
Modular Sentence Encoders:
Separating Language Specialization from Cross-Lingual Alignment

Anonymous ACL submission

Abstract

Multilingual sentence encoders (MSEs) are001
commonly obtained by training multilingual002
language models to map sentences from differ-003
ent languages into a shared semantic space. As004
such, they are subject to curse of multilingual-005
ity, a loss of monolingual representational ac-006
curacy due to parameter sharing. Another limi-007
tation of MSEs is the trade-off between differ-008
ent monolingual and cross-lingual performance:009
training for cross-lingual alignment of sentence010
embeddings distorts the optimal monolingual011
structure of semantic spaces of individual lan-012
guages, harming the utility of sentence embed-013
dings in monolingual tasks; cross-lingual tasks,014
such as cross-lingual semantic similarity and015
zero-shot transfer for sentence classification,016
thus may require different kind of cross-lingual017
alignment training. In this work, we address018
both issues by means of modular training of019
sentence encoders. We first train language-020
specific monolingual modules to mitigate neg-021
ative interference between languages (i.e., the022
curse). We then align all non-English sentence023
embeddings to the English by training cross-024
lingual alignment adapters, preventing inter-025
ference with monolingual specialization from026
the first step. We train and merge two types027
of cross-lingual adapters to resolve the con-028
flicting requirements of different cross-lingual029
tasks. Monolingual and cross-lingual results030
on semantic text similarity and relatedness, bi-031
text mining and sentence classification tasks032
show that our modular solution achieves bet-033
ter and more balanced performance across all034
the tasks compared to full-parameter training035
of monolithic multilingual sentence encoders,036
especially benefiting low-resource languages.1037

1 Introduction038

Multilingual Sentence Encoders (MSEs; Artetxe039

and Schwenk, 2019b; Yang et al., 2020; Reimers040

and Gurevych, 2020; Feng et al., 2022; Duquenne041

1Our code is available in Supplementary Material.

et al., 2023) embed sentences from different lan- 042

guages into a shared semantic vector space, mak- 043

ing them essential tools for multilingual and cross- 044

lingual semantic retrieval (e.g., bitext mining; 045

Schwenk et al., 2021), clustering (e.g., for extrac- 046

tive summarization; Bouscarrat et al., 2019), and 047

filtering (e.g., in content-based recommendation; 048

Hassan et al., 2019), as well as for cross-lingual 049

transfer in supervised text classification (Artetxe 050

and Schwenk, 2019b; Licht, 2023). In this work, 051

we aim to address two limitations in the MSEs 052

through modular training: the curse of multilin- 053

guality and the trade-off in performance between 054

different monolingual and cross-lingual tasks. 055

Like general-purpose multilingual encoder lan- 056

guage models (mELMs, e.g., mBERT; Devlin et al., 057

2019, XLM-R; Conneau et al., 2020), multilin- 058

gual models specialized for sentence encoding2 are 059

also subject to the curse of multilinguality (Con- 060

neau et al., 2020), a loss of representational pre- 061

cision for each individual language due to shar- 062

ing of model parameters between many languages, 063

resulting in negative interference (Wang et al., 064

2020). Training language-specific modules like 065

embedding layers and language adapters (Pfeiffer 066

et al., 2021, 2022) or full models (Blevins et al., 067

2024) has been proven effective against this issue 068

for general-purpose models, but rarely applied for 069

MSEs, whose sentence embeddings from differ- 070

ent monolingual modules need to be semantically 071

aligned to each other. To the best of our knowl- 072

edge, the only work that targets CoM for MSEs 073

is LASER3 (Heffernan et al., 2022): they train a 074

set of monolingual sentence encoders from scratch 075

through the distillation from a fixed teacher MSE, 076

which is already affected by the CoM. 077

Existing MSE work mostly focuses on cross- 078

lingual training and evaluation, paying less atten- 079

2In fact, many MSEs are derived from mELMs (Reimers
and Gurevych, 2020; Feng et al., 2022, inter alia) by doing
sentence-level training on top of them.
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tion to the monolingual (i.e., within-language) per-080

