperparameter tuning. The period P is set to the natural period of the dataset (e.g.,
P = 24 for ETTh1), or a smaller value is chosen when dealing with datasets that exhibit extremely
long periods (e.g., P = 4 for Weather). We performed a grid search for TimeBase to find the optimal
hyperparameters, specifically for the regularization parameter λorth = [0.04, 0.08, 0.12, 0.16, 0.20]
to accommodate varying loss scales between datasets, as well as the learning rate between 0.01 and
0.5. The loss function is MSE.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

To enhance the reliability of our results, we re-run baselines in an uniform and fair setting. For
SparseTSF, PatchTST, DLinear, FITS, Time-LLM, Fedformer, and TimesNet, we utilized their offi-
cial code repositories. For Autoformer and Informer, we leveraged the code provided in the official
DLinear repository to run these models. To ensure a fair comparison with other efficient LTSF base-
lines such as Xu et al. (2024); Lin et al. (2024), which utilize a uniform input length of 720, we also
adopt an input length of 720 for all models. It is important to note that we have corrected the bug
involving test loader where drop last=True during testing on the test set, ensuring that
drop last=False is used instead. All scripts and logs for running our model and baselines are
available at https://anonymous.4open.science/r/TimeBase-fixbug.

G PERFORMANCE ON FURTHER PREDICTION LENGTH

To better illustrate its strengths in long-term time series forecasting, we extended the maximum
prediction horizon beyond 720 to include 1080, 1440, and 1800 time steps. We compared its per-
formance against well-established LTSF models, such as iTransformer and DLinear, across multiple
datasets (ETTh1, ETTh2, and Electricity). As shown in Table 8, 9, 10, the results underscore that
TimeBase consistently outperforms these models in ultra-long-term forecasting tasks. It achieves
this while maintaining linear growth in model complexity (measured by parameters, MACs), demon-
strating scalability as the prediction length increases. Specifically, TimeBase not only yields lower
Mean Squared Error (MSE) values but also achieves these results with significantly fewer param-
eters and MACs compared to its counterparts. For example, in the ETTh1 dataset at a prediction
length of 1800, TimeBase achieves an MSE of 0.714 with only 0.7K parameters and 0.1M MACs.
In contrast, iTransformer and DLinear exhibit higher MSEs of 0.812 and 0.796, respectively, while
using 523.9K and 2.59M parameters, and 6.78M and 18.15M MACs. Similar trends are observed
across the ETTh2 and Electricity datasets, where TimeBase demonstrates robust accuracy and effi-
ciency advantages. These findings validate TimeBase’s effectiveness in ultra-long-term forecasting
tasks, particularly when resource efficiency is critical. Moreover, the linear growth in computational
cost ensures its feasibility for deployment on edge devices. This positions TimeBase as a practical
solution for real-world long-term forecasting scenarios.

Table 8: Further prediction length on Electricity. The input length is set as 720 for all models.

Electricity ∥ 1080 Electricity ∥ 1440 Electricity ∥ 1800

MSE Param MAC MSE Param MAC MSE Param MAC
TimeBase 0.234 0.5 K 3.47 M 0.264 0.6 K 4.16 M 0.295 0.7 K 4.85 M

iTransformer 0.253 5.65 M 1.85 G 0.272 5.84 M 1.91 G 0.325 6.03 M 1.97 G
DLinear 0.255 1.6 M 499.45 M 0.290 2.1 M 665.86 M 0.321 2.59 M 832.26 M

Table 9: Further prediction length on ETTh2. The input length is set as 720 for all models.

ETTh2 ∥ 1080 ETTh2 ∥ 1440 ETTh2 ∥ 1800

MSE Param MAC MSE Param MAC MSE Param MAC
TimeBase 0.478 0.5 K 0.07 M 0.543 0.6 K 0.09 M 0.552 0.7 K 0.1 M

iTransformer 0.501 431.1 K 5.58 M 0.575 477.4 K 6.18 M 0.597 523.9 K 6.78 M
DLinear 0.583 1.6 M 10.89 M 0.672 2.1 M 14.52 M 0.652 2.59 M 18.15 M

Table 10: Further prediction length on ETTh1 The input length is set as 720 for all models.

