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ABSTRACT

Planning for long-horizon tasks is a significant challenge, often addressed with
complex hierarchical methods that rely on multiple, independently trained mod-
els. These hierarchical approaches can be brittle and incur coherence issues. In
this work, we introduce Multi-scale Consistency Planner (MCPlanner), a novel
framework that leverages the unique properties of Generalized Consistency Tra-
jectory Models (GCTMs) to create a fluid and unified planning hierarchy. Un-
like prior generative models which are limited to mappings from noise to data,
GCTMs can learn a direct, fully-traversable trajectory path between arbitrary data
distributions. This crucial capability allows MCPlanner to unify high-level and
low-level planning within a single model. Instead of training separate high-level
and low-level planners, MCPlanner employs a single GCTM trained on end-to-end
expert trajectories. At inference time, a seamless hierarchy emerges: coarse, long-
horizon plans are generated by querying the model at a sparse temporal resolution,
while dense, fine-grained motions are synthesized by querying the same model on
the continuous path between these coarse waypoints. Our approach obviates the
need for discrete hierarchical structures, offering a more elegant, efficient, and
controllable solution to long-horizon planning. Furthermore, our experimental re-
sults demonstrate that MCPlanner achieves state-of-the-art performance across 35
challenging tasks on OGBench benchmark, by consistently outperforming prior
approaches.

1 INTRODUCTION

Effectively planning over long horizons is a fundamental challenge in sequential decision-making,
crucial for solving complex tasks that require reasoning over thousands of steps. Traditional ap-
proaches often struggle with the combinatorial complexity of searching vast state-action spaces,
leading to computational intractability and suboptimal solutions. A dominant paradigm to tackle
this complexity is hierarchical planning (Sacerdoti, 1974} |[Kaelbling & Lozano-Pérez, |2011)), which
decomposes a difficult problem into a series of more manageable subgoals. This allows for both
high-level strategic reasoning, where abstract goals are formulated and sequenced, and low-level
action generation, where precise movements are executed to achieve immediate objectives. How-
ever, this decomposition typically introduces challenges in maintaining inter-level coherence and
managing the increased complexity of training and coordinating multiple independent models.

The recent success of generative models, particularly denoising diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., [2020), has led to their application in planning tasks. Prior works like Dif-
fuser (Janner et al., [2022) leverages diffusion models with classifier guidance (Nichol et al.|, |[2022),
and Decision Diffuser (Ajay et al., 2023)) employs classifier-free guidance (Ho & Salimans, 2022)
by directly conditioning on returns during sampling. While effective for short-horizon tasks, these
methods can be computationally expensive and sample inefficient. Subsequent works have extended
these to long-horizon problems, often adopting hierarchical approaches that typically employ two
separate diffusion models: a high-level planner for subgoal generation and a low-level planner for
trajectory synthesis between them (Li et al., 2023} |Chen et al., 2024; Hao et al., [2025). While
powerful, this two-model paradigm exacerbates existing challenges. Separately trained planners of-
ten suffer from a lack of coherence, where the low-level model may struggle to execute subgoals
proposed by the high-level one. Furthermore, this approach doubles the training and maintenance
burden and can be computationally inefficient. This leads to a fundamental question: Is a rigid,
two-model hierarchy the most effective and elegant way to solve long-horizon tasks?
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Figure 1: Overview of MCPlanner: Previous Methods often rely on separate high-level and low-level
planners, which can lead to a lack of coherence and consistency. The high-level plan (' ') defines abstract
goals, while the low-level plan (middle) executes detailed actions, sometimes failing to align with the high-level
intent (e.g., the warning sign). In contrast, MCPlanner introduces a unified hierarchy (right) where a single
model possesses both coarse and fine planning abilities, ensuring seamless and coherent trajectory generation
from abstract goals to precise actions.

In response to these limitations, we propose a powerful approach that utilizes a single, unified model
to seamlessly transition between high-level, coarse planning and low-level, fine-grained control
within the offline RL context. Such a unified model inherently eliminates the coherence problem
prevalent in multi-model hierarchies and offers a more streamlined and efficient framework.

To achieve this, we turn to a new class of generative models that addresses the limitations of diffu-
sion. Consistency Models (CMs) were introduced to overcome the slow sampling
speed of diffusion models by learning a direct one-step mapping from any noisy sample to a clean
data point. While offering significant speed-up, CMs are limited to learning only the endpoint of
the generation process. Consistency Trajectory Models (CTMs) extended this by
learning the entire ordinary differential equation (ODE) trajectory, allowing for traversal between
any two points in the generation path. However, both CMs and CTMs remain fundamentally tied to
the diffusion framework, learning a path exclusively from Gaussian noise to data.

The key innovation we leverage is the Generalized Consistency Trajectory Model (GCTM)
2025)), which breaks this final limitation by integrating flow-matching (Lipman et al., 2022).
GCTMs can learn a direct, fully-traversable ODE path between two arbitrary data distributions.
This is precisely the property required for a unified planner: instead of mapping from noise to a
trajectory, a GCTM can learn to map directly from the distribution of start states to the distribution
of complete, successful trajectories. This ability to learn a direct, yet structured and multi-scale,
mapping between two complex, meaningful distributions is the cornerstone of our approach.

In this paper, we introduce Multi-scale Consistency Planner (MCPlanner), a unified planning
framework that replaces rigid two-model hierarchies with a single GCTM trained end-to-end on
full trajectories. At test time, a seamless hierarchy emerges by querying the same model at multi-
ple temporal resolutions: sparse queries produce coherent high-level subgoals, while dense queries
synthesize fine-grained motion between them. To ensure coherence and efficiency, MCPlanner (i)
enforces a multi-scale consistency objective that promotes compositional consistency across tem-
poral jumps, (ii) straightens the learned flow via conditional optimal-transport couplings for faster,
more stable integration, and (iii) enables controllable and sample-efficient planning through a struc-
tured latent space with lightweight latent refinement. This unified design not only eliminates the
coherence problem but also reduces training and inference costs, ultimately achieving state-of-the-
art performance on OGBench tasks.

In summary, our contributions are as follows:
* We propose MCPlanner, a novel, unified hierarchical planner that uses a single generative
model for both high-level subgoal generation and low-level trajectory synthesis.

* We introduce and enforce a multi-scale consistency objective that explicitly promotes com-
positional coherence across different temporal resolutions in the unified planning hierarchy.

* We enhance the learning of the GCTM flow through conditional optimal-transport cou-
plings, leading to straightened ODE trajectories for faster, more stable integration and im-
proved sample efficiency.
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* We demonstrate that the latent space of our unified planner can be used to exert high-level,
strategic control over the generated plans, allowing for dynamic adaptation of planning
behavior.

* We evaluate MCPlanner on a wide variety of locomotion and manipulation tasks from
OGBench benchmark and show that our method outperforms prior works by a wide margin.

2 RELATED WORKS

Generative Models. Generative models, particularly score-based and diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020; |Song et al.l 2021} |Karras et al., [2022)), have emerged as a
dominant force in machine learning, revolutionizing fields from image and text synthesis to drug
discovery (Rombach et al., 2022} [Podell et al.,2024;Nichol et al., 2022} Li et al., 2022 |Gupta et al.,
2024; |Avdeyev et al., [2023). Their strength lies in their ability to learn complex, high-dimensional
data distributions and generate high-fidelity samples. Initially popularized in computer vision, these
models have seen rapid adoption and innovation. A significant area of research has focused on
accelerating the iterative sampling process, which is notoriously slow. This has led to the devel-
opment of techniques like distillation (Luhman & Luhman, 2021} |Salimans & Ho, 2022; Meng
et al.| 2023} Berthelot et al.| 2023} Shao et al.| 2023} [Wang et al.l 2025). However, these distillation
models still experience slow convergence or extended runtime. Consistency models (CMs) (Song
et al.; 2023} Song & Dhariwal, 2024; |Geng et al.| [2025; [Wang et al., [2024a; [Lee et al., 2025; Lu
& Song, [2025)) are a new type of generative models that support fast and high-quality generation.
They do not rely on a pretrained diffusion model to generate training targets but instead leverage
an unbiased score estimator. Consistency trajectory models (CTMs) (Kim et al.| |2024) generalize
consistency models by enabling the prediction between any two points on the same ODE trajectory.
Their training objective becomes more challenging than standard consistency models that only care
about the mapping from intermediate points to the data endpoints. Generalized consistency trajec-
tory models (GCTMs) (Kim et al., |2025)) extend CTMs by enabling one-step translation between
arbitrary distributions, surpassing the limitations of traditional CTMs confined to Gaussian noise to
data transformations.

Generative Models for Planning. Many works have studied the applications of generative models,
particularly denoising diffusion models (Ho et al., 2020), for planning (Janner et al., 2022; |Ajay
et al.| [2023; [Pearce et al., |2023; [Wang et al., |2023}; |Lu et al., [2025; |[Zhu et al) 2024)). Diffusion-
based planning has been widely adopted into various fields, such as autonomous driving (Liao et al.|
20255 Yang et al., [2024; Wang et al., 2024b)), task planning (Yang et al., |2023} [Fang et al.| [2024)
and motion planning (Carvalho et al., 2023} [Luo et al., [2024). Recently, they have also been ex-
tended to hierarchical planning to tackle long-horizon tasks|Li et al.|(2023)); |(Chen et al.| (2024)); |Hao
et al.| (2025); Ma et al.| (2024), however they employ two separate diffusion planners making them
incoherent. In contrast, our method uses a single model to generate subgoals as well as the dense
trajectory.