formance, which can be negatively affected by the081

cross-lingual alignment (Roy et al., 2020). Earlier082

work on inducing cross-lingual word embeddings083

(Søgaard et al., 2018; Patra et al., 2019; Glavaš084

and Vulić, 2020) hints at an explanation for this085

trade-off: forcing cross-lingual alignment between086

non-isomorphic monolingual spaces distorts those087

spaces and thus degrades their monolingual seman-088

tic quality. What is more, there also seems to be a089

tradeoff between different cross-lingual tasks and090

different cross-lingual training approaches yield op-091

timal performance for different tasks. Concretely,092

MSEs trained on parallel data to produce highly093

similar embeddings for exact translation pairs are094

effective in bitext mining (Artetxe and Schwenk,095

2019b; Feng et al., 2022; Heffernan et al., 2022);096

however, they perform worse on cross-lingual se-097

mantic similarity, failing to produce high similarity098

for sentences with similar but non-equivalent mean-099

ing (Reimers and Gurevych, 2020). Conversely,100

MSEs trained on cross-lingual paraphrase data101

(Yang et al., 2020; Wang et al., 2022), i.e. pairs of102

semantically similar but non-equivalent sentences,103

yield better semantic similarity performance but are104

not effective in bitext mining. Paraphrase-trained105

models also seem to offer weaker performance in106

zero-shot cross-lingual transfer for sentence classi-107

fication tasks (Roy et al., 2020), which also seems108

to benefit more from parallel alignment.109

Contributions. In this work, we propose to alle-110

viate all of the above shortcomings by means of111

modularity, that is, parameter separation. As illus-112

trated in Figure 1, we first mitigate the curse of113

multilinguality by specializing an MSE for each114

target language, by training language-specific em-115

bedding layers and language adapters via masked116

language modeling (MLM-ing). To obtain high-117

quality monolingual sentence embeddings, we then118

train a monolingual sentence encoding adapter119

(SE adapter) for each language on top of the lan-120

guage adapter, resorting to sentence-level con-121

trastive learning on synthetic monolingual para-122

phrase data, machine-translated from English. In123

the next step, we carry out cross-lingual alignment124

training also in a modular fashion, without jeop-125

ardizing the monolingual sentence representation126

quality. Further, to meet the requirements of differ-127

ent cross-lingual tasks, we train two kinds of cross-128

lingual alignment adapter (CLA adapter) for each129

language—one is trained on cross-lingual para-130

phrase data, and the other on parallel data—and 131

merge them post-hoc into a single CLA adapter by 132

means of weight averaging: this offers the flexibil- 133

ity of arbitrary weighting between the two types 134

of training approaches for different cross-lingual 135

sentence-level tasks. At inference time, we acti- 136

vate the language-specific modules (embeddings, 137

language adapter, SE adapter, CLA adapter) of the 138

respective language of the input sentence. 139

Our experiments—encompassing four tasks and 140

23 linguistically diverse languages and two state- 141

of-the-art MSE models—render our modular ap- 142

proach effective in overcoming the performance 143

trade-offs between both (1) monolingual and cross- 144

lingual tasks as well as (2) different sentence-level 145

tasks types (semantic textual similarity and related- 146

ness on the one side vs. bitext mining and sentence 147

classification on the other), with substantial per- 148

formance gains over full-parameter training of a 149

single monolithic MSE. Our approach particularly 150

benefits low-resource languages, most affected by 151

the curse of multilinguality. Since both contrastive 152

learning steps in our approach—for monolingual 153

specialization and for cross-lingual alignment—are 154

carried out on machine-translated data, our work 155

also validates the viability of MT for scaling up 156

MSE training data. 157

2 Related Work 158

Multilingual Sentence Embeddings. Multilingual 159

sentence encoders should produce similar sentence 160

embeddings for sentences with similar meaning, 161

regardless whether they come from the same or dif- 162

ferent languages. Cross-lingual alignment is thus 163

at the core of MSE training, typically achieved by 164

training on parallel data with a translation objec- 165

tive (Artetxe and Schwenk, 2019b; Duquenne et al., 166

2023; Gao et al., 2023), or contrastive loss (Feng 167

et al., 2022; Zhao et al., 2024). As a standard prac- 168

tice to acquire high-quality English sentence em- 169

bedding(Reimers and Gurevych, 2019; Gao et al., 170

2021), contrastive learning with paraphrase pairs3 171

has also been applied to train MSEs. This can 172

be done through teacher-student distillation with 173

an English teacher model trained on English para- 174

phrases (Reimers and Gurevych, 2020; Ham and 175

Kim, 2021), or directly with cross-lingual para- 176

phrases (Wang et al., 2022, 2024). Another line of 177

work removes language-specific information to get 178

3We use the word “paraphrase” in a broad sense, to include
also, e.g., entailment pairs or question-answer pairs.
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language-agnostic meaning representation (Yang179