ETTh1 ∥ 1080 ETTh1 ∥ 1440 ETTh1 ∥ 1800

MSE Param MAC MSE Param MAC MSE Param MAC
TimeBase 0.551 0.5 K 0.07 M 0.636 0.6 K 0.09 M 0.714 0.7 K 0.1 M

iTransformer 0.602 431.1 K 5.58 M 0.708 477.4 K 6.18 M 0.812 523.9 K 6.78 M
DLinear 0.582 160 M 10.89 M 0.693 2.1 M 14.52 M 0.796 2.59 M 18.15 M

18

https://anonymous.4open.science/r/TimeBase-fixbug


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

H EXTENSION TO MULTI-SEASONALITY

In time series forecasting, many real-world datasets exhibit multiple seasonalities, which are cru-
cial for accurate modeling and prediction. For example, traffic data often contains both daily and
weekly seasonal patterns, which can significantly influence forecasting accuracy. TimeBase, ini-
tially designed for univariate time series forecasting, can be extended to handle such multi-seasonal
data by learning distinct period bases for each individual seasonality and combining their outputs
to generate more accurate predictions. This extension allows TimeBase to model complex periodic
patterns while retaining its minimalistic architecture. Mathematically, the multi-seasonal extension
of TimeBase can be formulated as follows:

MSTimeBase =
∑
i

TimeBase(X;P = pi) (33)

where X represents the input data and P = pi denotes the different period bases corresponding to
each seasonality. By learning multiple period bases (p ∈ [24, 168] hours, for example), the model
can capture both short-term and long-term seasonal patterns and combine them to enhance the ac-
curacy of the forecast.
To evaluate this extension, we applied the multi-seasonality approach to the Traffic dataset, con-
sidering both daily and weekly seasonalities. The results, summarized in Table 11, demonstrate
that incorporating multiple seasonalities into TimeBase improves the prediction performance with
only a modest increase in computational cost and model complexity. Specifically, the model’s Mean
Squared Error (MSE) and Mean Absolute Error (MAE) improve when compared to the original
TimeBase model, despite only a slight increase in the number of parameters and computational cost.
This extension underscores the versatility and power of TimeBase in dealing with complex, multi-
seasonal patterns, making it suitable for a wide range of long-term time series forecasting (LTSF)
tasks. The ability to extend TimeBase while maintaining its lightweight nature reflects its potential
for scalable deployment in real-world applications, where seasonalities often vary and need to be
captured for accurate forecasting.

Table 11: Performance of TimeBase extended to multi-seasonality. The prediction length is 720 for
Traffic dataset.

Model MSE MAE MACs Params Basis num
iTransformer 0.450 0.313 1.01 G 11.61 M -

TimeBase 0.456 0.301 9.93 M 0.51 K 8
MSTimeBase 0.451 0.295 16.76 M 0.49 K 6

I SUB-SEQUENCE LENGTH ANALYSIS

Figure 9: MSE results for different segmentation lengths (P = [6, 12, 18, 24, 30]) across various
prediction lengths on Traffic, Electricity, ETTh1, and ETTh2 datasets.

This section explores the impact of segmentation length on the forecasting performance of TimeBase
across the Traffic, Electricity, ETTh1, and ETTh2 datasets. The analysis evaluates how varying the
length of sub-sequence segments, denoted as P , affects prediction accuracy for different forecasting
horizons. Figure 9 shows that across all datasets and forecasting horizons, the best performance is
consistently achieved when the segmentation length is set to P = 24. In contrast, shorter or longer
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segmentation lengths (P = 6, 18, 30) result in noticeably higher MSE values, indicating suboptimal
performance. This suggests that the choice of segmentation length significantly affects the model’s
ability to capture periodic patterns effectively. The superior performance at P = 24 highlights the
importance of aligning the segmentation length with the inherent periodicity of the data. Deviation
from this optimal segmentation length reduces the model’s capacity to accurately represent the un-
derlying time series dynamics, thus leading to a degradation in forecasting accuracy. This analysis
underscores the necessity of selecting an appropriate segmentation length that corresponds to the
periodic nature of the data. The findings suggest that segmenting the time series into periods of
P = 24 yields the most representative and predictive sub-sequences, enhancing overall forecasting
performance.

J EFFECTIVENESS ON SYNTHETIC DATA

Figure 10: Visualization of the synthetic data generated using the equation Y =
| cos(X)| sin(100X). The dataset comprises 5000 samples, which are split into training (60%),
validation (20%), and testing (20%) sets.

Table 12: Performance of TimeBase on synthetic data for a forecasting length of 100.

Model MSE MAE MACs Params

TimeBase 0.007 0.070 0.077M 0.19K
DLinear 0.015 0.081 0.1M 100K

PatchTST 0.011 0.085 1.28M 219K

Table 13: Performance of TimeBase on synthetic data for a forecasting length of 200.

Model MSE MAE MACs Params

TimeBase 0.010 0.082 0.093M 0.23K
DLinear 0.021 0.124 0.2M 200K

PatchTST 0.017 0.083 1.48M 420K

Table 14: Performance of TimeBase on synthetic data for a forecasting length of 300.

