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ABSTRACT

Contrastive learning has proven to be a powerful paradigm for self-supervised
representation learning, yet traditional methods often rely on arbitrary definitions
of positive and negative pairs, requiring large batch sizes to manage the tradeoff
between contrastive terms effectively. This approach wastes significant compu-
tational resources on negative pairs that contribute minimal learning signals. To
address these limitations, we propose a novel method that reformulates contrastive
learning as a matrix approximation problem using I-divergence, a non-normalized
variant of Kullback-Leibler divergence. Our objective function is decomposable
across instance pairs, enabling efficient stochastic approximation algorithms that
perform well with fewer negative samples by leveraging neighbor embeddings.
Additionally, we generalize the scaling factor beyond standard normalization to
adaptively emphasize positive pairs with higher learning potential, reducing com-
putational waste from negative pairs. Experimental results on benchmark datasets
such as CIFAR and ImageNet demonstrate that our method outperforms existing
contrastive learning approaches, particularly with small batch sizes and as few as
one negative pair, highlighting its effectiveness and computational efficiency.

1 INTRODUCTION

Learning meaningful representations is fundamental to the success of machine learning systems
(Bengio et al., 2013; Goodfellow et al., 2016). While conventional supervised approaches have
dominated in recent years, driven by the increasing availability of labeled data, they face scalability
challenges and are constrained by the need for extensive labeled examples (LeCun et al., 2015;
Balestriero et al., 2023). Self-supervised learning (SSL) has emerged as a transformative paradigm,
leveraging the inherent structure of unlabeled data to generate pseudo-labels (Liu et al., 2023; Jing
& Tian, 2020; de Sa, 1993; Goyal et al., 2019). In domains such as computer vision, SSL has
demonstrated the capability to rival or even surpass supervised pretraining in effectiveness (Tomasev
et al., 2022; Goyal et al., 2019; He et al., 2020; Caron et al., 2020; Misra & Maaten, 2020).

Despite its promise, most contrastive learning methods, a cornerstone of SSL, require large batch
sizes to manage the balance between positive and negative pairs, leading to significant computational
inefficiencies. Specifically, substantial resources are spent on negative pairs that contribute minimal
learning signals. Recent advancements, such as SogCLR (Yuan et al., 2022), address some of these
inefficiencies by employing an exponentially moving average (EMA) within a decoupled contrastive
learning objective (DCL; Yeh et al., 2022), omitting the explicit positive-pair term in their imple-
mentation. However, SogCLR introduces additional complexity by requiring EMA-updated scalars
for each data instance, which can become inconvenient for large datasets.

To overcome these challenges and enable efficient mini-batch training, we reformulate contrastive
learning as a matrix approximation problem using a non-normalized Kullback-Leibler divergence
with a scaling factor. Our proposed objective function is decomposable across instance pairs, allow-
ing the development of efficient stochastic approximation algorithms that perform effectively with
significantly fewer negative samples. Furthermore, we establish a theoretical connection between
our approach and SimCLR while extending beyond it by generalizing the scaling factor. This gener-
alization enables dynamic prioritization of positive pairs that provide richer learning signals, thereby
reducing computational waste associated with negative pairs and improving overall efficiency.
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We conducted experiments on widely recognized vision benchmark datasets, including CIFAR and
ImageNet, to assess the effectiveness of our approach. Our method was evaluated against sev-
eral state-of-the-art contrastive learning techniques, demonstrating consistent superiority. The re-
sults show that our approach is not only more computationally efficient—requiring smaller train-
ing batches and fewer negative pairs—but also achieves higher accuracy and overall performance
compared to competing methods. These findings underscore the potential of our approach as a
cost-effective and high-performing solution for vision-related tasks.

2 BACKGROUND AND RELATED WORK

2.1 CONTRASTIVE METHODS

Contrastive Learning (CL) (Bromley et al., 1993; Hadsell et al., 2006; Chopra et al., 2005; Gutmann
& Hyvärinen, 2010; Mikolov et al., 2013; Oord et al., 2018; Chen et al., 2020a; Sohn, 2016) has
historically been influential in representation learning and is based on push- and pull mechanisms
between representations. There are supervised approaches (Khosla et al., 2020) which finds positive
pairs based on class labels and unsupervised SSL approaches (Chen et al., 2020a; He et al., 2020;
Caron et al., 2020; Wu et al., 2018; Misra & Maaten, 2020; Dosovitskiy et al., 2014) which generate
positive pairs.

The Contrastive loss (Bromley et al., 1993; Hadsell et al., 2006; Chopra et al., 2005) and Triplet loss
(Schroff et al., 2015; Weinberger & Saul, 2009) persisted on mining strategies for tricky negative
pairs to be effective. The Triplet loss configured triplets of one positive and negative sample and was
generalized to M negative samples instead in Sohn (2016). SimCLR (Chen et al., 2020a) applied
this contrastive loss in SSL, which is similar to CPC’s (Oord et al., 2018) InfoNCE, in a full batch
mode setting where the other positive pairs from the batch configured negative pairs. However
SimCLR’s CL-loss is not decomposable in minibatch-optimization mode because the negative pairs
are weighted relatively in the minibatch (Chen et al., 2022; 2020a). An unfortunate effect of this is
that it becomes vulnerable in minibatch-optimization, and this degradation of performance is shown
in Chen et al. (2020a). Several CL approaches have resorted to memory-banks (He et al., 2020;
Chen et al., 2020b; Caron et al., 2020; Misra & Maaten, 2020) or unreasonable batchsizes (Chen
et al., 2020a) and there are sampling strategies (Kalantidis et al., 2020; Robinson et al., 2020), but
this can be computationally challenging.

