
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MCPLANNER: MULTI-SCALE CONSISTENCY
PLANNING FOR OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Planning for long-horizon tasks is a significant challenge, often addressed with
complex hierarchical methods that rely on multiple, independently trained mod-
els. These hierarchical approaches can be brittle and incur coherence issues. In
this work, we introduce Multi-scale Consistency Planner (MCPlanner), a novel
framework that leverages the unique properties of Generalized Consistency Tra-
jectory Models (GCTMs) to create a fluid and unified planning hierarchy. Un-
like prior generative models which are limited to mappings from noise to data,
GCTMs can learn a direct, fully-traversable trajectory path between arbitrary data
distributions. This crucial capability allows MCPlanner to unify high-level and
low-level planning within a single model. Instead of training separate high-level
and low-level planners, MCPlanner employs a single GCTM trained on end-to-end
expert trajectories. At inference time, a seamless hierarchy emerges: coarse, long-
horizon plans are generated by querying the model at a sparse temporal resolution,
while dense, fine-grained motions are synthesized by querying the same model on
the continuous path between these coarse waypoints. Our approach obviates the
need for discrete hierarchical structures, offering a more elegant, efficient, and
controllable solution to long-horizon planning. Furthermore, our experimental re-
sults demonstrate that MCPlanner achieves state-of-the-art performance across 35
challenging tasks on OGBench benchmark, by consistently outperforming prior
approaches.

1 INTRODUCTION

Effectively planning over long horizons is a fundamental challenge in sequential decision-making,
crucial for solving complex tasks that require reasoning over thousands of steps. Traditional ap-
proaches often struggle with the combinatorial complexity of searching vast state-action spaces,
leading to computational intractability and suboptimal solutions. A dominant paradigm to tackle
this complexity is hierarchical planning (Sacerdoti, 1974; Kaelbling & Lozano-Pérez, 2011), which
decomposes a difficult problem into a series of more manageable subgoals. This allows for both
high-level strategic reasoning, where abstract goals are formulated and sequenced, and low-level
action generation, where precise movements are executed to achieve immediate objectives. How-
ever, this decomposition typically introduces challenges in maintaining inter-level coherence and
managing the increased complexity of training and coordinating multiple independent models.

The recent success of generative models, particularly denoising diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020), has led to their application in planning tasks. Prior works like Dif-
fuser (Janner et al., 2022) leverages diffusion models with classifier guidance (Nichol et al., 2022),
and Decision Diffuser (Ajay et al., 2023) employs classifier-free guidance (Ho & Salimans, 2022)
by directly conditioning on returns during sampling. While effective for short-horizon tasks, these
methods can be computationally expensive and sample inefficient. Subsequent works have extended
these to long-horizon problems, often adopting hierarchical approaches that typically employ two
separate diffusion models: a high-level planner for subgoal generation and a low-level planner for
trajectory synthesis between them (Li et al., 2023; Chen et al., 2024; Hao et al., 2025). While
powerful, this two-model paradigm exacerbates existing challenges. Separately trained planners of-
ten suffer from a lack of coherence, where the low-level model may struggle to execute subgoals
proposed by the high-level one. Furthermore, this approach doubles the training and maintenance
burden and can be computationally inefficient. This leads to a fundamental question: Is a rigid,
two-model hierarchy the most effective and elegant way to solve long-horizon tasks?

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

High-Level Low-Level Unified Hierarchy

Previous Methods MCPlanner（Ours）

Lack of coherence and 
consistency

Single model with coarse 
& fine planning abilities

Figure 1: Overview of MCPlanner: Previous Methods often rely on separate high-level and low-level
planners, which can lead to a lack of coherence and consistency. The high-level plan (left) defines abstract
goals, while the low-level plan (middle) executes detailed actions, sometimes failing to align with the high-level
intent (e.g., the warning sign). In contrast, MCPlanner introduces a unified hierarchy (right) where a single
model possesses both coarse and fine planning abilities, ensuring seamless and coherent trajectory generation
from abstract goals to precise actions.

In response to these limitations, we propose a powerful approach that utilizes a single, unified model
to seamlessly transition between high-level, coarse planning and low-level, fine-grained control
within the offline RL context. Such a unified model inherently eliminates the coherence problem
prevalent in multi-model hierarchies and offers a more streamlined and efficient framework.

To achieve this, we turn to a new class of generative models that addresses the limitations of diffu-
sion. Consistency Models (CMs) (Song et al., 2023) were introduced to overcome the slow sampling
speed of diffusion models by learning a direct one-step mapping from any noisy sample to a clean
data point. While offering significant speed-up, CMs are limited to learning only the endpoint of
the generation process. Consistency Trajectory Models (CTMs) (Kim et al., 2024) extended this by
learning the entire ordinary differential equation (ODE) trajectory, allowing for traversal between
any two points in the generation path. However, both CMs and CTMs remain fundamentally tied to
the diffusion framework, learning a path exclusively from Gaussian noise to data.

The key innovation we leverage is the Generalized Consistency Trajectory Model (GCTM) (Kim
et al., 2025), which breaks this final limitation by integrating flow-matching (Lipman et al., 2022).
GCTMs can learn a direct, fully-traversable ODE path between two arbitrary data distributions.
This is precisely the property required for a unified planner: instead of mapping from noise to a
trajectory, a GCTM can learn to map directly from the distribution of start states to the distribution
of complete, successful trajectories. This ability to learn a direct, yet structured and multi-scale,
mapping between two complex, meaningful distributions is the cornerstone of our approach.

In this paper, we introduce Multi-scale Consistency Planner (MCPlanner), a unified planning
framework that replaces rigid two-model hierarchies with a single GCTM trained end-to-end on
full trajectories. At test time, a seamless hierarchy emerges by querying the same model at multi-
ple temporal resolutions: sparse queries produce coherent high-level subgoals, while dense queries
synthesize fine-grained motion between them. To ensure coherence and efficiency, MCPlanner (i)
enforces a multi-scale consistency objective that promotes compositional consistency across tem-
poral jumps, (ii) straightens the learned flow via conditional optimal-transport couplings for faster,
more stable integration, and (iii) enables controllable and sample-efficient planning through a struc-
tured latent space with lightweight latent refinement. This unified design not only eliminates the
coherence problem but also reduces training and inference costs, ultimately achieving state-of-the-
art performance on OGBench tasks.

In summary, our contributions are as follows:

• We propose MCPlanner, a novel, unified hierarchical planner that uses a single generative
model for both high-level subgoal generation and low-level trajectory synthesis.

• We introduce and enforce a multi-scale consistency objective that explicitly promotes com-
positional coherence across different temporal resolutions in the unified planning hierarchy.

• We enhance the learning of the GCTM flow through conditional optimal-transport cou-
plings, leading to straightened ODE trajectories for faster, more stable integration and im-
proved sample efficiency.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We demonstrate that the latent space of our unified planner can be used to exert high-level,
strategic control over the generated plans, allowing for dynamic adaptation of planning
behavior.

• We evaluate MCPlanner on a wide variety of locomotion and manipulation tasks from
OGBench benchmark and show that our method outperforms prior works by a wide margin.

2 RELATED WORKS

Generative Models. Generative models, particularly score-based and diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021; Karras et al., 2022), have emerged as a
dominant force in machine learning, revolutionizing fields from image and text synthesis to drug
discovery (Rombach et al., 2022; Podell et al., 2024; Nichol et al., 2022; Li et al., 2022; Gupta et al.,
2024; Avdeyev et al., 2023). Their strength lies in their ability to learn complex, high-dimensional
data distributions and generate high-fidelity samples. Initially popularized in computer vision, these
models have seen rapid adoption and innovation. A significant area of research has focused on
accelerating the iterative sampling process, which is notoriously slow. This has led to the devel-
opment of techniques like distillation (Luhman & Luhman, 2021; Salimans & Ho, 2022; Meng
et al., 2023; Berthelot et al., 2023; Shao et al., 2023; Wang et al., 2025). However, these distillation
models still experience slow convergence or extended runtime. Consistency models (CMs) (Song
et al., 2023; Song & Dhariwal, 2024; Geng et al., 2025; Wang et al., 2024a; Lee et al., 2025; Lu
& Song, 2025) are a new type of generative models that support fast and high-quality generation.
They do not rely on a pretrained diffusion model to generate training targets but instead leverage
an unbiased score estimator. Consistency trajectory models (CTMs) (Kim et al., 2024) generalize
consistency models by enabling the prediction between any two points on the same ODE trajectory.
Their training objective becomes more challenging than standard consistency models that only care
about the mapping from intermediate points to the data endpoints. Generalized consistency trajec-
tory models (GCTMs) (Kim et al., 2025) extend CTMs by enabling one-step translation between
arbitrary distributions, surpassing the limitations of traditional CTMs confined to Gaussian noise to
data transformations.

Generative Models for Planning. Many works have studied the applications of generative models,
particularly denoising diffusion models (Ho et al., 2020), for planning (Janner et al., 2022; Ajay
et al., 2023; Pearce et al., 2023; Wang et al., 2023; Lu et al., 2025; Zhu et al., 2024). Diffusion-
based planning has been widely adopted into various fields, such as autonomous driving (Liao et al.,
2025; Yang et al., 2024; Wang et al., 2024b), task planning (Yang et al., 2023; Fang et al., 2024)
and motion planning (Carvalho et al., 2023; Luo et al., 2024). Recently, they have also been ex-
tended to hierarchical planning to tackle long-horizon tasks Li et al. (2023); Chen et al. (2024); Hao
et al. (2025); Ma et al. (2024), however they employ two separate diffusion planners making them
incoherent. In contrast, our method uses a single model to generate subgoals as well as the dense
trajectory.

3 PRELIMINARIES

Problem Formulation. We formalize the long-horizon planning problem within the framework of
a controlled Markov process (a Markov Decision Process (MDP) without rewards), defined by the
tuple M = {S,A, P, γ, d0}, where S is the state space, A is the action space, P : S ×A→ S is the
state transition function, γ ∈ [0, 1) is the discount factor, and d0 is the initial state distribution.

Our goal is to learn a planner that, given an initial state sstart ∈ S and a goal state sgoal ∈ S,
can generate a full trajectory of state-action pairs, τ = ((s0, a0), (s1, a1), . . . , (sT , aT )), such that
s0 = sstart and sT = sgoal. We operate in an offline setting, where we have access to a fixed dataset
D of expert trajectories. Our task is to learn a generative model p(τ |sstart, sgoal) that can produce
novel, successful trajectories for previously unseen start-goal pairs. By generating actions directly,
our planner obviates the need for a separate inverse dynamics model.

Diffusion Models. Denoising diffusion models are powerful generative models that learn a data
distribution p(x) by reversing a predefined noising process. The process starts with a clean data
sample x0 and gradually adds Gaussian noise over a sequence of T timesteps. The forward noising
process is defined as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where {βt}Tt=1 is a fixed variance schedule. A key property is that we can sample a noisy version of
x0 at any timestep t in a single step:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (2)

where αt = 1− βt and ᾱt =
∏t

i=1 αi.