Model MSE MAE MACs Params

TimeBase 0.013 0.094 0.099M 0.26K
DLinear 0.039 0.180 0.3M 300K

PatchTST 0.023 0.136 1.69M 622K
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The synthetic dataset shown in Figure 10, derived from the function Y = | cos(X)| sin(100X), pro-
vides a controlled and challenging benchmark to evaluate the forecasting performance of TimeBase
and compare it against state-of-the-art models like DLinear and PatchTST. The data was sampled
with high frequency to capture intricate oscillations, divided into training, validation, and testing
sets in a 6:2:2 ratio. The basis number is set as 6 for TimeBase to achieve efficient basis extraction.
The results of different forecating length are shown in Table 12, 13, 14.The synthetic dataset, gen-
erated using Y = | cos(X)| sin(100X), serves as a rigorous benchmark for assessing the forecasting
capabilities of TimeBase compared to models like DLinear and PatchTST. TimeBase consistently
demonstrated superior accuracy and efficiency across varying prediction lengths. For a forecasting
length of 100, it achieved an MSE of 0.007 and an MAE of 0.070, utilizing only 0.19K param-
eters and 0.077M MACs—substantially less than its competitors. At a forecasting length of 200,
TimeBase maintained robust accuracy (MSE = 0.010, MAE = 0.082) while still requiring minimal
resources (0.23K parameters, 0.093M MACs). For a length of 300, it continued to excel in efficiency
and delivered competitive accuracy (MSE = 0.013, MAE = 0.094), outperforming DLinear and ap-
proaching PatchTST’s accuracy but at a fraction of the computational cost. These results emphasize
TimeBase’s ability to deliver precise, efficient forecasts, making it an ideal solution for resource-
constrained environments while retaining adaptability across diverse time-series scenarios. These
results highlight the efficacy of TimeBase in balancing precision and efficiency. Its minimalistic de-
sign achieves state-of-the-art accuracy for synthetic data forecasting while consuming significantly
fewer computational resources. This makes TimeBase particularly suitable for resource-constrained
environments, such as IoT devices and edge computing scenarios. Additionally, its performance
stability across varying forecasting horizons underscores its adaptability to different time-series dy-
namics.

K COMPARISON OF PARAMETER NUMBERS FOR TIMEBASE AND BASELINE
MODELS AT DIFFERENT MAINSTREAM INPUT LENGTHS

Table 15: Comparison of parameter numbers for TimeBase and baseline models at different input
lengths in [96, 192, 336, 720]

Input length 96 192 336 720

TimeBase 0.24K 0.26K 0.30K 0.39 K
iTransformer 5.15M 5.20M 5.27M 5.47M

DLinear 0.13M 0.27M 0.49M 1.03M
PatchTST 1.5M 2.61M 4.27M 8.69M

In the Table 15, we present a detailed comparison of the parameter numbers for TimeBase and
several prominent baseline models (iTransformer, DLinear, and PatchTST) across a range of input
lengths. The input lengths vary from 96 to 720, covering both smaller and larger time series win-
dows to evaluate how the parameter count scales with respect to input size. As shown in the table,
TimeBase exhibits an exceptional parameter efficiency. For input lengths of 96, 192, 336, and 720,
the parameter count increases from 0.24K to 0.39K. Notably, even at the longest input length (720),
TimeBase maintains a remarkably low number of parameters compared to the baselines, making it
an ideal choice for efficient time series forecasting, especially when dealing with large datasets or
resource-constrained environments. In contrast, the baseline models show a significant increase in
the number of parameters as the input length grows. iTransformer, for instance, starts with 5.15M
parameters at input length 96 and escalates to 5.47M at input length 720. DLinear, although more ef-
ficient than iTransformer, still demonstrates a steep parameter increase, from 0.13M at 96 to 1.03M
at 720. PatchTST, known for its high complexity, shows the most dramatic increase in parameter
numbers, reaching up to 8.69M for an input length of 720. This parameter analysis highlights the
core strength of TimeBase: its ability to scale effectively with input length while maintaining an
ultra-compact parameter footprint. This is crucial in practical applications where resource limita-
tions such as memory and computation time are a concern, allowing TimeBase to provide an optimal
balance between model complexity and performance.
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Table 16: Performance of TimeBase under different learning rate on traffic. The batch size is fixed
as 128, input length is 720, forecasting length is 96, basis number is 6, orthogonal weight is 0.04.

Learning Rate 2e-1 1e-1 9e-2 8e-2 7e-2 6e-2 5e-2 4e-2 3e-2 2e-2 1e-2

MSE 0.395 0.394 0.396 0.394 0.393 0.394 0.394 0.398 0.394 0.395 0.395
MAE 0.268 0.268 0.271 0.268 0.268 0.267 0.267 0.269 0.267 0.268 0.269

Table 17: Performance of TimeBase under different learning rate on ETTh2. The batch size is fixed
as 512, input length is 720, forecasting length is 96, basis number is 6, orthogonal weight is 0.2.

Learning Rate 2e-1 1e-1 9e-2 8e-2 7e-2 6e-2 5e-2 4e-2 3e-2 2e-2 1e-2

MSE 0.292 0.292 0.293 0.294 0.294 0.297 0.294 0.293 0.293 0.311 0.345
MAE 0.349 0.351 0.352 0.352 0.351 0.352 0.351 0.351 0.351 0.369 0.402

Table 18: Performance of TimeBase under different batch size on traffic. The learning rate is fixed
as 3e-2, input length is 720, forecasting length is 96, basis number is 6, orthogonal weight is 0.04.