et al., 2021; Tiyajamorn et al., 2021; Kuroda et al.,180

2022). To the best of our knowledge, our work181

is the first attempt to address multiple conflicting182

factors in MSE training, aiming to yield optimal183

performance trade-off across a variety of tasks.184

Lifting the Curse of Multilinguality. Large body185

of work focuses on post-hoc parameter-efficient186

adaptation of multilingual models for individual187

languages (Pfeiffer et al., 2020, 2021; Parović et al.,188

2022, inter alia) through continued pretraining on189

the target language corpora. Expanding or replac-190

ing multilingual vocabulary with target language191

tokens and smart initialization of their embeddings192

(Chau and Smith, 2021; Pfeiffer et al., 2021; Minix-193

hofer et al., 2022; Dobler and de Melo, 2023) has194

been shown to improve sample efficiency of post-195

hoc language adaptation of multilingual models.196

While language-specific modular training is197

a common approach for post-hoc adaptation of198

vanilla language models, it is seldom applied on199

MSEs, as MSE training additionally requires spe-200

cialization for sentence encoding and cross-lingual201

alignment. Existing language-specific sentence en-202

coders still rely on monolithic full-parameter train-203

ing of the whole model: they are either trained only204

for a certain language (Mohr et al., 2024), or dis-205

tilled from a massively multilingual teacher model206

which is already affected by the curse of multilin-207

gual and never really trained to model fine-grained208

semantic similarity (Heffernan et al., 2022). Some209

existing MSE efforts (Mao et al., 2021; Kuroda210

et al., 2022; Liu et al., 2023; Yano et al., 2024)211

do leverage lightweight modules for cross-lingual212

training, but these modules are still (massively)213

multilingual, i.e., do not alleviate the curse of mul-214

tilinguality.215

3 Modular Sentence Encoder216

Our main objective is to obtain multilingual sen-217

tence embeddings that excel across the board, de-218

spite the conflicts between different tasks and sce-219

narios: (i) in both monolingual and cross-lingual220

tasks, despite cross-lingual semantic alignment pos-221

sibly being at odds with monolingual semantic222

specialization; and (ii) in different types of cross-223

lingual tasks, despite the fact that they require224

different types of cross-lingual alignment training225

(Roy et al., 2020). To mitigate these inherent trade-226

offs, we propose a modular approach, i.e., to iso-227

late parameters for each requirement, as illustrated228

in Figure 1. We train a set of language-specific 229

modules to (1) specialize the MSE for each indi- 230

vidual language, and (2) to align the monolingually 231

adapted MSEs for cross-lingual tasks. To cre- 232

ate training data for every language, we machine- 233

translate a mixture of English paraphrase datasets. 234

Monolingual Specialization. We specialize MSEs 235

like LaBSE (Feng et al., 2022) and mE5 (Wang 236

et al., 2024) for each language by training language- 237

specific (i) embedding layers and (ii) adapters, us- 238

ing monolingual data. 239

Language Adaptation (LA). For each language, we 240

train a new, language-specific tokenizer and initial- 241

ize its new embedding matrix following the FO- 242

CUS approach (Dobler and de Melo, 2023). In a 243

nutshell, FOCUS copies the embeddings for tokens 244

that already exist in the vocabulary of the original 245

MSE; for new tokens, it interpolates between em- 246

beddings of similar tokens from the original vocab- 247

ulary. Compared to random initialization, FOCUS 248

keeps a substantial amount of information from the 249

pre-trained embeddings of the multilingual model 250

in the new embeddings, making them “compatible” 251

with the model body, avoiding the need to train 252

them from scratch for each language: this leads 253

to more sample efficient training for the embed- 254

ding layers.4 For each target language, we then do 255

standard (continued) MLM-ing on the monolingual 256

corpora of the language. To this end, we resort to 257

modular, parameter-efficient fine-tuning (PEFT): 258

besides the parameters of the new embedding ma- 259

trix, we train only the low-rank adaptation matrices 260

(LoRA; Hu et al., 2022) in encoder’s layers. PEFT 261

has been widely adopted for post-hoc language spe- 262

cialization of vanilla mELMs (Pfeiffer et al., 2020, 263

2021; Parović et al., 2022). 264

(Re-training for) Sentence Encoding (SE). As a 265

token-level objective, (continued) MLM-ing is 266

detrimental to the original sentence embedding 267

abilities of a pre-trained MSE: we thus need to 268

re-specialize each language-specific encoder for 269

(monolingual) sentence encoding: for this, we use 270