3 PRELIMINARIES

Problem Formulation. We formalize the long-horizon planning problem within the framework of
a controlled Markov process (a Markov Decision Process (MDP) without rewards), defined by the
tuple M = {S, A, P,~,dp}, where S is the state space, A is the action space, P : S x A — S is the
state transition function, v € [0, 1) is the discount factor, and dj is the initial state distribution.

Our goal is to learn a planner that, given an initial state sgqr+ € S and a goal state Sgoq; € 5,
can generate a full trajectory of state-action pairs, 7 = ((sg, ao), (s1,01),- .., (ST, ar)), such that
50 = Sstart and ST = S404;. We operate in an offline setting, where we have access to a fixed dataset
D of expert trajectories. Our task is to learn a generative model p(7|Sstart, Sgoar) that can produce
novel, successful trajectories for previously unseen start-goal pairs. By generating actions directly,
our planner obviates the need for a separate inverse dynamics model.

Diffusion Models. Denoising diffusion models are powerful generative models that learn a data
distribution p(x) by reversing a predefined noising process. The process starts with a clean data
sample x( and gradually adds Gaussian noise over a sequence of 1" timesteps. The forward noising
process is defined as:

q(x¢|xe—1) = N (x5 /1 — Bixe—1, Be) (D
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where {f3;}1_, is a fixed variance schedule. A key property is that we can sample a noisy version of
X at any timestep ¢ in a single step:

q(x¢[x0) = N (x¢; vVauxo, (1 — ay)I) )
where oy = 1 — 3; and oy = szl Q;.

The model learns to reverse this process. A neural network, e (x;, t), is trained to predict the noise
that was added to create x; from x(. The training objective is typically a simplified mean-squared

error loss:
Laitt = Bt x.¢ [||€ — €0(v/arxo + V1 — are, t)||?] 3)

At inference time, a sample is generated by starting with pure noise x ~ N(0,I) and iteratively
applying the learned denoising function to step backward in time until a clean sample x is produced.
While effective, this iterative process requires many steps, making it computationally slow.

Consistency Models (CMs). (Song et al.,[2023)) were introduced to address the slow sampling speed
of diffusion models. The core idea is to learn a function that can map any noisy sample directly back
to the clean sample in a single step. CMs are based on the probability flow (PF) ODE of the diffusion
process, where all points on the same ODE trajectory correspond to the same starting point xo. A
consistency function, fy(xy,t), is trained to embody this property:

fo(xt,t) ~ %o 4)
This allows for one-step generation, xg = fo(x1,T), but this single-step mapping is restrictive.

Consistency Trajectory Models (CTMs) (Kim et al., 2024)) extended this idea by learning not just
the endpoint, but the entire trajectory. A CTM learns the integral of the PF-ODE, which describes
the path of a sample from noise to data. This integral is denoted G(x,t, s), which transports a
sample x; at time ¢ to its position on the same trajectory at time s. A CTM parameterizes this
solution as:

S S
Golxe,t,5) = 23+ (1= 2) gl ) )

where gy is a neural network. The model is trained by minimizing two key losses. The first is a
distillation loss, Lc7s, which enforces self-consistency. It ensures that a one-step jump from time
t to s is close to a two-step jump (from ¢ to an intermediate time u, then to s):

»CCTM(Q) = Et,s,u,XO [d (GG (Xt7 ta S)a ng(Q) (Xt%uv u, S)):I (6)

where sg is the stop-gradient operator. The second is the Denoising Score Matching (DSM) loss,
L psy, which anchors the model to the ground truth data by training gy to be an effective denoiser:

Losm(0) = Eix.e [[x0 = go(xe, 1, 8)][3] (7)

However, CTMs are still tied to the original diffusion formulation, learning the path only from
Gaussian noise to data.

Generalized Consistency Trajectory Models (GCTMs) (Kim et al., [2025)), which our work is
built on, break this final limitation. GCTMs use Flow Matching to learn an ODE path between two
arbitrary data distributions, q(x1) and q(xg). The learned ODE is given by:

dx; = t_l(Xt — Eq(xO‘xt)[Xo]) dt (8)

A GCTM learns the solution to this more general ODE, using the same parameterization Gy (x¢, t, §)
from Eq.|5| This allows the model to transport a sample from a start distribution ¢(x1) (at t = 1)
to a goal distribution ¢(xg) (at ¢ = 0). The training objective mirrors that of CTMs, but the losses
are generalized. The consistency loss, Lo s, has the same form but operates on the new ODE.
The DSM loss is replaced by the Flow Matching (FM) loss, £, which serves the same purpose
of anchoring the model to the target distribution ¢(xg):

['GCTM (0) = ]Et,s,u,(x(),xl)wq [d (GG (Xtv t, 8)7 ng(Q) (Xtﬁuv u, 8))} 9
L7 (0) = Bt xg,x1)~ [|1%0 = g0 (%, 8, 0)]]3] (10)

This ability to learn a direct, yet fully traversable, mapping between two complex distributions is the
key property we exploit in our planning framework.

4
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Figure 2: MCPlanner. Our framework leverages a single Generalized Consistency Trajectory Model
(GCTM) to learn multi-scale planning. The GCTM is trained on end-to-end expert trajectories, learning both
high-level strategies (e.g., collision avoidance, smooth flow) and intricate low-level dynamics for trajectory
segments. At each segment, the model learns fine-grained motion synthesis, obviating the need for separate
high-level and low-level planners and ensuring a unified and coherent planning hierarchy.

4 METHOD

This paper explores the integration of GCTMs into a novel planning architecture for offline RL. In
the following, we discuss how we use a single, unified GCTM for a multi-scale trajectory optimiza-
tion process.

4.1 TRAINING PROCESS

Our MCPlanner employs a single Generalized Consistency Trajectory Model (GCTM), Gy, trained
on a dataset of full, end-to-end expert trajectories. This GCTM learns to map from a start-goal
condition to the distribution of complete trajectories. We represent a full expert trajectory as a
sequence of state-action pairs, 7 = ((so, ag), ($1,@1), ..., (s7,ar)). Given a start-goal condition
¢ = (Sstart; Sgoal), We set Xg = 7 and deterministically construct x; by linearly interpolating
states from Sgyqr¢ 10 Sg0q1 across the trajectory horizon and setting actions to zero. This formulation
yields convex interpolants (1 — ¢)xg + ¢x; that define the training path, obviating the need for
any learnable encoder and establishing a direct connection between the condition and the trajectory
generation process.

Flow Straightening via Conditional Optimal Transport. To further enhance sample and compute
efficiency by reducing the curvature of the Flow Matching (FM) ODE, we employ an entropy-
regularized optimal-transport (OT) coupling between batches of expert trajectories and their corre-
sponding deterministic trajectory priors. This coupling introduces an inductive bias, encouraging
the start and end distributions of the learned flow to be close in Euclidean distance, thereby yield-
ing straighter ODE trajectories. This approach facilitates more accurate integration with larger time
steps, fewer evaluations, and reduces variance in loss gradients during training. Specifically, for

a mini-batch {(7™,c¢™)}M_,, we construct z7* deterministically from (s7,,.,, Sgoal)> then solve a

Sinkhorn-Knopp problem Cuturi| (2013) over the cost matrix Cj; = ||7% — 7|3 to obtain an opti-

mal coupling PO, Sampling pairs {(7¢", x{m)}%zl from this coupling effectively straightens the
learned flow, reducing the effective Lipschitz constant of the drift. As rigorously proven by Theo-
rem and Corollary this OT coupling provably tightens the FM velocity Lipschitz constant
and improves the coarse-step stability condition (Theorem [E.T), allowing for larger coarse steps and
a smaller coarse budget K for a fixed error target.

Training Objective. We optimize a composite objective comprising four complementary loss com-
ponents, which collectively facilitate the learning of our unified multi-scale planner. This objec-
tive couples the straightened conditional path with: (i) a consistency loss Lscras enforcing self-
consistency across arbitrary time intervals; (ii) a flow-matching anchor L), that ties the model to
the data distribution; (iii) a multi-scale consistency loss £jss that enforces compositional consis-
tency across a fixed coarse grid used at inference; and (iv) a disentangled control regularizer L ;,;
that structures the latent space for interpretable control.

Given a sampled expert trajectory 7 from D, and its corresponding start-goal condition ¢ =
(Sstart, Sgoal), We deterministically form x; from ¢, as described in the trajectory representation.
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Consistency Objective. The consistency loss, Lacoras, directly applies the self-consistency prin-
ciple of GCTMs, ensuring that a one-step transition from time ¢ to s is consistent with a two-step
transition via an intermediate time w. This loss, derived from Eq.[9] is expressed as:

Lcorm (9) = Et,s,u,(f,xl ,c)~D [d (Ge (Xt7 t,s; C)7 ng(ﬁ) (xtﬂuv u, 83 C))] (1T)
where x; = (1 — ¢)7 + tx; is the linearly interpolated sample at time ¢.