Batch Size 512 256 128 64

MSE 0.402 0.396 0.394 0.395
MAE 0.279 0.273 0.267 0.268

Table 19: Performance of TimeBase under different batch size on ETTh2. The learning rate is fixed
as 2e-1, input length is 720, forecasting length is 96, basis number is 6, orthogonal weight is 0.2.

Batch Size 512 256 128 64

MSE 0.292 0.295 0.294 0.294
MAE 0.349 0.352 0.351 0.353

L PERFORMANCE UNDER DIFFERENT BATCHSIZE AND LEARNING RATE

The performance evaluation of TimeBase under varying learning rates and batch sizes provides
valuable insights into its training dynamics and adaptability. As demonstrated in Tables 16 and 17,
the model consistently achieves competitive results across a broad range of relatively large learning
rates. For the Traffic dataset, a learning rate of 3 × 10−2 strikes the optimal balance, resulting in
an MSE of 0.394 and an MAE of 0.267. Similarly, on the ETTh2 dataset, a larger learning rate of
2× 10−1 yields the best performance, with an MSE of 0.292 and an MAE of 0.349. These results
highlight a notable characteristic of TimeBase: its ability to remain robust and effective even
when subjected to relatively high learning rates. This trait can be attributed to the inherently small
parameter count of TimeBase, which makes the model less prone to overfitting and more tolerant of
large gradient updates. Unlike more complex models that require finely tuned small learning rates
to prevent instability, TimeBase can leverage larger learning rates to accelerate convergence without
sacrificing accuracy. This adaptability not only enhances training efficiency but also reduces the need
for extensive hyperparameter tuning, a practical advantage in real-world applications. In Tables 18
and 19, the impact of batch size on the model’s performance reveals an interesting pattern. For the
Traffic dataset, the model achieves its best results with a moderate batch size of 128 (MSE: 0.394,
MAE: 0.267), whereas for the ETTh2 dataset, the optimal performance occurs with a larger batch
size of 512 (MSE: 0.292, MAE: 0.349). However, these variations should not be overinterpreted,
as in theory, changes in batch size should not significantly affect the model’s performance if the
learning rate is appropriately adjusted. The observed sensitivity to batch size in the Traffic dataset,
where a larger batch size of 512 results in a noticeable drop in performance, is likely attributed to the
fixed learning rate of 3×10−2. This relatively small learning rate may have slowed the convergence
speed, especially since the model was trained for only 30 epochs.
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Table 20: Performance of TimeBase as a Plug-and-Play Component for Patch-Based Methods. The
input length is set as 720.

PatchTST+TimeBase PatchTST Reduction
MSE MAE MACs Params MSE MAE MACs Params MACs Params

E
T

T
h1

96 0.364 0.398 0.77 M 0.03 M 0.377 0.408 11.05 M 0.15 M 93.00% 83.15%
192 0.402 0.424 0.84 M 0.04 M 0.413 0.431 12.02 M 0.29 M 93.03% 87.93%
336 0.423 0.437 1.24 M 0.06 M 0.436 0.446 13.47 M 0.50 M 90.81% 87.98%
720 0.475 0.49 1.58 M 0.11 M 0.455 0.475 17.34 M 1.05 M 90.87% 89.59%

E
T

T
h2

96 0.275 0.339 1.28 M 0.03 M 0.276 0.339 11.05 M 0.15 M 88.42% 79.08%
192 0.334 0.381 1.39 M 0.05 M 0.342 0.385 12.02 M 0.29 M 88.46% 83.68%
336 0.36 0.407 1.25 M 0.06 M 0.364 0.405 13.47 M 0.50 M 90.75% 87.98%
720 0.397 0.436 1.19 M 0.09 M 0.395 0.434 17.34 M 1.05 M 93.16% 91.79%

E
T

T
m

1 96 0.29 0.345 28.87 M 0.52 M 0.298 0.352 258.69 M 1.51 M 88.84% 65.20%
192 0.331 0.368 29.73 M 0.65 M 0.335 0.373 266.43 M 2.61 M 88.84% 75.23%
336 0.364 0.386 31.02 M 0.83 M 0.366 0.394 278.05 M 4.27 M 88.84% 80.53%
720 0.419 0.416 34.46 M 1.32 M 0.42 0.421 309.01 M 8.69 M 88.85% 84.78%

E
T

T
m

2 96 0.165 0.256 57.59 M 0.65 M 0.165 0.26 258.69 M 1.51 M 77.74% 57.07%
192 0.222 0.293 29.73 M 0.65 M 0.219 0.298 266.43 M 2.61 M 88.84% 75.23%
336 0.273 0.332 61.89 M 1.26 M 0.268 0.333 278.05 M 4.27 M 77.74% 70.47%
720 0.353 0.385 68.77 M 2.24 M 0.352 0.386 309.01 M 8.69 M 77.74% 74.19%

