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ABSTRACT

Molecular representation learning is pivotal for various molecular property pre-
diction tasks related to drug discovery. Robust and accurate benchmarks are
essential for refining and validating current methods. Existing molecular property
benchmarks derived from wet experiments, however, face limitations such as data
volume constraints, unbalanced label distribution, and noisy labels. To address
these issues, we construct a large-scale and precise molecular representation dataset
of approximately 140,000 small molecules, meticulously designed to capture an
extensive array of chemical, physical, and biological properties, derived through a
robust computational ligand-target binding analysis pipeline. We conduct exten-
sive experiments on various deep learning models, demonstrating that our dataset
offers significant physicochemical interpretability to guide model development
and design. Notably, the dataset’s properties are linked to binding affinity metrics,
providing additional insights into model performance in drug-target interaction
tasks. We believe this dataset will serve as a more accurate and reliable benchmark
for molecular representation learning, thereby expediting progress in the field of
artificial intelligence-driven drug discovery.

1 INTRODUCTION

Molecular Representation Learning (MRL) is crucial in leveraging artificial intelligence for drug
discovery applications. These applications span a range of areas, including molecular property
prediction Hu et al. (2019); Hou et al. (2022); Xia et al. (2022); Zhou et al. (2023); Feng et al.
(2023c), molecular dynamics simulation Zaidi et al. (2022); Feng et al. (2023b), chemical reaction
prediction Wang et al. (2021); Tang et al. (2024), drug-target interactions Feng et al. (2023a), and high-
throughput drug virtual screening Gao et al. (2024). The MRL approach uses deep learning models
to encode molecules into meaningful latent representations, effectively capturing and preserving their
molecular properties. The success of models heavily depends on the quality of evaluation datasets,
which reveal limitations and guide improvements in model design. From the aspect of application, a
more appropriate model can promote specific application scenarios.

There are now several datasets available for evaluating molecular representation learning models Wu
et al. (2018); Ramakrishnan et al. (2014); Chmiela et al. (2017); Davis et al. (2011); Tang et al. (2014).
Among them, MoleculeNet Wu et al. (2018) stands out as the most frequently utilized benchmark
for evaluating molecular representation models, especially within the domain of molecular property
prediction. It consists of a comprehensive range of properties sourced from various public datasets,
making it an acknowledged standard for assessing the efficacy of diverse molecular machine learning
methods. However, despite its popularity, MoleculeNet presents several challenges, including: 1)
Data Volume Constraints. A considerable number of the properties documented in MoleculeNet are
derived from costly and intricate wet experiments, resulting in a limited dataset size. As illustrated
in Figure 1a, more than half of the tasks in the MoleculeNet dataset comprise fewer than 10,000
data points. In such scenarios, models frequently encounter overfitting issues, which may worsen
under stricter split settings, such as scaffold split. 2) Unbalanced Label Distribution. Many of
MoleculeNet’s datasets exhibit severe label imbalances that can distort performance metrics. Figure 1b
illustrates the proportions of samples whose label equals 1 in all multi-label binary classification tasks
within MoleculeNet. It is evident that the majority of proportions tend to be closer to 0 or 1, indicating
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the prevalence of the unbalanced issue of MoleculeNet. 3) Label Noise. The dependency on wet
experiments introduces a degree of uncertainty in the dataset labels, some of which may be imprecise
due to the inherent limitations of experimental methods. This factor compromises the reliability of
the data. As pointed out by Walters (2023), numerous flaws exist within the MoleculeNet, including
invalid structures, undefined stereocenters, and conflicting labels caused by data curation errors.4)
Inconsistency. MoleculeNet compiles its data from several public databases, assigning different
molecular sets to each property task. This aggregation process not only leads to inconsistencies but
also allows batch effects to manifest. In summary, the various issues outlined make the results of
MoleculeNet unstable and susceptible to influence from factors such as varying hyperparameters and
random seeds. Consequently, many existing methods Zhou et al. (2023); Feng et al. (2023c); Yu et al.
(2023) resort to hyperparameter search techniques in pursuit of improved performance. However, the
dominance of hyperparameters over the method itself compromises the reliability of the benchmark
and poses challenges in accurately profiling methods.
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Figure 1: The statistical analysis of data numbers and label distribution about tasks in MoleculeNet.
(a) indicates that the majority of task datasets consist of fewer than 10,000 entries. (b) illustrates the
label distribution across all subtasks within each classification task. It is obvious that the proportions
of samples with a label value of 1 show a bias towards either extreme, indicating a significant
imbalance issue in MoleculeNet’s label distribution.

To address these issues, we propose MoleculeCLA: a large-scale benchmark for molecular property
prediction via computational ligand-target binding analysis(Figure 2). Ligand-target binding, which
is an important task in drug discovery, is a complicated process influenced by various molecular
properties Decherchi & Cavalli (2020). Consequently, docking tools are designed to incorporate
many different meaningful components to fit the final docking score. From these components, we
meticulously select diverse items relevant to physical, chemical, and biological molecular properties,
outlined in detail in Table 1. Notably, MolecueCLA is derived from a computational approach that
does not rely on wet experiments. This method not only enhances data accessibility but also scales
conveniently to accommodate large amounts of data.

Building on the above content, in this work, we construct a large-scale and precise dataset involving
10 representative protein targets spanning a wide range of drug functionalities. We use the docking
software Glide Friesner et al. (2004); Halgren et al. (2004) to obtain 9 properties for a total of
140,697 molecules, covering chemical, physical, and biological properties. We evaluate various MRL
methods, including traditional descriptor-based and deep-learning approaches. The performance
results are more stable and provide better explanations about the methods themselves, indicating that
our dataset is more robust and reliable. Additionally, these properties have a strong correlation with
binding affinity, enabling us to further use this dataset to select appropriate models for drug-target
interaction tasks.

2 DATASET

We explore a new paradigm for cultivating benchmarks through computational approaches for the
evaluation of MRL methods, avoiding expensive and noisy wet experiments while easily scaling to
large datasets. Our focus is on the ligand-protein binding process, which is closely related to drug
discovery. We extract chemical, physical, and biological properties of molecules from ligand-target
binding analyses using Glide. Each molecule binds to multiple protein targets in the same quantity.
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Figure 2: The overview of MoleculeCLA: diverse categories of molecular properties are derived
from the computation binding analysis. We assess methods like deep learning models and descriptors
through linear prob, MLP, and fine-tuning testing protocols. Results are presented via multiple
regression task metrics.