Flow Matching Objective. Complementary to the consistency objective, the flow-matching loss,
Lrar, serves as an anchor, tying the model to the ground truth data distribution by training gg as an
effective denoiser. It is expressed as:

Lrn(0) =By By [l = g0 (xist, 1) 3] (12)

where gg is the neural network component of the GCTM parameterization Gg(x¢,t,5) = $X; +
(1 - %)ge(xta t7 S)

Multi-Scale Consistency Objective. A key insight of our work is that a single model can be queried
at different temporal scales to produce a planning hierarchy. To explicitly enforce this crucial prop-
erty during training, we introduce a multi-scale consistency loss. Let T, = {to,t1,...,tx} be a
fixed, discrete set of coarse time steps used for high-level planning at inference, with 1 = ¢y >
ty > .-+ > tx > 0. This loss term penalizes inconsistencies between a long temporal jump and a
sequence of shorter jumps across these specific scales (all conditioned on c):

Ls (0 Z B,y [d(Go(Xto, to, tiv1; ¢), Go(Go(Xeg, to, i ©), tis tiy; €))] (13)

This objective directly encourages the model to produce coherent plans across the hierarchy, and in
particular reduces the semigroup-residual term that appears as K - Ry in the bound of Theorem [E.T}

Disentangled Control Objective. To enhance the controllability of our planner, we introduce a
regularization term that encourages disentangled control over the plan’s characteristics via the latent
code €. As detailed in Section[d.2]and Appendix [F} our goal is to ensure that different dimensions of
the latent code affect orthogonal aspects of the final trajectory 7. We achieve this by penalizing the
dot product of the gradients of the trajectory with respect to different latent dimensions:

= E. 14
ctrl Z (862 363 H ( )
i#]
The final training objective is a weighted sum of all four losses:
L(0) = Lacrm(0) + ArmLrr(0) + ArsLars(0) + Aetri Letri (0) (15)

This combined objective ensures that the model learns a meaningful, hierarchically consistent, and
controllable representation of the entire trajectory space, enabling robust and adaptable long-horizon
planning. The pseudocode for the complete training algorithm, Alg.[T} is provided in Appendix

4.2 INFERENCE PROCESS

Our inference process is a single-model, multi-scale procedure where a planning hierarchy seam-
lessly emerges by querying the same GCTM at coarse and fine temporal resolutions. The full pro-
cedure is detailed in Alg.

Coarse planning via vectorized multi-time queries. Given a start-goal query ¢ = (Sstart, Sgoal )
we initialize at ¢ = 1 with a condition-dependent embedding x;. We then efficiently compute
all coarse states {tk}f:l in a single batched forward pass, leveraging a shared model trunk and
lightweight heads. The stability of these vectorized multi-time queries is ensured as the composition
error between direct and chained evaluations is controlled by the semigroup-residual term Ry in
Theorem [E.TE

k:Gg(Xl,l,tk;C), 1>t >--->tg >0. (16)

Optionally, each coarse state can be decoded to a clean trajectory 7, = gg(Xy, , Lk, tx; ) to extract
human-interpretable subgoals for visualization.
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Fine-grained synthesis within intervals. For each high-level interval (¢5.1, tx], fine-grained mo-
tion is synthesized by vectorizing numerous fine-time evaluations using the same GCTM. This pro-
cess efficiently generates smooth trajectory segments with reduced computational cost:

Xk,j = GG(Xtmth;';C), ty > t;- > thy1- (17)

Decoding these fine-grained evaluations yields dense trajectory segments 7y, which are then con-
catenated to form the complete final trajectory 7;nq; = To0T10- - -oT . Our multi-scale consistency
objective, enforced during training, explicitly promotes compositional coherence between these syn-
thesized segments and their subsequent subgoals, ensuring a fluid and consistent overall plan.

Candidate generation, scoring, and refinement. To enhance the diversity and quality of the gen-
erated plans, we employ a candidate generation and refinement process. We first sample N distinct
latent codes, which are used to perturb the initial condition-dependent embedding x1, thereby induc-
ing diverse candidate trajectories. Each candidate is then generated by repeating the coarse planning
and fine-grained synthesis steps described above. These candidates are subsequently scored based
on a terminal error metric (e.g., distance to the goal state). To further improve the best candidates, we
refine the top-m performing trajectories by applying a few steps of gradient descent in their respec-
tive latent spaces, optimizing directly on the terminal objective. Finally, the best-scoring trajectory
from the refined set is returned as the planner’s output.

5 EXPERIMENTS

In this section, we present empirical results that validate the effectiveness of our proposed MCPlan-
ner algorithm. We evaluate our method on a range of challenging offline goal-conditioned tasks.

5.1 EXPERIMENTAL SETUP

Environments. We evaluate our proposed algorithm on the recently proposed OGBench Park et al.
(2025)), a benchmark designed to evaluate algorithms in offline goal-conditioned RL across different
tasks and datasets. We employ environments from 4 locomotion (PointMaze, AntMaze, Humanoid-
Maze, AntSoccer), and 3 manipulation (Cube, Puzzle, Scene) domains. More details about these
tasks and offline datasets are provided in the Appendix [Al and Implementation details are deferred

to Appendix

Baselines. We compare MCPlanner with prior state-of-the-art diffusion planners like Diffuser (Jan-
ner et al., [2022)), Decision Diffuser (DD) (Ajay et al.l 2023), AdaptDiffuser (Liang et al., |2023)),
DiffuserLite (Dong et al., 2024), Diffusion Veteran (Lu et al. [2025); and hierarchical diffusion
planners like HDMI (Li et al., [2023)) and SHD (Chen et al.| |[2024).

5.2 RESULTS
Q: How does MCPlanner compare to the baselines on Offline Goal-conditioned RL tasks?

A: Table [I] presents a comprehensive comparison of MCPlanner against state-of-the-art diffusion-
based planners on the OGBench benchmark. The results demonstrate a clear and consistent advan-
tage for our method. MCPlanner achieves the highest success rates across all tasks and datasets,
often by a substantial margin.

Dominance in Locomotion: In the challenging locomotion tasks (pointmaze, antmaze,
humanoidmaze, and ant soccer), MCPlanner consistently outperforms all baselines. Notably,
the performance gap widens on more complex, long-horizon environments such as the ‘large® and
‘giant‘ mazes. This highlights the effectiveness of our unified hierarchical approach for long-horizon
planning.

Superior Performance in Manipulation: The strong performance extends to manipulation tasks
(cube, scene, puzzle). Across these diverse environments, MCPlanner demonstrates superior
planning capabilities. This consistent state-of-the-art performance across nearly all tasks under-
scores the robustness and generalizability of the MCPlanner framework.

5.3 ABLATION STUDIES

Q: Why not employ a traditional two-model hierarchy, as commonly adopted by hierarchical
diffusion planners?
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Table 1: Experimental results for the tasks we considered across diverse datasets. The table reports the average
binary success rate (%) across five test-time goals for each task, averaged over 8 seeds. Standard deviations
are indicated by the + symbol. Entries within 95% of the best-performing value in each row are highlighted in
bold.