Improving the affordability of contrastive representation learning is still an active research area, and
recent related work include among others Yeh et al. (2022); Yuan et al. (2022); Qiu et al. (2023);
Chen et al. (2022); Sharma et al. (2023); Shah et al. (2021); HaoChen et al. (2021). DeCL (Chen
et al., 2022) consider the non-decomposibility of SimCLR’s CL-loss and address the gradient is-
sues. A decomposable spectral contrastive loss was proposed by HaoChen et al. (2021). DCL (Yeh
et al., 2022) propose to remove the positive pair from the negative forces which show faster con-
vergence and better results over CL baselines with/without memory-banks. SogCLR (Yuan et al.,
2022) propose a global contrastive loss by mixing a zero-initialized running average with a local
minibatch-estimate of the negative pairs and shows improvement over SimCLR on ImageNet and
CLIP (Radford et al., 2021) in the multi-modal setting. SogCLR is improved in Qiu et al. (2023)
with individualized temperatures. AUC-CL (Sharma et al., 2023) propose to combine contrastive
learning with AUC maximization.

2.2 NON-CONTRASTIVE METHODS

The contrastive methods rely on direct comparisons between positive and negative pairs (Jaiswal
et al., 2020) to avoid a degenerate solution which is contrary to the non-contrastive methods which
can leverage the positive pairs without directly contrasting to negative pairs (Garrido et al., 2023).
Distillation methods (Grill et al., 2020; Chen & He, 2021; Caron et al., 2021; Zhou et al., 2022)
exclusively use positive pairs and avoid degenerate solution by adaptions of the architecture while
covariance based (Zbontar et al., 2021; Bardes et al., 2021; Ermolov et al., 2021) decorrelate em-
beddings over the embedding-space (Garrido et al., 2023). The masked learning approaches (He
et al., 2022; Zhou et al., 2022) are not based on multi-view invariance but typically require certain
encoder architectures. Despite self-distillation methods have been effective in SSL there is missing
theoretical foundation, and in some areas the architecture cannot be used for example multi-modal
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(4) interleave updates of  and 
for subsequent stochastic approximation

(5) stochastically approximate  and 
to enable mini-batch updates

(3) generalize  with non-uniform 
to adaptively downplay effect of negative pairs

(2) choose a  more flexible divergence 
to make the objective additively separable 

over  for a fixed 

(1) interpret contrative learning as tensor
approximation 

Figure 1: Development clue of our method.

representation learning (Radford et al., 2021; Qiu et al., 2023) and for recent domain agnostic ap-
proaches (Sui et al., 2024), where contrastive approaches are more effective.

2.3 NEIGHBOR EMBEDDING METHODS

Neighbor embedding (Hinton & Roweis, 2002) (NE) is set of approaches which use the neigh-
borhood graph from the input space as pseudo-labels for the mapped representations. Two pair-
wise probability matrices P and Q denotes the neighborhood graphs where Pij and Qij respec-
tively gives the probability of i and j being neighbor in the input-space and representation-space
(Hinton & Roweis, 2002; van der Maaten & Hinton, 2008). To obtain this approximation a di-
vergence D(P ||Q) is minimized between the pairwise probabilities. Initially SNE (Hinton &
Roweis, 2002) normalized the probabilities row-wise which means minimizing a sum of divergences
D(P ||Q) =

∑
iD(Pi:||Qi:). In t-SNE (van der Maaten & Hinton, 2008) the probabilities are

symmetric, normalized matrix-wise and minimized over one divergence typically Kullback-Leilber
divergence D(P ||Q) =

∑
i̸=j Pij log

Pij

Qij
.

It is conceivable a practical difficulty to compute the normalized probabilities P and Q. Most solu-
tions can evaluate P offline however the probabilities in Q have to be re-normalized each iteration
of optimization. Sampling based approaches UMAP (McInnes et al., 2018), TriMap (Amid & War-
muth, 2019), LargeVis (Tang et al., 2016), SCE (Yang et al., 2023) and PaCMAP (Wang et al., 2021)
are not subject to this and can in many cases have better performance than t-SNE (McInnes et al.,
2018; Wang et al., 2021; Damrich et al., 2023).

Contrastive learning aspects of NE-method where discussed at three papers at the ICLR 2023 con-
ference by Böhm et al. (2023); Damrich et al. (2023); Hu et al. (2023). Damrich et al. (2023); Hu
et al. (2023) discuss how SimCLR’s contrastive loss in SSL can be thought of as a parametric t-SNE
where the data augmentations are treated as sampling from a nearest graph and show that SimCLR
with a Cauchy distribution often used in t-SNE can be very effective for NLDR on complex images
where a euclidean metric is inadequate (Bengio et al., 2013). PCA and contrastive learing have been
discussed in Tian (2022), and spectral methods and SSL have been brought up in (Balestriero &
LeCun, 2022; HaoChen et al., 2021; Tan et al., 2024; Garrido et al., 2023).

3 OUR METHOD

3.1 REVIEW OF STOCHASTIC CLUSTER EMBEDDING

Our method is inspired by Stochastic Cluster Embedding (SCE; Yang et al., 2023), a similarity-
based nonlinear dimensionality reduction (NLDR) method. SCE first computes a similarity matrix
p that encodes the pairwise similarities between the high-dimensional data instances {xi}Ni=1. Then
it finds low-dimensional embedding {yi}Ni=1 such that the pairwise similarities in the embedding
space qij = q(yi,yj) are close to those in the high-dimensional space. Usually qij = q(yi,yj) is
defined to be exp(−∥yi − yj∥2) or 1

1+∥yi−yj∥2 .
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SCE employs a more flexible matrix divergence than the Kullback-Leibler (KL) in t-SNE:

DI(p||sq) =
N∑
i=1

N∑
j=1,j ̸=i

[
pij log

pij
sqij
− pij + sqij

]
, (1)

where s > 0 is a scaling factor. The divergence is called non-normalized KL-divergence or I-
divergence. It measures the discrepancy between two matrices up to a scale. When s−1 =

∑
ij qij ,

minimizing the I-divergence reduces to minimizing the normalized KL-divergence. Differently, SCE
periodically updates s−1 =

∑
ij,i ̸=j wijqij , where wij = αpijN(N − 1)+ (1−α) with α ∈ [0, 1].

When α = 0, it reduces to the t-SNE choice. When α > 0, it mixes p and uniform sampling
in calculating s, which adaptively reduces repulsion and thus improves cluster visualization (Yang
et al., 2023).