a standard contrastive learning objective, Multi- 271

ple Negative Ranking Loss (MNRL; Henderson 272

et al., 2017) and train on the (noisy) monolin- 273

gual paraphrase data, machine-translated from En- 274

glish. This step is also done in a modular way 275

by stacking another set of monolingual adapters 276

(again LoRA), the SE adapter, on top of the LA. 277

In this training step, only the parameters of the SE 278

4We refer the reader to the original paper for more details.
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paraphrase parallelparaphrase

Language Adaptation Sentence Encoding Training

Figure 1: Illustration of how we apply our modular training to a pre-trained multilingual sentence encoder. In
each step, only the module marked with the fire symbol is trained. In the monolingual specialization step, we train
a language-specific embedding layer, a language adapter and a monolingual sentence encoding (SE) adapter for
each language. In the cross-lingual alignment (CLA) step, the monolingual representation is aligned to the English
representation via paraphrase and parallel data, respectively. The two CLA adapters are merged through weight
averaging to form the final CLA adapter for each language. PA stands for parallel adapter.

adapter are trained, in order to obtain the monolin-279

gual sentence encoding ability; the encoder body,280

language-specific embeddings layer and the previ-281

ously trained LA are all kept frozen.282

Cross-Lingual Alignment (CLA). The mutually283

independent language adaptation for individual284

languages warrants a cross-lingual sentence-level285

alignment step, so that the sentence embeddings286

can also be used in cross-lingual applications. To287

prevent negative interference between cross-lingual288

alignment and previously imparted monolingual SE289

abilities, we train a cross-lingual alignment (CLA)290

module as a parallel adapter (He et al., 2022)291

for each non-English language. The cross-lingual292

alignment training then updates only language-293

specific CLA adapters: the monolingual modules294

of the corresponding input language are activated295

in the forward pass, but not updated.296

Since our machine-translated monolingual para-297

phrase datasets are parallel across all languages, we298

can create two sorts of cross-lingual training data:299

paraphrase pairs (i.e. sentence in language A and300

its paraphrase in language B) and parallel pairs301

(i.e. sentence in language A and its direct trans-302

lation in language B). We mitigate the inherent303

interference between bitext mining and semantic304

similarity (see §1), by training two separate CLA305

adapters for each language, one on parallel and one306

on paraphrase data. Specifically for each language307

other than English, we train (1) the paraphrase308

CLA adapter with the MNRL loss—just like the309

SE adapter in monolingual SE specialization—only310

now with bilingual (English-target language) para- 311

phrase pairs; in contrast, we train (2) the parallel 312

CLA adapter with the cosine similarity loss (follow- 313

ing (Heffernan et al., 2022)) on bilingual (English- 314

target) translation pairs. One can then either use the 315

more suitable of the two CLA adapters in a down- 316

stream tasks or post-hoc interpolate between the 317

two skills (i.e., ability to model fine-grained cross- 318

lingual semantic similarity and the ability to match 319

representations of exact translations) to best match 320

the what is needed for a concrete downstream task. 321

We favor bilingual alignment with the English 322

encoder over multilingual alignments5, because En- 323

glish embeddings are the most reliable: not only 324

is the initial multilingual encoder most “fluent” in 325

English, but we also trained English embeddings 326

on gold paraphrase data, whereas all other SEs are 327

trained with noisy translations. Because of this, we 328

omit to train the CLA adapter(s) for English: with 329

English embedding space being of best semantic 330

quality, we want embeddings from other languages 331

to adapt (through their CLA adapters) to the En- 332

glish space, and not vice versa. Using English as a 333

pivot has already been proven effective in aligning 334

non-English languages to each other (Reimers and 335

Gurevych, 2020; Heffernan et al., 2022). 336

Inference. After training, we have several mod- 337

ules for each (target) language: embedding layer, 338

language adapter, SE adapter and CLA adapter(s). 339

5Given the multi-parallel nature of the paraphrase data we
obtained with MT, direct alignment between all non-English
language pairs is possible.
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When encoding the input text, the corresponding340