Environment Dataset Type Dataset Diffuser DD HDMI AD SHD DL DV Ours
pointmaze-medium-navigate-v0 29 47 37 +4 5l +s 65+6 66+5 T2+7 T9+5 86 +2
navigate pointmaze-large-navigate-v0 18 43 2145 29 +6 37+7 35+6 5845 Tdir 8lais
pointmaze-giant-navigate-v0 7 +a 1142 27 24 1845 31+3 4642 52+1 68 +2
. pointmaze-teleport-navigate-v0 15 +1 2045 23 +6 2547 2841 3244 43 14 45 17
pointmaze
pointmaze-medium-stitch-v0 23 47 3548 46 +2 5945 6440 6946 Tlis 817
stitch pointmaze-large-stitch-v0 15 +4 25 +6 36 +5 4248 48 +7 HHh+a 6216 T3 15
pointmaze-giant-stitch-v0 5 +2 9 +3 19 +5 2344 2916 3845 453 5914
pointmaze-teleport-stitch-v0 12 43 18 45 21 4 23+6 26+5 3043 39 x4 4226
antmaze-medium-navigate-v0 15 45 2244 31l +6 4045 4247 Hlie 60+4 T2 13
navigate antmaze-large-navigate-v0 8 +3 14 44 2245 2846 315 4044 BHlis 65 +1
antmaze-giant-navigate-v0 2+ 52 11 +4 1543 19+4 2745 35xa 48 13
antmaze-teleport-navigate-v0 6 +2 10 +3 15 +4 1845 2244 2613 3315 41 44
antmaze
antmaze-medium-stitch-v0 12 44 1945 28z6 3544 38x6 4T+5 553 68 14
. antmaze-large-stitch-v0 6 +3 1144 1945 2543 2845 3644 4T +6 61 3
stitch antmaze-giant-stitch-v0 14 4io O4s  13:1 1T 2444 31ss 4d s
antmaze-teleport-stitch-v0 4 +2 8 13 13 +4 16 +3 20+4 2443 30xa 38 x5
humanoidmaze-medium-navigate-v0 5 +2 9 3 15 +a 2145 2444 3043 3815 51la
navigate humanoidmaze-large-navigate-v0 2+ 5 +2 9 43 1344 163 2214 2923 425
. humanoidmaze-giant-navigate-v0 0 +o 1+ 3 +2 5 +2 7 +3 1144 1643 25 +a
humanoidmaze
humanoidmaze-medium-stitch-v0 4 +2 T3 13 +a 1943 2245 2844 3513 48 44
stitch humanoidmaze-large-stitch-v0 141 3 +2 T+3 1144 1443 2043 26+14 395
humanoidmaze-giant-stitch-v0 0 +o 1+ 241 4 +2 6 +3 1247 1443 16 4
navigate antsoccer-arena-navigate-v0 10 +4 1545 2546 3544 38+6 4545 D53 68 x4
antsoccer-medium-navigate-v0 8 13 12 44 20 +5 2843 3145 3844 4816 61 +3
antsoccer
stitch antsoccer-arena-stitch-v0 9 3 14 44 2325 3244 3516 4245 5213 6514
antsoccer-medium-stitch-v0 T +2 1143 18 24 2543 28+5 3544 4516 583
cube-single-play-v0 5 +2 8 +3 12 +a 1845 2044 2513 3215 45+
cube play cube-double-play-v0 2 +1 4 +2 T +3 1144 1343 1744 2323 3545
cube-triple-play-v0 1+ 241 442 6 +3 8 +2 1143 14 +a 17 x5
cube-quadruple-play-v0 0 +o 0 +o 0 +o 0 +o 0+0 0o 0 +o 0 +o
scene play scene-play-v0 10 +3 16 +4 24 +5 3344 376 4545 D563 TO x4
puzzle-3x3-play-v0 8 +3 13+4 2045 28+3 3lis 3944 4916 623
puzzle-4x4-play-v0 0 =0 0 =0 0 +o 23 544 1143 1925 324
puzzle play puzzle-4x5-play-v0 0 +o 0 +o 0 +o 0 +o 5 +3 6 +3 8 +4 16 +s5
puzzle-4x6-play-v0 0 +o 0 +o 0 +o 0 +o 0 +o 0+o0 6 +4 14 +3

A: To investigate this, we compare our unified MCPlanner against a variant, MCPlanner-2, which
mimics the traditional hierarchical setup. This variant consists of two separately trained GCTMs: a
high-level planner that generates a sequence of sparse subgoals, and a low-level planner that synthe-
sizes dense trajectories to connect them. Our experiments, summarized in Table 2] reveal a signifi-
cant performance drop with the two-model approach. We attribute this gap to two primary factors:
(i) coherence gap, and (ii) compounding errors. Therefore, the unified architecture of MCPlanner
is not merely a simplification but a crucial design choice that leads to more coherent, robust, and
effective long-horizon planning.

Q: Is the explicit Multi-Scale Consistency Objective L ,;s truly essential for performance, or
can the GCTM naturally learn this coherence?

A: While the standard GCTM objective (Eq. [T} encourages consistency over arbitrary time inter-
vals, we hypothesized that explicitly enforcing this property on the fixed, coarse time grid used at
inference would be beneficial. To validate this, we trained a variant, MCPlanner w/o L ,;s, which
omits the multi-scale consistency loss term (Eq.[I3)). The results, presented in Table[2} confirm our
hypothesis. While the model without £y, still performs reasonably well, there is a consistent per-
formance degradation across all tasks. This suggests that while the base GCTM objective provides
a degree of implicit consistency, it is not sufficient to guarantee the strong compositional coherence
required for our hierarchical inference scheme.

Q: Does the Conditional Optimal Transport (OT) coupling offer a significant advantage over
simpler, independent couplings for flow straightening?

A: As established in our theoretical framework (Theorem [E.2), using an OT coupling is designed
to straighten the learned flow between the initial and final trajectory distributions. This leads to a
smaller Lipschitz constant for the ODE drift, which in turn allows for more stable training and more
accurate integration with fewer steps. To quantify this benefit, we trained a variant, MCPlanner
w/o OT, that uses a simpler random pairing between expert trajectories and their conditional priors
within each batch. The results in Table [2]clearly show the practical benefits of OT coupling.
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Table 2: Ablation study on the unified model archi- Table 3: Ablation study on the coarse time grid reso-
tecture, multi-scale consistency objective, and condi- lution (K).
tional optimal transport coupling.

Environment Dataset K=2 K=5 K=10
Environment Dataset MCPlanner MCPlanner2  w/o Lys  wio OT medium-navigate-vo0 T94s 862 8Tie
- = ~ . intmase large-navigate-v0 Tler 815 Slao
medium-navigate-v0 )2 o 5 5l P giant-navigate-v0 5547 6842 6945
oint large-navigate-v0 814 60 40 7242 Tis g b b
pointmaze  STIETRAVIIALSTVD heiet o o teleport-navigate-v0 20s 4541 45¢
teleport gate-v0 45 22 394 medium-navigate-v0 6341 123 T34s
medium-navigate-vo 721 55 47 : 08 s . large-navigate-v0 5342 651 G646
i vigate- 2 ) o ntmaz ° : o
antmaze Largenavigate v0 G 2 S e antmaze giant-navigate-v0 3345 A84s 4942
giant-navigate-v 8 i 27 41 36 5 2 45 - _ ; ) 4 e
teleport-navigate-v0 11 24 16 10 315 3640 teleport-navigate-v0 234s 4ls4 4245
medium-navigate-v0 51 24 36 47 16 22 47 15 medium-navigate-v0 4345 5laea 524
humanoidmaze large-navigate-vO0 42 55 25 42 31 43 34 45 humanoidmaze large-navigate-v0 34 48 42 &5 42 +o
giant-navigate-v0 25 54 [ 12 2o 17 41 giant-navigate-v0 1841 2544 25 16

Q: How does the choice of coarse time grid 7. affect performance?

A: The coarse time grid 7, determines the resolution of the high-level plan. A denser grid (larger K)
allows for more frequent subgoals, potentially improving plan accuracy, but increases computational
cost. Conversely, a sparser grid is more efficient but may fail to capture the necessary detail for
complex, long-horizon tasks. To analyze this trade-off, we evaluated MCPlanner with three different
grid resolutions: a sparse grid with K = 2 coarse steps, our default grid with K = 5 steps, and a
dense grid with K = 10 steps. The results, shown in Table[3] highlight the importance of this choice.
Our chosen grid with K = 5 steps provides enough high-level guidance to solve challenging tasks
without incurring the unnecessary computational overhead of an overly dense plan.

Q: How does the choice of candidate count /V affect performance?

A: The number of trajectory candidates,

Candidates (N) —e— N=1 N=4 —+— N=16 —e— N=32
N, is a crucial hyperparameter that bal- poinmae - gantnavigate polnmaz - tleportnovigte
ances planning performance against com- B w
putational cost. Generating more can- @ «
didates allows the planner to explore a w “
wider range of solutions, increasing the w » ﬁ
probability of finding a successful path, % G
especially in complex environments with
multi-modal solutions. g @
To understand this trade-off, we evaluated . N
MCPlanner with varying numbers of can- v /M .
didates: N = 1,4,16,& 32. The re- IR NS RN USROS SR
sults, presented in Figure [3] demonstrate umanoigmaze - medium naisae homanoigmaze e naisae
a clear trend. Moving from N = 1 to w -
N = 16 yields significant performance “ “
improvements across all tasks. However, w w
the gains begin to diminish beyond N = w / » /ﬁ
16. Increasing the candidate count to N =

00 02 oa 06 o8 To 00 02 oa 3 o8 10

32 provides only marginal or no improve- steps (<10%)

ment, while doubling the generation time. Figure 3: Ablation study on the number of trajectory candi-
Therefore, our choice of N = 16 repre- dates (V).

sents a well-balanced trade-off, maximiz-

ing success rates without incurring excessive computational overhead, making the planner both ef-
fective and efficient.

6 CONCLUSION

In this paper, we introduced MCPlanner, a novel framework that addresses the challenges of long-
horizon planning in offline reinforcement learning. We argued that traditional hierarchical methods,
which rely on separate models for high-level and low-level planning, often suffer from coherence
gaps and increased complexity. MCPlanner overcomes these limitations by employing a single
Generalized Consistency Trajectory Model (GCTM) to form a seamless, multi-scale planning hier-
archy. By querying the same model at different temporal resolutions, we can generate both coarse,
long-horizon subgoals and fine-grained, dense motions within a unified and consistent framework.
Extensive experiments on the OGBench benchmark, spanning 35 challenging locomotion and ma-
nipulation tasks, demonstrated that MCPlanner consistently outperforms prior state-of-the-art meth-
ods.