3.2 CONTRASTIVE LEARNING LOSS FUNCTION

SCE cannot be directly applied to contrastive learning due to several limitations: (1) SCE relies on
fixed input similarities and cannot generalize to data points outside the training set; (2) its similari-
ties are typically computed using simple metrics like Euclidean distances, which are inadequate for
complex data objects such as images; and (3) SCE lacks mini-batch training algorithms tailored for
contrastive learning. To address these issues, we introduce three key modifications: (1) we param-
eterize the embedding function using a deep neural network, y = f(x; θ), where θ represents the
network weights; (2) we define similarities based on data and augmented view indices, eliminating
the dependency on Euclidean or similar metrics for neighbor search before embedding; and (3) we
propose stochastic approximation algorithms for the resulting learning objective and scaling factor.
The progression of our development is illustrated in Figure 1.

For each input xi, we obtain its two augmented views x̃(1)
i and x̃

(2)
i (one of the augmentation can

be identity transform). Denote ỹ
(u)
i = f

(
x̃
(u)
i ; θ

)
and qu,vij = q

(
ỹ
(u)
i , ỹ

(v)
j

)
for i, j ∈ {1, . . . , N}

and u, v ∈ {1, 2}. In contrastive learning, a well-trained neural network should make the outputs
ỹ
(1)
i and ỹ

(2)
i from the same input instance xi to be similar and the outputs from different instances

(i.e., i ̸= j) to be dissimilar. If we specify the similar target to be 1 and dissimilar to be 0, we
can write the targets in a four-dimensional tensor p ∈ RN×N×2×2, where p1,2ii = p2,1ii = 1 for
i = 1, . . . , N and otherwise 0. Alternatively, we can reorgainze the tensors p and q in two 2N ×2N
matrices where ψ2(i−1)+u,2(j−1)+v = pu,vij and ϕ2(i−1)+u,2(j−1)+v = qu,vij . Then we can formulate
contrastive learning as a matrix approximation problem by minimizing DI(ψ||sϕ).
We neglect the matrix diagonal of ψ and ϕ in the approximation because qu,uii ’s are always a constant
for Gaussian or Cauchy kernels. For notational simplicity, we set pu,uii = qu,uii = 0 for i = 1, . . . , N
and u = 1, 2, i.e., ψaa = ϕaa = 0 for a = 1, . . . , 2N , which is equivalent to excluding them from
the summations.

Because there are only a few nonzeros in ψ, we can rewrite DI(ψ||sϕ) as

LCLR(θ) =

2N∑
a=1

2N∑
b=1

[
ψab log

ψab

sϕab
− ψab + sϕab

]
(2)

=

N∑
i=1

−2 log q1,2ii + s

N∑
i=1

N∑
j=1

2∑
u=1

2∑
v=1

qu,vij + C1, (3)

where C1 = −2N − 2N log s is a constant for a fixed s. Following SCE, we periodically updates
s−1 =

∑
ijuv w

u,v
ij qu,vij with

wu,v
ij = αpu,vij N + (1− α) =

{
αN + (1− α) when i = j

1− α otherwise.
(4)

When α = 0, s−1 becomes
∑

ijuv q
u,v
ij and leads to normalized KL-divergence between ψ and ϕ.

This generalization brought by w can adaptively change the tradeoff between the first two terms in
LCLR(θ). At the training start, the non-zero q entries do not differ much, and thus s−1 ≈

∑
ijuv q

u,v
ij .
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After minimizing the discrepancy for a while, qu,vii ’s (u ̸= v) will become larger because of approxi-
mating p. When α > 0, the matrix w concentrates more on the entries where i = j, and the resulting
s−1 becomes larger than the uniform choice of w (i.e., α = 0 or the normalized KL). Therefore,
the generalization with α > 0 dynamically emphasizes the first term, which contains the learning
signals p, and downplays the second term without learning signals.

3.3 MINIBATCH-MODE OPTIMIZATION

It is expensive to directly optimize the CL objective because it requires all pairs of data instances.
Stochastic approximation is needed to facilitate minibatch-mode optimization. We first rewrite
LCLR(θ) in an expectation manner

LCLR(θ) = NEi∼Uniform({1,...,N})

{
−2 log q1,2ii + sNEj∼Uniform({1,...,N})

{
2∑

u=1

2∑
v=1

qu,vij

}}
. (5)

Our method, named Stochastic Approximation to Contrastive Learning (SACLR), minimizes the
following minibatch-mode objective

LSACLR(θ) =
∑
i∈B

−2 log q1,2ii + s
N

M

∑
j∈Mi

2∑
u=1

2∑
v=1

qu,vij

 , (6)

where B = {i1, . . . , iB} ⊂ [1, . . . , N ], Mi ⊆ B, and M = |Mi| for all i. We have
studied two choices of Mi’s: (1) SACLR-1 where M = 1, and the objective simplifies to∑

i∈B

[
−2 log q1,2ii + sN

∑
uv q

u,v
ij

]
with j ∼ B; and (2) SACLR-all where M = B uses all nega-

tive pairs in the batch. The gradients of LSACLR(θ) can then be used in Stochastic Gradient Descent
or Adam-style optimization (Kingma & Ba, 2014).

3.4 EXPONENTIAL MOVING AVERAGE OF s

The scaling factor s can also be calculated in an expectation manner:

s−1 =

N∑
i=1

N∑
j=1

2∑
u=1

2∑
v=1

[
αpu,vij N + (1− α)

]
qu,vij (7)

= N2Ei∼Uniform({1,...,N})

{
2αq1,2ii + (1− α)Ej∼Uniform({1,...,N})

{
2∑

u=1

2∑
v=1

qu,vij

}}
. (8)

Therefore ξ = N2

B

∑
i∈B

(
2αq1,2ii + (1− α) 1

M

∑
j∈Mi

∑2
u=1

∑2
v=1 q

u,v
ij

)
is the stochastic ap-

proximation of s−1 in a minibatch. We can then use an exponential moving average to update
the estimate of s−1 ← ρs−1 + (1− ρ)ξ with a forgetting rate ρ ∈ (0, 1) after each batch.

3.5 APPROXIMATION TO MATRIX ROWS

We have derived SACLR with matrix-wise approximation to ψ by following SCE in the above.
Next, we present the row-wise approximation to ψ, which gives a more direct connection to the
cross-entropy based contrastive InfoNCE loss functions practised by the existing SimCLR and DCL
(Yeh et al., 2022) unbounded by the number of negative samples.