Tasks are organized and split by binding targets. In each task, we evaluate the model by regressing
different molecular properties relevant to binding to the same target, which can be treated as a constant
environment.

Table 1: Glide Properties for Molecular Property Benchmarking. Nine Glide-calculated molecular
properties are summarized and categorized into chemical, physical, and biological aspects. Each
property is described with its abbreviation, along with a brief explanation and the underlying molecular
characteristics it reflects.

Aspect Glide Property (Abbreviation) Description Molecular Characteristics

Chemical glide_lipo (lipo) Hydrophobicity Atom type, number
glide_hbond (hbond) Hydrogen bond formation propensity Atom type, number

Physical

glide_evdw (evdw) Van der Waals energy Size and polarizability
glide_ecoul (ecoul) Coulomb energy Ionic state
glide_esite (esite) Polar thermodynamic contribution Polarity
glide_erotb (erotb) Rotatable bond constraint energy Rotational flexibility

glide_einternal (einternal) Internal torsional energy Rotational flexibility

Biological docking_score (docking score) Docking score Binding affinity
glide_emodel (emodel) Model energy Binding affinity

2.1 DATA COLLECTION AND PROCESSING

We select approximately 14,000 highly diverse drug-like molecules from popular commercially
available libraries to ensure a broad representation of chemical space. These small molecules undergo
Glide typical computational ligand-target binding analysis protocols, including ligand preparation,
protein preparation, grid generation, and molecular docking. The docking results are meticulously
inspected and selected.

We carefully select 9 different properties generated by Glide, categorized into three groups: chemical,
physical, and biological. Details about these properties are listed in Table 1. In the chemical property
collection, glide_lipo and glide_hbond are included, describing hydrophobicity and hydrogen bond
formation, respectively. These properties are directly linked to the chemical composition of the
molecule itself (i.e., atom type and number). The physical property collection includes glide_evdw,
glide_ecoul, glide_erotb, glide_esite, and glide_einternal, all of which are computationally obtained
energy values (the ‘e’ in the property names stands for ‘energy’). These properties are mainly deter-
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mined by the physicochemical characteristics of the molecules. The biological property collection
includes docking_score, and glide_emodel, which represent the Glide-predicted binding affinity.
These properties are more correlated with the ligand-target binding process.

To comprehensively capture the properties exhibited by small molecules when interacting with various
targets, we chose 10 representative targets from multiple categories. These targets include both human
and viral proteins, covering a diverse range of biological functions and structural characteristics.
This selection ensures broad coverage of potential interactions, allowing Glide property calculations
to capture the behavior of small molecules across different target types, thereby revealing multiple
binding characteristic profiles for each molecule. The protein targets within each category are carefully
chosen, many of which are well-investigated drug targets. For instance, the 3C-like protease (3CL) of
SARS-CoV-2 is a critical target for the treatment of mild-to-moderate COVID-19 Consortium et al.
(2020). Detailed information on all protein targets can be found in Table 2.

Table 2: Summary of Protein Targets. The Category column indicates the classification of each
protein target, while the Name column specifies the name of each protein target. The Resolution
column denotes the resolution of the protein structure in ångströms (Å), and the PDB ID column lists
the Protein Data Bank identification numbers for each protein.

Category Name Resolution PDB_ID
Kinase ABL1 1.74 3K5V
G-Protein Coupled Receptor ADRB2 2.70 5X7D
Ion Channel GluA2 2.72 8SS9
Nuclear Receptor PPARG 1.95 3ET3
Cytochrome CYT2C9 2.00 1R9O
Epigenetic HDAC2 1.26 7KBG

Viral 3CL 1.18 7GEF
HIVINT 1.80 3NF7

Others KRAS 1.01 8ONV
PDE5 1.30 1TBF

2.2 DATASET SPLIT

Generalization is a crucial aspect of model evaluation, so we use scaffold splitting to minimize
data leakage and ensure robust testing. Scaffold splitting ensures that structurally diverse molecules
populate the training, validation, and test sets, exposing the model to a wide range of molecular
scaffolds and enhancing its generalization to new, unseen molecules, thereby mimicking real-world
situations. Specifically, our dataset is divided using scaffold splitting, resulting in a training set of
112,557 molecules, a validation set of 14,070 molecules, and a test set of 14,070 molecules. This
division is used in all subsequent experiments.

2.3 DATASET ANALYSIS

Molecular Chemical Space Coverage To demonstrate the diverse chemical space of MoleculeCLA,
we extract the Extended-Connectivity Fingerprints (ECFP) Rogers & Hahn (2010) of molecules in
MoleculeCLA along with other binding-related molecular benchmarks: PCBA Wang et al. (2012)
from MoleculeNet, MoleculeACE, KIBA, Davis, and LBA. We then use the t-SNE Van der Maaten
& Hinton (2008) algorithm to visualize molecules from these different datasets and compare the
chemical spaces they cover. As shown in Figure 3a, the sample points from MoleculeCLA and
PCBA cover the most area of the entire sample space. Given that MoleculeCLA contains only about
one-third the number of molecules in PCBA, this demonstrates that MoleculeCLA encompasses
a rich chemical space and has the potential to cover an even larger space when scaled to an equal
number of molecules.

Label Distribution: We illustrate the distribution of label values in our 9 regression tasks in Figure
3c. Most task labels appear smooth, except for hond and esite, as hydrogen bond and polar interactions
are rare and often zero. As demonstrated in the experiments of Section 3, these two tasks are the most
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challenging for baseline models due to their nearly discrete distributions. Furthermore, we provide
the mean and standard deviation values of samples in the train, validation, and test sets for different
tasks under the scaffold split in Table 7.

Task Diversity Although the 9 molecular properties in MoleculeCLA originate from the same docking
software, they are diverse and represent different aspects of molecular properties. To demonstrate this,
we calculate the Pearson correlation of labels between each pair of tasks and illustrate the correlation
matrix in Figure 3b. It is evident that the labels of each task exhibit weak correlations, indicating that
our tasks are diverse and can profile methods from different aspects.
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Figure 3: Data analysis of MoleculeCLA: (a) The t-SNE visualization of fingerprint clustering
across various datasets, including MoleculeCLA, PCBA, MoleculeACE, KIBA, Davis, and LBA,
reveals that despite containing approximately one-third the number of samples, MoleculeCLA
demonstrates a chemical space comparable to PCBA. (b) The Pearson correlation matrix among tasks
within MoleculeCLA showcases the diversity of different properties. (c) Examining the label value
distribution across all nine tasks, most tasks exhibit smooth distributions, with the exception of esite
and hbond.