modules for the input language should be activated.341

Thus, the language of the input text should be342

known. Otherwise, one can easily apply any SotA343

language identification models (Kargaran et al.,344

2023) to detect the input language first.345

4 Experimental Setup346

Models. We start from two popular MSEs as base347

models for our modular specialization: LaBSE348

and multilingual E5 (mE5-base). LaBSE has been349

trained on billions of parallel sentence pairs (Feng350

et al., 2022). Starting from XLM-R (Base) (Con-351

neau et al., 2020), mE5-base has first been trained352

on around 1 billion of (noisy) weak-supervision353

pairs, then on around 1.6 million high-quality sen-354

tence pairs (Wang et al., 2024). The goal of our355

work is not to outperform other MSEs or achieve356

SotA performance; instead, we aim to show that357

our proposed modular specialization offers clear358

benefits over monolithic single-model training.359

Monolithic Baselines. Our primary baseline is the360

single monolithic MSE model for which all pa-361

rameters are updated in each training step, akin to362

mSimCSE (Wang et al., 2022). While mSimCSE363

originally trains only on (English or cross-lingual)364

NLI data, we extend this to make the comparison365

with our modular variants as fair as possible: we366

use all of the MT-obtained multilingual paraphrase367

instances as in our modular training. We have the368

following monolithic-model variants: (i) Fullen,369

trained only on (clean) English paraphrase data; (ii)370

Fullm, trained only on monolingual data of all lan-371

guages (each batch is monolingual, language ran-372

domly sampled for each batch); (iii) Fullc, trained373

only on cross-lingual paraphrase pairs (the lan-374

guage for each sentence in a paraphrase pair is375

randomly selected); and (iv) Fullmc, trained se-376

quentially, first on monolingual (m) and then on377

cross-lingual (c) paraphrases.378

Modular Variants. We evaluate the following vari-379

ants: (i) Moden, as a baseline: a monolingual SE380

adapter is trained only on English paraphrase data381

and used for all other languages; i.e., we trans-382

fer the sentence encoding ability from English;383

(ii) Modm: only monolingual specialization, i.e.384

a monolingual SE adapter is trained with para-385

phrase dataset for every language; (iii) Modmc-pp386

adds a CLA adapter trained on cross-lingual para-387

phrase data to Modm; (iv) Modmc-pl adds a CLA388

adapter trained on cross-lingual parallel data to389

Modm; (v) Modmc merges the two CLA adapters 390

in Modmc-pp and Modmc-pl (with equal contribution) 391

into one single CLA adapter. We do the modular 392

training on LaBSE for 23 languages present in eval- 393

uation datasets. Due to the intensive LA step and 394

limited resources, for mE5 we train the modules 395

for a subset of 10 languages.6 396

Training Data. To get multilingual paraphrase 397

data, we translate, with NLLB 3.3B as our MT 398

model (NLLB Team et al., 2022), five English para- 399

phrase datasets—MNLI (Williams et al., 2018), 400

SentenceCompression (Filippova and Altun, 2013), 401

SimpleWiki (Coster and Kauchak, 2011), Altlex 402

(Hidey and McKeown, 2016) and QuoraDuplicate- 403

Questions, containing combined around 600K sen- 404

tence pairs (see Appendix C.1 for details on the 405

datasets)—into all 22 languages found in our down- 406

stream evaluation datasets. This results in a multi- 407

parallel paraphrase dataset spanning 23 languages, 408

from which we create instances for monolingual 409

and cross-lingual training. 410

We train language-specific tokenizers and carry 411

out monolingual language adaptation on mono- 412

lingual corpora combined from language-specific 413

portions of CC100 (Conneau et al., 2020) and 414

MADLAD-400 (Kudugunta et al., 2023). 415

Evaluation Data. We evaluate the obtained sen- 416

tence encoders on four tasks: STS, STR, bitext min- 417

ing, and sentence classification. For the first three 418

tasks, we do evaluation in the “zero-shot” setup, 419

i.e., without any task-specific supervised training. 420

We only evaluate on high-quality datasets, com- 421

piled either manually from scratch or by human 422

post-editing of machine translations.7 423

Semantic Textual Similarity (STS). The models 424

need to produce a score indicating semantic simi- 425

larity for a pair of sentences. We simply predict the 426

cosine similarity between the embeddings of the 427

sentences. Performance is reported as Spearman 428

correlation (×100) against human scores. We col- 429

lect existing multilingual STS datasets and use par- 430

allel monolingual STS data to create high-qualiry 431

cross-lingual evaluation pairs. For example, the 432

STS datasets for Czech, German and French (Her- 433

cig and Kral, 2021) and the datasets for Dutch, Ital- 434

ian and Spanish (Reimers and Gurevych, 2020) are 435

parallel to each other, as they are translated from 436

the same STS17 (Cer et al., 2017) English data. 437

6We provide the full list of languages in Appendix A and
implementation and training details in Appendix B.

7See Appendix C.2 for more details on evaluation datasets.
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The same applies for the STS datasets for Turkic438