We define ∀a, ψa: = {ψab|b ∈ {1, . . . , N} \ {a}}, i.e., the a-th row of ψ with the diagonal ele-
ment excluded. ϕa: is similarly defined over ϕ. We can then apply DI(ψa:||saϕa:) to measure the
discrepancy between ψa: and ϕa: up to a scaling sa. The contrastive learning function becomes

LCLR-row(θ) =

2N∑
a=1

DI(ψa:||saϕa:) (9)

=

N∑
i=1

−2 log q1,2ii +

2∑
u=1

s2(i−1)+u

N∑
j=1

2∑
v=1

1[i̸=j or u̸=v]q
u,v
ij

+ C2 (10)
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Algorithm 1 SACLR algorithm (using matrix row approximation)

Input: Input data {xi}Ni=1, weighting rate α ∈ [0, 1], forgetting rate ρ ∈ (0, 1), number of iterations
T , batch size B, number of negative samples M , and a neural network f (parameterized by θ).

1: Initialize the neural network f , and si ← 1/N for i = 1, . . . , N
2: for t = 1, . . . , T do
3: Uniformly draw B = {i1, . . . , iB} from {1, . . . , N}
4: Augment xi to x̃

(1)
i and x̃

(2)
i for i ∈ B

5: L ← 0
6: for i ∈ B do
7: Compute q1,2ii = q

(
f(x̃

(1)
i ; θ), f(x̃

(2)
i ; θ)

)
8: Uniformly drawMi = {j1, . . . , jM} from B
9: Compute qu,vij = q

(
f(x̃

(u)
i ; θ), f(x̃

(v)
j ; θ)

)
for j ∈Mi, u ∈ {1, 2}, and v ∈ {1, 2}

10: L ← −2 log q1,2ii
11: for u ∈ {1, 2} do
12: L ← L+ s2(i−1)+u

N
M

∑
j∈Mi

∑2
u=1

∑2
v=1 qij

13: ξ2(i−1)+u ← N(2αq1,2ii + (1− α) 1
M

∑
j∈Mi

∑2
v=1 q

u,v
ij )

14: s−1
2(i−1)+u ← ρs−1

2(i−1)+u + (1− ρ)ξ2(i−1)+u

15: end for
16: end for
17: Update θ with∇θL using an SGD or Adam-style step.
18: end for
Output: Trained neural network f .

where 1[·] = 1 when the bracketed condition is true and otherwise 0, andC2 = −2N−
∑2N

a=1 log sa
is a constant for fixed sa’s.

The row approximation objective is connected to SimCLR (proof in Appendix A.5):

Theorem 1. When s−1
2(i−1)+u =

∑
jv 1[i̸=j or u̸=v]q

u,v
ij ,∀i, u, minimizing LCLR-row(θ) is equivalent

to minimizing1 LSimCLR(θ) = −
∑N

i=1

∑2
u=1 log

q1,2ii∑N
j=1

∑2
v=1 1[i̸=j or u̸=v]q

u,v
ij

.

Differently, we employ a generalization s−1
2(i−1)+u =

∑
jv = wu,v

ij qu,vij with non-uniform w defined
in Eq. 4. The change adaptively reduces the effect of negative pairs and leads to improvements in
our experiments.

The row-wise approximation version of SACLR objective is

LSACLR-row(θ) =
∑
i∈B

−2 log q1,2ii +

2∑
u=1

s2(i−1)+u
N

M

∑
j∈Mi

2∑
v=1

qu,vij

 (11)

The expectation form of s2(i−1)+u equals N
[
αq1,2ii + (1− α)Ej∼Uniform({1,...,N})

{∑2
v=1 q

u,v
ij

}]
,

and its stochastic approximation is ξ2(i−1)+u = N
(
αq1,2ii + (1− α) 1

M

∑
j∈Mi

∑2
v=1 q

u,v
ij

)
. with

the EMA update rule s−1
2(i−1)+u ← ρs−1

2(i−1)+u + (1− ρ)ξ2(i−1)+u.

This version of SACLR require 2N scaling factors. In practice, the two scaling factors of each data
instance will be very similar. Therefore we can ease the requirement by only usingN scaling factors
in the actual implementation. The same strategy is also used by SogCLR (Yuan et al., 2022) and
iSogCLR’s (Qiu et al., 2023). The pseudocode of SACLR using matrix row approximation is given
in Algorithm 1. The version using matrix-wise approximation is similar and given in Appendix A.6.

1The original SimCLR use exponential over cosine similarities. They are equivalent to the Gaussian kernels
given that ỹ(1)

i ’s and ỹ
(2)
i ’s are normalized.
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Table 1: Top-1 linear validation accuracy on ImageNet100. ∗ marks improved results reported by
Qiu et al. (2023). Standard deviations are from three different runs.

Method Batchsize 400EP
SACLR-1 matrix (ours) 128 82.30 (± 0.46)
SACLR-1 row (ours) 128 81.59 (± 0.07)
SimCLR (Chen et al., 2020a) ∗ 256 79.96 (± 0.2)
SogCLR (Yuan et al., 2022) ∗ 256 80.54 (± 0.14)
iSogCLR (Qiu et al., 2023) ∗ 256 81.14 (± 0.19)

Table 2: Top-1 linear validation accuracy on ImageNet1k. Standard deviations are from three dif-
ferent runs.

Method Batchsize 100EP 400EP
SACLR-1 matrix (ours) 128 64.94 ± (0.16) 67.57 (± 0.01)
SACLR-1 row (ours) 128 64.78 (± 0.05) 67.50 (± 0.14)
SimCLR (Chen et al., 2020a) 256 62.80 65.70
SogCLR (Yuan et al., 2022) 128 64.90 67.40

4 EXPERIMENTS

We employ our methods on color images from ImageNet (Russakovsky et al., 2015) and CIFAR
(Alex, 2009). The image augmentations and network architecture on ImageNet follows SimCLR
(Chen et al., 2020a), LARS-optimizer (You et al., 2017) and the projector from VIC-REG (Bardes
et al., 2021). Evaluation follows the linear evaluation protocol on frozen representations from the
backbone. Full implementation details on ImageNet are described in Appendix A.1 and on CIFAR
in Appendix A.2. While the introduced algorithms can work withM > 1 negative samples we focus
on SACLR with M = 1 and use M ≫ 1 for ablations.