3 EXPERIMENTS AND RESULTS

Our dataset comprises chemical, physical, and biological properties, and to comprehensively evaluate
baseline models, we assess them based on their latent representation and model transfer ability. For
latent representation, we employ the linear probe method. This method is widely utilized in deep
learning model evaluation and provides a sole assessment of the quality of the representation and
insights into what abstract information the model has captured Akhondzadeh et al. (2023); Radford
et al. (2021); Liang et al. (2022). In terms of transfer ability, we commonly load the parameter values
from the pre-trained model to process the input, then update all parameters including the molecular
encoder to predict the task label as a standard fine-tuning paradigm. Additionally, we fine-tune
models to assess their performance in the drug-target interaction task. This evaluation can reflect
whether our dataset can be used to choose the appropriate model for the drug-target interaction task.

3.1 BASELINES AND EVALUATION METRICS

Molecular representation learning encompasses various model architectures, primarily classified into
Graph Neural Network (GNN)-based models and Transformer-based models, which handle different
formats of molecular representation such as SMILES strings, 2D graph structures, or 3D coordinates.
For robust and comprehensive evaluation, we have chosen nine representative deep learning models
known for their superior performance as our baseline. A brief description of these models is provided
in Table 3, more details can be found in the Appendix 5.4

Our dataset is organized into 9 regression tasks for each of the 10 targets, as the properties consist
of continuous values. We use the Pearson correlation coefficient, Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and R-squared (R2) as our regression evaluation metrics. The Pearson
correlation coefficient helps in understanding the linear relationship between variables, RMSE and
MAE provide insights into the magnitude of prediction errors, and R2 offers a measure of how well
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the model captures the variability in the data. Together, these metrics ensure a robust evaluation of
model performance.

Table 3: Summary of Deep Learning Models. The Input column specifies the molecular repre-
sentation format. Architecture identifies the model’s backbone network structure, such as a Graph
Neural Network (GNN) and Transformer. Strategy notes the pre-training approach, such as Masked
Component Modeling (MCM), and Contrastive Learning(CL), Denoising. Dim lists the dimension of
the model’s latent molecular representation.

Model Input Architecture Strategy Dim

AttrMasking Hu et al.
(2019)

Graph GNN MCM 300

GraphMAE Hou et al.
(2022)

Graph GNN MCM 300

Mole-BERTXia et al.
(2022)

Graph GNN MCM 300

Uni-Mol Zhou et al.
(2023)

3D Coordinates Transformer Denoising, MCM 512

Uni-Mol+ Lu et al.
(2023)

3D Coordinates Transformer Denoising 768

3D Denoising Zaidi
et al. (2022)

3D Coordinates GNN Denoising 256

Frad Feng et al.
(2023b)

3D Coordinates GNN Denoising 256

SliDe Ni et al. (2023) 3D Coordinates GNN Denoising 256
UniMAP Feng et al.
(2023c)

SMILES, Graph Transformer MCM, CL 768

3.2 COMPARATIVE ANALYSIS OF MODEL LATENT REPRESENTATION USING LINEAR PROBE

3.2.1 EXPERIMENTAL SETUP

In linear probe experiments, we evaluate the latent representations of various baseline models and
molecular descriptors. Molecular descriptors are mathematical representations of a molecule’s
properties. Unlike the abstract latent representation learned by the model, the dimensions in the
descriptor vector correspond directly to different physical and chemical information of the molecules,
e.g., topological polar surface area and the number of all atoms. We chose the widely used molecular
descriptor calculation software Mordred Moriwaki et al. (2018) to obtain the 2D and 3D descriptors.
After generating the descriptors, we drop columns containing empty values. Following this process,
the 2D descriptor dimension is 904 and the 3D descriptor dimension is 51. Then, molecular descriptors
and latent representations are used as input to train a linear regression model implemented with the
Scikit-learn package Pedregosa et al. (2011).

3.2.2 RESULTS & ANALYSIS

The average Pearson correlation coefficients for 10 protein targets using the linear probe method are
presented in Table 4. These results provide a deeper understanding of the effectiveness of various
molecular representation learning models. Below, we explore specific findings that reveal how these
models encode molecular information, offering valuable insights into model development and design.
We also provide the RMSE, MAE, R2 results in Appendix 5.6.

Descriptors Provide More Direct Molecular Information Descriptors3D have only 51 features,
but its overall performance is still better than that of the AttrMasking and GraphMAE. Descriptors2D
and Descriptors2D&3D have similar results across all tasks and outperform the limited-feature
Descriptors3D. Therefore, in the following discussion, "descriptors" will refer to Descriptors2D. As
observed in Table 4, descriptors consistently achieve the highest Pearson correlation coefficients
across all tasks. This result may be due to the inclusion of certain features in the descriptors, such as
acidic group count, number of hydrogen atoms, and hybridization ratio, which are directly correlated
with properties like lipophilicity, hydrogen bonding, electrostatic interaction, and others. However,
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when we use baseline model latent representations and molecular descriptors as input to train a
multi-layer perceptron model for each task, as detailed in the Appendix 5.5, we find that some model
latent representations outperform the descriptors. This indicates that while descriptors provide more
direct molecular information, model latent representations may contain more abstract semantics,
leading to better results when they are used with more expressive downstream models.

Appropriate Mask Strategy Potentially Enhances Graph-based Models The analysis of results
from three GNN models (AttrMasking, GraphMAE, and Mole-BERT) that utilize graph data as input
but employ different masking strategies suggests that Mole-BERT potentially performs better than
the others. AttrMasking randomly masks some atoms and then predicts the masked atom types.
GraphMAE further employs a re-mask decoding strategy to reconstruct atom features. In contrast,
Mole-BERT identifies a challenge with masking atom types due to the limited and unbalanced
nature of atom sets. Instead, it employs a context-aware tokenizer, encoding atoms into chemically
relevant discrete values for masking, thereby achieving better results. This observation implies that an
appropriate pre-training mask strategy could enhance a model’s ability to capture molecular features.