The model learns to reverse this process. A neural network, ϵθ(xt, t), is trained to predict the noise
that was added to create xt from x0. The training objective is typically a simplified mean-squared
error loss:

Ldiff = Et,x0,ϵ

[
||ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)||2

]
(3)

At inference time, a sample is generated by starting with pure noise xT ∼ N (0, I) and iteratively
applying the learned denoising function to step backward in time until a clean sample x0 is produced.
While effective, this iterative process requires many steps, making it computationally slow.

Consistency Models (CMs). (Song et al., 2023) were introduced to address the slow sampling speed
of diffusion models. The core idea is to learn a function that can map any noisy sample directly back
to the clean sample in a single step. CMs are based on the probability flow (PF) ODE of the diffusion
process, where all points on the same ODE trajectory correspond to the same starting point x0. A
consistency function, fθ(xt, t), is trained to embody this property:

fθ(xt, t) ≈ x0 (4)

This allows for one-step generation, x0 ≈ fθ(xT , T ), but this single-step mapping is restrictive.

Consistency Trajectory Models (CTMs) (Kim et al., 2024) extended this idea by learning not just
the endpoint, but the entire trajectory. A CTM learns the integral of the PF-ODE, which describes
the path of a sample from noise to data. This integral is denoted G(xt, t, s), which transports a
sample xt at time t to its position on the same trajectory at time s. A CTM parameterizes this
solution as:

Gθ(xt, t, s) =
s

t
xt +

(
1− s

t

)
gθ(xt, t, s) (5)

where gθ is a neural network. The model is trained by minimizing two key losses. The first is a
distillation loss, LCTM , which enforces self-consistency. It ensures that a one-step jump from time
t to s is close to a two-step jump (from t to an intermediate time u, then to s):

LCTM(θ) = Et,s,u,x0

[
d
(
Gθ(xt, t, s), Gsg(θ)(xt→u, u, s)

)]
(6)

where sg is the stop-gradient operator. The second is the Denoising Score Matching (DSM) loss,
LDSM , which anchors the model to the ground truth data by training gθ to be an effective denoiser:

LDSM(θ) = Et,x0,ϵ

[
||x0 − gθ(xt, t, t)||22

]
(7)

However, CTMs are still tied to the original diffusion formulation, learning the path only from
Gaussian noise to data.

Generalized Consistency Trajectory Models (GCTMs) (Kim et al., 2025), which our work is
built on, break this final limitation. GCTMs use Flow Matching to learn an ODE path between two
arbitrary data distributions, q(x1) and q(x0). The learned ODE is given by:

dxt = t−1(xt − Eq(x0|xt)[x0]) dt (8)

A GCTM learns the solution to this more general ODE, using the same parameterization Gθ(xt, t, s)
from Eq. 5. This allows the model to transport a sample from a start distribution q(x1) (at t = 1)
to a goal distribution q(x0) (at t = 0). The training objective mirrors that of CTMs, but the losses
are generalized. The consistency loss, LGCTM , has the same form but operates on the new ODE.
The DSM loss is replaced by the Flow Matching (FM) loss, LFM , which serves the same purpose
of anchoring the model to the target distribution q(x0):

LGCTM (θ) = Et,s,u,(x0,x1)∼q

[
d
(
Gθ(xt, t, s), Gsg(θ)(xt→u, u, s)

)]
(9)

LFM (θ) = Et,(x0,x1)∼q

[
||x0 − gθ(xt, t, t)||22

]
(10)

This ability to learn a direct, yet fully traversable, mapping between two complex distributions is the
key property we exploit in our planning framework.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Initial State Goal StateKey Frame 1 Key Frame 2 Key Frame 3

Generalized Consistency Trajectory Model

Tr
ai

ni
ng

 P
ha

se

t=0 t=T

High-level strategies：
1. Collision Avoidance: 
dist(ball, white_cell) > 0.
2. Smooth Flow: 
Prefer straight_line_path in 
open areas. Minimize 
angular_change_rate…….

Segment: 
(1,1) -> (2,3)
Low-level Dynamics:
Initial_move_dir(0.8, 0.2) -> 
Adjust_to_avoid_L_shape_
obstacle_at(1.5, 2.0) -> 
Final_dir_to(2,3) = (0.2, 
0.8)…..

Segment: 
(2,3) -> (4,4)
Low-level Dynamics:
Start_move_dir(0.7, 0.7) -> 
Diagonal_traverse_through
_open_central_region -> 
Maintain_dir(0.7, 0.7)…..

Segment: 
(4,4) -> (6,3)
Low-level Dynamics:
Start_move_dir(0.8, -0.2) -> 
Adjust_for_vertical_corrid
or_at(5.5, 3.5) -> 
Final_dir_to(6,3) = (0.9, -
0.1)……

Goal:
•Grid is 8x8.
•Initial State: (1, 1) - Yellow ball
•Key Frame 1: (2, 3)
•Key Frame 2: (4, 4)
•Key Frame 3: (6, 3)
•Goal State: (7, 7) - Pink ball

Figure 2: MCPlanner. Our framework leverages a single Generalized Consistency Trajectory Model
(GCTM) to learn multi-scale planning. The GCTM is trained on end-to-end expert trajectories, learning both
high-level strategies (e.g., collision avoidance, smooth flow) and intricate low-level dynamics for trajectory
segments. At each segment, the model learns fine-grained motion synthesis, obviating the need for separate
high-level and low-level planners and ensuring a unified and coherent planning hierarchy.

4 METHOD

This paper explores the integration of GCTMs into a novel planning architecture for offline RL. In
the following, we discuss how we use a single, unified GCTM for a multi-scale trajectory optimiza-
tion process.

4.1 TRAINING PROCESS

Our MCPlanner employs a single Generalized Consistency Trajectory Model (GCTM), Gθ, trained
on a dataset of full, end-to-end expert trajectories. This GCTM learns to map from a start-goal
condition to the distribution of complete trajectories. We represent a full expert trajectory as a
sequence of state-action pairs, τ = ((s0, a0), (s1, a1), . . . , (sT , aT )). Given a start-goal condition
c = (sstart, sgoal), we set x0 ≡ τ and deterministically construct x1 by linearly interpolating
states from sstart to sgoal across the trajectory horizon and setting actions to zero. This formulation
yields convex interpolants (1 − t)x0 + tx1 that define the training path, obviating the need for
any learnable encoder and establishing a direct connection between the condition and the trajectory
generation process.

Flow Straightening via Conditional Optimal Transport. To further enhance sample and compute
efficiency by reducing the curvature of the Flow Matching (FM) ODE, we employ an entropy-
regularized optimal-transport (OT) coupling between batches of expert trajectories and their corre-
sponding deterministic trajectory priors. This coupling introduces an inductive bias, encouraging
the start and end distributions of the learned flow to be close in Euclidean distance, thereby yield-
ing straighter ODE trajectories. This approach facilitates more accurate integration with larger time
steps, fewer evaluations, and reduces variance in loss gradients during training. Specifically, for
a mini-batch {(τm, cm)}Mm=1, we construct xm

1 deterministically from (smstart, s
m
goal), then solve a

Sinkhorn-Knopp problem Cuturi (2013) over the cost matrix Cij = ∥τ i − xj
1∥22 to obtain an opti-

mal coupling POT . Sampling pairs {(τ im , xjm

1 )}Mm=1 from this coupling effectively straightens the
learned flow, reducing the effective Lipschitz constant of the drift. As rigorously proven by Theo-
rem E.2 and Corollary E.3, this OT coupling provably tightens the FM velocity Lipschitz constant
and improves the coarse-step stability condition (Theorem E.1), allowing for larger coarse steps and
a smaller coarse budget K for a fixed error target.

Training Objective. We optimize a composite objective comprising four complementary loss com-
ponents, which collectively facilitate the learning of our unified multi-scale planner. This objec-
tive couples the straightened conditional path with: (i) a consistency loss LGCTM enforcing self-
consistency across arbitrary time intervals; (ii) a flow-matching anchor LFM that ties the model to
the data distribution; (iii) a multi-scale consistency loss LMS that enforces compositional consis-
tency across a fixed coarse grid used at inference; and (iv) a disentangled control regularizer Lctrl

that structures the latent space for interpretable control.

Given a sampled expert trajectory τ from D, and its corresponding start-goal condition c =
(sstart, sgoal), we deterministically form x1 from c, as described in the trajectory representation.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Consistency Objective. The consistency loss, LGCTM , directly applies the self-consistency prin-
ciple of GCTMs, ensuring that a one-step transition from time t to s is consistent with a two-step
transition via an intermediate time u. This loss, derived from Eq. 9, is expressed as:

LGCTM (θ) = Et,s,u,(τ,x1,c)∼D
[
d
(
Gθ(xt, t, s; c), Gsg(θ)(xt→u, u, s; c)

)]
(11)

where xt = (1− t)τ + tx1 is the linearly interpolated sample at time t.

Flow Matching Objective. Complementary to the consistency objective, the flow-matching loss,
LFM , serves as an anchor, tying the model to the ground truth data distribution by training gθ as an
effective denoiser. It is expressed as:

LFM (θ) = Et,τExt|τ

[
∥τ − gθ (xt, t, t)∥22

]
(12)

where gθ is the neural network component of the GCTM parameterization Gθ(xt, t, s) = s
txt +

(1− s
t )gθ(xt, t, s).

Multi-Scale Consistency Objective. A key insight of our work is that a single model can be queried
at different temporal scales to produce a planning hierarchy. To explicitly enforce this crucial prop-
erty during training, we introduce a multi-scale consistency loss. Let Tc = {t0, t1, . . . , tK} be a
fixed, discrete set of coarse time steps used for high-level planning at inference, with 1 = t0 >
t1 > · · · > tK > 0. This loss term penalizes inconsistencies between a long temporal jump and a
sequence of shorter jumps across these specific scales (all conditioned on c):

LMS(θ) =

K−1∑
i=0

Ext0
[d (Gθ(xt0 , t0, ti+1; c), Gθ(Gθ(xt0 , t0, ti; c), ti, ti+1; c))] (13)

This objective directly encourages the model to produce coherent plans across the hierarchy, and in
particular reduces the semigroup-residual term that appears as K ·Rθ in the bound of Theorem E.1.