ImageNet: We find that our methods achieve good results from image SSL-pretraining on a merited
image-dataset as ImageNet. The results show that our methods can consistently have improvements
to many existing CL-approaches in the low batchsize setting and in addition can be more memory
efficient. On ImageNet we compare our methods to existing CL approaches such as SimCLR (Chen
et al., 2020a), and recent stochastic estimation based CL approaches SogCLR (Yuan et al., 2022)
and iSogCLR (Qiu et al., 2023). All methods are pretrained for different amounts of epochs and
each reported value is from one run from scratch. The linear classification accuracies after image-
pretraining on ImageNet100 (Wu et al., 2019) are presented in Table 1 and the results on ImageNet1k
(Russakovsky et al., 2015) are presented in Table 2. We exclusively report values from each methods
respective paper unless explicitly mentioned. The full results from image pretraining on ImageNet1k
and ImageNet100 are presented in Table 5 and Table 6 in Appendix. Remarkably we see that with
M = 1 negative samples per anchor SACLR can give performance improvements to SimCLR and
SogCLR-variants which use M ≫ 1 on both ImageNet1k and ImageNet100. We prove that our
methods are also very effective for unsupervised cluster visualization in Figure 2.

CIFAR: We also include results with a ResNet18 encoder on CIFAR and Imagenette (10 class subset
of ImageNet; Howard, 2019) in Tables 3 and 4. We pretrain for 1000 epochs on CIFAR and 800
epochs on Imagenette. On CIFAR the classifer is a linear layer and we include reported values of
SimCLR and SimSiam from solo-learn da Costa et al. (2022). On Imagenette we use 20NN classifier
from scikit-learn (Pedregosa et al., 2011) with cosine-weighting w = exp(CosSim(a,b)/0.07) (Wu
et al., 2018; Caron et al., 2021; Balestriero et al., 2023) and find reported values from Lightly AI 2.

Whereas existing approaches in CL typically are advised to findM ≫ 1 negative samples per anchor
(Chen et al., 2020a; He et al., 2020; Yeh et al., 2022; Damrich et al., 2023) or require additional
variables to network parameters which scale with the number of input-instances N (Yuan et al.,
2022; Qiu et al., 2023), our methods can leverage M = 1 negative sample per anchor and a single
additional variable devoted for the stochastic estimation. A more comprehensive overview of these

2https://docs.lightly.ai/self-supervised-learning/getting_started/
benchmarks.html
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Table 3: Top 1 accuracy with a linear classifier on CIFAR. Results marked with ∗ are from solo-learn
(da Costa et al., 2022) and ∗∗ are from Qiu et al. (2023). Standard deviations are from three different
runs.

Method CIFAR10 CIFAR100
SACLR-1 matrix (ours) 93.07 (± 0.17) 70.22 (± 0.38)
SACLR-1 row (ours) 92.86 (± 0.08) 70.39 (± 0.3)
SACLR-all matrix (ours) 92.91 70.89
SACLR-all row (ours) 92.98 71.50
SimCLR (Chen et al., 2020a) ∗ 90.74 65.78
SogCLR (Yuan et al., 2022)∗∗ 90.07 (± 0.10) 65.18 (± 0.10)
iSogCLR (Qiu et al., 2023)∗∗ 90.25 (± 0.09) 65.95 (± 0.07)
SimSiam (Chen & He, 2021) ∗ 90.51 66.04
ReSSL (Zheng et al., 2021) ∗ 90.63 65.92

Table 4: Top-1 accuracy using a 20NN-classifier for CIFAR and Imagenette datasets.

Method CIFAR10 CIFAR100 Imagenette
SACLR-1 matrix (ours) 91.65 (± 0.01) 67.02 (± 0.21) 90.74 (± 0.04)
SACLR-1 row (ours) 91.75 (± 0.06) 67.33 (± 0.03) 90.68 (± 0.2)
SACLR-all matrix (ours) 91.83 67.89 -
SACLR-all row (ours) 91.87 68.05 -
SimCLR (Chen et al., 2020a) 90.59 ∗ 65.32 ∗ 88.90
SogCLR (Yuan et al., 2022) 89.98 65.95 -
iSogCLR (Qiu et al., 2023) 91.69 68.85 -
SimSiam (Chen & He, 2021) 90.83 ∗ 66.43 ∗ 87.20
ReSSL (Zheng et al., 2021) 90.80 ∗ 66.08 ∗ -

memory requirements are demonstrated in Table 7 in Appendix. More tables of runtime and memory
usage in Appendix A.3 are found in Table 8, 9 and 10.

5 ABLATION STUDIES

We perform ablations to see the effect of different forgetting rates, weighting rates, global compared
to individualized adaptive scaling parameters and M negative samples per anchor in Appendix A.4.
The findings are that our methods are robust against hyperparameters and fewer negative samples.

This work presented a matrix-method with a one global adaptive scaling factor and a row-method
with individualized adaptive scaling factors. We study the impact of the respective methods in Table
14 in Appendix. Surprisingly we find that the matrix-method performs better or evenly to the row-
method which has a cost of more variables. Visual example is shown in Figure 3 where we log the
positive and negative values with the estimated partition function(s) after each epoch. While the row-
method can offer a more specific estimate especially in the early stages it might seem to converge
to a similar value in the later stages. We also observe a negligible difference between SACLR with
M = 1 negative sample compared to the full batch mode version where M = 2× 128− 2.