languages in Kardeş-NLU (Senel et al., 2024) and439

the Korean STS dataset from Ham et al. (2020),440

all translated from the English STS-Benchmark441

(STSB; Cer et al., 2017). We can thus leverage442

this effectively multi-parallel STS data for cross-443

lingual evaluation on many more language pairs,444

including pairs never evaluated in prior work, e.g.445

Czech-Italian or Korean-Uzbek.446

Semantic Textual Relatedness. Semantic relat-447

edness is a broader concept than similarity, that448

also considers aspects like topic or view similarity449

(Ousidhoum et al., 2024). We use the same met-450

ric as in the STS task. Similar to STS, we aggre-451

gate the multi-parallel monolingual data and create452

cross-lingual pairs between Polish (Dadas et al.,453

2020), Dutch (Wijnholds and Moortgat, 2021), and454

Spanish (Araujo et al., 2022), all translated from455

the English SICK dataset (Marelli et al., 2014).456

STR24 (Ousidhoum et al., 2024) contains monolin-457

gual STR data for low-resource African and Asian458

languages; but it is not multi-parallel, and as such459

only lends itself to monolingual evaluation.460

Bitext Mining. The model should mine parallel sen-461

tences (translation pairs) from two lists of mono-462

lingual sentences based on the cosine similarity463

of bilingual sentence pairs. Following Heffer-464

nan et al. (2022), we use the xsim score (error465

rate of wrongly aligned sentences; Artetxe and466

Schwenk, 2019a) to evaluate our models on two467

bitext mining datasets: FLORES (Goyal et al.,468

2022) and Tatoeba (Artetxe and Schwenk, 2019b).469

Since FLORES is multi-parallel, we test on all470

possible language pairs between our target lan-471

guages. Tatoeba only contains English-X data: we472

average the results from both mining directions473

(English→X and X→English) for all languages X.474

Topic Classification. We resort to SIB-200 (Ade-475

lani et al., 2024) to obtain data for topical sen-476

tence classification for our target 23 languages. In477

monolingual evaluation, we train a simple Logis-478

tic Regression (Cox, 1958) classifier on top of a479

frozen sentence encoder for each target language.480

In (zero-shot) cross-lingual transfer setup, we train481

the classifier on English data.482

Alignment metrics. In standard task formulations,483

cross-lingual STS and bitext mining are bilingual,484

i.e., a sentence in one language is compared only485

against sentences in one (and same) other language.486

Such an evaluation setup fails to capture the lan-487

guage bias of an MSE (Roy et al., 2020): in a488

multilingual candidate pool, the model might pre- 489

fer certain language (pair) over others, e.g., map 490

sentences from the same language closer in the 491

embedding space even if they are semantically dis- 492

similar. Following (Reimers and Gurevych, 2020), 493

we quantify language bias as the performance drop 494

when switching from bilingual to multilingual eval- 495

uation, in which we calculate the Spearman corre- 496

lation on the concatenation of all bilingual datasets. 497

To this end, we use the multi-parallel STSB and 498

SICK datasets; we report the difference between 499

the average performance on bilingual tasks and the 500

performance on the single multilingual task. An- 501