Disentangled Control Objective. To enhance the controllability of our planner, we introduce a
regularization term that encourages disentangled control over the plan’s characteristics via the latent
code ϵ. As detailed in Section 4.2 and Appendix F, our goal is to ensure that different dimensions of
the latent code affect orthogonal aspects of the final trajectory τ . We achieve this by penalizing the
dot product of the gradients of the trajectory with respect to different latent dimensions:

Lctrl(θ) = Eϵ

∑
i ̸=j

∥∥∥∥∥
(
∂τ

∂ϵi

)T (
∂τ

∂ϵj

)∥∥∥∥∥
2

(14)

The final training objective is a weighted sum of all four losses:

L(θ) = LGCTM (θ) + λFMLFM (θ) + λMSLMS(θ) + λctrlLctrl(θ) (15)

This combined objective ensures that the model learns a meaningful, hierarchically consistent, and
controllable representation of the entire trajectory space, enabling robust and adaptable long-horizon
planning. The pseudocode for the complete training algorithm, Alg. 1, is provided in Appendix B.

4.2 INFERENCE PROCESS

Our inference process is a single-model, multi-scale procedure where a planning hierarchy seam-
lessly emerges by querying the same GCTM at coarse and fine temporal resolutions. The full pro-
cedure is detailed in Alg. 2.

Coarse planning via vectorized multi-time queries. Given a start–goal query c = (sstart, sgoal),
we initialize at t = 1 with a condition-dependent embedding x1. We then efficiently compute
all coarse states {tk}Kk=1 in a single batched forward pass, leveraging a shared model trunk and
lightweight heads. The stability of these vectorized multi-time queries is ensured as the composition
error between direct and chained evaluations is controlled by the semigroup-residual term Rθ in
Theorem E.1:

xtk = Gθ(x1, 1, tk; c), 1 > t1 > · · · > tK > 0. (16)
Optionally, each coarse state can be decoded to a clean trajectory τ̂k = gθ(xtk , tk, tk; c) to extract
human-interpretable subgoals for visualization.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Fine-grained synthesis within intervals. For each high-level interval (tk+1, tk], fine-grained mo-
tion is synthesized by vectorizing numerous fine-time evaluations using the same GCTM. This pro-
cess efficiently generates smooth trajectory segments with reduced computational cost:

xk,j = Gθ(xtk , tk, t
′
j ; c), tk > t′j > tk+1. (17)

Decoding these fine-grained evaluations yields dense trajectory segments τk, which are then con-
catenated to form the complete final trajectory τfinal = τ0◦τ1◦· · ·◦τK . Our multi-scale consistency
objective, enforced during training, explicitly promotes compositional coherence between these syn-
thesized segments and their subsequent subgoals, ensuring a fluid and consistent overall plan.

Candidate generation, scoring, and refinement. To enhance the diversity and quality of the gen-
erated plans, we employ a candidate generation and refinement process. We first sample N distinct
latent codes, which are used to perturb the initial condition-dependent embedding x1, thereby induc-
ing diverse candidate trajectories. Each candidate is then generated by repeating the coarse planning
and fine-grained synthesis steps described above. These candidates are subsequently scored based
on a terminal error metric (e.g., distance to the goal state). To further improve the best candidates, we
refine the top-m performing trajectories by applying a few steps of gradient descent in their respec-
tive latent spaces, optimizing directly on the terminal objective. Finally, the best-scoring trajectory
from the refined set is returned as the planner’s output.

5 EXPERIMENTS

In this section, we present empirical results that validate the effectiveness of our proposed MCPlan-
ner algorithm. We evaluate our method on a range of challenging offline goal-conditioned tasks.

5.1 EXPERIMENTAL SETUP

Environments. We evaluate our proposed algorithm on the recently proposed OGBench Park et al.
(2025), a benchmark designed to evaluate algorithms in offline goal-conditioned RL across different
tasks and datasets. We employ environments from 4 locomotion (PointMaze, AntMaze, Humanoid-
Maze, AntSoccer), and 3 manipulation (Cube, Puzzle, Scene) domains. More details about these
tasks and offline datasets are provided in the Appendix A and Implementation details are deferred
to Appendix B

Baselines. We compare MCPlanner with prior state-of-the-art diffusion planners like Diffuser (Jan-
ner et al., 2022), Decision Diffuser (DD) (Ajay et al., 2023), AdaptDiffuser (Liang et al., 2023),
DiffuserLite (Dong et al., 2024), Diffusion Veteran (Lu et al., 2025); and hierarchical diffusion
planners like HDMI (Li et al., 2023) and SHD (Chen et al., 2024).

5.2 RESULTS

Q: How does MCPlanner compare to the baselines on Offline Goal-conditioned RL tasks?

A: Table 1 presents a comprehensive comparison of MCPlanner against state-of-the-art diffusion-
based planners on the OGBench benchmark. The results demonstrate a clear and consistent advan-
tage for our method. MCPlanner achieves the highest success rates across all tasks and datasets,
often by a substantial margin.

Dominance in Locomotion: In the challenging locomotion tasks (pointmaze, antmaze,
humanoidmaze, and antsoccer), MCPlanner consistently outperforms all baselines. Notably,
the performance gap widens on more complex, long-horizon environments such as the ‘large‘ and
‘giant‘ mazes. This highlights the effectiveness of our unified hierarchical approach for long-horizon
planning.

Superior Performance in Manipulation: The strong performance extends to manipulation tasks
(cube, scene, puzzle). Across these diverse environments, MCPlanner demonstrates superior
planning capabilities. This consistent state-of-the-art performance across nearly all tasks under-
scores the robustness and generalizability of the MCPlanner framework.

5.3 ABLATION STUDIES

Q: Why not employ a traditional two-model hierarchy, as commonly adopted by hierarchical
diffusion planners?

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Experimental results for the tasks we considered across diverse datasets. The table reports the average
binary success rate (%) across five test-time goals for each task, averaged over 8 seeds. Standard deviations
are indicated by the ± symbol. Entries within 95% of the best-performing value in each row are highlighted in
bold.

Environment Dataset Type Dataset Diffuser DD HDMI AD SHD DL DV Ours

pointmaze

navigate

pointmaze-medium-navigate-v0 29 ±7 37 ±4 51 ±8 65 ±6 66 ±5 72 ±7 79 ±5 86 ±2

pointmaze-large-navigate-v0 18 ±3 21 ±5 29 ±6 37 ±7 35 ±6 58 ±5 74 ±7 81 ±5

pointmaze-giant-navigate-v0 7 ±4 11 ±2 27 ±4 18 ±5 31 ±3 46 ±2 52 ±1 68 ±2

pointmaze-teleport-navigate-v0 15 ±1 20 ±5 23 ±6 25 ±7 28 ±1 32 ±4 43 ±4 45 ±7

stitch

pointmaze-medium-stitch-v0 23 ±7 35 ±8 46 ±2 59 ±5 64 ±9 69 ±6 71 ±8 81 ±7

pointmaze-large-stitch-v0 15 ±4 25 ±6 36 ±5 42 ±8 48 ±7 55 ±4 62 ±6 73 ±5

pointmaze-giant-stitch-v0 5 ±2 9 ±3 19 ±5 23 ±4 29 ±6 38 ±5 45 ±3 59 ±4

pointmaze-teleport-stitch-v0 12 ±3 18 ±5 21 ±4 23 ±6 26 ±5 30 ±3 39 ±4 42 ±6

antmaze

navigate

antmaze-medium-navigate-v0 15 ±5 22 ±4 31 ±6 40 ±5 42 ±7 51 ±6 60 ±4 72 ±3

antmaze-large-navigate-v0 8 ±3 14 ±4 22 ±5 28 ±6 31 ±5 40 ±4 51 ±5 65 ±1

antmaze-giant-navigate-v0 2 ±1 5 ±2 11 ±4 15 ±3 19 ±4 27 ±5 35 ±4 48 ±3

antmaze-teleport-navigate-v0 6 ±2 10 ±3 15 ±4 18 ±5 22 ±4 26 ±3 33 ±5 41 ±4

stitch

antmaze-medium-stitch-v0 12 ±4 19 ±5 28 ±6 35 ±4 38 ±6 47 ±5 55 ±3 68 ±4

antmaze-large-stitch-v0 6 ±3 11 ±4 19 ±5 25 ±3 28 ±5 36 ±4 47 ±6 61 ±3

antmaze-giant-stitch-v0 1 ±1 4 ±2 9 ±3 13 ±4 17 ±3 24 ±4 31 ±5 44 ±4

antmaze-teleport-stitch-v0 4 ±2 8 ±3 13 ±4 16 ±3 20 ±4 24 ±3 30 ±4 38 ±5

humanoidmaze

navigate
humanoidmaze-medium-navigate-v0 5 ±2 9 ±3 15 ±4 21 ±5 24 ±4 30 ±3 38 ±5 51 ±4

humanoidmaze-large-navigate-v0 2 ±1 5 ±2 9 ±3 13 ±4 16 ±3 22 ±4 29 ±3 42 ±5

humanoidmaze-giant-navigate-v0 0 ±0 1 ±1 3 ±2 5 ±2 7 ±3 11 ±4 16 ±3 25 ±4

stitch
humanoidmaze-medium-stitch-v0 4 ±2 7 ±3 13 ±4 19 ±3 22 ±5 28 ±4 35 ±3 48 ±4

humanoidmaze-large-stitch-v0 1 ±1 3 ±2 7 ±3 11 ±4 14 ±3 20 ±3 26 ±4 39 ±5

humanoidmaze-giant-stitch-v0 0 ±0 1 ±1 2 ±1 4 ±2 6 ±3 12 ±7 14 ±3 16 ±4

antsoccer
navigate

antsoccer-arena-navigate-v0 10 ±4 15 ±5 25 ±6 35 ±4 38 ±6 45 ±5 55 ±3 68 ±4

antsoccer-medium-navigate-v0 8 ±3 12 ±4 20 ±5 28 ±3 31 ±5 38 ±4 48 ±6 61 ±3

stitch
antsoccer-arena-stitch-v0 9 ±3 14 ±4 23 ±5 32 ±4 35 ±6 42 ±5 52 ±3 65 ±4

antsoccer-medium-stitch-v0 7 ±2 11 ±3 18 ±4 25 ±3 28 ±5 35 ±4 45 ±6 58 ±3

cube play

cube-single-play-v0 5 ±2 8 ±3 12 ±4 18 ±5 20 ±4 25 ±3 32 ±5 45 ±4

cube-double-play-v0 2 ±1 4 ±2 7 ±3 11 ±4 13 ±3 17 ±4 23 ±3 35 ±5

cube-triple-play-v0 1 ±1 2 ±1 4 ±2 6 ±3 8 ±2 11 ±3 14 ±4 17 ±3

cube-quadruple-play-v0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0

scene play scene-play-v0 10 ±3 16 ±4 24 ±5 33 ±4 37 ±6 45 ±5 56 ±3 70 ±4

puzzle play

puzzle-3x3-play-v0 8 ±3 13 ±4 20 ±5 28 ±3 31 ±5 39 ±4 49 ±6 62 ±3

puzzle-4x4-play-v0 0 ±0 0 ±0 0 ±0 2 ±3 5 ±4 11 ±3 19 ±5 32 ±4

puzzle-4x5-play-v0 0 ±0 0 ±0 0 ±0 0 ±0 5 ±3 6 ±3 8 ±4 16 ±5

puzzle-4x6-play-v0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 6 ±4 14 ±3

A: To investigate this, we compare our unified MCPlanner against a variant, MCPlanner-2, which
mimics the traditional hierarchical setup. This variant consists of two separately trained GCTMs: a
high-level planner that generates a sequence of sparse subgoals, and a low-level planner that synthe-
sizes dense trajectories to connect them. Our experiments, summarized in Table 2, reveal a signifi-
cant performance drop with the two-model approach. We attribute this gap to two primary factors:
(i) coherence gap, and (ii) compounding errors. Therefore, the unified architecture of MCPlanner
is not merely a simplification but a crucial design choice that leads to more coherent, robust, and
effective long-horizon planning.