The hyperparameters of most importance are the forgetting rate ρ and weighting rate α, in addition
to initialization of scaling factors. We tune the forgetting rate ρ on Imagenette in Table 12 and Table
13 in Appendix. We find that ρ = 0.99 works best for the matrix-method and ρ = 0.9 for the row-
method. The matrix-method re-estimates the scaling factor after each minibatch which is contrary
to the row-method which re-estimates per instance approximately at each epoch, see Alg.(1) and
Alg.(2) for more details. A consequence of this can be a necessity to use a higher forgetting rate,
which is demonstrated in Table 13 with a linear classifier. The weighting rate α is ablated in Table
15 on ImageNet for SACLR-1. We initially set α = 0.5 and see that setting a lower weighting-rate
α = 0.125 gives better performance.
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Figure 2: Embedding visualizations of Imagenette dataset. All compared methods used the Cauchy
kernel and were trained with raw images. We followed the strategies by Böhm et al. (2023): we first
pretrained the models in 8192-dimensional space over 800 epochs and then finetuned a 2D projector
over 250 epochs. SACLR-1 used M = 1 negative sample while SimCLR used M = 128 × 2 − 2
for each image in a batch.
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Figure 3: Optimization dynamics: positive and negative values with estimated partition function(s)
on Imagenette. We include the variability for the row method with standard deviations.

6 CONCLUSION AND FUTURE WORK

We have approached contrastive learning as a matrix approximation problem. A key component
of our method is an adaptive scaling factor, which optimizes separable similarities and enables
memory-efficient stochastic approximation algorithms. This allows our approach to require signifi-
cantly smaller training batches and as few as one negative pair, making it substantially more efficient
than other contrastive learning techniques. Despite its economical design, our method has demon-
strated the effectiveness of SACLR on CIFAR and ImageNet classification tasks, with consistent
performance improvements to the compared methods.

In the future, our work could be extended in several promising directions. One potential area of
improvement is integrating contextual learning within individual data instances, in addition to the
contrastive learning across data populations. By capturing more detailed relationships within a
single data sample, such as spatial or sequential patterns, we could significantly enhance the model’s
ability to learn richer, more nuanced representations. This integration could improve performance
in tasks that require fine-grained understanding, like object detection or temporal data analysis.

Another direction is replacing the traditional convolutional neural network with more advanced ar-
chitectures, such as self-attention-based models like the Transformer. Self-attention mechanisms
have shown remarkable success in capturing long-range dependencies and global patterns in var-
ious domains. Incorporating this into our framework could lead to more expressive models that
can handle more complex data types, such as video or multi-modal inputs, while further improving
efficiency and performance.
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REPRODUCIBILITY STATEMENT

The code is made available and the README includes examples of how to reproduce the results.
In addition we provide description of data processing and implementation details in A.1 and A.2.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS IMAGENET

A.1.1 DATASETS AND AUGMENTATIONS

ImageNet is an eminent image-dataset and contains color images from rich range of different classes.
This work use the subsets ImageNet1k (Russakovsky et al., 2015) (ILSVRC2012) which contains
1,281,167 training images from 1000 different classes, and ImageNet100 (Wu et al., 2019) which
contains 126,689 training images from 100 different classes. The pre-defined training and validation
split are used, and we evaluate our methods on the validation set, similar to existing work. For
ablations and hyperparameter tuning shorter runs and the image-dataset Imagenette (Howard, 2019)
are used. Imagenette is a subset from ImageNet with 10 different classes. All images from ImageNet
are resized to two (224 × 224) image views without any multi-crop from Caron et al. (2020). All
images are applied the augmentations from SimCLR (Chen et al., 2020a) during pretraining, and we
use the augmentation implementations from torchvision. We download ImageNet (ILSVRC2012)
from the official website and apart from that use the built-in datasets to torchvision.

A.1.2 ARCHITECTURE

The neural network architecture in this work adhere to SimCLR (Chen et al., 2020a), and contains
a backbone encoder and a projector. The backbone encoder is a ResNet50 (He et al., 2016) and the
projector is the 3-layered MLP from VIC-REG (Bardes et al., 2021). The projector is applied on the
output of the ResNet’s avg-pooling layer and the output of each linear layer is 8192-d. We use the
ResNet architecture from torchvision.

A.1.3 OPTIMIZATION

The neural network optimizer in this work is the LARS-optimizer (You et al., 2017) with the
square-root learning rate scaling for low batchsizes proposed by SimCLR (Chen et al., 2020a)
lr =

√
batchsize × 0.075, and weight decay wd = 10−4. The learning rate is linearly warmed

up the 10 first epochs and then annealed with a cosine schedule (Loshchilov & Hutter, 2016) until it
reaches lr/1000. The default batchsize is 128.

A.1.4 LINEAR EVALUATION

Evaluation follows the linear classifier protocol on frozen backbone representations (Zhang et al.,
2016; Balestriero et al., 2023). This work keep the optimization settings from Caron et al. (2020);
Zbontar et al. (2021) with SGD-optimizer, momentum = 0.9, wd = 10−6 and lr = 0.3. The
learning rate is annealed with a cosine-scheduler down to zero over 100 epochs. During training we
use random-cropping, -resizing and horizontal flipping, and we test with a center crop.

A.1.5 LOSS FUNCTION HYPERPARAMETERS

This work set by default weighting rate α = 0.125. The forgetting rate is tuned ρ ∈
{0.9, 0.99, 0.999} on Imagenette. The adaptive scaling parameter(s) are initialized such that the
partition function(s) at start correspond to 0.01, e.g. s = N−2102 where N is the number of train-
ing images.

A.1.6 SIMILARITY FUNCTION

The similarity function in this work is a squared exponential kernel

q
(
yi,yj

)
= exp(−∥yi − yj∥2/2τ2) (12)

on the unit-sphere normalized neural network output yi = yi/∥yi∥ and yj = yj/∥yj∥, with a
chosen temperature τ ∈ R+. In this work we set τ = 0.5.
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Table 5: ImageNet100: Top 1 linear validation accuracy on ImageNet100 with ResNet50. ∗ is a
mark of improved results reported by Qiu et al. (2023). Standard deviations are from three different
runs.

Method Batchsize 400EP
SACLR-1 matrix (ours) 128 82.30 (± 0.46)
SACLR-1 row (ours) 128 81.59 (± 0.07)
SACLR-all matrix (ours) 128 82.50
SACLR-all row (ours) 128 82.18
SimCLR (Chen et al., 2020a) ∗ 256 79.96 (± 0.2)
SogCLR (Yuan et al., 2022) ∗ 256 80.54 (± 0.14)
iSogCLR (Qiu et al., 2023) ∗ 256 81.14 (± 0.19)

Table 6: ImageNet1k: Top 1 linear validation accuracy on ImageNet1k with ResNet50. Standard
deviations are from three different runs.