W
ea

th
er

96 0.145 0.195 86.60 M 0.52 M 0.149 0.199 776.08 M 1.51 M 88.84% 65.20%
192 0.189 0.238 89.18 M 0.65 M 0.193 0.243 799.30 M 2.61 M 88.84% 75.23%
336 0.243 0.284 92.62 M 0.83 M 0.24 0.281 834.14 M 4.27 M 88.90% 80.57%
720 0.314 0.334 103.38 M 1.32 M 0.312 0.334 927.04 M 8.69 M 88.85% 84.78%

E
le

ct
ri

ci
ty 96 0.128 0.223 1.32 G 0.52 M 0.141 0.24 11.86 G 1.51 M 88.84% 65.20%

192 0.145 0.238 1.36 G 0.65 M 0.156 0.256 12.22 G 2.61 M 88.84% 75.23%
336 0.16 0.255 1.42 G 0.83 M 0.172 0.267 12.75 G 4.27 M 88.84% 80.53%
720 0.197 0.288 1.58 G 1.32 M 0.207 0.299 14.17 G 8.69 M 88.85% 84.78%

Tr
af

fic

96 0.36 0.252 4.27 G 0.55 M 0.363 0.25 31.86 G 1.51 M 86.61% 63.57%
192 0.371 0.256 4.39 G 0.70 M 0.382 0.258 32.81 G 2.61 M 86.61% 73.35%
336 0.396 0.278 4.58 G 0.92 M 0.399 0.268 34.24 G 4.27 M 86.61% 78.52%
720 0.422 0.284 5.09 G 1.51 M 0.432 0.289 38.05 G 8.69 M 86.62% 82.66%

M PLUG-AND-PLAY FRAMEWORK FOR PATCH-BASED TIME SERIES
FORECASTING

Furthermore, TimeBase can serve as a plug-and-play tool to extremely reduce resource consump-
tion in patch-based approaches. In implementation, after segmenting the time series into patches,
TimeBase can expertly be employed to patch-based methods to extract the basis components. The
experimental results shown in Table 20 underscore the exceptional efficiency and adaptability of
the TimeBase framework when integrated with the PatchTST model. By preserving input sequence
lengths of 720 across all datasets, we ensured a fair comparison of the models’ predictive per-
formance, computational complexity, and parameter counts. The findings reveal that TimeBase
achieves comparable or even slightly improved accuracy metrics, such as MSE and MAE, while
significantly reducing both the number of parameters and the computational load. On the ETTh1
dataset, TimeBase demonstrates remarkable reductions in MACs and parameters by approximately
90.87% and 89.59%, respectively, for the longest horizon of 720, without compromising the MSE
and MAE results compared to the standalone PatchTST model. Similar trends are observed across
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other datasets, including ETTh2, ETTm1, and Traffic, where TimeBase achieves substantial reduc-
tions in computational resources, exceeding 85%, while maintaining or enhancing forecasting ac-
curacy. These reductions are particularly notable in resource-intensive datasets like Electricity and
Traffic, where MACs are reduced by over 88%, showcasing TimeBase’s ability to efficiently han-
dle large-scale data. The reduced parameter counts achieved by TimeBase are critical in real-world
scenarios requiring lightweight and scalable solutions. Despite its minimalist architecture, Time-
Base effectively captures essential patterns and interactions within the time series data, allowing it
to retain or even slightly improve accuracy. Its plug-and-play nature enables seamless integration
with existing patch-based models, allowing users to achieve significant gains in efficiency without
re-engineering their frameworks. These results demonstrate that TimeBase is not only an effective
model in its own right but also a transformative enhancement for patch-based forecasting methods.
By drastically reducing computational and memory overheads while maintaining high predictive
accuracy, TimeBase sets a new benchmark for minimalist, efficient, and scalable time series fore-
casting solutions.

N FULL FORECASTING RESULTSOF 720 INPUT LENGTH

The full forecasting results of 720 input length are shown in Table. 21.

O FULL FORECASTING RESULTS OF 336 INPUT LENGTH

To further validate the effectiveness of TimeBase, we conducted experiments with a shorter input
length of 336 to complement the primary results using an input length of 720. The full results for this
setting are presented in Table 22, comparing TimeBase against state-of-the-art baselines across mul-
tiple datasets and prediction horizons. TimeBase consistently ranks among the top performers across
different metrics, particularly excelling in short-term horizons like 96 and 192, where it achieves the
lowest MSE and MAE in most cases. Notably, even with reduced input length, TimeBase main-
tains its ability to produce competitive results against more complex models such as PatchTST and
TimesNet. This demonstrates its robustness and adaptability across varying input configurations.
Moreover, the efficiency analysis in Table 23 reveals that TimeBase’s minimalist design continues
to shine under this setting. Its architecture, with a minimal parameter count and low computational
overhead, ensures faster training and inference times compared to transformer-based models like
FEDformer and Autoformer. This makes it particularly appealing for applications requiring both
accuracy and scalability. Importantly, the results underline TimeBase’s capacity to generalize well,
even when provided with less temporal information, solidifying its position as a versatile model for
long-term time series forecasting.
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Table 21: Full results of long-term time series forecasting, comparing TimeBase with other base-
lines. The top 4 results are highlighted in bold. To ensure fair comparison, we have addressed
the following concerns:(1) the "drop last=True" bug in test loader is corrected in
all models; (2) input lengths of all models are set to 720. All scripts and logs for run-
ning our model and baselines are available at https://anonymous.4open.science/
r/TimeBase-fixbug.