3D Coordinate Information Improves Molecular Latent Representation When comparing
models utilizing 2D graph-only information (AttrMasking, GraphMAE, and Mole-BERT) with
those integrating 3D coordinate information (3D Denoising, Frad, SliDe, Uni-Mol, Uni-Mol+), a
consistent trend emerges: the 3D-oriented models consistently outperform 2D graph-only models.
This consistent superiority suggests that 3D information significantly enriches the representation
of small molecular features, leading to more robust and informative latent representations. This
observation underscores the potential value of incorporating 3D structural data into molecular
representation learning models, offering promising avenues for further advancements in the field.

Fitting Force Fields Reveals Deeper Molecular Properties Further comparison of models that
utilize 3D coordinate information reveals that physically informed pre-training models (3D Denoising,
Frad, and SliDe) perform better than SE(3)-invariant Transformer-based models (Uni-Mol and Uni-
Mol+) in capturing hydrogen bonds (hbond), electrostatic interactions (ecoul), and rotatable bond
torsions (erotb). The 3D denoising, Frad, and SliDe models theoretically fit the force fields of small
molecules. As reported in SliDe, the correlation coefficients of the estimated force fields are ranked
as SliDe > Frad > 3D denoising, and our experimental results reflect the same trend. Additionally, in
the einternal task, which is related to internal torsional energy, the SliDe method stands out among
the other models. These results indicate that training strategies closely aligned with the intrinsic
properties of small molecules, such as force fields, indeed enhance the model’s ability to capture
meaningful molecular representations.

The Superiority of UniMAP We observe that UniMAP achieves the best performance among all
deep-learning-based methods in Table 4. This outstanding excellence can be attributed to several key
factors of UniMAP. Firstly, UniMAP’s fragment-level masking and alignment strategies emphasize
the functionality of molecular fragments, which are recognized as chemical semantic units and play a
crucial role in determining the bioactivity of molecules. Furthermore, the integration of fingerprint
regression and functional group prediction supervision enriches UniMAP’s representation, allowing
it to capture intrinsic molecular structural information, similar to descriptors, making it easier to
fit chemical and physical tasks. Finally, the shared Transformer that fuses SMILES and molecular
graphs in a single-stream approach may enhance the expressive power of molecular embeddings.

3.3 COMPARISON ANALYSIS OF BASELINE MODELS WITH FINE-TUNING TECHNIQUES

3.3.1 EXPERIMENTAL SETUP

For the fine-tuning setting, we select the best four models(UniMAP, Uni-Mol, Frad, SliDe) from the
previous baselines and fine-tune them on five representative tasks covering all property categories.
This approach is chosen due to the high cost of training all parameters on numerous regression tasks,
as there are 9 properties for each of the 10 protein targets. We follow the same fine-tuning strategy as
outlined in the original papers. We train a separate model for each protein target and simultaneously
predict the five tasks. Additionally, each model is trained three times using different random seeds to
ensure robust and consistent performance.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Linear Probe Results. Average Pearson correlation coefficients of 10 protein targets. Cells
are blue if the Pearson correlation coefficient is above 0.5 and yellow if it is below 0.5. The Avg
column displays the average result across all 9 tasks.

Model Chemical Physical Biological Avg
lipo hbond evdw ecoul esite erotb einternal docking emodel

AttrMasking 0.540 0.341 0.529 0.381 0.328 0.618 0.286 0.453 0.512 0.443

GraphMAE 0.560 0.335 0.523 0.351 0.343 0.635 0.289 0.478 0.507 0.447

Mole-BERT 0.598 0.396 0.575 0.464 0.378 0.699 0.316 0.516 0.569 0.501

Uni-Mol 0.677 0.408 0.718 0.517 0.432 0.769 0.457 0.569 0.688 0.582

Uni-Mol+BASE
0.606 0.343 0.664 0.408 0.377 0.676 0.418 0.499 0.609 0.511

Uni-Mol+LARGE
0.604 0.346 0.661 0.412 0.381 0.663 0.405 0.495 0.607 0.508

3D Denoising 0.605 0.401 0.599 0.452 0.367 0.796 0.379 0.526 0.588 0.524

Frad 0.621 0.393 0.620 0.451 0.380 0.821 0.396 0.535 0.605 0.536

SliDe 0.645 0.404 0.643 0.459 0.385 0.834 0.443 0.540 0.617 0.552

UniMAP 0.688 0.475 0.719 0.550 0.459 0.840 0.490 0.601 0.694 0.613

Descriptors2D
0.721 0.484 0.759 0.572 0.494 0.888 0.508 0.649 0.742 0.646

Descriptors3D
0.553 0.357 0.650 0.371 0.271 0.606 0.394 0.410 0.559 0.463

Descriptors2D&3D
0.722 0.486 0.760 0.573 0.495 0.889 0.509 0.651 0.744 0.647

3.3.2 RESULTS & ANALYSIS

Table 5: Fine-Tuning Results. Average RMSE and Pearson correlation coefficients for 10 protein
targets. The best result is shown in bold, and the second-best result is underlined.

hbond ecoul esite docking emodel
Model RMSE↓ Pearson↑ RMSE↓ Pearson↑ RMSE↓ Pearson↑ RMSE↓ Pearson↑ RMSE↓ Pearson↑
Uni-Mol 0.146 0.557 2.274 0.642 0.051 0.574 0.730 0.741 6.528 0.811
UniMAP 0.149 0.550 2.307 0.640 0.052 0.556 0.741 0.745 6.727 0.812
Frad 0.161 0.408 2.381 0.592 0.059 0.350 0.822 0.652 6.818 0.790
SliDe 0.156 0.507 2.487 0.577 0.056 0.490 0.763 0.710 6.466 0.810

In Table 5, we show the average RMSE and Pearson correlation coefficient for 10 protein targets.
The results for each protein target with three random seeds are listed in Appendix 5.7. Notably, we
can observe that the performance of all models improved significantly after fine-tuning compared
to their linear probe results, surpassing the performance of previous descriptors. This indicates that
pre-training models are better suited for the fine-tuning setting to enhance the performance of deep
latent features. Furthermore, Table 12 demonstrates that the standard deviations across results under
various seeds are negligible, indicating remarkable stability in MoleculeCLA’s testing results. When
comparing various models, we observe that Uni-Mol and UniMAP outperform SliDe and Frad, with
SliDe performing better than Frad. This alignment in performance ranking with previous evaluation
settings highlights the robustness and consistency of MoleculeCLA.

3.4 DRUG TARGET INTERACTION TASK

Though MoleculeCLA is curated through a computational approach, it can still effectively indicate
model performance in real scenarios using experimental data as labels. In this section, we use the
ligand binding affinity task, which has a closer correlation with the properties in MoleculeCLA, to
verify this point.