Q: Is the explicit Multi-Scale Consistency Objective LMS truly essential for performance, or
can the GCTM naturally learn this coherence?

A: While the standard GCTM objective (Eq. 11) encourages consistency over arbitrary time inter-
vals, we hypothesized that explicitly enforcing this property on the fixed, coarse time grid used at
inference would be beneficial. To validate this, we trained a variant, MCPlanner w/o LMS , which
omits the multi-scale consistency loss term (Eq. 13). The results, presented in Table 2, confirm our
hypothesis. While the model without LMS still performs reasonably well, there is a consistent per-
formance degradation across all tasks. This suggests that while the base GCTM objective provides
a degree of implicit consistency, it is not sufficient to guarantee the strong compositional coherence
required for our hierarchical inference scheme.

Q: Does the Conditional Optimal Transport (OT) coupling offer a significant advantage over
simpler, independent couplings for flow straightening?

A: As established in our theoretical framework (Theorem E.2), using an OT coupling is designed
to straighten the learned flow between the initial and final trajectory distributions. This leads to a
smaller Lipschitz constant for the ODE drift, which in turn allows for more stable training and more
accurate integration with fewer steps. To quantify this benefit, we trained a variant, MCPlanner
w/o OT, that uses a simpler random pairing between expert trajectories and their conditional priors
within each batch. The results in Table 2 clearly show the practical benefits of OT coupling.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Ablation study on the unified model archi-
tecture, multi-scale consistency objective, and condi-
tional optimal transport coupling.

Environment Dataset MCPlanner MCPlanner-2 w/o LMS w/o OT

pointmaze

medium-navigate-v0 86 ±2 67 ±4 79 ±3 81 ±7

large-navigate-v0 81 ±5 60 ±9 72 ±2 75 ±8

giant-navigate-v0 68 ±2 45 ±5 57 ±5 61 ±7

teleport-navigate-v0 45 ±7 21 ±2 32 ±9 39 ±4

antmaze

medium-navigate-v0 72 ±3 55 ±7 66 ±3 68 ±8

large-navigate-v0 65 ±1 46 ±9 57 ±5 58 ±2

giant-navigate-v0 48 ±3 27 ±1 36 ±8 42 ±5

teleport-navigate-v0 41 ±4 16 ±9 31 ±5 36 ±3

humanoidmaze
medium-navigate-v0 51 ±4 36 ±7 46 ±2 47 ±8

large-navigate-v0 42 ±5 25 ±2 31 ±3 34 ±5

giant-navigate-v0 25 ±4 7 ±5 12 ±9 17 ±1

Table 3: Ablation study on the coarse time grid reso-
lution (K).

Environment Dataset K = 2 K = 5 K = 10

pointmaze

medium-navigate-v0 79 ±3 86 ±2 87 ±2

large-navigate-v0 71 ±2 81 ±5 81 ±9

giant-navigate-v0 55 ±7 68 ±2 69 ±5

teleport-navigate-v0 29 ±9 45 ±7 45 ±6

antmaze

medium-navigate-v0 63 ±4 72 ±3 73 ±8

large-navigate-v0 53 ±2 65 ±1 66 ±6

giant-navigate-v0 33 ±5 48 ±3 49 ±2

teleport-navigate-v0 23 ±8 41 ±4 42 ±5

humanoidmaze
medium-navigate-v0 43 ±5 51 ±4 52 ±1

large-navigate-v0 34 ±8 42 ±5 42 ±9

giant-navigate-v0 18 ±1 25 ±4 25 ±6

Q: How does the choice of coarse time grid Tc affect performance?

A: The coarse time grid Tc determines the resolution of the high-level plan. A denser grid (larger K)
allows for more frequent subgoals, potentially improving plan accuracy, but increases computational
cost. Conversely, a sparser grid is more efficient but may fail to capture the necessary detail for
complex, long-horizon tasks. To analyze this trade-off, we evaluated MCPlanner with three different
grid resolutions: a sparse grid with K = 2 coarse steps, our default grid with K = 5 steps, and a
dense grid with K = 10 steps. The results, shown in Table 3, highlight the importance of this choice.
Our chosen grid with K = 5 steps provides enough high-level guidance to solve challenging tasks
without incurring the unnecessary computational overhead of an overly dense plan.

Q: How does the choice of candidate count N affect performance?

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100
pointmaze - giant-navigate

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100
pointmaze - teleport-navigate

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100
antmaze - large-navigate

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100
antmaze - giant-navigate

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100
humanoidmaze - medium-navigate

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100
humanoidmaze - large-navigate

Steps (×106)

Su
cc

es
s R

at
e

Candidates (N) N=1 N=4 N=16 N=32

Figure 3: Ablation study on the number of trajectory candi-
dates (N ).

A: The number of trajectory candidates,
N , is a crucial hyperparameter that bal-
ances planning performance against com-
putational cost. Generating more can-
didates allows the planner to explore a
wider range of solutions, increasing the
probability of finding a successful path,
especially in complex environments with
multi-modal solutions.

To understand this trade-off, we evaluated
MCPlanner with varying numbers of can-
didates: N = 1, 4, 16,& 32. The re-
sults, presented in Figure 3, demonstrate
a clear trend. Moving from N = 1 to
N = 16 yields significant performance
improvements across all tasks. However,
the gains begin to diminish beyond N =
16. Increasing the candidate count to N =
32 provides only marginal or no improve-
ment, while doubling the generation time.
Therefore, our choice of N = 16 repre-
sents a well-balanced trade-off, maximiz-
ing success rates without incurring excessive computational overhead, making the planner both ef-
fective and efficient.

6 CONCLUSION

In this paper, we introduced MCPlanner, a novel framework that addresses the challenges of long-
horizon planning in offline reinforcement learning. We argued that traditional hierarchical methods,
which rely on separate models for high-level and low-level planning, often suffer from coherence
gaps and increased complexity. MCPlanner overcomes these limitations by employing a single
Generalized Consistency Trajectory Model (GCTM) to form a seamless, multi-scale planning hier-
archy. By querying the same model at different temporal resolutions, we can generate both coarse,
long-horizon subgoals and fine-grained, dense motions within a unified and consistent framework.
Extensive experiments on the OGBench benchmark, spanning 35 challenging locomotion and ma-
nipulation tasks, demonstrated that MCPlanner consistently outperforms prior state-of-the-art meth-
ods.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of MCPlanner, we have made significant efforts. For novel models and
algorithms, implementation details and hyperparameters are extensively discussed in Appendix B.
For theoretical results, clear explanations of all assumptions and complete proofs of claims are
provided in Appendix E. For datasets used in the experiments, a complete description of the data
processing steps can be found in Appendix A.

LLM USAGE STATEMENT

We only used Large Language Models (LLMs) to polish the writing and improve the clarity and
flow of the text in this paper. No LLMs were used for generating content, ideas, or experimental
results.

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision making? In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Kseniia Dudnyk, and Jian Zhou. Dirichlet diffusion score
model for biological sequence generation. In International Conference on Machine Learning, pp.
1276–1301. PMLR, 2023.

David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023.

Joao Carvalho, An T Le, Mark Baierl, Dorothea Koert, and Jan Peters. Motion planning diffusion:
Learning and planning of robot motions with diffusion models. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1916–1923. IEEE, 2023.

Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchical
planning with diffusion. In The Twelfth International Conference on Learning Representations,
2024.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Zibin Dong, Jianye Hao, Yifu Yuan, Fei Ni, Yitian Wang, Pengyi Li, and Yan Zheng. Diffuserlite:
Towards real-time diffusion planning. Advances in Neural Information Processing Systems, 37:
122556–122583, 2024.

Xiaolin Fang, Caelan Reed Garrett, Clemens Eppner, Tomás Lozano-Pérez, Leslie Pack Kaelbling,
and Dieter Fox. Dimsam: Diffusion models as samplers for task and motion planning under partial
observability. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1412–1419. IEEE, 2024.

Zhengyang Geng, Ashwini Pokle, Weijian Luo, Justin Lin, and J Zico Kolter. Consistency models
made easy. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=xQVxo9dSID.

Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Fei-Fei Li, Irfan Essa, Lu Jiang, and
José Lezama. Photorealistic video generation with diffusion models. In European Conference on
Computer Vision, pp. 393–411. Springer, 2024.

Ce Hao, Anxing Xiao, Zhiwei Xue, and Harold Soh. Chd: Coupled hierarchical diffusion for long-
horizon tasks. arXiv preprint arXiv:2505.07261, 2025.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

10

https://openreview.net/forum?id=xQVxo9dSID


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pp. 9902–9915.
PMLR, 2022.

Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and motion planning in the now.
In 2011 IEEE international conference on robotics and automation, pp. 1470–1477. IEEE, 2011.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Beomsu Kim, Jaemin Kim, Jeongsol Kim, and Jong Chul Ye. Generalized consistency trajectory
models for image manipulation. In The Thirteenth International Conference on Learning Repre-
sentations, 2025. URL https://openreview.net/forum?id=Zjv38dg1Hb.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning prob-
ability flow ODE trajectory of diffusion. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=ymjI8feDTD.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Sangyun Lee, Yilun Xu, Tomas Geffner, Giulia Fanti, Karsten Kreis, Arash Vahdat, and Weili Nie.
Truncated consistency models. In The Thirteenth International Conference on Learning Repre-
sentations, 2025. URL https://openreview.net/forum?id=ZYDEJEvCbv.

Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline decision
making. In International Conference on Machine Learning, pp. 20035–20064. PMLR, 2023.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
LM improves controllable text generation. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=3s9IrEsjLyk.

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. AdaptDif-
fuser: Diffusion models as adaptive self-evolving planners. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 20725–20745. PMLR, 23–29 Jul 2023.

Bencheng Liao, Shaoyu Chen, Haoran Yin, Bo Jiang, Cheng Wang, Sixu Yan, Xinbang Zhang,
Xiangyu Li, Ying Zhang, Qian Zhang, et al. Diffusiondrive: Truncated diffusion model for end-
to-end autonomous driving. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 12037–12047, 2025.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=LyJi5ugyJx.

Haofei Lu, Dongqi Han, Yifei Shen, and Dongsheng Li. What makes a good diffusion planner
for decision making? In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=7BQkXXM8Fy.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed, 2021. URL https://arxiv.org/abs/2101.02388.