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of MCPlanner, we have made significant efforts. For novel models and
algorithms, implementation details and hyperparameters are extensively discussed in Appendix
For theoretical results, clear explanations of all assumptions and complete proofs of claims are
provided in Appendix [E] For datasets used in the experiments, a complete description of the data
processing steps can be found in Appendix [A]

LLM USAGE STATEMENT

We only used Large Language Models (LLMs) to polish the writing and improve the clarity and
flow of the text in this paper. No LLMs were used for generating content, ideas, or experimental
results.
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A TASKS AND DATASETS

<oy
¥

Figure 4: Visualization of a subset of tasks we considered from OGBench.

To validate the effectiveness of MCPlanner across diverse offline goal-conditioned reinforcement
learning scenarios, we evaluate our approach on the recently introduced OGBench benchmark [Park|
(2025). This comprehensive benchmark provides a systematic evaluation framework that chal-
lenges long-horizon planning algorithms across two distinct domains: locomotion, and manipulation
tasks. The benchmark’s design particularly emphasizes the planning capabilities that MCPlanner
aims to address, including goal stitching, long-horizon reasoning, and the ability to synthesize co-
herent trajectories from offline data.

A.1 LOCOMOTION TASKS

PointMaze (pointmaze). This task involves controlling a 2D point mass agent to navigate through
maze environments of varying complexity. We evaluate MCPlanner on four maze configurations:
medium (the standard baseline), 1arge (increased complexity), giant (the most challenging lay-
out requiring up to 1500 environment steps), and teleport (featuring stochastic teleporters that
test robustness to environmental uncertainty). The task provides an ideal testbed for our unified hier-
archical planning approach, as successful navigation requires both high-level path planning around
obstacles and fine-grained control for precise movement execution.

AntMaze (antmaze). Building upon PointMaze, this task challenges MCPlanner to control an 8-
degree-of-freedom quadrupedal Ant agent through the same maze layouts. The increased morpho-
logical complexity introduces additional planning challenges, as the agent must coordinate multiple
joints while maintaining global navigation objectives. The longer action sequences required for lo-
comotion make this task particularly suitable for evaluating our multi-scale consistency approach,
which ensures coherence between coarse waypoints and fine-grained motion synthesis.

HumanoidMaze (humanoidmaze). The most complex locomotion task involves controlling a
21-DoF Humanoid agent through maze environments. This task represents the ultimate test of
our planning framework’s ability to handle high-dimensional action spaces and complex dynam-
ics. The humanoid’s sophisticated morphology requires careful coordination of numerous joints,
making long-horizon planning extremely challenging. In the most difficult giant configuration,
successful navigation can require up to 3000 environment steps, thoroughly testing MCPlanner’s
ability to maintain trajectory coherence over extended horizons.

AntSoccer (antsoccer). This novel locomotion task extends beyond simple navigation by re-
quiring the Ant agent to manipulate a soccer ball while navigating. The task involves dribbling the
ball through two environment types: an open arena and a structured medium maze. This dual
objective of navigation and object manipulation tests MCPlanner’s ability to coordinate multiple be-
havioral modes within a single trajectory, making it an excellent benchmark for our unified planning
approach.
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A.2 MANIPULATION TASKS

Cube (cube). These tasks challenge MCPlanner to control a 6-DoF URSe robot arm for pick-
and-place manipulation of cube blocks. We evaluate on four variants with increasing complexity:
single, double, triple, and quadruple, corresponding to tasks involving 1-4 cubes re-
spectively. The evaluation goals require moving, stacking, swapping, or permuting cube blocks
to achieve specified configurations. This task family is particularly valuable for assessing our ap-
proach’s ability to learn multi-object manipulation behaviors and synthesize long-term plans that
may require up to 8 sequential pick-and-place operations.

Scene (scene). This manipulation task is designed to test sequential reasoning capabilities through
interaction with diverse everyday objects including cube blocks, windows, drawers, and button-
controlled locks. The task requires MCPlanner to understand object dependencies and execute com-
plex sequential behaviors. For example, certain goals require unlocking a drawer, opening it, placing
an object inside, and closing it again. The longest tasks involve up to eight atomic manipulation be-
haviors, making this an excellent testbed for our hierarchical planning approach that must maintain
coherence across extended behavioral sequences.

Puzzle (puzzle). Perhaps the most challenging manipulation tasks involve solving the “Lights
Out” puzzle using the robot arm. These tasks require pressing buttons on 2D grids of varying sizes
(3x3, 4x4, 4x5, and 4x6) where each button press toggles the colors of the pressed button and its
neighbors. The goal is to achieve desired color configurations through strategic button combinations.
This task tests MCPlanner’s combinatorial reasoning abilities, as the state space grows exponentially
with grid size (up to 224 states for the largest puzzle). The most complex puzzles require pressing
over 20 buttons in precise sequences, thoroughly challenging our approach’s long-horizon planning
capabilities.

A.3 DATASET CHARACTERISTICS

The OGBench benchmark provides multiple dataset types that pose distinct challenges for offline
planning algorithms:

Navigate Datasets. These datasets consist of trajectories collected by noisy expert policies that
navigate environments while reaching randomly sampled goals. They provide diverse coverage of
successful behaviors but require MCPlanner to learn from suboptimal demonstrations with varying
noise levels.

Stitch Datasets. Specifically designed to challenge goal stitching capabilities, these datasets contain
only short trajectory segments (e.g., at most 4 cell units in maze tasks). Successful task completion
requires MCPlanner to stitch multiple trajectory segments together, with some tasks requiring up to 8
stitching operations. This directly tests our unified model’s ability to generate coherent long-horizon
plans from fragmented demonstration data.

Play Datasets. Used for manipulation tasks, these datasets are collected by non-Markovian expert
policies with temporally correlated noise, mimicking realistic data collection scenarios. The un-
structured nature of these datasets challenges MCPlanner to extract meaningful behavioral patterns
and synthesize novel goal-directed trajectories from seemingly random interactions.

The diversity of these datasets, spanning 35 total configurations across all task domains, provides
a comprehensive evaluation framework for assessing MCPlanner’s robustness and generalization
capabilities across varied data quality and structure conditions.
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B IMPLEMENTATION DETAILS

This section provides comprehensive details regarding the implementation of MCPlanner, including
the specific hyperparameters used in all experiments, the full training algorithm, and the complete
inference procedure.

HYPERPARAMETERS

Table 4: MCPlanner hyperparameters used in all experiments.

Parameter Setting

Backbone 1D U-Net (based on (Song et al.,|2021)’s architecture)
Horizon H 32

Model width 64

Positional timestep embeddings Yes

Kernel size 5

AFM 0.1

AMS 1.0

)\ctrl 0.1

Coarse time grid 7 {1.0,0.8,0.6,0.4,0.2,0.0}
EMA rate 0.999

EDM Omin = 0.002, 0 max = 80.0

Number of discretization steps N
Time # distribution

Distance d (for Laoramr)
Gaussian perturbation for x;
Integrator

Batch size

Training steps

Candidates N

Latent refinement steps r
Top-m candidates
Reranking

Doubles every 100k iterations, starting from 4
Beta(3,1)

Pseudo-huber loss with ¢ = 0.00054+/d
N(0,0.05%1)

Second order Heun

64

108

16

2

4

Lightweight critic

In this section, we provide detailed explanations for the hyperparameters and design choices listed in
Table[d] aligning with best practices for reproducibility and clarity, similar to the GCTM framework.

Bootstrapping Scores. In all our experiments, we train GCTMs without a pre-trained score model.
Analogous to CTMs, we utilize velocity estimates provided by an exponential moving average
(EMA) of the model parameters 6z s 4 to solve ODEs, with an EMA decay rate of 0.999.

Time Discretization. We discretize the unit interval into a finite number of timesteps {t,,})_,
where tg = 0 < t; < -+ < ty = 1. This is based on the EDM (Karras et al., 2022) schedule,
which solves the PFODE on (0min, Omax) for 0 < opmin < 0max With p = 7. We convert this to the
FM ODE discretization using ¢, = 0,,/(1 + 0,,), where we fix oyin = 0.002. We note that oyyax
controls the emphasis on time near ¢t = 1, with larger oy, placing more discretization points closer
tot = 1.

Number of Discretization Steps N. Unlike CTMs, which use a fixed N = 18, our approach
doubles N every 100k iterations, starting from N = 4.

Time ¢ Distribution. For the training of our GCTM-based planner, we sample ¢ ~ beta(3,1).
This distribution places higher emphasis on sampling intermediate time points relevant for learning
trajectory segments.

Network Conditioning. We employ the EDM conditioning scheme, which has shown robust per-
formance in diffusion-based generative models, following the practices established in CTMs.
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Distance d (for Lgcras). For the consistency loss Lgoras, we utilize the pseudo-huber loss,

defined as d(x;, %) = /||x¢ — %¢|3 + ¢ — ¢, where ¢ = 0.00054v/d and d is the dimension of x;.
This choice provides a robust measure of similarity between trajectory samples.

Gaussian Perturbation for x;. To ensure diversity and enable one-to-many generation, we apply
a Gaussian perturbation to the x; samples, drawing from a normal distribution multiplied by 0.05.
This acts as a latent source of randomness, allowing the GCTM network to map conditions to distinct
trajectories.

ODE Solver. We use the second-order Heun solver for numerically integrating the ODEs and cal-
culating terms within the Leoras (6) objective.