other indicator of semantic quality of multilingual 502

representation spaces is the similarity of monolin- 503

gual semantic structures, i.e., the degree of their 504

isomorphism. It can be quantified by Relational 505

Similarity, (RSIM; Vulić et al., 2020) on a bilingual 506

parallel corpus: we calculate the corresponding 507

sets of cosine similarity scores for all monolingual 508

sentence pairs, in each of the two languages and re- 509

port RSIM as Pearson correlation between the two 510

sets of corresponding monolingual cosines. We 511

measure RSIM on FLORES, averaging the results 512

across all language pairs. 513

5 Results and Discussion 514

We report the results for our LaBSE-based models 515

in Table 1 and for mE5-based models in Table 2. 516

5.1 Full Model Results 517

Further training on monolingual paraphrase data 518

(Fullen and Fullm) can already largely improve the 519

original models’ (first row in each table) perfor- 520

mance on all tasks, except for bitext mining. The 521

off-the-shelf LaBSE model is a strong baseline 522

for bitext mining, as it has been pre-trained on 523

a massive amount of parallel data, which perfectly 524

aligns with the goal of bitext mining. This con- 525

firms previous finding that training on paraphrase 526

data can disturb bitext mining ability (Reimers and 527

Gurevych, 2020). Fullm trained on monolingual 528

data of all target languages outperforms Fullen (i.e., 529

the mSimCSEen baseline) slightly on LaBSE and 530

significantly on mE5, demonstrating the limitation 531

of cross-lingual transfer of sentence-embedding 532

specialization from English, especially if the base 533

model has not been subjected to massive cross- 534

lingual pre-training on parallel data like LaBSE. 535

Fullm outperforms Fullcon monolingual 536

STS/STR tasks, whereas the opposite is true in 537
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Monolingual tasks Cross-lingual tasks Alignment metrics

STS↑ STR↑ CLS↑ STS↑ STR↑ CLS↑ Bitext Mining↓ Language Bias↓ RSIM↑
Dataset sts17 stsb sick str24 sib sts17 stsb sick sib flores tatoeba stsb sick flores

LaBSE 76.7 71.9 68.0 69.2 82.7 74.5 64.4 63.8 83.6 0.14 3.87 1.02 2.32 0.64

Fullen 82.7 80.9 76.5 75.4 84.1 78.8 71.5 70.4 83.5 0.49 4.72 0.87 1.48 0.70
Fullm 82.9 80.4 76.4 75.9 84.8 79.4 71.5 70.9 83.9 0.29 4.43 0.88 1.27 0.74
Fullc 81.0 79.1 75.1 75.3 85.1 77.8 72.1 71.5 85.3 0.20 4.00 0.53 0.70 0.77
Fullmc 80.0 79.2 75.1 75.4 86.0 76.7 72.7 71.7 86.3 0.21 4.17 0.53 0.64 0.77
Moden 82.6 82.1 76.3 78.7 84.9 80.1 74.8 71.5 83.6 0.16 3.68 0.90 1.24 0.73
Modm 83.1 82.1 76.5 78.4 85.5 80.6 75.3 71.9 85.0 0.15 3.63 1.05 1.16 0.75
Modmc-pp 82.9 81.8 76.7 77.5 86.0 80.7 76.0 72.8 85.0 0.16 3.49 0.71 0.92 0.76
Modmc-pl 81.4 81.6 76.0 77.2 85.8 79.1 76.1 72.4 86.2 0.15 3.64 0.56 0.67 0.82
Modmc 82.7 82.2 76.6 78.4 86.1 80.5 76.4 72.6 85.3 0.15 3.53 0.59 0.81 0.78

Ablations
Modm−LA 81.3 78.1 74.3 75.9 84.0 79.0 72.0 71.0 84.7 0.13 3.84 0.85 1.10 0.75
Modc 82.7 81.6 76.0 79.0 85.7 80.7 75.6 72.0 85.1 0.14 3.54 1.04 1.61 0.75

Table 1: Results of the LaBSE-based models for 23 languages. Reported results are averages over all languages in
each evaluation dataset. The best result within the Full group and the Mod group on each dataset is denoted in bold.
The second-best result in the Mod group is underlined.