3.4.1 EXPERIMENTAL SETUP

We integrate the encoders of different MRL methods into a versatile framework BindNet Feng
et al. (2023a). This framework uses existing pre-trained encoders to provide molecular ligand
representations, which are then combined with protein representations generated by a pre-trained
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pocket encoder. These combined representations pass through a shared Transformer to predict
affinity. We use complex data with binding affinity labels sourced from PDBBind Wang et al. (2005).
Following Atom3D Townshend et al. (2020), this dataset has two different split settings: LBA 30%
and LBA 60%, where the number indicates the protein sequence identity threshold. The Pearson
correlation coefficient, Root Mean Square Error (RMSE), and Spearman correlation coefficient are
the metrics used to evaluate different MRL encoders.

3.4.2 RESULTS & ANALYSIS

The performance of different MRL methods on the LBA task is shown in Table 6. We observe a
positive correlation between the performance of these methods and their performance in MoleculeCLA
as shown in Table 4: models that perform better in MoleculeCLA tend to achieve superior results
in affinity prediction. These results demonstrate that, despite being derived from a computational
approach, MoleculeCLA can effectively reflect the ability of molecular representation learning in
experimental domain tasks. This indicates that our dataset has a broader and more general impact.

Table 6: Performance comparison of different MRL methods on LBA 30% and LBA 60% datasets.
The best result is shown in bold, and the second-best result is underlined.

LBA 30% LBA 60%
Methods RMSE↓ Pearson↑ Spearman↑ RMSE↓ Pearson↑ Spearman↑
AttrMasking 1.54 0.549 0.523 1.33 0.768 0.763
GraphMAE 1.50 0.548 0.537 1.29 0.772 0.765
Mole-BERT 1.44 0.572 0.567 1.29 0.777 0.777
Uni-Mol 1.34 0.632 0.622 1.23 0.793 0.788
UniMAP 1.38 0.617 0.612 1.24 0.797 0.797

4 CONCLUSION

In this work, we present MoleculeCLA: a large-scale dataset consisting of approximately 140,000
small molecules derived from computational ligand-target binding analysis, providing 9 properties
that cover chemical, physical, and biological aspects. Our experiments demonstrate the importance
of constructing a large-scale, scalable dataset, enabling more reliable and noise-free evaluation of
molecular representation models. We introduce a novel methodology that does not directly rely
on wet experimental data. Instead, our approach uses ligand-target binding analysis to establish
a connection between real-world properties and computational metrics. This method avoids the
inherent noise of wet experiments, eliminates batch effects, and ensures consistent properties for the
same molecules. We believe our work not only provides a reliable benchmark that contributes to
advances in the development of molecular representation learning but also serves as a successful case
study in computational approaches, potentially inspiring benchmark construction in other domains
within AI for Science.
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5 APPENDIX

5.1 DATA AND CODE ACCESS

We make our data and evaluation code publicly available for research, ensuring that all results are
easily reproducible. The specific access URLs are as follows:

• Download dataset: https://huggingface.co/datasets/anonymousxxx/
MoleculeCLA

• Evaluation code and dataset usage document (including the code to load data, linear probe,
etc.): https://anonymous.4open.science/r/MoleculeCLA-96F0

5.2 RELATED WORK

5.2.1 MOLECULAR REPRESENTATION LEARNING

Various molecular pre-training methods have been proposed to leverage large amounts of unlabeled
data to learn meaningful molecular representations, benefiting different downstream tasks. There are
three common pre-training strategies: Masking, which involves masking atoms or substructures in
the 1D SMILES Weininger (1988) or 2D graphs of molecules and training the model to recover the
masked content Hu et al. (2019); Hou et al. (2022); Xia et al. (2022); Feng et al. (2023c) ; Contrastive
Learning, which aligns representations of different molecular modalities for modality fusion Liu et al.
(2021); Feng et al. (2023c); Stärk et al. (2022) ; and 3D Denoising, a physically informed pre-training
strategy that adds noise to the coordinates of 3D molecular conformers and trains the model to predict
the noise, aiming to approximate learning the molecular force field Zaidi et al. (2022); Feng et al.
(2023b); Ni et al. (2023), has demonstrated its superior performance on a variety of physical quantum
tasks.

5.2.2 MOLECULAR BENCHMARKS

Existing methods typically evaluate their performance on molecular property prediction tasks. Molecu-
leNet Wu et al. (2018) is a commonly used benchmark that includes multiple subtasks covering
molecular physicochemical and biological properties, with labels organized into classification and
regression tasks. QM9 Ruddigkeit et al. (2012); Ramakrishnan et al. (2014) and MD17 Chmiela
et al. (2017) are quantum property-related tasks that include energetic and electronic properties
and molecular force field predictions as regression tasks. Since quantum properties are highly
related to 3D conformers, these tasks are often used as benchmarks for 3D-based methods. More-
over, drug target interaction datasets such as KIBA Tang et al. (2014), Davis Davis et al. (2011),
and LBA Townshend et al. (2020) are evaluated for binding affinity prediction tasks, integrating
molecular pre-trained encoders to extract molecular ligand representations. Additionally, several
benchmarks Zhang et al. (2023); van Tilborg et al. (2022) concentrate on bioactivity cliffs, wherein
structurally similar molecular pairs exhibit significant disparities in potency.

5.2.3 COMPARISON WITH OTHER COMPUTATIONAL DATASETS

There are also computational datasets in other domains. The Harvard Clean Energy Project Hachmann
et al. (2011) features an automated, high-throughput framework for evaluating millions of molecular
motifs via quantum chemistry. Lyu et al. (2019) explores structure-based docking of a library
comprising 170 million compounds from 130 reactions, aiming to create an extensive library for
identifying novel chemotypes. DOCKSTRING García-Ortegón et al. (2022) constructs a dataset that
includes docking scores and poses and develops a series of pharmaceutically relevant benchmark tasks,
such as virtual screening and de novo design of selective kinase inhibitors. Different from previous
computational approaches, MoleculeCLA is specifically designed as a benchmark for molecular
representation learning methods. Beyond evaluating final docking scores, MoleculeCLA incorporates
intermediate, clearly defined components relevant to various molecular properties as regression tasks
for assessing different molecular representation learning methods.
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Table 7: The mean and standard deviation values of samples across the train, validation, and test
datasets under scaffold split