11

https://openreview.net/forum?id=Zjv38dg1Hb
https://openreview.net/forum?id=ymjI8feDTD
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=ZYDEJEvCbv
https://openreview.net/forum?id=3s9IrEsjLyk
https://openreview.net/forum?id=LyJi5ugyJx
https://openreview.net/forum?id=LyJi5ugyJx
https://openreview.net/forum?id=7BQkXXM8Fy
https://arxiv.org/abs/2101.02388


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yunhao Luo, Chen Sun, Joshua B Tenenbaum, and Yilun Du. Potential based diffusion motion
planning. arXiv preprint arXiv:2407.06169, 2024.

Xiao Ma, Sumit Patidar, Iain Haughton, and Stephen James. Hierarchical diffusion policy for
kinematics-aware multi-task robotic manipulation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 18081–18090, 2024.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 14297–14306, 2023.

Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
Mcgrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and
editing with text-guided diffusion models. In International Conference on Machine Learning, pp.
16784–16804. PMLR, 2022.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Benchmarking
offline goal-conditioned RL. In The Thirteenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?id=M992mjgKzI.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, and Sam De-
vlin. Imitating human behaviour with diffusion models. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
Pv1GPQzRrC8.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=di52zR8xgf.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Earl D Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial intelligence, 5(2):115–135,
1974.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=TIdIXIpzhoI.

Shitong Shao, Xu Dai, Shouyi Yin, Lujun Li, Huanran Chen, and Yang Hu. Catch-up distillation:
You only need to train once for accelerating sampling. arXiv preprint arXiv:2305.10769, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=WNzy9bRDvG.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=PxTIG12RRHS.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine Learning, pp. 32211–32252. PMLR, 2023.

Fu-Yun Wang, Zhengyang Geng, and Hongsheng Li. Stable consistency tuning: Understanding
and improving consistency models, 2024a. URL https://openreview.net/forum?id=
mzJAupYURK.

12

https://openreview.net/forum?id=M992mjgKzI
https://openreview.net/forum?id=Pv1GPQzRrC8
https://openreview.net/forum?id=Pv1GPQzRrC8
https://openreview.net/forum?id=di52zR8xgf
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=WNzy9bRDvG
https://openreview.net/forum?id=WNzy9bRDvG
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=mzJAupYURK
https://openreview.net/forum?id=mzJAupYURK


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Fu-Yun Wang, Ling Yang, Zhaoyang Huang, Mengdi Wang, and Hongsheng Li. Rectified diffu-
sion: Straightness is not your need in rectified flow. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
nEDToD1R8M.

Junming Wang, Xingyu Zhang, Zebin Xing, songen gu, Xiaoyang Guo, Yang Hu, Ziying Song,
Qian Zhang, Xiaoxiao Long, and Wei Yin. HE-drive: Human-like end-to-end driving with vision
language models, 2024b. URL https://openreview.net/forum?id=DWISGL63PC.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=AHvFDPi-FA.

Brian Yang, Huangyuan Su, Nikolaos Gkanatsios, Tsung-Wei Ke, Ayush Jain, Jeff Schneider, and
Katerina Fragkiadaki. Diffusion-es: Gradient-free planning with diffusion for autonomous and
instruction-guided driving. In 2024 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 15342–15353, 2024. doi: 10.1109/CVPR52733.2024.01453.

Cheng-Fu Yang, Haoyang Xu, Te-Lin Wu, Xiaofeng Gao, Kai-Wei Chang, and Feng Gao. Planning
as in-painting: A diffusion-based embodied task planning framework for environments under
uncertainty. arXiv preprint arXiv:2312.01097, 2023.

Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano Ermon,
and Weinan Zhang. MADiff: Offline multi-agent learning with diffusion models. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=PvoxbjcRPT.

13

https://openreview.net/forum?id=nEDToD1R8M
https://openreview.net/forum?id=nEDToD1R8M
https://openreview.net/forum?id=DWISGL63PC
https://openreview.net/forum?id=AHvFDPi-FA
https://openreview.net/forum?id=PvoxbjcRPT
https://openreview.net/forum?id=PvoxbjcRPT


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A TASKS AND DATASETS

 

Figure 4: Visualization of a subset of tasks we considered from OGBench.

To validate the effectiveness of MCPlanner across diverse offline goal-conditioned reinforcement
learning scenarios, we evaluate our approach on the recently introduced OGBench benchmark Park
et al. (2025). This comprehensive benchmark provides a systematic evaluation framework that chal-
lenges long-horizon planning algorithms across two distinct domains: locomotion, and manipulation
tasks. The benchmark’s design particularly emphasizes the planning capabilities that MCPlanner
aims to address, including goal stitching, long-horizon reasoning, and the ability to synthesize co-
herent trajectories from offline data.

A.1 LOCOMOTION TASKS

PointMaze (pointmaze). This task involves controlling a 2D point mass agent to navigate through
maze environments of varying complexity. We evaluate MCPlanner on four maze configurations:
medium (the standard baseline), large (increased complexity), giant (the most challenging lay-
out requiring up to 1500 environment steps), and teleport (featuring stochastic teleporters that
test robustness to environmental uncertainty). The task provides an ideal testbed for our unified hier-
archical planning approach, as successful navigation requires both high-level path planning around
obstacles and fine-grained control for precise movement execution.

AntMaze (antmaze). Building upon PointMaze, this task challenges MCPlanner to control an 8-
degree-of-freedom quadrupedal Ant agent through the same maze layouts. The increased morpho-
logical complexity introduces additional planning challenges, as the agent must coordinate multiple
joints while maintaining global navigation objectives. The longer action sequences required for lo-
comotion make this task particularly suitable for evaluating our multi-scale consistency approach,
which ensures coherence between coarse waypoints and fine-grained motion synthesis.

HumanoidMaze (humanoidmaze). The most complex locomotion task involves controlling a
21-DoF Humanoid agent through maze environments. This task represents the ultimate test of
our planning framework’s ability to handle high-dimensional action spaces and complex dynam-
ics. The humanoid’s sophisticated morphology requires careful coordination of numerous joints,
making long-horizon planning extremely challenging. In the most difficult giant configuration,
successful navigation can require up to 3000 environment steps, thoroughly testing MCPlanner’s
ability to maintain trajectory coherence over extended horizons.

AntSoccer (antsoccer). This novel locomotion task extends beyond simple navigation by re-
quiring the Ant agent to manipulate a soccer ball while navigating. The task involves dribbling the
ball through two environment types: an open arena and a structured medium maze. This dual
objective of navigation and object manipulation tests MCPlanner’s ability to coordinate multiple be-
havioral modes within a single trajectory, making it an excellent benchmark for our unified planning
approach.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 MANIPULATION TASKS

Cube (cube). These tasks challenge MCPlanner to control a 6-DoF UR5e robot arm for pick-
and-place manipulation of cube blocks. We evaluate on four variants with increasing complexity:
single, double, triple, and quadruple, corresponding to tasks involving 1-4 cubes re-
spectively. The evaluation goals require moving, stacking, swapping, or permuting cube blocks
to achieve specified configurations. This task family is particularly valuable for assessing our ap-
proach’s ability to learn multi-object manipulation behaviors and synthesize long-term plans that
may require up to 8 sequential pick-and-place operations.

Scene (scene). This manipulation task is designed to test sequential reasoning capabilities through
interaction with diverse everyday objects including cube blocks, windows, drawers, and button-
controlled locks. The task requires MCPlanner to understand object dependencies and execute com-
plex sequential behaviors. For example, certain goals require unlocking a drawer, opening it, placing
an object inside, and closing it again. The longest tasks involve up to eight atomic manipulation be-
haviors, making this an excellent testbed for our hierarchical planning approach that must maintain
coherence across extended behavioral sequences.

Puzzle (puzzle). Perhaps the most challenging manipulation tasks involve solving the ”Lights
Out” puzzle using the robot arm. These tasks require pressing buttons on 2D grids of varying sizes
(3x3, 4x4, 4x5, and 4x6) where each button press toggles the colors of the pressed button and its
neighbors. The goal is to achieve desired color configurations through strategic button combinations.
This task tests MCPlanner’s combinatorial reasoning abilities, as the state space grows exponentially
with grid size (up to 224 states for the largest puzzle). The most complex puzzles require pressing
over 20 buttons in precise sequences, thoroughly challenging our approach’s long-horizon planning
capabilities.

A.3 DATASET CHARACTERISTICS

The OGBench benchmark provides multiple dataset types that pose distinct challenges for offline
planning algorithms:

Navigate Datasets. These datasets consist of trajectories collected by noisy expert policies that
navigate environments while reaching randomly sampled goals. They provide diverse coverage of
successful behaviors but require MCPlanner to learn from suboptimal demonstrations with varying
noise levels.

Stitch Datasets. Specifically designed to challenge goal stitching capabilities, these datasets contain
only short trajectory segments (e.g., at most 4 cell units in maze tasks). Successful task completion
requires MCPlanner to stitch multiple trajectory segments together, with some tasks requiring up to 8
stitching operations. This directly tests our unified model’s ability to generate coherent long-horizon
plans from fragmented demonstration data.

Play Datasets. Used for manipulation tasks, these datasets are collected by non-Markovian expert
policies with temporally correlated noise, mimicking realistic data collection scenarios. The un-
structured nature of these datasets challenges MCPlanner to extract meaningful behavioral patterns
and synthesize novel goal-directed trajectories from seemingly random interactions.

The diversity of these datasets, spanning 35 total configurations across all task domains, provides
a comprehensive evaluation framework for assessing MCPlanner’s robustness and generalization
capabilities across varied data quality and structure conditions.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B IMPLEMENTATION DETAILS

This section provides comprehensive details regarding the implementation of MCPlanner, including
the specific hyperparameters used in all experiments, the full training algorithm, and the complete
inference procedure.

B.1 HYPERPARAMETERS

Table 4: MCPlanner hyperparameters used in all experiments.

Parameter Setting
Backbone 1D U-Net (based on (Song et al., 2021)’s architecture)
Horizon H 32
Model width 64
Positional timestep embeddings Yes
Kernel size 5
λFM 0.1
λMS 1.0
λctrl 0.1
Coarse time grid Tc {1.0, 0.8, 0.6, 0.4, 0.2, 0.0}
EMA rate 0.999
EDM σmin = 0.002, σmax = 80.0
Number of discretization steps N Doubles every 100k iterations, starting from 4
Time t̂ distribution Beta(3,1)
Distance d (for LGCTM ) Pseudo-huber loss with c = 0.00054

√
d

Gaussian perturbation for x1 N (0, 0.052I)
Integrator Second order Heun
Batch size 64
Training steps 106

Candidates N 16
Latent refinement steps r 2
Top-m candidates 4
Reranking Lightweight critic

In this section, we provide detailed explanations for the hyperparameters and design choices listed in
Table 4, aligning with best practices for reproducibility and clarity, similar to the GCTM framework.