Method Batchsize 100EP 400EP
SACLR-1 matrix (ours) 128 64.94 (± 0.16) 67.57 (± 0.01)
SACLR-1 row (ours) 128 64.78 (± 0.05) 67.50 (± 0.14)
SACLR-all row (ours) 128 65.90 67.34
SACLR-1 row (ours) 256 65.35 -
SACLR-all row (ours) 256 66.75 -
SimCLR (Chen et al., 2020a) 256 62.80 65.70
SogCLR (Yuan et al., 2022) 128 64.90 67.40

A.1.7 COMPUTE REQUIREMENTS

This work use exclusively one GPU setups with at least 24 GB VRAM. On ImageNet we pretrain
with Nvidia H100 and Nvidia A100 GPUs on a SLURM cluster, and use a Nvidia RTX4090 for
other datasets.

A.2 IMPLEMENTATION DETAILS CIFAR

CIFAR (Alex, 2009) contains downsampled (32× 32) color images with 10 different classes in CI-
FAR10 and 100 different classes in CIFAR100. The experimental setup on CIFAR is more or less
the same to the setup on ImageNet in A.1 but add a few alternations to downsampled (32 × 32)
images following Chen et al. (2020a); Chen & He (2021). The ResNet-architecture and image aug-
mentations are adapted to CIFAR (Chen et al., 2020a). The optimization settings for unsupervised
pretraining and linear frozen evaluation are the same to Chen & He (2021) on CIFAR10.

A.3 ADDITIONAL RESULTS

We compare our methods to existing CL methods as SimCLR (Chen et al., 2020a) and its recent
improvements SogCLR (Yuan et al., 2022) and iSogCLR (Qiu et al., 2023) for low batchsize settings.
All methods use ResNet50 backbone and augmentation strategies from Chen et al. (2020a) on two
(224 × 224) image views. The full results from the linear classifier after image-pretraining on
ImageNet100 are shown in Table 5 and on ImageNet1k in Table 6. Results of SACLR use α =
0.125. We provide an overview of computational costs and additional memory requirements for our
own methods and existing stochastic estimation based CL-approaches in Table 7, 8, 9 and 10.

A.4 ABLATION RESULTS

We continue from Section 5 with more details of investigations into effects of number of negative
samples, approximation-methods and choice of hyperparameters. By default we set α = 0.5 for
these trials. The forgetting rate is tuned ρ ∈ {0.9, 0.99, 0.999} on Imagenette (Howard, 2019),
where we pretrain for 400 epochs and use a separate validation set split (20%) from the training set.
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Table 7: Memory complexity and additional memory complexity to network parameters. We
compare memory efficiency and required extra variables for the stochastic estimation between CL
methods. We denote the number of input instances by N , negative samples per anchor M and
batchsize B.

Method M Additional variables

SACLR-1 matrix-method (ours) 1 1
SACLR-1 row-method (ours) 1 N
SACLR-all matrix-method (ours) 2B - 2 1
SACLR-all row-method (ours) 2B - 2 N
SimCLR (Chen et al., 2020a) 2B - 2 0
SogCLR (Yuan et al., 2022) 2B - 2 N
iSogCLR (Qiu et al., 2023) 2B - 2 4N

Table 8: Computational costs on CIFAR. GPU peak memory usage over large batch training over
ranges B often used with the LARS (You et al., 2017) optimizer. In this study the network is a
ResNet18 on CIFAR10 over 10EP. The last fc-layer has 128 units. We downloaded the PyTorch
implementations from SogCLR (Yuan et al., 2022) and iSogCLR (Qiu et al., 2023) in this study.
Experiments conducted on a 10 core CPU with 32GB RAM and NVIDIA H100 80GB VRAM
GPU. 1K denote 1024 and values over 80GB are OOM-errors.

Method \B 128 1K 2K 4K 8K 16K 32K

SACLR-1 1.17 GB 2.69 GB 4.38 GB 7.59 GB 14.35 GB 27.12 GB 53.17 GB
SACLR-all 1.17 GB 2.73 GB 4.58 GB 8.50 GB 17.73 GB 39.44 GB > 80GB
SimCLR 1.17 GB 2.69 GB 4.43 GB 7.94 GB 15.48 GB 30.42 GB > 80GB
SogCLR 1.17 GB 2.78 GB 4.62 GB 8.74 GB 17.70 GB 50.92 GB > 80GB
iSogCLR 1.17 GB 2.73 GB 4.50 GB 7.99 GB 14.72 GB 38.92 GB > 80GB

We report accuracy with the linear classifier in Table 12 and Table 13. The impact of applying row-
based estimation compared to matrix-based estimation is studied in ImageNet1k over 100 epoch runs
and ImageNet100 with a linear classifier in Table 14. Notably we see that the number of negative
samples do not leave a significant impact on SACLR from Table 12, Table 13 and Table 14. The
weighting term is ablated with a linear classifier over shorter 100 epoch runs on ImageNet1k and
ImageNet100 in Table 15. We see that a lower weighting term α < 0.5 can be better for SACLR-1.
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Table 9: Computational costs on MNIST. GPU peak memory usage from large batch training
settings often used with the LARS (You et al., 2017) optimizer on MNIST with different batchsize
B. Now we use only a linear layer with 128 units to isolate the impact of loss functions as much
as possible. We downloaded the PyTorch implementations from SogCLR (Yuan et al., 2022) and
iSogCLR (Qiu et al., 2023) in this study. We used a NVIDIA H100 80GB GPU and 10 core CPU
with 32GB. All values over 80GB are OOM-errors.

