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ABSTRACT

Designing and characterizing new materials with tailored properties is critical in
fields such as catalysis, energy storage, and solid-state materials. Despite sig-
nificant technological advances, including the development of generative models
and universal machine learning force fields, these tools often operate in isolation
rather than as integrated components of a comprehensive workflow. Additionally,
while the computation of energies and forces remains highly valuable and the
focus of many studies, it often falls short for accurately predicting certain task-
specific macroscopic properties. To address these limitations, we propose an end-
to-end workflow that extends the capabilities of current state-of-the-art works and
fully automates the design and discovery of materials, with a particular empha-
sis on calculating downstream properties. By integrating and validating existing
approaches, we ensure the robustness of the workflow and demonstrate its utility
with a few illustrative use cases.

1 INTRODUCTION

The discovery and design of novel materials with desired properties has long been an essential fo-
cus for advancing fields like catalysis, energy storage, electronics, and polymer engineering (Alberi
et al., 2018). Applications in these areas often depend on finding materials that meet specific per-
formance criteria (Osman et al., 2021; Zhao et al., 2019; 2020). Traditional approaches, relying
on experimental trials and computational modeling, can be time-consuming, resource-intensive, and
limited in scope (de Pablo et al., 2019; Sinnott, 2013). Recent advancements in machine learn-
ing (ML) and computational methodologies have accelerated the process of material discovery by
enabling a more efficient exploration of the materials design space.

ML force fields (MLFFs) (Liao et al., 2023; Batatia et al., 2022; Chen & Ong, 2022; Deng et al.,
2023) and generative models (Jiao et al., 2023; Xie et al., 2021; Zeni et al., 2023; Gómez-Bombarelli
et al., 2018; Jin & Merz Jr, 2024; Kadan et al., 2024) are among the most promising tools in this
domain. MLFFs provide accurate atomic-level predictions, reducing computational costs compared
to traditional ab initio methods. Similarly, generative models have shown remarkable success in
proposing novel candidate materials with desired properties. However, these methodologies are of-
ten developed and applied in isolation, limiting their integration into unified workflows and their
ability to systematically link atomic-scale predictions with macroscopic, application-relevant char-
acteristics.

Most existing technologies focus on predicting fundamental properties like energies and forces,
which, while important, don’t always assess a model’s practical value for real-world applications.
Extending these models to predict downstream properties provides a better understanding of their
utility and relevance to experimental outcomes (Wen et al., 2024; Kadan et al., 2024). Integrating
these models into workflows that complement generative approaches enhances their utility, allowing
a smoother transition from material generation to application-specific property evaluation.

To address these challenges, we propose an end-to-end workflow – AQForge – that integrates state-
of-the-art generative models, MLFFs, and property prediction tools into a cohesive framework. This
workflow automates material design and discovery while bridging atomic-level predictions with
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macroscopic property evaluations. Currently, it uses MatterGen (Zeni et al., 2023) for structure gen-
eration, fairchem’s EquiformerV2 (Liao et al., 2023) for structural relaxation, MatTen (Wen et al.,
2024) for elastic tensor computation, and Phonopy (Togo, 2023) for phonon calculations. While
these choices are preliminary, they can be easily expanded to more advanced or tailored models.
Additionally, these models can be extended to small molecule design by integrating technologies
such as cG-SchNet Gebauer et al. (2022) and IDOLpro Kadan et al. (2024). By combining and
building upon existing methods, we ensure the validity of results and expand materials informatics
to include downstream property predictions.

In this work, we detail the development of this workflow and demonstrate its utility through bench-
marking and illustrative use cases. These examples highlight the potential of our approach to stream-
line materials discovery and enable the prediction of properties across multiple scales, ultimately
paving the way for more targeted and efficient materials design. As part of ongoing and future work,
we will also explore how this workflow can leverage downstream computed properties to guide the
generative model toward a more targeted search space through active learning.

2 AN END-TO-END WORKFLOW

A schematic overview of how AQForge streamlines materials design using different state-of-the-art
(SOTA) technologies is shown in Fig. 1. The process is fully automated and requires only one input
file specifying which computations to run and which models to use. Currently, MatterGen is the only
implemented generative model, but other models can easily be added. The structural relaxation block
supports both openly available and internally developed MLFF checkpoints, as well as ab initio
support via Quantum ESPRESSO (Giannozzi et al., 2009) and VASP Hafner (2008). Downstream
properties, including elasticity, thermal conductivity, and electronic structure, can be computed with
any compatible MLFF (MatTen is used for elastic tensor predictions). Phonon density of states
(DOS) are computed using Phonopy. Ab initio methods are used to validate results and may also be
used to provide feedback to the generative model.
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Figure 1: Schematic representation of (b) AQForge and how it reduces the I/O clutter in (a) by
streamlining all tasks into a single input file.