Property Train Dataset Validation Dataset Test Dataset
Mean Std Mean Std Mean Std

lipo -2.78 0.72 -2.83 0.71 -2.84 0.72
hbond -0.17 0.18 -0.16 0.18 -0.16 0.18
evdw -37.18 6.52 -38.14 6.41 -38.17 6.44
ecoul -4.51 3.12 -4.44 3.00 -4.44 3.01
esite -0.06 0.06 -0.06 0.06 -0.06 0.06
erotb 0.70 0.31 0.70 0.28 0.70 0.27
einternal 5.44 4.87 5.50 3.84 5.48 3.82
docking -6.43 1.12 -6.49 1.11 -6.49 1.11
emodel -55.54 11.35 -56.70 11.23 -56.79 11.23

5.3 DATASET DETAILS

We chose 10 representative protein targets covering multiple categories to capture the comprehensive
characteristics of small molecules. The categories include Kinase, G-Protein Coupled Receptor, Ion
Channel, Nuclear Receptor, Cytochrome, Epigenetic, and Viral proteins. Detailed information on all
protein targets can be found in the Table 2. Each protein target will have 9 molecular property tasks,
including chemical properties (lipo, hbond), physical properties (evdw, ecoul, esite, erotb, einternal),
and biological properties (docking, emodel). Task details are listed in Table 1. The average and
standard deviation values of samples in the train, validation, and test sets for various tasks under the
scaffold split are shown in Table 7.

The docking process is detailed as follows: Initially, up to 32 stereoisomers were generated for each
small molecule, with ionization states optimized for physiological pH. The protein structures were
then prepared by adding hydrogen atoms, predicting ionization states, and removing water molecules.
A docking grid, centered on the co-crystallized ligand, was defined with dimensions of 20 Å. Docking
was performed using the default Glide SP settings. Only molecules that successfully docked to all ten
targets were retained. The resulting docking poses and associated values were compiled to construct
the final dataset.

5.4 BASELINE MODEL DESCRIPTION

AttrMasking Hu et al. (2019) In this model, input node and edge attributes (such as atom types in a
molecular graph) are randomly masked. The Graph Neural Network (GNN) is then trained to predict
the masked attributes.

GraphMAE Hou et al. (2022) GraphMAE pre-trains a GNN by masking input node features with a
[MASK] token and encoding the corrupted graph. During decoding, it re-masks selected node codes
with a [DMASK] token and uses a GNN decoder to reconstruct the masked node features, optimizing
with scaled cosine error.

Mole-BERT Xia et al. (2022) Mole-BERT paper proposes a context-aware tokenizer, encoding
atom attributes into meaningful discrete codes. With the expanded atom "vocabulary", the authors
introduce a novel node-level pre-training task called masked atoms modeling and triplet masked
contrastive learning for graph-level pre-training.

Uni-Mol Zhou et al. (2023) Uni-Mol is a universal 3D molecular representation learning framework
designed to enhance the representation ability and application scope of MRL methods by incorporating
3D information. It features two pretrained models with SE(3)-Transformer architecture: one trained
on 209M molecular conformations and another on 3M protein pocket data. Uni-Mol also includes
fine-tuning strategies for various downstream tasks.

Uni-Mol+ Lu et al. (2023) Uni-Mol+ addresses the challenge of accurately predicting quantum
chemical (QC) properties by leveraging 3D equilibrium conformations. Unlike previous methods
using 1D SMILES sequences or 2D molecular graphs, Uni-Mol+ starts with a raw 3D molecule

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

conformation generated by inexpensive methods like RDKit. This conformation is iteratively updated
to its target DFT equilibrium conformation using neural networks.

3D Denoising Zaidi et al. (2022) This paper presents a pre-training technique based on denoising for
molecular property prediction from 3D structures, particularly addressing the challenge of limited
data. By using large datasets of 3D molecular structures at equilibrium, the method learns meaningful
representations for downstream tasks. The denoising objective, linked to score-matching, corresponds
to learning a molecular force field from equilibrium structures.

Frad Feng et al. (2023b) Frad introduces a hybrid noise strategy, applying noise to both dihedral
angles and coordinates, and a fractional denoising approach that decouples these noises, focusing
on coordinate denoising. This approach maintains force field equivalence and enhances sampling of
low-energy structures.

SliDe Ni et al. (2023) This paper introduces a new method for molecular pre-training called sliced
denoising (SliDe), which is grounded in classical mechanical intramolecular potential theory. SliDe
employs a novel noise strategy that perturbs bond lengths, angles, and torsion angles to improve
the sampling of molecular conformations. It also uses a random slicing technique to avoid the
computational burden of calculating the Jacobian matrix, which is crucial for estimating the force
field.

UniMAP Feng et al. (2023c) UniMAP is a universal SMILES-graph representation learning model
designed to capture fine-grained semantics between SMILES and graph representations of molecules.
It starts with an embedding layer to obtain token and node/edge representations, followed by a
multi-layer Transformer for deep cross-modality fusion. UniMAP introduces four pre-training tasks:
Multi-Level Cross-Modality Masking , SMILES-Graph Matching, Fragment-Level Alignment, and
Domain Knowledge Learning.

5.5 RESULTS OF EXPERIMENTS WITH MULTI-LAYER PERCEPTRON(MLP)

Table 8 shows the performance of the MLP, which takes different molecular latent representations
or descriptors as input. The MLP architecture consists of 2 layers and utilizes LeakyReLU as the
activation function in the middle layer. Training of the multi-layer perceptron model will span 50
epochs with a batch size of 128 and an initial learning rate of 1e-4. To facilitate learning, a cosine
decay learning rate scheduler is employed, with a warmup ratio set to 0.02 of the total training steps.
For optimization, we employ L1 loss and Adam optimizer, configured with β1 = 0.9 and β2 = 0.999.
Each experiment is conducted on an NVIDIA A100-PCIE-40GB GPU and takes approximately half
an hour to converge. When comparing the linear regression results in Table 4 and the MLP results in
Table 8, it is evident that the benefits of the deep learning model’s latent representation are more
pronounced in the more complex MLP architecture compared to the simpler linear regression model.

Table 8: MLP Model Results: Average Pearson correlation coefficients for ten protein targets. The
best result is shown in bold, and the second-best result is underlined.