Methods
TimeBase SparseTSF TIME-LLM FITS iTransformer DLinear PatchTST TimesNet FEDformer Autoformer Informer

(ours) (2024) (2024) (2024) (2024a) (2023) (2023) (2023) (2022) (2021) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.349 0.384 0.362 0.389 0.390 0.420 0.380 0.402 0.389 0.421 0.378 0.402 0.377 0.408 0.437 0.454 0.485 0.500 0.555 0.558 1.269 0.855

192 0.387 0.410 0.404 0.412 0.427 0.443 0.415 0.424 0.424 0.446 0.415 0.425 0.413 0.431 0.456 0.469 0.481 0.498 0.599 0.575 1.487 0.943

336 0.408 0.418 0.435 0.428 0.459 0.467 0.439 0.439 0.456 0.469 0.449 0.449 0.436 0.446 0.494 0.494 0.522 0.521 0.853 0.702 1.544 0.945

720 0.439 0.446 0.426 0.448 0.452 0.476 0.433 0.457 0.545 0.532 0.507 0.517 0.455 0.475 0.632 0.578 0.604 0.575 0.899 0.730 1.481 0.975

E
T

T
h2

96 0.292 0.350 0.294 0.346 0.300 0.362 0.271 0.336 0.305 0.361 0.294 0.360 0.276 0.339 0.349 0.403 0.401 0.451 0.541 0.559 5.189 1.812

192 0.341 0.387 0.340 0.377 0.365 0.395 0.332 0.374 0.405 0.421 0.412 0.437 0.342 0.385 0.500 0.488 0.425 0.464 1.207 0.866 6.514 2.011

336 0.358 0.410 0.360 0.398 0.367 0.417 0.355 0.396 0.411 0.436 0.471 0.478 0.364 0.405 0.445 0.465 0.427 0.471 0.825 0.719 5.284 1.859

720 0.400 0.448 0.383 0.425 0.411 0.449 0.378 0.423 0.448 0.470 0.740 0.609 0.395 0.434 0.438 0.465 0.462 0.493 1.772 1.062 4.955 1.884

E
T

T
m

1

96 0.310 0.354 0.314 0.359 0.316 0.366 0.313 0.357 0.315 0.369 0.307 0.350 0.298 0.352 0.359 0.391 0.406 0.441 0.455 0.464 0.632 0.574

192 0.338 0.371 0.348 0.376 0.338 0.379 0.339 0.369 0.349 0.388 0.347 0.381 0.335 0.373 0.368 0.398 0.450 0.477 0.562 0.514 1.131 0.802

336 0.364 0.386 0.368 0.386 0.368 0.396 0.367 0.385 0.381 0.409 0.367 0.387 0.366 0.394 0.429 0.438 0.436 0.466 0.737 0.608 1.391 0.923

720 0.413 0.414 0.419 0.413 0.430 0.435 0.417 0.417 0.437 0.439 0.415 0.415 0.420 0.421 0.477 0.474 0.462 0.479 0.503 0.502 1.397 0.973

E
T

T
m

2

96 0.166 0.256 0.167 0.259 0.183 0.271 0.166 0.256 0.179 0.274 0.163 0.257 0.165 0.260 0.200 0.288 0.339 0.406 0.325 0.391 1.870 1.002

192 0.218 0.293 0.219 0.297 0.241 0.313 0.218 0.293 0.239 0.314 0.223 0.304 0.219 0.298 0.274 0.337 0.397 0.452 0.369 0.414 2.807 1.314

336 0.270 0.328 0.271 0.330 0.292 0.345 0.271 0.328 0.309 0.356 0.291 0.355 0.268 0.333 0.340 0.382 0.449 0.491 0.418 0.452 4.442 1.661

720 0.352 0.380 0.353 0.380 0.362 0.392 0.352 0.380 0.387 0.407 0.407 0.433 0.352 0.386 0.384 0.407 0.451 0.499 0.612 0.594 5.258 1.914

W
ea

th
er

96 0.174 0.230 0.174 0.231 0.155 0.212 0.176 0.232 0.159 0.212 0.174 0.242 0.149 0.199 0.176 0.234 0.289 0.342 0.323 0.389 0.283 0.361