Here, it is important to realize that downstream properties can further be used to train models for
predicting macroscopic properties. For example, with sufficient data, the elastic tensor could predict
yield strength of materials, extending the workflow’s ability to compute macroproperties. Addi-
tionally, some generative models Zeni et al. (2023); Kadan et al. (2024) can be conditioned on
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application-specific properties, enhancing the workflow’s versatility. Finally, it’s important to note
that the goal of AQForge is not to replace existing technologies, but to enhance their capabilities by
integrating them into a unified framework.

3 EXAMPLE USE CASES

We demonstrate the utility and validity of AQForge through representative use cases. In the first, we
examine two chemical spaces and compare the structures and energies against the Materials Project
(MP) database (Jain et al., 2020). The structural similarity in all cases is calculated as the mean root
mean squared displacement (RMSD) normalized by [V/n](1/3) – where V is the volume of and n
is the number of sites in the unit cell. For the second example, we follow the above procedure and
additionally compute the elastic tensor and the phonon DOS, and compare it to the same benchmark.

3.1 STRUCTURES AND ENERGIES

We explore the chemical spaces of Sr-V-O and Li-Te, and compare the structures and energies to
those reported in the MP database. The structures were generated by the base MatterGen model
fine-tuned on chemical spaces, and the structural relaxation was carried out by EquiformerV2.

In fig. 2b we see that the average RMSD value for structural similarity is less than 0.01 Å and
that the average error in energies is 0.421 eV/atom, demonstrating that not only does the workflow
generate structures matching existing benchmark datasets but also that these structures are accurate.
The errors in energies can be largely attributed to the errors reported within the MLFF, i.e., 0.316
eV/atom in this case. From the energy hull diagrams in Fig. 2, it is evident that the workflow can
uncover previously unknown stable and metastable compositions. Notably, the most stable structures
(Fig.2c) exhibit a 2:1 Li:Te ratio and not just the singular known Li2Te composition. Validating and
studying them using ab initio methods constitutes ongoing and future work.

(a) Energy hull diagram for the Sr-V-O composi-
tion space explored in this study. Each structure
has less than 20 atoms.

(b) Energy per atom comparison between AQ-
Forge (blue) and MP (red) structures, with nor-
malized RMSD shown.

3.2 ELASTIC PROPERTIES AND PHONON DOS

We calculate elastic properties of the above chemical systems and Al-Ti-C, and compare against
MP and DFT benchmarks. Furthermore, we also compare the phonon DOS to demonstrate the
versatility of properties available in AQForge. Excellent agreement is observed in the evaluation
of derived elastic properties in Table 1. For a more detailed discussion on these, see Appendix A.
There is also good qualitative agreement in the phonon DOS in Fig. 3, which may be improved
further upon the use of finer meshes.

4 CONCLUSION AND FUTURE WORK

In this article, we have presented an end-to-end workflow for materials property prediction and
discovery. By integrating state-of-the-art machine learning models into a unified framework, our
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(c) Energy hull diagram for the Li-Te composition
space explored in this study. Each structure had
less than 20 atoms.

(d) Energy per atom comparison between AQ-
Forge (blue) and MP (red) structures, with nor-
malized RMSD shown.

Figure 2: An overview of the results pertaining to the chemical spaces of Sr-V-O and Li-Te. We
observe in (a) and (c) that the workflow indeed re-discovers structures reported in the MP. The
relative energies in (b) and (d) are consistent across the compositions with reference data.

Table 1: Comparison between the elastic properties of multiple compositions found in this study and
reference values in parentheses — MP (∗) and DFT (†).

Composition Bulk Modulus (GPa) Shear Modulus (GPa) Poisson Ratio RMSD (Å)

Li2Te 25.440 (26.076∗) 16.125 (18.389∗) 0.238 (0.215∗) 0.001∗

Li6Te2 24.544 (25.943†) 15.747 (17.916†) 0.236 (0.219†) 0.003∗
Ti4Al2C2 136.352 (137.240∗) 116.168 (115.936∗) 0.168 (0.170∗) 0.001∗

Ti6Al2C4 156.979 (158.241∗) 126.873 (128.029∗) 0.188 (0.181∗) 0.002∗

Sr2VO4 122.514 (143.501†) 68.238 (80.279†) 0.265 (0.264†) 0.015∗

Figure 3: A comparison of the phonon DOS for Li2Te with good agreement with baseline MP data.

approach eliminates the need for laborious independent calculations and predictions, streamlining
the materials design process. Through two illustrative use cases, we demonstrate the workflow’s
ability to both rediscover known materials and identify novel compositions while accurately com-
puting their properties. The workflow’s capabilities can be further expanded by incorporating more
advanced and diverse structure-generation models (including those for small molecules), genetic al-
gorithms, a broader range of property prediction tools, and synthesizability metrics Antoniuk et al.
(2023) to improve characterization across different application domains (see Appendix C for details).
By leveraging cutting-edge machine learning techniques, we believe this workflow can extend the
capabilities of existing tools and serve as a powerful tool for accelerating the discovery and design
of materials and molecules with targeted properties.
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A BENCHMARKING ELASTIC PROPERTIES