Method \B 128 1K 2K 4K 8K 16K 32K

SACLR-1 0.80 GB 0.82 GB 0.84 GB 0.86 GB 0.90 GB 1.03 GB 1.37 GB
SACLR-all 0.80 GB 0.92 GB 1.20 GB 2.31 GB 6.85 GB 24.93 GB >80GB
SimCLR 0.80 GB 0.88 GB 1.05 GB 1.75 GB 4.58 GB 15.89 GB 61.02 GB
SogCLR 0.80 GB 0.97 GB 1.38 GB 3.06 GB 9.83 GB 36.90 GB >80GB
iSogCLR 0.80 GB 0.90 GB 1.18 GB 2.31 GB 6.84 GB 24.89 GB >80GB

Table 10: Runtime and computational costs. Time complexity and peak memory usage during 100
epoch training on CIFAR10 with the highest batchsize possible 16384 for a NVIDIA H100 80GB
GPU without any OOM error. Here M is the number of negative samples per image in batch. We
used the respective PyTorch implementations from SogCLR (Yuan et al., 2022) and iSogCLR (Qiu
et al., 2023) in this study. The network is a ResNet18.

Method Time / 100 epochs Peak GPU memory M

SACLR-1 matrix-method (ours) 0.44h 27.12 GB 1
SACLR-1 row-method (ours) 0.44h 27.12 GB 1
SACLR-all matrix-method (ours) 0.43h 39.44 GB 16384×2 - 2
SACLR-all row-method (ours) 0.44h 39.44 GB 16384×2 - 2
SimCLR (Chen et al., 2020a) 0.43h 30.42 GB 16384×2 - 2
SogCLR (Yuan et al., 2022) 0.50h 50.92 GB 16384×2 - 2
iSogCLR (Qiu et al., 2023) 0.48h 38.92 GB 16384×2 - 2

A.5 PROOF OF THEOREM 1

Proof. When s−1
2(i−1)+u =

∑N
j=1

∑2
v=1 1[i̸=j or u̸=v]q

u,v
ij ,∀i, u

LCLR-row(θ) =

N∑
i=1

−2 log q1,2ii +

2∑
u=1

s2(i−1)+u

N∑
j=1

2∑
v=1

1[i̸=j or u ̸=v]q
u,v
ij

− 2N −
2N∑
a=1

log sa

(13)

=

(
N∑
i=1

−2 log q1,2ii

)
+ 2N − 2N −

2N∑
a=1

log sa (14)

=−
N∑
i=1

2∑
u=1

log q1,2ii +

N∑
i=1

2∑
u=1

log

N∑
j=1

2∑
v=1

1[i ̸=j or u ̸=v]q
u,v
ij (15)

=−
N∑
i=1

2∑
u=1

log
log q1,2ii∑N

j=1

∑2
v=1 1[i̸=j or u ̸=v]q

u,v
ij

(16)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 11: Time complexity Time complexity of updating s on CIFAR100 over 100 epochs for
SACLR-1 matrix. Each run were on a RTX 4080 12GB.

Time / 100EP

Normal Constant

0.67 h 0.67 h

Table 12: Row-method impact of forgetting rates ρ and M negative samples per anchor. Linear
classification accuracy on Imagenette after 400 epochs pretraining with ResNet50 and batchsize
B = 128. We set α = 0.5 for each method. We report accuracy on a separate validation set split
from the training set.

ρ

M = 1 M = 2× 128− 2

0.9 0.99 0.999 0.9 0.99 0.999

89.334 89.281 85.480 90.337 90.126 89.229

Table 13: Matrix-method impact of forgetting rates ρ andM negative samples per anchor. Lin-
ear classification accuracy on Imagenette after 400 epochs pretraining with ResNet50 and batchsize
B = 128. We set α = 0.5 for each method. We report accuracy on a separate validation set split
from the training set.

ρ

M = 1 M = 2× 128− 2

0.9 0.99 0.999 0.9 0.99 0.999

89.493 89.915 89.704 90.443 90.549 90.285

A.6 ALGORTIHMS
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Table 14: Impact of row-based estimation method compared to matrix-based estimation. Lin-
ear classification accuracy from pretraining with batchsize B = 128 and M negative samples per
anchor, where we set by default α = 0.5. We pretrain on ImageNet1k for 100 epochs and for 400
epochs on ImageNet100.

M = 1 M = 2× 128− 2

Row-method Matrix-method Row-method Matrix-method

ImageNet100 (400EP) 81.240 81.640 81.880 81.100
ImageNet1k (100EP) 63.638 63.560 64.053 63.594

Table 15: Impact of weighting term α. Ablation studies impact of weighting term on SACLR with
M = 1 negative samples per anchor.

Row-method Matrix-method

0.125 0.5 0.125 0.5

ImageNet100 (400Ep) 81.70 81.24 82.67 81.64
ImageNet1k (100Ep) 64.71 63.63 64.75 63.56

Algorithm 2 SACLR algorithm (using matrix-wise approximation)

Input: Input data {xi}Ni=1, weighting rate α ∈ [0, 1], forgetting rate ρ ∈ (0, 1), number of iterations
T , batchsize B, number of negative samples M , a neural network f with parameters θ.

1: Initialize the neural network f and s = 1/N2

2: for t = 1, . . . , T do
3: Uniformly draw B = {i1, . . . , iB} ⊂ {1, . . . , N}
4: Augment xi into x̃

(1)
i and x̃

(2)
i , ∀i ∈ B

5: Compute positive pairs {q1,2ii = q
(
f(x̃

(1)
i ; θ), f(x̃

(2)
i ; θ)

)
} for each i ∈ B

6: L ← 0, ξ ← 0
7: for i ∈ B do
8: Uniformly drawMi = {j1, . . . , jM} ⊆ B
9: Compute negative pairs qu,vij = q

(
f(x̃

(u)
i ; θ), f(x̃

(v)
j ; θ)

)
∀j ∈Mi, u, v ∈ {1, 2}

10: L ← L− 2 log q1,2ii + sN
M

∑
j∈Mi

∑2
u=1

∑2
v=1 q

u,v
ij

11: ξ ← ξ + N2

B

∑
i∈B

(
2αq1,2ii + (1− α) 1

M

∑
j∈Mi

∑2
u=1

∑2
v=1 q

u,v
ij

)
12: end for
13: s−1 ← ρs−1 + (1− ρ)ξ
14: Update θ with∇θL using an SGD or Adam-style step.
15: end for
Output: Trained neural network f .
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