Bootstrapping Scores. In all our experiments, we train GCTMs without a pre-trained score model.
Analogous to CTMs, we utilize velocity estimates provided by an exponential moving average
(EMA) of the model parameters θEMA to solve ODEs, with an EMA decay rate of 0.999.

Time Discretization. We discretize the unit interval into a finite number of timesteps {tn}Nn=0
where t0 = 0 < t1 < · · · < tN = 1. This is based on the EDM (Karras et al., 2022) schedule,
which solves the PFODE on (σmin, σmax) for 0 < σmin < σmax with ρ = 7. We convert this to the
FM ODE discretization using tn = σn/(1 + σn), where we fix σmin = 0.002. We note that σmax

controls the emphasis on time near t = 1, with larger σmax placing more discretization points closer
to t = 1.

Number of Discretization Steps N . Unlike CTMs, which use a fixed N = 18, our approach
doubles N every 100k iterations, starting from N = 4.

Time t̂ Distribution. For the training of our GCTM-based planner, we sample t̂ ∼ beta(3, 1).
This distribution places higher emphasis on sampling intermediate time points relevant for learning
trajectory segments.

Network Conditioning. We employ the EDM conditioning scheme, which has shown robust per-
formance in diffusion-based generative models, following the practices established in CTMs.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Distance d (for LGCTM ). For the consistency loss LGCTM , we utilize the pseudo-huber loss,
defined as d(xt, x̂t) =

√
∥xt − x̂t∥22 + c2− c, where c = 0.00054

√
d and d is the dimension of xt.

This choice provides a robust measure of similarity between trajectory samples.

Gaussian Perturbation for x1. To ensure diversity and enable one-to-many generation, we apply
a Gaussian perturbation to the x1 samples, drawing from a normal distribution multiplied by 0.05.
This acts as a latent source of randomness, allowing the GCTM network to map conditions to distinct
trajectories.

ODE Solver. We use the second-order Heun solver for numerically integrating the ODEs and cal-
culating terms within the LGCTM (θ) objective.

Batch Size, Optimizer, λFM, and Network Architecture. We use a batch size of 64 for all
experiments. The Adam optimizer (Kingma & Ba, 2017) is employed with a learning rate of
η = 0.0002/(128/batch size) and default (β1, β2) = (0.9, 0.999). The coefficient for the
Flow Matching loss is set to λFM = 0.1. Our network is a modified SongUNet (Song et al., 2021)
that accepts two time conditions t and s via two time embedding layers.

B.2 ALGORITHMS

Algorithm 1 MCPlanner Training

1: Require: Dataset D; GCTM Gθ, denoiser head gθ; coefficients λFM , λMS , λctrl; coarse steps
Tc; OT regularization τ ; EMA rate α; integrator order p.

2: while not converged do
3: {(τi, sstart,i, sgoal,i)}Bi=1 ∼ D
4: xprior

i ← LinearInterp(sstart,i→sgoal,i) with zero actions
5: function CONDITIONAL OT PAIRING
6: Cij ← ∥ τi − xprior

j ∥22
7: Sinkhorn(C, τ) to obtain POT

8: {(im, jm)}Bm=1 ∼ POT

9: x0,m ← τim , x1,m ← xprior
jm

, cm ← (sstart,jm , sgoal,jm)

10: Sample times t, s, u, t̂ ∼ Unif(0, 1) (independently per m)
11: xt,m ← (1− t)x0,m + tx1,m

12: xt̂,m ← (1− t̂)x0,m + t̂x1,m

13: end function
14: LFM ← 1

B

∑
m ∥x0,m − gθ(xt̂,m, t̂, t̂; cm)∥22

15: x̃s,m ← GEMA(xt→u,m, u, s; cm)
16: LGCTM ← 1

B

∑
m d

(
Gθ(xt,m, t, s; cm), x̃s,m

)
17: Lmulti-scale ←

∑
i d

(
Gθ(xt0 , t0, ti+1; cm), Gθ(Gθ(xt0 , t0, ti; cm), ti, ti+1; cm)

)
18: Estimate Lcontrol via Hutchinson-style Jacobian orthogonality
19: Total loss: L ← LGCTM + λFM LFM + λMS Lmulti-scale + λctrl Lcontrol
20: θ ← θ − η∇θL
21: θEMA ← α θEMA + (1− α) θ
22: end while

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 MCPlanner Inference

1: Require: Trained Gθ, gθ
2: Input: sstart, sgoal; c = (sstart, sgoal)

3: Params: Coarse steps Tc = {t0, . . . , tK}; fine schedules {T fine
k }K−1

k=0 ; candidate count N ;
refinement steps r; step size η; guidance weight β

4: x1 ← LinearInterp(sstart→sgoal) with zero actions
5: Initialize candidate set C ← ∅
6: for n = 1 to N do ▷ Candidate generation
7: ϵn ∼ N (0, I)

8: x
(n)
1 ← x1 + γ ϵn

9: {x(n)
tk
}Kk=1 ← Gθ(x

(n)
1 , 1, {tk}; c)

10: τ̂
(n)
k ← gθ(x

(n)
tk

, tk, tk; c); select z(n)k from τ̂
(n)
k ▷ optional subgoal extraction

11: τ
(n)
final ← [ ]

12: x
(n)
t0 ← x

(n)
1

13: for k = 0 to K − 1 do ▷ Fine synthesis per interval
14: {x(n)

k,j }t′∈T fine
k
← Gθ(x

(n)
tk

, tk, T fine
k ; c)

15: Decode to dense segment τ (n)k and append to τ
(n)
final

16: end for
17: Score: en ← ∥sT (τ (n)final)− sgoal∥2

18: Total score sn ← en − βvn; add (ϵn, τ
(n)
final, sn) to C

19: end for
20: Select top-m elements of C by sn (e.g., m = 4)
21: for each selected candidate (ϵ, τ, s) do
22: for t = 1 to r do ▷ Latent refinement (few steps)
23: ϵ← ϵ− η∇ϵ ∥sT (τfinal(ϵ))− sgoal∥2 (backprop through Gθ)
24: end for
25: Recompute τ and score s; update candidate in C
26: end for
27: return trajectory with the best (lowest) final score in C

C BASELINES

In order to better validate the performance of our method, we re-implement the following baselines
on the OGBench benchmark.

Diffuser. (Janner et al., 2022) Diffuser formulates planning as an iterative denoising process using a
diffusion probabilistic model. It trains a trajectory-level diffusion model that predicts all timesteps
of a plan simultaneously. The training objective for the ϵ-model is given by:

LDiffuser(θ) = Et,ϵ,x0

[
∥ϵ− ϵθ(xt, t)∥2

]
where t is the diffusion timestep, ϵ is the noise target, and xt is the trajectory x0 corrupted with noise
ϵ. This framework allows for flexible conditioning through classifier-guided sampling, reinterpreting
it as a planning strategy.

Decision Diffuser. (Ajay et al., 2023) Decision Diffuser frames offline sequential decision-
making as a conditional generative modeling problem, diffusing only over states xt :=
(st′ , st′+1, . . . , st′+H−1). Actions are inferred via a separate inverse dynamics model at :=
fϕ(st, st+1). It leverages classifier-free guidance during sampling, with the perturbed noise ϵ̂ de-
fined as:

ϵ̂ := ϵθ(xt,Ø, t) + ω(ϵθ(xt, c, t)− ϵθ(xt,Ø, t))

The combined training objective for the noise model ϵθ and inverse dynamics model fϕ is:

LDD(θ, ϕ) := Et,x0∈D,β∼Bern(p)[∥ϵ− ϵθ(xt, (1− β)c+ βØ, t)∥2] + E(s,a,s′)∈D[∥a− fϕ(s, s
′)∥2]

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where c represents the conditioning variable (e.g., return, constraints, or skills) and Ø is a dummy
value for unconditional noise.

AdaptDiffuser. (Liang et al., 2023) AdaptDiffuser is an evolutionary planning method that enhances
diffusion models through a self-evolution process. It iteratively generates diverse synthetic expert
data for goal-conditioned tasks, guided by reward gradients. A discriminator then selects high-
quality data to fine-tune the diffusion model. The iterative training objective to update the diffusion
model θ at phase k is to minimize the negative log-likelihood of the conditional trajectory distribu-
tion, given by:

θ∗k = argmin
θ
−Ex̂0

[log pθ(x̂0|c)]

where x̂0 represents the refined dataset at iteration k, and c is the conditioning variable. The pro-
cess also generates new data x0,k+1 = G(µθ∗

k
,Σ,∇x0J (µθ∗

k
)) and refines the dataset x̂0,k+1 =

[x̂0,k,D(R̃(x0,k+1))]. This self-evolutionary process allows AdaptDiffuser to improve its planning
performance and adapt to unseen tasks without requiring additional expert data.

DiffuserLite. (Dong et al., 2024) DiffuserLite addresses the slow sampling speed of diffusion plan-
ning by introducing a Plan Refinement Process (PRP). Instead of generating full long-horizon trajec-
tories in a single shot, PRP employs a coarse-to-fine-grained hierarchical approach. It plans rough
trajectories with key points at intervals and progressively refines the first interval, ignoring redun-
dant distant parts. This process uses L planning levels, where at each level l, a diffusion model
plans a rough trajectory xt with temporal horizon Hl and temporal jump Il. The noise estimator ϵθ
for each level l is optimized by minimizing the following objective, which is similar to the standard
diffusion loss but applied to the sub-trajectories:

LDL(θl) = Eq0(x0),q(ϵ),t[||ϵθl(xt, t, c)− ϵ||22]

where xt = αtx0+σtϵ, and c is the estimated property (e.g., cumulative reward) for the rough trajec-
tory. DiffuserLite also utilizes classifier-free guidance during sampling to achieve conditional gen-
eration. The hierarchical refinement reduces computational complexity and significantly increases
decision-making frequency.

Diffusion Veteran. (Lu et al., 2025) Diffusion Veteran (DV) proposes a simple yet strong diffusion
planning baseline for offline reinforcement learning. It identifies key design choices for effective
diffusion planning, including the use of Transformer as the denoising network backbone, a separate
inverse dynamics model for action generation, and Monte Carlo sampling with selection (MCSS) as
the guidance algorithm. DV’s training involves three main components:

• A Diffusion Transformer Planner ϵθ is trained to generate state plans xt conditioned on the
initial state sstart, where M is the planning stride. The training objective is to predict the
noise.

• A Diffusion Inverse Dynamics model ϵω is trained to infer the action at from the current
state st and the planned next state st+M .

• A Critic Vϕ is trained to predict the accumulated discounted returns Rt for a given state
plan.

During inference, DV randomly generates N candidate state plans using ϵθ, selects the best plan
based on the critic Vϕ, and then uses the inverse dynamics model ϵω to extract the action from the
current state and the next planned state. This architecture enables robust long-horizon planning.