192 0.215 0.264 0.216 0.267 0.191 0.242 0.216 0.268 0.203 0.252 0.215 0.277 0.193 0.243 0.219 0.270 0.340 0.394 0.389 0.423 0.445 0.461

336 0.260 0.299 0.260 0.299 0.246 0.286 0.261 0.299 0.253 0.291 0.262 0.319 0.240 0.281 0.277 0.311 0.370 0.408 0.497 0.495 0.587 0.526

720 0.323 0.343 0.325 0.345 0.313 0.331 0.325 0.346 0.317 0.337 0.319 0.359 0.312 0.334 0.344 0.356 0.420 0.421 0.573 0.520 0.953 0.703

E
le

ct
ri

ci
ty

96 0.139 0.231 0.139 0.239 0.135 0.235 0.147 0.235 0.135 0.233 0.141 0.244 0.141 0.240 0.202 0.308 0.226 0.341 0.225 0.334 0.395 0.460

192 0.153 0.245 0.155 0.250 0.156 0.262 0.159 0.256 0.155 0.253 0.155 0.258 0.156 0.256 0.218 0.322 0.220 0.336 0.223 0.332 0.405 0.460

336 0.169 0.262 0.167 0.265 0.160 0.248 0.169 0.270 0.169 0.267 0.170 0.275 0.172 0.267 0.232 0.332 0.224 0.337 0.233 0.341 0.404 0.460

720 0.208 0.294 0.208 0.300 0.197 0.298 0.214 0.302 0.204 0.301 0.209 0.309 0.207 0.299 0.299 0.375 0.271 0.378 0.261 0.364 0.429 0.477

Tr
af

fic

96 0.394 0.267 0.389 0.268 0.377 0.280 0.402 0.275 0.374 0.273 0.396 0.272 0.363 0.250 0.605 0.325 0.664 0.431 0.668 0.401 0.829 0.487

192 0.403 0.274 0.399 0.270 0.385 0.281 0.419 0.286 0.393 0.283 0.404 0.275 0.382 0.258 0.627 0.340 0.613 0.382 0.703 0.439 0.902 0.525

336 0.417 0.281 0.417 0.279 0.399 0.288 0.423 0.292 0.409 0.292 0.417 0.283 0.399 0.268 0.631 0.349 0.612 0.379 0.666 0.421 0.949 0.545

720 0.456 0.301 0.449 0.297 0.436 0.294 0.459 0.311 0.450 0.314 0.457 0.310 0.432 0.289 0.700 0.371 0.664 0.410 0.697 0.424 1.430 0.793
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Table 22: Full results of long-term time series forecasting under 336 input length, comparing
TimeBase with other baselines. The top 4 results are highlighted in bold. All scripts and
logs for running our model and baselines in this settings has also been updated to https:
//anonymous.4open.science/r/TimeBase-fixbug.

Methods
TimeBase SparseTSF FITS iTransformer DLinear PatchTST TimesNet FEDformer Autoformer Informer

(ours) (2024) (2024) (2024a) (2023) (2023) (2023) (2022) (2021) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.362 0.382 0.403 0.414 0.376 0.397 0.399 0.418 0.398 0.418 0.385 0.406 0.423 0.437 0.405 0.442 0.483 0.479 0.991 0.766

192 0.399 0.404 0.424 0.426 0.407 0.414 0.448 0.449 0.432 0.438 0.414 0.421 0.483 0.483 0.434 0.459 0.488 0.489 1.210 0.876

336 0.424 0.419 0.429 0.431 0.430 0.428 0.466 0.463 0.458 0.458 0.441 0.440 0.490 0.479 0.438 0.462 0.524 0.514 1.149 0.822

720 0.434 0.439 0.436 0.446 0.436 0.453 0.505 0.507 0.505 0.516 0.456 0.471 0.618 0.559 0.508 0.510 0.605 0.590 1.267 0.905

E
T

T
h2

96 0.295 0.347 0.289 0.344 0.274 0.337 0.299 0.358 0.328 0.386 0.275 0.337 0.352 0.404 0.384 0.429 0.494 0.506 3.888 1.561

192 0.345 0.384 0.345 0.382 0.335 0.376 0.368 0.399 0.420 0.443 0.339 0.379 0.403 0.432 0.419 0.454 0.492 0.523 3.974 1.583

336 0.361 0.398 0.365 0.400 0.359 0.397 0.423 0.437 0.505 0.495 0.368 0.400 0.390 0.429 0.409 0.454 0.939 0.711 3.133 1.403

720 0.397 0.436 0.398 0.434 0.396 0.433 0.427 0.447 0.778 0.628 0.391 0.429 0.472 0.483 0.419 0.472 0.790 0.664 3.017 1.479

E
T

T
m

1

96 0.298 0.346 0.306 0.347 0.303 0.345 0.318 0.358 0.303 0.347 0.293 0.343 0.330 0.375 0.328 0.395 0.601 0.530 0.762 0.655