Here, we provide an overview of the benchmarking results of using AQForge to predict the bulk
moduli and shear moduli of material compositions. A total of 187 compositions were considered,
with the ground truth coming from MP data. For every composition, 25 structures were generated
using DiffCSP Jiao et al. (2023). We used DiffCSP instead of MatterGen because the data contained
known formulae which is more suitable for a model geared towards crystal structure prediction
(CSP) rather than generic materials discovery. However, retraining MatterGen for a CSP task and
redoing this benchmarking constitutes ongoing and future work. Each structure was then relaxed
using FAIR-Chem’s EquirformerV2 (note that this model has been trained on the test set), and their
elastic properties were computed using MatTen. The results can be seen in Fig. 4.

(a) Predictions for the bulk moduli using AQForge (b) Predictions for the shear moduli using AQForge

Figure 4: An overview of the results of predicting the bulk and shear moduli of a set of material
compositions

The mean absolute error (MAE) for bulk moduli and shear moduli predictions were 13.37 GPa and
27.08 GPa, respectively. While the bulk modulus MAE is close to the values reported in Wen et al.
(2024) and Zeni et al. (2023), the errors in the shear moduli are, on average, worse by a factor of 2.
However, on closer inspection, one can also observe that the errors for the shear moduli predictions
are high only because of a handful data points. This demonstrates both a utility and a deficiency in
the current state of AQForge, which can also be seen in the results for Sr2VO4 in Table 1. To address
this, one can use generative models and MLFFs fine-tuned on elastic tensor data. Another avenue
of improvement being explored is the computation of elastic tensors through ab initio methods, or
a mix of ab initio and ML-based methods. We expect to see noticeable improvements as these
methodologies are integrated within AQForge.

B RUN-TIME COMPARISONS

Here, we provide a brief comparison in the computational wall-time needed to compute the elastic
properties of a given structure. Note that while this comparison has been done only for elastic
properties, we expect to see similar improvements for the calculation of other properties as well.
Additionally, the results below do not include the resources used to generate structures, and assume
that relevant structures are already saved. The results have been consolidated in Fig. 5.

While it is no surprise that the use of MLFFs considerably reduces the wall-time over traditional
density functional theory (DFT) calculations, they key advantage of AQForge comes in removing
any postprocessing requirements and alleviating the need to convert files from one format to another,
or to prepare different input scripts or files for each MLFF. Moreover, AQForge allows the user to
specify a different MLFF for each step, if needed, or to execute the same step with different MLFFs,
if desired. As we continue to develop this framework further by integrating more models and a
wider range of property prediction tasks, the reduction in total wall-time from end-to-end will only
become more pronounced.
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Figure 5: Average wall-time comparison for structural relaxation and the calculation of the elastic
tensor for over 100 structures.

C ONGOING AND FUTURE WORK

As part of ongoing development work for AQForge, we summarize here briefly the current plan to
expand its capabilities in Fig. 6. We expect to actively work on improving this framework, and the
development plan shown below reflects only the current state.
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Figure 6: Ongoing and planned development work for AQForge. The orange bubbles have been
fully implemented, whereas the shaded yellow bubbles constitute ongoing and future work. The
road map may be expanded further.

In summary, one of the main improvements would be to integrate molecular frameworks into AQ-
Forge in addition to bulk crystalline materials. Generative models such as IDOLpro Kadan et al.
(2024) and proprietary molecular property prediction models developed at SandboxAQ will form
the bulk of this branch of improvement. Another area of active development is material synthesiz-
ability, which has become a rich avenue of research in recent years Lee et al. (2022); Jang et al.
(2020); Davariashtiyani et al. (2021); Song et al. (2024). CSP along with surface generation and
characterization form integral parts of upcoming AQForge capabilities and are expected to have
significant impacts in fields such as catalysis, surface reactions, and corrosion modeling. Finally,
implementing guided multi-objective diffusion within the generative models used in AQForge will
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allow users to discover new materials with desired properties much more cheaply and without the
need to fine-tune or retrain traditional models.

While the work above points to long-term improvements, something that may be more short-term in
nature is adding additional supervised learning models that take in AQForge-predicted properties as
features to predict macroscopic properties of interest, as briefly discussed in Section 2. With these,
we strongly feel that AQForge has the capacity to streamline end-to-end materials generation and
characterization workflows, while giving flexibility to the users to modify it as desired.

9


	Introduction
	An end-to-end workflow
	Example use cases
	Structures and energies
	Elastic properties and Phonon DOS

	Conclusion and Future Work
	Benchmarking Elastic Properties
	Run-time Comparisons
	Ongoing and Future Work