Model Chemical Physical Biological Avglipo hbond evdw ecoul esite erotb einternal docking emodel
AttrMasking 0.483 0.239 0.497 0.318 0.223 0.542 0.268 0.394 0.467 0.376
GraphMAE 0.533 0.274 0.531 0.332 0.260 0.611 0.301 0.445 0.496 0.396
Mole-BERT 0.666 0.438 0.676 0.527 0.418 0.793 0.429 0.612 0.681 0.536

Uni-Mol 0.691 0.402 0.728 0.513 0.403 0.818 0.467 0.591 0.698 0.590
Uni-Mol+BASE 0.640 0.370 0.695 0.456 0.384 0.744 0.453 0.556 0.661 0.522

Uni-Mol+LARGE 0.627 0.358 0.683 0.445 0.371 0.721 0.438 0.537 0.645 0.510
3D Denoising 0.647 0.410 0.667 0.495 0.359 0.838 0.436 0.588 0.662 0.530

Frad 0.653 0.403 0.671 0.487 0.368 0.855 0.443 0.592 0.660 0.533
SliDe 0.659 0.396 0.674 0.478 0.348 0.857 0.462 0.576 0.655 0.532

UniMAP 0.716 0.493 0.754 0.582 0.479 0.908 0.516 0.675 0.760 0.635
Descriptors2D 0.679 0.369 0.725 0.471 0.358 0.852 0.464 0.559 0.663 0.538

5.6 SUPPLEMENTARY RESULTS OF LINEAR PROBE EXPERIMENTS WITH LINEAR REGRESSION

To provide a comprehensive comparison with different models using various metrics, we present
the average RMSE, MAE, and R2 results for 10 protein targets in Tables 9, 10, and 11 below. Each
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experiment is conducted on a Linux server equipped with an AMD EPYC 7742 64-Core Processor
CPU and takes approximately half an hour to complete.

Table 9: Linear Probe RMSE Results: Average RMSE for ten protein targets.

Model Chemical Physical Biological Avglipo hbond evdw ecoul esite erotb einternal docking emodel
AttrMasking 0.600 0.165 5.473 2.774 0.060 0.210 3.664 0.986 9.642 2.619
GraphMAE 0.591 0.166 5.502 2.824 0.060 0.209 3.662 0.975 9.708 2.633
Mole-BERT 0.569 0.162 5.263 2.646 0.059 0.191 3.626 0.943 9.181 2.515

Uni-Mol 0.502 0.159 4.428 2.579 0.057 0.167 3.374 0.904 8.191 2.262
Uni-Mol+BASE 0.554 0.165 4.776 2.738 0.059 0.197 3.474 0.956 8.858 2.420

Uni-Mol+LARGE 0.555 0.165 4.798 2.735 0.059 0.200 3.498 0.959 8.888 2.429
3D Denoising 0.563 0.161 5.144 2.664 0.059 0.162 3.533 0.935 9.014 2.471

Frad 0.553 0.161 5.037 2.666 0.059 0.153 3.505 0.929 8.882 2.438
SliDe 0.534 0.160 4.919 2.650 0.058 0.148 3.416 0.926 8.806 2.402

UniMAP 0.502 0.155 4.433 2.479 0.056 0.145 3.322 0.877 8.013 2.220
Descriptors2D 0.475 0.154 4.137 2.432 0.055 0.122 3.279 0.833 7.439 2.103

Table 10: Linear Probe MAE Results: Average MAE for ten protein targets.

Model Chemical Physical Biological Avglipo hbond evdw ecoul esite erotb einternal docking emodel
AttrMasking 0.478 0.134 4.242 2.170 0.046 0.138 2.778 0.775 7.458 2.024
GraphMAE 0.470 0.134 4.270 2.208 0.046 0.139 2.773 0.764 7.516 2.036
Mole-BERT 0.452 0.131 4.074 2.066 0.044 0.123 2.742 0.736 7.091 1.940

Uni-Mol 0.397 0.129 3.313 2.016 0.105 2.554 0.043 0.701 6.241 1.722
Uni-Mol+BASE 0.440 0.134 3.620 2.144 0.045 0.130 2.639 0.746 6.779 1.853

Uni-Mol+LARGE 0.441 0.134 3.643 2.140 0.045 0.133 2.656 0.749 6.820 1.862
3D Denoising 0.448 0.130 3.959 2.079 0.045 0.101 2.669 0.731 6.952 1.902

Frad 0.440 0.131 3.871 2.082 0.045 0.092 2.645 0.725 6.836 1.874
SliDe 0.425 0.130 3.757 2.069 0.044 0.086 2.569 0.721 6.766 1.841

UniMAP 0.398 0.123 3.322 1.931 0.042 0.087 2.495 0.679 6.099 1.686
Descriptors2D 0.374 0.122 3.079 1.893 0.041 0.065 2.462 0.643 5.601 1.587

Table 11: Linear Probe R2 Results: Average R2 for ten protein targets.

Model Chemical Physical Biological Avglipo hbond evdw ecoul esite erotb einternal docking emodel
AttrMasking 0.293 0.118 0.277 0.146 0.111 0.374 0.081 0.205 0.261 0.207
GraphMAE 0.314 0.112 0.270 0.114 0.121 0.382 0.081 0.226 0.253 0.208
Mole-BERT 0.359 0.158 0.330 0.218 0.149 0.482 0.099 0.268 0.326 0.266

Uni-Mol 0.480 0.179 0.522 0.255 0.200 0.603 0.215 0.325 0.465 0.360
Uni-Mol+BASE 0.377 0.119 0.445 0.167 0.147 0.452 0.167 0.250 0.377 0.278

Uni-Mol+LARGE 0.375 0.122 0.440 0.169 0.150 0.432 0.156 0.246 0.373 0.274
3D Denoising 0.370 0.163 0.359 0.207 0.140 0.627 0.144 0.278 0.349 0.293

Frad 0.390 0.157 0.386 0.206 0.150 0.667 0.157 0.287 0.369 0.308
SliDe 0.424 0.167 0.415 0.214 0.154 0.690 0.197 0.293 0.383 0.326

UniMAP 0.483 0.228 0.522 0.306 0.218 0.701 0.240 0.364 0.487 0.394
Descriptors2D 0.530 0.237 0.580 0.332 0.250 0.788 0.258 0.423 0.555 0.439
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5.7 SUPPLEMENTARY RESULTS OF FINE-TUNING EXPERIMENTS

MoleculeCLA can provide more stable evaluation results. In this section, we list the fine-tuning
results for each protein target with three random seeds in Table 12. Each fine-tuning experiment is
conducted on an NVIDIA A100-PCIE-40GB, with durations ranging from 1 hour to 1 day, depending
on the complexity of the pre-training methods.