192 0.340 0.367 0.341 0.368 0.338 0.366 0.343 0.382 0.338 0.368 0.331 0.368 0.361 0.394 0.363 0.414 0.568 0.510 1.150 0.840

336 0.372 0.389 0.373 0.385 0.372 0.385 0.381 0.402 0.373 0.389 0.366 0.392 0.428 0.434 0.410 0.442 0.551 0.508 1.524 0.988

720 0.428 0.421 0.429 0.417 0.429 0.416 0.439 0.436 0.428 0.424 0.419 0.425 0.461 0.455 0.448 0.469 0.520 0.507 1.176 0.837

E
T

T
m

2

96 0.167 0.256 0.168 0.256 0.168 0.256 0.176 0.267 0.173 0.269 0.164 0.254 0.190 0.282 0.272 0.345 0.321 0.384 1.311 0.881

192 0.220 0.291 0.221 0.292 0.220 0.291 0.239 0.311 0.238 0.320 0.220 0.292 0.244 0.317 0.309 0.371 0.335 0.398 1.855 1.051

336 0.275 0.326 0.277 0.327 0.274 0.326 0.287 0.341 0.316 0.375 0.277 0.329 0.294 0.346 0.346 0.392 0.468 0.480 2.581 1.298

720 0.368 0.383 0.368 0.382 0.369 0.383 0.382 0.397 0.460 0.465 0.369 0.386 0.389 0.401 0.427 0.440 0.437 0.451 5.427 1.867

W
ea

th
er

96 0.147 0.200 0.177 0.227 0.176 0.228 0.159 0.209 0.176 0.236 0.151 0.200 0.170 0.228 0.257 0.326 0.310 0.385 0.284 0.339

192 0.189 0.241 0.221 0.264 0.219 0.262 0.203 0.249 0.218 0.278 0.195 0.242 0.214 0.262 0.293 0.349 0.371 0.424 0.488 0.473

336 0.243 0.283 0.267 0.297 0.267 0.297 0.254 0.288 0.263 0.314 0.249 0.283 0.270 0.300 0.409 0.444 0.390 0.425 0.623 0.556

720 0.319 0.336 0.334 0.343 0.334 0.343 0.323 0.336 0.325 0.363 0.321 0.335 0.341 0.352 0.409 0.434 0.532 0.499 1.136 0.768

E
le

ct
ri

ci
ty

96 0.141 0.232 0.147 0.241 0.143 0.240 0.138 0.236 0.156 0.260 0.130 0.222 0.194 0.300 0.192 0.310 0.199 0.313 0.355 0.438

192 0.156 0.246 0.158 0.251 0.157 0.252 0.157 0.254 0.170 0.273 0.150 0.242 0.210 0.314 0.228 0.346 0.207 0.318 0.371 0.447

336 0.171 0.261 0.174 0.268 0.173 0.268 0.174 0.272 0.185 0.289 0.166 0.260 0.220 0.323 0.251 0.366 0.223 0.334 0.384 0.456

720 0.209 0.294 0.212 0.299 0.211 0.299 0.212 0.305 0.220 0.321 0.210 0.298 0.239 0.335 0.251 0.360 0.244 0.351 0.414 0.472

Tr
af

fic

96 0.423 0.281 0.415 0.279 0.412 0.282 0.413 0.303 0.469 0.350 0.367 0.250 0.616 0.343 0.646 0.420 0.662 0.406 0.766 0.434

192 0.436 0.288 0.426 0.283 0.424 0.286 0.437 0.318 0.483 0.356 0.389 0.264 0.614 0.333 0.654 0.420 0.632 0.389 0.809 0.461

336 0.449 0.292 0.438 0.290 0.437 0.291 0.457 0.330 0.497 0.363 0.398 0.266 0.649 0.346 0.629 0.392 0.654 0.402 0.871 0.496

720 0.479 0.310 0.465 0.305 0.465 0.308 0.497 0.354 0.526 0.378 0.457 0.311 0.659 0.363 0.647 0.398 0.658 0.406 1.059 0.605

Table 23: Efficiency comparison of TimeBase and other state-of-the-art models on the Electricity
dataset with a forecasting length of 720.To ensure fair comparison, the look-back window is set
as 336 for all models.

Model Parameters MACs Max Mem.(MB) Epoch Time(s) Infer Time (CPU)
Informer 12.45M 5.44G 1096.51 63.35 48.59ms

Autoformer 12.14M 6.16G 3229.78 93.53 85.76ms
FEDformer 12.14M 6.74G 1700.37 451.69 128.21ms
PatchTST 6.31M 11.21G 10882.3 290.3 130.13ms
DLinear 485.3K 156M 123.8 25.4 3.33ms

iTransformer 5.27M 1.72G 809.45 76.31 29.51ms
SparseTSF 0.5K 5.93M 118.43 31.43 2.52ms

TimeBase(ours) 0.3K 2.03M 85.36 19.35 0.97ms
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