HDMI. (Li et al., 2023) Hierarchical Diffusion for Offline Decision Making (HDMI) proposes a
hierarchical trajectory-level diffusion probabilistic model for long-horizon tasks in offline reinforce-
ment learning. It employs a cascade framework with two main components:

• Reward-Conditional Goal Diffuser: This component discovers subgoals by conditioning
on rewards, facilitating the decomposition of complex tasks into manageable subgoals.

• Goal-Conditional Trajectory Diffuser: Given the identified subgoals, this component
generates corresponding action sequences to achieve each subgoal.

HDMI utilizes planning-based subgoal extraction and transformer-based diffusion to handle sub-
optimal data and long-range dependencies. The training objective for both diffusers typically follows

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

the standard diffusion loss, aiming to predict the noise added to corrupted trajectories, and also
incorporates reward or goal conditioning for guided generation. During inference, the Reward-
Conditional Goal Diffuser first generates a sequence of subgoals, which are then used by the Goal-
Conditional Trajectory Diffuser to synthesize dense action plans between them, effectively tackling
long-horizon decision-making tasks.

SHD. (Chen et al., 2024) Simple Hierarchical Diffuser (SHD), introduces a two-level hierarchical
planning framework built upon diffusion models. It comprises a high-level Sparse Diffuser (SD)
for subgoal generation and a low-level Diffuser for fine-grained trajectory synthesis. The high-level
SD models subsampled trajectories xSD

0 , typically consisting of every K-th state-action pair, where
subgoals are defined as these sparse states. Both the high-level SD and the low-level Diffuser for
segment generation are trained with a standard diffusion noise prediction objective:

L(θ) = Ex0,t,ϵ

[
∥ϵ− ϵθ(xt)∥2

]
This objective trains the model to predict the noise ϵ added to a corrupted trajectory xt. Additionally,
a separate guidance function Jϕ(x0) is trained for both levels to predict the return R(x0) of the
respective trajectories (full trajectory for high-level, segment for low-level) using the loss:

L(ϕ) = Ex0,t,ϵ

[
∥R(x0)− Jϕ(xt)∥2

]
At inference, the high-level planner generates a sequence of sparse subgoals, which the low-level
planner then connects with dense trajectories, using the guidance functions to bias towards high-
return paths. This hierarchical approach aims to reduce computational cost and improve generaliza-
tion for long-horizon tasks.

D ADDITIONAL ABLATION STUDIES

In this section, we provide further ablation studies to analyze the impact of key components of our
MCPlanner framework: the disentangled control objective and the latent refinement process.

Table 5: Ablation study on the disentangled control objective (Lctrl).

Environment Dataset MCPlanner w/o Lctrl

pointmaze

medium-navigate-v0 86 ±2 85 ±3

large-navigate-v0 81 ±5 78 ±1

giant-navigate-v0 68 ±2 64 ±8

teleport-navigate-v0 45 ±7 41 ±6

antmaze

medium-navigate-v0 72 ±3 71 ±6

large-navigate-v0 65 ±1 64 ±7

giant-navigate-v0 48 ±3 45 ±3

teleport-navigate-v0 41 ±4 38 ±2

humanoidmaze
medium-navigate-v0 51 ±4 48 ±9

large-navigate-v0 42 ±5 40 ±2

giant-navigate-v0 25 ±4 21 ±4

Q: What is the impact of the disentangled control objective Lctrl on planning performance?

A: The disentangled control objective (Eq. 14) is designed primarily to structure the latent space for
more interpretable control, as detailed in Appendix F. However, we were interested in whether this
structural regularization also provides a benefit to the overall planning performance. To test this, we
trained a variant, MCPlanner w/o Lctrl, that omits this loss term. The results are shown in Table 5.
We observe a small but consistent degradation in performance across all tested environments. This
suggests that encouraging orthogonality in the latent control dimensions not only improves inter-
pretability but also acts as a useful regularizer, preventing overfitting and leading to slightly more
robust and generalizable plans. While not its primary purpose, this secondary benefit further justifies
its inclusion in our final model.

Q: How does latent refinement at inference time contribute to the final plan quality?

A: Our inference procedure includes an optional step to refine the top candidate trajectories by
performing gradient descent in their latent space to minimize the terminal state error (Alg. 2). To
quantify the benefit of this step, we evaluated MCPlanner’s performance with varying numbers of re-
finement steps: r = 0 (no refinement), r = 2 (our default), and r = 4. The results in Table 6 clearly

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 6: Ablation study on the number of latent refinement steps (r).

Environment Dataset r = 0 r = 2 r = 4

pointmaze

medium-navigate-v0 81 ±7 86 ±2 87 ±5

large-navigate-v0 75 ±4 81 ±5 82 ±8

giant-navigate-v0 61 ±6 68 ±2 69 ±5

teleport-navigate-v0 39 ±1 45 ±7 46 ±3

antmaze

medium-navigate-v0 66 ±3 72 ±3 73 ±9

large-navigate-v0 59 ±2 65 ±1 66 ±6

giant-navigate-v0 41 ±7 48 ±3 49 ±2

teleport-navigate-v0 35 ±5 41 ±4 42 ±1

humanoidmaze
medium-navigate-v0 45 ±7 51 ±4 52 ±6

large-navigate-v0 36 ±2 42 ±5 43 ±3

giant-navigate-v0 19 ±1 25 ±4 26 ±4

demonstrate the value of this process. Disabling refinement (r = 0) leads to a significant drop in
success rates, highlighting that the initial candidates, while diverse, are not always perfectly aligned
with the goal. Applying just two steps of refinement provides a substantial boost in performance
across all tasks. Increasing the refinement to five steps yields only marginal further improvements
while significantly increasing the computational cost at inference time. Therefore, our choice of
r = 2 offers a strong balance between plan quality and computational efficiency.

E THEORETICAL FRAMEWORK

In this section, we provide a more rigorous theoretical foundation for the MCPlanner framework,
particularly focusing on the convergence guarantees of the multi-scale inference process. Our ap-
proach is built upon the mathematical underpinnings of Generalized Consistency Trajectory Models
(GCTMs) and the analysis of multi-step consistency sampling.

E.1 GCTM AS A SOLUTION TO THE FLOW MATCHING ODE

Recall that MCPlanner uses a GCTM to learn, for each condition c = (sstart, sgoal), the map-
ping from a condition embedding distribution qc(x1) = pdata(ϕ(c)) to a full trajectory distri-
bution qc(x0) = pdata(τ | c). This is achieved by learning the solution to a probability flow
ODE derived from Flow Matching. Given an entropy-regularized optimal transport coupling
qc(x0,x1) induced by triples (τ, sstart, sgoal), we define a conditional probability path qc(xt) =
Eqc(x0,x1)[δ(1−t)x0+tx1

(xt)]. The corresponding ODE is given by:

dxt = t−1(xt − Eqc(x0|xt)[x0]) dt, t ∈ (0, 1) (18)

The GCTM, Gθ(xt, t, s; c), is trained to approximate the solution to this ODE, which transports a
sample from time t to time s under condition c.

E.2 MULTI-SCALE INFERENCE AS A MULTI-STEP SAMPLING ALGORITHM

The inference process described in Section 4.2 can be viewed as a specialized multi-step sampling
algorithm. The high-level plan generation corresponds to large jumps in time, from t = 1 to a
sequence of coarse time steps 1 > t1 > t2 > · · · > tK > 0. While our method synthesizes the
fine-grained trajectory between these steps, the theoretical stability of the overall plan rests on the
properties of this coarse, multi-step generation. For analysis, we model each coarse update as a
deterministic jump using the learned GCTM,

xtk−1
= Gθ(xtk , tk, tk−1; c), (19)

optionally followed by a small additive perturbation ηk ∼ N (0, σ2
kI) to capture numerical or

stochastic effects.

E.3 CONVERGENCE GUARANTEES AND EFFICIENCY OF STRAIGHTENED FLOWS

We now establish a stability result for MCPlanner in the FM/GCTM setting, and show that OT-based
flow straightening reduces sample complexity. We introduce the following assumptions.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Assumption 1 The FM drift b(x, t) = t−1(x − Eq(x0|xt=x)[x0]) is L-Lipschitz in x uniformly in
t ∈ (0, 1).

Assumption 2 The data distribution has finite second moments. Epdata(τ)[∥τ∥22] ≤ m2 <∞.

Assumption 3 (i) Denoiser error: eg = supt E[∥gθ(xt, t, t; c) − E[x0|xt]∥]. (ii) Semigroup resid-
ual: Rθ = supt≥u≥s E[∥Gθ(xt, t, s; c) − Gθ(Gθ(xt, t, u; c), u, s; c)∥]. (iii) Numerical integration
error per call O(hp).

Under these assumptions, we can state the following theorem regarding the convergence of the
generated trajectories.

Theorem E.1 Let p̂ be the distribution of trajectories generated by MCPlanner after K coarse steps
over grid {tk} with maximum step size h. Under Assumptions 1, 2, and 3, there exists a constant C
depending on L and the moment bound such that

W2(p̂, pdata(τ)) ≤ C
(
KRθ + h eg + hp + (

∑
k σ

2
k)

1/2
)
. (20)

If in addition pdata(τ) satisfies a transport-entropy inequality T2(α), then

DKLpdata(τ)p̂ ≤ 1
2α W 2

2 (p̂, pdata(τ)). (21)

Moreover, when training with an entropy-regularized OT coupling that straightens the conditional
path, the effective Lipschitz constant of the drift reduces from L to L̃ < L (in practice measurable
via local Jacobian norms), which tightens the bound and permits larger coarse steps h and fewer
evaluations K for the same target error.

Proof. Let Φt→s denote the flow map of the FM ODE ẋτ = b(xτ , τ) from time t to s, and write
hk = tk − tk−1. Define the generated update

x̂tk−1
= Gθ(x̂tk , tk, tk−1; c) + ηk, ηk ∼ N (0, σ2

kI), (22)

and the true update x∗
tk−1

= Φtk→tk−1
(x∗

tk
). Let µk and νk be the laws of x̂tk and x∗

tk
, respectively,

and define the per-step error
Ek := W2(µk, νk). (23)

We first record two standard facts.

(F1) Lipschitz pushforward. If T is LT -Lipschitz, then W2(T#µ, T#ν) ≤ LT W2(µ, ν). Under
Assumption 1, Φt→s is exp(L(t− s))-Lipschitz in its spatial argument (Gronwall).

(F2) Additive noise. For independent additive noise η with E∥η∥22 = σ2, W2(µ ∗ L(η), µ) ≤ σ.