Batch Size, Optimizer, \r\;, and Network Architecture. We use a batch size of 64 for all
experiments. The Adam optimizer (Kingma & Bal 2017) is employed with a learning rate of
n = 0.0002/(128/batch_size) and default (81, 32) = (0.9,0.999). The coefficient for the
Flow Matching loss is set to Appyy = 0.1. Our network is a modified SongUNet (Song et al., [2021)
that accepts two time conditions ¢ and s via two time embedding layers.

B.2 ALGORITHMS

Algorithm 1 MCPlanner Training

1: Require: Dataset D; GCTM Gy, denoiser head gy; coefficients Apps, Aprs, Actr; cOarse steps
Te; OT regularization 7; EMA rate «; integrator order p.

2: while not converged do

3: {(Tia Sstart,is Sgoal,i)}ib;l ~D

4: z? rior o LinearInterp(Sstart,i — Sgoal,i) With zero actions

5: function CONDITIONAL OT PAIRING

6: Cij < 7 — 25" |13

7 Sinkhorn(C, ) to obtain POT

8: {(im7jm)}r]i:1 ~ POT .

9: X0,m S Tipys X1,m — xé?:;zm’, Cm (Sstw't,jm 5 Sgoal,jm)
10: Sample times ¢, s, u, t ~ Unif(0, 1) (independently per m)
11: Xt,m (]. —t) X()’m+tX17m
12: Xim (1—1) X0,m + fom
13: end function
4 Lpyv 5 20 %om = 96(X; 5 cm) |13
15: is,m — GEMA(Xtﬁu,ma u, s; Cm)

16: LGCTM — % Zm d(GG (Xt,nu t, 53 Cm); is,m)

17: Lunutiscate < ; A(Go(Xtg,t0, tig1; em), Go(Go(Xey, to, ti; Cm) tis tig1; Cm))
18: Estimate L oo vVia Hutchinson-style Jacobian orthogonality

19: Total loss: £ < Laorm + Arm Lrm + Aavrs Lmuttiscale + Actri Leontrol

20: 0+ 0—-—nVoLl

21: Oema — abpma + (1 —01)9

22: end while
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Algorithm 2 MCPlanner Inference

1: Require: Trained Gy, gy

2 Input: Sstarts Sgoals C = (Sstart7 Sgoal)

3: Params: Coarse steps 7. = {to,...,tx}; fine schedules {T,f"e kK:_Ol; candidate count N;
refinement steps 7; step size n; guidance weight 3

4: x1 < LinearInterp(sstqrt — Sg0a1) With zero actions

5: Initialize candidate set C < ()

6: forn =1to N do > Candidate generation
7: en ~ N(0,1)

8: xgn) — X1 +YeEn

o (xS e Golx 1 (i)

100 7 go(xt™ b, ts ¢); select 217 from 7™ > optional subgoal extraction
e i 1)

12: xgg) — xgn)

13: fork=0to K —1do > Fine synthesis per interval
14: {Xg’)lj) }t/enine <— Ga (XE"Z), tk, 7_]3:“16; C)

15: Decode to dense segment T,E,n) and append to T;:Lr)L al

16: end for )

17: Score: e, < |[s7(Tpina1) = Sgoatll®

18: Total score s, < e, — Bvp; add (e, f](c?ial, sp)toC

19: end for

20: Select top-m elements of C by s, (e.g., m = 4)
21: for each selected candidate (e, 7, s) do

22: fort =1tordo > Latent refinement (few steps)
23: €+ € —nVe|sr(Ttinai(€)) — Sgoar||>  (backprop through Gy)

24: end for

25: Recompute 7 and score s; update candidate in C

26: end for

27: return trajectory with the best (lowest) final score in C

C BASELINES

In order to better validate the performance of our method, we re-implement the following baselines
on the OGBench benchmark.

Diffuser. (Janner et al., 2022)) Diffuser formulates planning as an iterative denoising process using a
diffusion probabilistic model. It trains a trajectory-level diffusion model that predicts all timesteps
of a plan simultaneously. The training objective for the e-model is given by:

‘CDiffuser(a) = Et,e,xU [”5 - 69(Xt7 t)”ﬂ

where ¢ is the diffusion timestep, € is the noise target, and x; is the trajectory x corrupted with noise
€. This framework allows for flexible conditioning through classifier-guided sampling, reinterpreting
it as a planning strategy.

Decision Diffuser. (Ajay et all [2023) Decision Diffuser frames offline sequential decision-
making as a conditional generative modeling problem, diffusing only over states x; =
(S¢r,8¢741,-+-,Sp1m—1). Actions are inferred via a separate inverse dynamics model a; =
fo(se,8e41). It leverages classifier-free guidance during sampling, with the perturbed noise € de-
fined as:

€= 69(Xt7 ®7 t) + W(Eg(Xt, ¢, t) - Eg(Xt7 ®7 t))
The combined training objective for the noise model € and inverse dynamics model f is:

‘CDD(G’ ¢) = ]Et,XOED,BNBem(P)[”e - 69(xt7 (1 - 6)6 + ﬂ®7 t)||2] + E(&a,s’)ED[Ha - f¢(57 S/)Hz]
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where ¢ represents the conditioning variable (e.g., return, constraints, or skills) and ) is a dummy
value for unconditional noise.

AdaptDiffuser. (Liang et al.,[2023) AdaptDiffuser is an evolutionary planning method that enhances
diffusion models through a self-evolution process. It iteratively generates diverse synthetic expert
data for goal-conditioned tasks, guided by reward gradients. A discriminator then selects high-
quality data to fine-tune the diffusion model. The iterative training objective to update the diffusion
model 6 at phase k is to minimize the negative log-likelihood of the conditional trajectory distribu-
tion, given by:

0; = arg mein —Ex, [log pe(%0|c)]

where X represents the refined dataset at iteration k, and c is the conditioning variable. The pro-
cess also generates new data Xg ;41 = g(ugz,E, VXOJ(/M);)) and refines the dataset Xo 11 =

[%0,k, D(R(%0,k+1))]. This self-evolutionary process allows AdaptDiffuser to improve its planning
performance and adapt to unseen tasks without requiring additional expert data.

DiffuserLite. (Dong et al., 2024)) DiffuserLite addresses the slow sampling speed of diffusion plan-
ning by introducing a Plan Refinement Process (PRP). Instead of generating full long-horizon trajec-
tories in a single shot, PRP employs a coarse-to-fine-grained hierarchical approach. It plans rough
trajectories with key points at intervals and progressively refines the first interval, ignoring redun-
dant distant parts. This process uses L planning levels, where at each level [, a diffusion model
plans a rough trajectory x; with temporal horizon H; and temporal jump I;. The noise estimator €y
for each level [ is optimized by minimizing the following objective, which is similar to the standard
diffusion loss but applied to the sub-trajectories:

Lpr(01) = g xo).a(0.¢llen, (xt.,€) — €l [3]

where x; = ayXg+0¢€, and c is the estimated property (e.g., cumulative reward) for the rough trajec-
tory. DiffuserLite also utilizes classifier-free guidance during sampling to achieve conditional gen-
eration. The hierarchical refinement reduces computational complexity and significantly increases
decision-making frequency.

Diffusion Veteran. (Lu et al.|[2025) Diffusion Veteran (DV) proposes a simple yet strong diffusion
planning baseline for offline reinforcement learning. It identifies key design choices for effective
diffusion planning, including the use of Transformer as the denoising network backbone, a separate
inverse dynamics model for action generation, and Monte Carlo sampling with selection (MCSS) as
the guidance algorithm. DV’s training involves three main components:

* A Diffusion Transformer Planner ¢y is trained to generate state plans x; conditioned on the
initial state sgtq.¢, Where M is the planning stride. The training objective is to predict the
noise.

A Diffusion Inverse Dynamics model ¢, is trained to infer the action a; from the current
state s; and the planned next state sy py.

* A Ciritic Vj is trained to predict the accumulated discounted returns R, for a given state
plan.

During inference, DV randomly generates [NV candidate state plans using €y, selects the best plan
based on the critic Vy, and then uses the inverse dynamics model ¢,, to extract the action from the
current state and the next planned state. This architecture enables robust long-horizon planning.

HDMLI. (Li et al., 2023) Hierarchical Diffusion for Offline Decision Making (HDMI) proposes a
hierarchical trajectory-level diffusion probabilistic model for long-horizon tasks in offline reinforce-
ment learning. It employs a cascade framework with two main components:

* Reward-Conditional Goal Diffuser: This component discovers subgoals by conditioning
on rewards, facilitating the decomposition of complex tasks into manageable subgoals.

* Goal-Conditional Trajectory Diffuser: Given the identified subgoals, this component
generates corresponding action sequences to achieve each subgoal.

HDMI utilizes planning-based subgoal extraction and transformer-based diffusion to handle sub-
optimal data and long-range dependencies. The training objective for both diffusers typically follows
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the standard diffusion loss, aiming to predict the noise added to corrupted trajectories, and also
incorporates reward or goal conditioning for guided generation. During inference, the Reward-
Conditional Goal Diffuser first generates a sequence of subgoals, which are then used by the Goal-
Conditional Trajectory Diffuser to synthesize dense action plans between them, effectively tackling
long-horizon decision-making tasks.