Table 12: Performance of Different Models Fine-Tuning. Pearson correlation coefficients for
different protein targets.

Target Model hbond ecoul esite docking emodel

ABL1

Uni-Mol 0.602 (0.007) 0.670 (0.003) 0.594 (0.003) 0.800 (0.002) 0.872 (0.002)
Frad 0.460 (0.002) 0.604 (0.003) 0.414 (0.007) 0.718 (0.007) 0.859 (0.002)
SliDe 0.541 (0.000) 0.604 (0.000) 0.503 (0.000) 0.779 (0.000) 0.873 (0.000)
UniMAP 0.598 (0.002) 0.671 (0.001) 0.588 (0.001) 0.802 (0.001) 0.874 (0.001)

ADRB2

Uni-Mol 0.536 (0.002) 0.666 (0.001) 0.519 (0.007) 0.758 (0.003) 0.834 (0.002)
Frad 0.405 (0.004) 0.620 (0.003) 0.270 (0.005) 0.689 (0.003) 0.822 (0.002)
SliDe 0.468 (0.000) 0.575 (0.000) 0.397 (0.000) 0.725 (0.000) 0.837 (0.000)
UniMAP 0.534 (0.005) 0.664 (0.002) 0.510 (0.003) 0.763 (0.002) 0.836 (0.002)

GluA2

Uni-Mol 0.508 (0.003) 0.532 (0.001) 0.496 (0.006) 0.718 (0.003) 0.810 (0.002)
Frad 0.389 (0.016) 0.489 (0.007) 0.345 (0.005) 0.638 (0.005) 0.799 (0.005)
SliDe 0.461 (0.000) 0.449 (0.000) 0.388 (0.000) 0.680 (0.000) 0.809 (0.000)
UniMAP 0.499 (0.002) 0.530 (0.001) 0.481 (0.002) 0.718 (0.000) 0.817 (0.000)

PPARG

Uni-Mol 0.440 (0.003) 0.497 (0.001) 0.399 (0.005) 0.762 (0.001) 0.767 (0.002)
Frad 0.277 (0.005) 0.422 (0.004) 0.140 (0.023) 0.677 (0.001) 0.755 (0.003)
SliDe 0.373 (0.000) 0.377 (0.000) 0.284 (0.000) 0.731 (0.000) 0.778 (0.000)
UniMAP 0.423 (0.001) 0.486 (0.003) 0.325 (0.005) 0.763 (0.001) 0.771 (0.001)

CYT2C9

Uni-Mol 0.584 (0.001) 0.603 (0.001) 0.505 (0.003) 0.696 (0.004) 0.674 (0.005)
Frad 0.391 (0.006) 0.517 (0.004) 0.231 (0.019) 0.602 (0.012) 0.631 (0.005)
SliDe 0.493 (0.000) 0.530 (0.000) 0.402 (0.000) 0.657 (0.000) 0.660 (0.000)
UniMAP 0.568 (0.002) 0.598 (0.001) 0.483 (0.002) 0.701 (0.003) 0.676 (0.002)

HDAC2

Uni-Mol 0.684 (0.001) 0.767 (0.001) 0.759 (0.003) 0.852 (0.001) 0.892 (0.002)
Frad 0.505 (0.012) 0.719 (0.003) 0.535 (0.003) 0.796 (0.005) 0.873 (0.001)
SliDe 0.659 (0.000) 0.738 (0.000) 0.722 (0.000) 0.846 (0.000) 0.898 (0.000)
UniMAP 0.676 (0.003) 0.766 (0.001) 0.756 (0.000) 0.854 (0.001) 0.887 (0.000)

3CL

Uni-Mol 0.564 (0.003) 0.691 (0.004) 0.546 (0.006) 0.683 (0.003) 0.789 (0.002)
Frad 0.444 (0.011) 0.659 (0.004) 0.365 (0.002) 0.580 (0.005) 0.760 (0.001)
SliDe 0.520 (0.000) 0.627 (0.000) 0.459 (0.000) 0.645 (0.000) 0.783 (0.000)
UniMAP 0.564 (0.002) 0.691 (0.002) 0.528 (0.004) 0.689 (0.002) 0.789 (0.002)

HIVINT

Uni-Mol 0.507 (0.004) 0.614 (0.001) 0.645 (0.003) 0.677 (0.001) 0.816 (0.002)
Frad 0.365 (0.010) 0.587 (0.001) 0.438 (0.009) 0.584 (0.001) 0.803 (0.001)
SliDe 0.465 (0.000) 0.627 (0.000) 0.604 (0.000) 0.639 (0.000) 0.811 (0.000)
UniMAP 0.503 (0.003) 0.691 (0.002) 0.528 (0.004) 0.685 (0.003) 0.819 (0.001)

KRAS

Uni-Mol 0.629 (0.001) 0.656 (0.003) 0.586 (0.004) 0.707 (0.002) 0.809 (0.002)
Frad 0.505 (0.006) 0.719 (0.003) 0.360 (0.012) 0.567 (0.008) 0.784 (0.003)
SliDe 0.587 (0.000) 0.593 (0.000) 0.482 (0.000) 0.664 (0.000) 0.816 (0.000)
UniMAP 0.617 (0.003) 0.649 (0.003) 0.569 (0.001) 0.706 (0.001) 0.808 (0.001)

PDE5

Uni-Mol 0.518 (0.008) 0.726 (0.000) 0.688 (0.002) 0.759 (0.003) 0.841 (0.002)
Frad 0.336 (0.003) 0.605 (0.003) 0.396 (0.014) 0.665 (0.009) 0.821 (0.007)
SliDe 0.505 (0.000) 0.593 (0.000) 0.482 (0.000) 0.730 (0.000) 0.839 (0.000)
UniMAP 0.514 (0.000) 0.687 (0.001) 0.569 (0.001) 0.771 (0.001) 0.847 (0.001)

5.8 AUTHOR STATEMENT, MAINTENANCE AND LICENSING

We acknowledge and accept full responsibility for any potential violation of rights and legal obliga-
tions arising from the use of the data provided in this paper. All the URLs are hosted on the stable
website, ensuring all resources are available for a long time. Our dataset is available under the MIT
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license. The evaluation code is hosted by the GitHub organization and uses the MIT license. We hope
researchers will join this repository and further promote the research.
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