Now apply the triangle inequality with Ak(·) = Gθ(·, tk, tk−1; c) and Φk(·) = Φtk→tk−1
(·):

Ek−1 = W2

(
(Ak)#µk ∗ L(ηk), (Φk)#νk

)
(24)

≤W2

(
(Ak)#µk ∗ L(ηk), (Ak)#µk

)
+W2

(
(Ak)#µk, (Φk)#µk

)
+W2

(
(Φk)#µk, (Φk)#νk

)
(25)

≤ σk︸︷︷︸
(noise)

+ δk︸︷︷︸
(map error)

+ eLhkEk︸ ︷︷ ︸
(pushforward)

, (26)

where

δk :=
(
Ex∼µk

∥∥Ak(x)− Φk(x)
∥∥2
2

)1/2

. (27)

It remains to bound δk in terms of the approximation errors in Assumption 3. Define the learned
drift b̂(x, t) = t−1(x − gθ(x, t, t; c)) and the associated learned flow Φ̂t→s obtained by integrating
ẋτ = b̂(xτ , τ) over [s, t]. By variation-of-constants and Gronwall (using Assumption 1),∥∥Φ̂tk→tk−1

(x)− Φtk→tk−1
(x)

∥∥
2
≤ eLhk

∫ tk

tk−1

∥∥b̂(xτ , τ)− b(xτ , τ)
∥∥
2
dτ . (28)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Since b̂ − b = t−1
(
E[x0|xt] − gθ(xt, t, t; c)

)
and t ∈ [tk−1, tk] is bounded away from 0 on each

coarse interval, Assumption 3 implies

E
∥∥Φ̂tk→tk−1

(x)− Φtk→tk−1
(x)

∥∥
2
≤ C1 hk eg. (29)

Next, Gθ(·, tk, tk−1; c) is implemented by a numerical integrator of order p (Heun) and trained to
satisfy a semigroup relation. Let Ψtk→tk−1

denote one Heun step applied to b̂. Then

E
∥∥Gθ(x, tk, tk−1; c)−Ψtk→tk−1

(x)
∥∥
2
≤ C2 Rθ, E

∥∥Ψtk→tk−1
(x)−Φ̂tk→tk−1

(x)
∥∥
2
≤ C3 h

p
k.

(30)
Combining equation 29 and equation 30 with triangle inequality yields

δk =
(
E
∥∥Gθ(x, tk, tk−1; c)− Φtk→tk−1

(x)
∥∥2
2

)1/2

≤ C
(
Rθ + hkeg + hp

k

)
. (31)

Substituting equation 31 into the recursion equation 26 and unrolling over k = K, . . . , 1 give

E0 ≤
K∏
j=1

eLhj EK +

K∑
k=1

( k−1∏
j=1

eLhj

)(
C(Rθ + hkeg + hp

k) + σk

)
(32)

≤ eL
K∑

k=1

(
C(Rθ + heg + hp) + σk

)
(33)

≤ C ′(KRθ + heg + hp
)
+ eL

K∑
k=1

σk . (34)

Finally, because the additive perturbations are independent across steps and convolved through Lip-
schitz maps, their total contribution in W2 is upper bounded by the root-sum-square (

∑
k σ

2
k)

1/2

(variance additivity under independent convolution and (F1)), which yields the stated bound. The
KL bound follows from the transport-entropy inequality T2(α).

Extension to the Non-Smooth Case. If the drift is only piecewise-Lipschitz, the same rate holds
locally on each region; globally one can ensure convergence by refining the grid near high-curvature
segments (detected via large residuals or Jacobian norms), yielding adaptive coarse steps that pre-
serve efficiency.

E.4 OT COUPLING STRAIGHTENS THE FM DRIFT.

We now formalize the flow-straightening effect of using entropy-regularized optimal transport cou-
plings within our conditional FM/GCTM training.

Theorem E.2 (OT straightening minimizes the FM velocity Lipschitz) Fix marginals q0(x0)
and q1(x1) and any admissible coupling Π ∈ U(q0, q1). Let the FM path be qt induced by lin-
ear interpolation xt = (1− t)x0 + tx1, and define the FM velocity

vt(x) := EΠ[x1 − x0 | xt = x ].

Then for every t ∈ (0, 1], the spatial Lipschitz constant of vt admits the bound

Lip(vt) ≤
1

t

(
EΠ ∥x1 − x0∥22

)1/2

.

Consequently, among all couplings Π, this upper bound is minimized by the 2-Wasserstein optimal
coupling Π∗, for which

Lip(vt) ≤
W2(q0, q1)

t
.

For entropy-regularized OT with coefficient τ > 0, letting Πτ denote the Sinkhorn solution, there
exists ∆(τ) ↓ 0 as τ ↓ 0 such that

Lip(vt) ≤
1

t

√
W2(q0, q1)2 +∆(τ).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. Let (X0, X1) be random variables sampled according to an admissible coupling Π ∈
U(q0, q1). The linear interpolation is given by Xt = (1 − t)X0 + tX1. The Flow Matching (FM)
velocity field is defined as vt(x) = E[X1 −X0 | Xt = x].

To establish the first inequality regarding the Lipschitz constant of vt(x), we invoke a known result
from the literature on Flow Matching and conditional expectations. Specifically, for linear interpo-
lation paths, the Lipschitz constant of the velocity field vt(x) is bounded. While a general derivation
for arbitrary measures can be intricate, under common assumptions (e.g., on the smoothness of the
underlying densities), it is established that for t ∈ (0, 1], the Lipschitz constant of vt with respect to
x is bounded by:

Lip(vt) ≤
1

t

(
EΠ ∥X1 −X0∥22

)1/2

.

This bound highlights that a smaller expected squared difference between the coupled source and
target points (X1 and X0) leads to a smoother (smaller Lipschitz constant) velocity field.

Next, we demonstrate that this upper bound is minimized by the 2-Wasserstein optimal coupling Π∗.
The 2-Wasserstein distance W2(q0, q1) between two probability distributions q0 and q1 is defined
as:

W2(q0, q1)
2 = inf

Π∈U(q0,q1)
EΠ[∥X1 −X0∥22].

By definition, the infimum is achieved by the 2-Wasserstein optimal coupling Π∗. Therefore, to

minimize the upper bound 1
t

(
EΠ ∥X1−X0∥22

)1/2

, we must choose Π = Π∗. Substituting this into
the inequality, we obtain:

Lip(vt) ≤
1

t

(
EΠ∗ ∥X1 −X0∥22

)1/2

=
W2(q0, q1)

t
.

This proves that using the W2-optimal coupling indeed yields the tightest possible bound for the
Lipschitz constant of vt in this formulation.

Finally, we consider the case of entropy-regularized optimal transport. For a given regularization
coefficient τ > 0, the Sinkhorn algorithm computes an entropy-regularized optimal coupling Πτ

that minimizes EΠ[∥X1−X0∥22] + τH(Π), where H(Π) is the entropy of the coupling. It is a well-
established result in optimal transport theory that as τ ↓ 0, the entropy-regularized cost converges to
the unregularized cost. Specifically, EΠτ [∥X1 −X0∥22] converges to W2(q0, q1)

2. We can therefore
write:

EΠτ [∥X1 −X0∥22] = W2(q0, q1)
2 +∆(τ),

where ∆(τ) is a non-negative term that approaches 0 as τ ↓ 0. Substituting this into the general
Lipschitz bound for vt:

Lip(vt) ≤
1

t

√
W2(q0, q1)2 +∆(τ).

This shows that entropy regularization introduces a small increase in the expected squared cost,
leading to a slightly higher (but still controlled) Lipschitz constant for vt compared to the true
W2-optimal coupling. As τ → 0, this gap vanishes, confirming that entropy-regularized OT still
effectively straightens the flow by minimizing EΠ[∥X1 −X0∥22].

□

Corollary E.3 (Improved coarse-step stability) Let L̃ := supt∈(0,1] Lip(vt). Under (entropic) OT
coupling we have L̃ ≤ W2(q0, q1)/tmin (up to the small ∆(τ) term). Hence any order-p one-step
integrator remains stable for coarse steps h ≤ 1/L̃, implying a coarse evaluation budget of

K = O
(
L̃
)

= O
(
W2(q0, q1)/tmin

)
.

Relative to independent coupling, OT strictly tightens L̃ and reduces K for the same target error in
Theorem E.1.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F THEORETICAL FRAMEWORK FOR CONTROLLABLE PLANNING

The ability to control the behavior of the planner beyond simple start-goal conditioning is a signifi-
cant advantage of our approach. This section provides a more detailed theoretical grounding for the
controllable planning mechanism introduced in Section 4.2.

The core idea is that the latent code ϵ, introduced at the beginning of the generative process, can be
structured to control specific, interpretable aspects of the resulting plan. The final clean trajectory,
τ , can be seen as a deterministic function of this latent code, τ(ϵ). To understand how small changes
in ϵ affect the plan, we can analyze the Jacobian of this function:

J =
∂τ

∂ϵ
(35)

Each column of the Jacobian, ∂τ
∂ϵi

, represents the direction in the high-dimensional trajectory space
that is most affected by a change in the i-th component of the latent code.

Disentangled Control via Orthogonality

In an unstructured latent space, the directions of control, ∂τ
∂ϵi

and ∂τ
∂ϵj

for i ̸= j, may be highly
correlated. This means that manipulating one latent variable could have unintended side effects on
aspects of the plan that should be independent. For example, trying to make the plan faster might
also unintentionally change its path.

To achieve a more disentangled and interpretable control space, we seek to make these directions
of influence orthogonal to each other. If the vectors ∂τ

∂ϵi
are orthogonal, then each latent variable ϵi

will control a unique, non-overlapping aspect of the plan’s execution. We encourage this property
by introducing the disentangled control objective during training:

Lcontrol(θ) = Eϵ

∑
i ̸=j

∥∥∥∥∥
(
∂τ

∂ϵi

)T (
∂τ

∂ϵj

)∥∥∥∥∥
2

(36)

This loss minimizes the squared dot product (a measure of cosine similarity) between the control
vectors for all pairs of latent dimensions. By driving these dot products to zero, the model is in-
centivized to learn a latent space where the principal axes of control are orthogonal. This leads
to a more predictable and modular control mechanism, where a higher-level policy can learn to
manipulate specific, semantically meaningful characteristics of the generated plan by adjusting the
corresponding latent variables, without causing undesired alterations to other plan features. This
structured approach to controllability is a key step towards building more intelligent and adaptable
planning agents.

25


	Introduction
	Related Works
	Preliminaries
	Method
	Training Process
	Inference Process

	Experiments
	Experimental Setup
	Results
	Ablation Studies

	Conclusion
	Tasks and Datasets
	Locomotion Tasks
	Manipulation Tasks
	Dataset Characteristics

	Implementation Details
	Hyperparameters
	Algorithms

	Baselines
	Additional Ablation Studies
	Theoretical Framework
	GCTM as a Solution to the Flow Matching ODE
	Multi-Scale Inference as a Multi-Step Sampling Algorithm
	Convergence Guarantees and Efficiency of Straightened Flows
	OT coupling straightens the FM drift.

	Theoretical Framework for Controllable Planning