SHD. (Chen et al., 2024)) Simple Hierarchical Diffuser (SHD), introduces a two-level hierarchical
planning framework built upon diffusion models. It comprises a high-level Sparse Diffuser (SD)
for subgoal generation and a low-level Diffuser for fine-grained trajectory synthesis. The high-level
SD models subsampled trajectories x§ 7, typically consisting of every K-th state-action pair, where
subgoals are defined as these sparse states. Both the high-level SD and the low-level Diffuser for
segment generation are trained with a standard diffusion noise prediction objective:

L(0) = Exg.t.c [lle — o (x1)]|°]

This objective trains the model to predict the noise € added to a corrupted trajectory x;. Additionally,
a separate guidance function J,;(xg) is trained for both levels to predict the return R(xg) of the
respective trajectories (full trajectory for high-level, segment for low-level) using the loss:

L(¢) = Exyt,e [ R(x0) — T (x0)]1”]

At inference, the high-level planner generates a sequence of sparse subgoals, which the low-level
planner then connects with dense trajectories, using the guidance functions to bias towards high-
return paths. This hierarchical approach aims to reduce computational cost and improve generaliza-
tion for long-horizon tasks.

D ADDITIONAL ABLATION STUDIES

In this section, we provide further ablation studies to analyze the impact of key components of our
MCPlanner framework: the disentangled control objective and the latent refinement process.

Table 5: Ablation study on the disentangled control objective (Lctr1).

Environment Dataset MCPlanner w/o L.,
medium-navigate-v0 86 +2 85 +3
ointmaze large-navigate-v0 81 +5 78 +1
p giant-navigate-v0 68 +2 64 +8
teleport-navigate-v0 45 47 41 +6
medium-navigate-v0 72 +3 71 +6
antmaze large-navigate-v0 65 +1 64 +7
giant-navigate-v0 48 +3 45 +3
teleport-navigate-v0 41 +4 38 +2
medium-navigate-v0 51 +4 48 +9
humanoidmaze large-navigate-v0 42 +5 40 +2
giant-navigate-v0 25 +4 21 +4

Q: What is the impact of the disentangled control objective L.;,; on planning performance?

A: The disentangled control objective (Eq. is designed primarily to structure the latent space for
more interpretable control, as detailed in Appendix [F] However, we were interested in whether this
structural regularization also provides a benefit to the overall planning performance. To test this, we
trained a variant, MCPlanner w/o L.;,;, that omits this loss term. The results are shown in Table[3]
We observe a small but consistent degradation in performance across all tested environments. This
suggests that encouraging orthogonality in the latent control dimensions not only improves inter-
pretability but also acts as a useful regularizer, preventing overfitting and leading to slightly more
robust and generalizable plans. While not its primary purpose, this secondary benefit further justifies
its inclusion in our final model.

Q: How does latent refinement at inference time contribute to the final plan quality?

A: Our inference procedure includes an optional step to refine the top candidate trajectories by
performing gradient descent in their latent space to minimize the terminal state error (Alg.[2). To
quantify the benefit of this step, we evaluated MCPlanner’s performance with varying numbers of re-
finement steps: » = 0 (no refinement), » = 2 (our default), and r = 4. The results in Table@]clearly
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Table 6: Ablation study on the number of latent refinement steps (7).

Environment Dataset r=0 r=2 r=4
medium-navigate-v0 81 +7 86 +2 8T x5

ointmaze large—navigate-v0 75 +4 8l+s 8248
p giant-navigate-v0 61l +6 68+2 6945
teleport-navigate-v0 3941 4547 46 +3
medium-navigate-v0 66 +3 7243 T3 49

antmaze large—navigate-v0 59 +2 65 +1 66 +6
giant-navigate-v0 41 +7 48 +3 49 12
teleport-navigate-v0 35+5 41 +4 4241
medium-navigate-v0 45 +7 bl +a D52 16

humanoidmaze large-navigate-vO 36+2 4245 4343
giant-navigate-vO0 1941 2544 26 +4

demonstrate the value of this process. Disabling refinement (r = 0) leads to a significant drop in
success rates, highlighting that the initial candidates, while diverse, are not always perfectly aligned
with the goal. Applying just two steps of refinement provides a substantial boost in performance
across all tasks. Increasing the refinement to five steps yields only marginal further improvements
while significantly increasing the computational cost at inference time. Therefore, our choice of
r = 2 offers a strong balance between plan quality and computational efficiency.

E THEORETICAL FRAMEWORK

In this section, we provide a more rigorous theoretical foundation for the MCPlanner framework,
particularly focusing on the convergence guarantees of the multi-scale inference process. Our ap-
proach is built upon the mathematical underpinnings of Generalized Consistency Trajectory Models
(GCTMs) and the analysis of multi-step consistency sampling.

E.1 GCTM AS A SOLUTION TO THE FLOW MATCHING ODE

Recall that MCPlanner uses a GCTM to learn, for each condition ¢ = (Sstart, sgoal), the map-
ping from a condition embedding distribution ¢.(x1) = paata(P(c)) to a full trajectory distri-
bution ¢.(Xg) = pdata(7|c). This is achieved by learning the solution to a probability flow
ODE derived from Flow Matching. Given an entropy-regularized optimal transport coupling
¢e(x0,x1) induced by triples (7, Ssiart; Sgoal), We define a conditional probability path g.(x;) =
Eq, (30,51 [0(1—#)x0 +4x: (X¢)]. The corresponding ODE is given by:

dx; =t~ (x¢ — By (xox0) [X0]) dt, t€(0,1) (18)

The GCTM, Gy(x4,t, s; ¢), is trained to approximate the solution to this ODE, which transports a
sample from time ¢ to time s under condition c.

E.2 MULTI-SCALE INFERENCE AS A MULTI-STEP SAMPLING ALGORITHM

The inference process described in Section [f.2] can be viewed as a specialized multi-step sampling
algorithm. The high-level plan generation corresponds to large jumps in time, from ¢ = 1 to a
sequence of coarse time steps 1 > t; > to > --- > tx > 0. While our method synthesizes the
fine-grained trajectory between these steps, the theoretical stability of the overall plan rests on the
properties of this coarse, multi-step generation. For analysis, we model each coarse update as a
deterministic jump using the learned GCTM,

Xtp_1 — GO(thvtk7tk—1;c)7 (19)

optionally followed by a small additive perturbation 7, ~ N(0,0%I) to capture numerical or
stochastic effects.

E.3 CONVERGENCE GUARANTEES AND EFFICIENCY OF STRAIGHTENED FLOWS

We now establish a stability result for MCPlanner in the FM/GCTM setting, and show that OT-based
flow straightening reduces sample complexity. We introduce the following assumptions.
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Assumption 1 The FM drift b(x,t) = ¢t~ (x — Eq(x,|x,=x)[X0]) is L-Lipschitz in x uniformly in
te(0,1).

Assumption 2 The data distribution has finite second moments. E,, .+ [7]3] < ma < oc.

Assumption 3 (i) Denoiser error: eq = sup, E[||gg(x¢,t,t; ¢) — E[xo|x¢]||]. (ii) Semigroup resid-
ual: Rg = sup;s,>5 El||Go(xt,t, s5¢) — Go(Ga(xt,t,u; c),u, s;¢)|]. (iii) Numerical integration
error per call O(h?).

Under these assumptions, we can state the following theorem regarding the convergence of the
generated trajectories.

Theorem E.1 Let p be the distribution of trajectories generated by MCPlanner after K coarse steps
over grid {ty} with maximum step size h. Under Assumptions [Z] and|3| there exists a constant C
depending on L and the moment bound such that

Walp, Paata(7)) < C (K Ro + hey + W7 + (L 09)Y2). (20)
If in addition pgq1.(T) satisfies a transport-entropy inequality To (), then

Dx1pdata(T)P < 5= W3 (D, Pdata(T))- 1)

Moreover, when training with an entropy-regularized OT coupling that straightens the conditional

path, the effective Lipschitz constant of the drift reduces from L to L. < L (in practice measurable
via local Jacobian norms), which tightens the bound and permits larger coarse steps h and fewer
evaluations K for the same target error.

Proof. Let ®,_,, denote the flow map of the FM ODE %, = b(x,,7) from time ¢ to s, and write
hy = tx — tx—1. Define the generated update

X1, , = Go(Xepoti te—1;¢) + ngy M ~ N(0,071), (22)

and the true update x; | = ®4, s, (X} ). Let yy and vy, be the laws of X;, and x;, , respectively,
and define the per-step error

E, = Wa(pg, vi)- (23)
We first record two standard facts.

(F1) Lipschitz pushforward. If T is Lp-Lipschitz, then Wa(Tup, Twr) < Lp Wa(u,v). Under
Assumption|[1] ®,_, is exp(L(t — s))-Lipschitz in its spatial argument (Gronwall).

(F2) Additive noise. For independent additive noise n with E||n(|3 = o2, Wa(u * L(n), p) < 0.
Now apply the triangle inequality with A (-) = Go (-, tg, tp—1;¢) and Pp(-) = D¢, et (+):

Er—1 = Wa ((Ak)spr * L), (Pr)vi) (24)
< Wa((Ak)gtn * L), (Ap) ) + Wo((Ar) g, (@) sesin) + Wa(Pr)setin, (Pr)pvi)
(25)
< or + & + e™E,, (26)
(noise) (map error) (pushforward)
where

1/2

5 = (B [[Ak(x) = @4 (0)]13) )

It remains to bound Jj, in terms of the approximation errors in Assumption [3| Define the learned
drift b(x,t) = t~(x — ga(x,t,t; c)) and the associated learned flow ®,_, ; obtained by integrating

X, = b(x,,T) over [s, t|. By variation-of-constants and Gronwall (using Assumption ,

A~ tk ~
Dyt (X) = Pyt ()|, < eLh’“/ [|o(x7,7) = b(x7,7)||, d7 . (28)

th—
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Since b — b = ¢~ (E[xo|x:] — go(x¢,t,t;¢)) and t € [tj_1,tx] is bounded away from 0 on each
coarse interval, Assumption [3]implies

E Hétk‘}tk—l (X) - étk‘)tk—l (X)HQ < Cl hk €g- (29)

Next, Gg(-, tg, tx—1; c) is implemented by a numerical integrator of order p (Heun) and trained to
satisfy a semigroup relation. Let ¥, _,;, , denote one Heun step applied to b. Then

E HGQ(X7 tkH tk—l; c)_\I’tk—kafl (X) H2 S 02 R@) E ||\I/tk—>tk,1 (X)_(itk—ﬁkfl (X) ||2 S 03 hi
(30)
Combining equation [29]and equation 30| with triangle inequality yields
0N 1/2
0 = (E’|G9(X,tk7tk_1;c) 7q)tk—>tk—1(x)“2) < C(R9+hk€g+h£). 31

Substituting equation |31]into the recursion equation [26|and unrolling over k = K, ..., 1 give

K K k—1
Eo<[[e" Bx + Y ( II eth) (C(Rg + hieg + hY) + o) (32)
Jj=1 k=1 j=1
K
<" > (C(Ro+ heg + BP) + o) (33)
k=1
K
< C'(KRy+heg +hP) + "> oy (34)
k=1

Finally, because the additive perturbations are independent across steps and convolved through Lip-
schitz maps, their total contribution in W is upper bounded by the root-sum-square (>, a,%)l/ 2
(variance additivity under independent convolution and (F1)), which yields the stated bound. The
KL bound follows from the transport-entropy inequality T ().

Extension to the Non-Smooth Case. If the drift is only piecewise-Lipschitz, the same rate holds
locally on each region; globally one can ensure convergence by refining the grid near high-curvature
segments (detected via large residuals or Jacobian norms), yielding adaptive coarse steps that pre-
serve efficiency.

E.4 OT COUPLING STRAIGHTENS THE FM DRIFT.

We now formalize the flow-straightening effect of using entropy-regularized optimal transport cou-
plings within our conditional FM/GCTM training.

Theorem E.2 (OT straightening minimizes the FM velocity Lipschitz) Fix marginals qo(xo)
and q1(x1) and any admissible coupling 11 € U(qo,q1). Let the FM path be q; induced by lin-
ear interpolation v = (1 — t)xo + tx1, and define the FM velocity

ve(z) = Enplay —xzo | 2 = z].

Then for every t € (0,1], the spatial Lipschitz constant of vs admits the bound

. 1 )\ 1/2
Lip(vy) < n (EH ||$1—=’EO||2) :

Consequently, among all couplings 11, this upper bound is minimized by the 2-Wasserstein optimal
coupling I1*, for which
Wal(qo, q1)

Lip(’l}t) < f

For entropy-regularized OT with coefficient T > 0, letting 117 denote the Sinkhorn solution, there
exists A(1) | 0as 7 | 0 such that

Lip(vy) < %\/Wz(QO,%)Q + A(7).
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Proof. Let (X, X7) be random variables sampled according to an admissible coupling II €
U(qo,q1)- The linear interpolation is given by X; = (1 — )X + tX;. The Flow Matching (FM)
velocity field is defined as v () = E[X; — X | X; = z].

To establish the first inequality regarding the Lipschitz constant of v;(z), we invoke a known result
from the literature on Flow Matching and conditional expectations. Specifically, for linear interpo-
lation paths, the Lipschitz constant of the velocity field v;(x) is bounded. While a general derivation
for arbitrary measures can be intricate, under common assumptions (e.g., on the smoothness of the
underlying densities), it is established that for ¢ € (0, 1], the Lipschitz constant of v; with respect to
x is bounded by:
. 1 )\ 1/2
Lip(er) < 7 (EnflX: - Xol3) .

This bound highlights that a smaller expected squared difference between the coupled source and
target points (X7 and X)) leads to a smoother (smaller Lipschitz constant) velocity field.

Next, we demonstrate that this upper bound is minimized by the 2-Wasserstein optimal coupling IT*.
The 2-Wasserstein distance Wa(qo, ¢1) between two probability distributions go and ¢; is defined
as:

w. 2=  inf Egl|X; - Xol?].
2(QO,Q1) Hez}&wl) H[H 1 0||2]

By definition, the infimum is achieved by the 2-Wasserstein optimal coupling II*. Therefore, to

1/2
minimize the upper bound } (EH | X1 — Xo ||§) , we must choose II = IT*. Substituting this into
the inequality, we obtain:

. 1 /2 Wa(qo,
Llp(vt) S ; (EH* ||X1 — X()H%) = 2(+ql)
This proves that using the Ws-optimal coupling indeed yields the tightest possible bound for the
Lipschitz constant of v; in this formulation.

Finally, we consider the case of entropy-regularized optimal transport. For a given regularization
coefficient 7 > 0, the Sinkhorn algorithm computes an entropy-regularized optimal coupling II™
that minimizes Er[|| X1 — Xo||3] + 7 H (1), where H (I1) is the entropy of the coupling. It is a well-
established result in optimal transport theory that as 7 | 0, the entropy-regularized cost converges to
the unregularized cost. Specifically, Er-[|| X1 — Xo||3] converges to W2 (qo, ¢1)?. We can therefore
write:

En-[[| X1 — Xoll5] = Wa(qo, ¢1)* + A(7),

where A(7) is a non-negative term that approaches 0 as 7 | 0. Substituting this into the general
Lipschitz bound for v;:

Lip(v) < % VWal(qo, q1)% + A(7).

This shows that entropy regularization introduces a small increase in the expected squared cost,
leading to a slightly higher (but still controlled) Lipschitz constant for v; compared to the true
Ws-optimal coupling. As 7 — 0, this gap vanishes, confirming that entropy-regularized OT still
effectively straightens the flow by minimizing Ep[|| X7 — Xo||3].

O

Corollary E.3 (Improved coarse-step stability) Let L := SUPye(0,1) Lip(vt). Under (entropic) OT

coupling we have L< Wa(qo0, q1)/tmin (up to the small A(T) term). Hence any order-p one-step
integrator remains stable for coarse steps h < 1/L, implying a coarse evaluation budget of

K = O(L) = O(Wa(qo,q1)/tmin)-

Relative to independent coupling, OT strictly tightens L and reduces K for the same target error in
Theorem[E_ ]l
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F THEORETICAL FRAMEWORK FOR CONTROLLABLE PLANNING

The ability to control the behavior of the planner beyond simple start-goal conditioning is a signifi-
cant advantage of our approach. This section provides a more detailed theoretical grounding for the
controllable planning mechanism introduced in Section .2}

The core idea is that the latent code ¢, introduced at the beginning of the generative process, can be
structured to control specific, interpretable aspects of the resulting plan. The final clean trajectory,
T, can be seen as a deterministic function of this latent code, 7(¢). To understand how small changes
in € affect the plan, we can analyze the Jacobian of this function:

_or
e
or

Each column of the Jacobian, 57, represents the direction in the high-dimensional trajectory space
that is most affected by a change in the i-th component of the latent code.

J (35)

Disentangled Control via Orthogonality

In an unstructured latent space, the directions of control, g—; and gTTj for i # j, may be highly

correlated. This means that manipulating one latent variable could have unintended side effects on
aspects of the plan that should be independent. For example, trying to make the plan faster might
also unintentionally change its path.

To achieve a more disentangled and interpretable control space, we seek to make these directions
of influence orthogonal to each other. If the vectors g—; are orthogonal, then each latent variable ¢;
will control a unique, non-overlapping aspect of the plan’s execution. We encourage this property
by introducing the disentangled control objective during training:

T 2
(%) ) 9
Oei 86]‘
This loss minimizes the squared dot product (a measure of cosine similarity) between the control
vectors for all pairs of latent dimensions. By driving these dot products to zero, the model is in-
centivized to learn a latent space where the principal axes of control are orthogonal. This leads
to a more predictable and modular control mechanism, where a higher-level policy can learn to
manipulate specific, semantically meaningful characteristics of the generated plan by adjusting the
corresponding latent variables, without causing undesired alterations to other plan features. This

structured approach to controllability is a key step towards building more intelligent and adaptable
planning agents.

£control(9) = Ee Z

i#]
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