cross-lingual tasks: this confirms the inherent trade-538

off between monolingual and cross-lingual abilities539

of MSEs. The inability of monolingual training,540

even using multi-parallel data, to induce strong541

cross-lingual semantic structures is confirmed by542

the higher language bias and lower RSIM scores543

of Fullm. The trade-off between monolingual and544

cross-lingual performance is more pronounced in545

mE5 results. The sequential combination of both546

monolingual and cross-lingual training (Fullmc) is547

unable to resolve the conflict and yields results548

similar to Fullc: in a monolithic MSE model,549

the subsequent cross-lingual alignment seems550

to distort the semantic quality of monolingual551

subspaces. One notable exception is monolingual552

text classification where Fullmcperforms the best.553

We speculate that is because topic classification554

relies on lexical cues rather than fine-grained555

sentence meaning: cross-lingual training probably556

improves lexical alignments and the fine-grained557

distortions it brings to monolingual semantics play558

no role in this semantically coarse task.559

5.2 Modular Model Results560

Monolingual Training. We first compare the base-561

line Moden, with an SE adapter trained only on En-562

glish data against Modm with a language-specific563

SE adapter. As is the case for monolithic models,564

Modm with language-specific SE adapters trained565

with noisy machine-translated data, outperforms566

the transfer from English-only SE training (Moden),567

drammatically reducing the language bias for mE5.568

Looking at performance on monolingual tasks, our569

Modm with monolingual (LA and SE) specializa-570

tion successfully mitigates the curse of multilin-571

guality, which seems to be present in its monolothic 572

counterpart Fullm: the gains are particularly promi- 573

nent on STSB (+1.7 on LaBSE, +2.5 on mE5) and 574

STR24 (+2.5 on LaBSE), datasets that encompass 575

most low-resource languages. 576

The importance of modularity becomes most 577

apparent on cross-lingual STS, where our Modm, 578

not exposed to any explicit cross-lingual alignment 579

outperforms the explicitly cross-lingually trained 580

monolithic variants (Fullc and Fullmc). This shows 581

that monolingual training on multi-parallel data 582

leads to semantic alignment, emphasizing the po- 583

tential of MT for synthesizing MSE training data. 584

Adding cross-lingual alignment in a modular fash- 585

ion (Modmc variants) brings further gains (com- 586

pared to Modm) in sentence classification transfer 587

(CLS) and reduces the language bias. Crucially, 588

Modmc variants slightly outperform Modmon mono- 589

lingual tasks, showing that modularity mitigates 590

the conflict between monolingual and cross-lingual 591

performance that MSEs suffer from. Mod variants 592

also have a clear advantage over monolithic (Full) 593

models in bitext mining (both for LaBSE and mE5), 594

even in the absence of explicit cross-lingual train- 595

ing (i.e., Modm). This suggests that multilingual 596

training on Full results in negative interference 597

(i.e., the curse of multilinguality), which is allevi- 598

ated by our modular approach. 599

Cross-Lingual Training. Cross-lingual adapters, 600

either trained on paraphrase data (Modmc-pp) or 601

parallel data (Modmc-pl) can effectively reduce lan- 602

guage bias and increase isomorphism of monolin- 603

gual spaces (cf. Modm). Results further show that 604

paraphrase- and parallel-CLA adapters benefit dif- 605

ferent types of cross-lingual tasks. On both LaBSE 606
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Monolingual tasks Cross-lingual tasks Alignement metrics

STS↑ STR↑ CLS↑ STS↑ STR↑ CLS↑ Bitext Mining↓ Language Bias↓ RSIM↑
Dataset stsb sick sib stsb sick sib flores tatoeba stsb sick flores

mE5 72.5 74.2 74.0 54.1 61.0 73.5 1.85 9.89 23.22 12.11 0.60

Fullen 75.8 75.4 83.4 55.4 62.2 82.9 1.46 9.98 7.21 5.79 0.59
Fullm 79.6 75.5 85.5 60.2 64.1 85.2 0.62 7.85 2.60 3.16 0.67
Fullc 77.7 73.9 85.6 66.7 67.7 85.5 0.26 6.37 1.11 1.24 0.74
Fullmc 77.4 73.1 85.4 66.7 66.9 86.5 0.26 6.33 1.05 1.14 0.74
Moden 79.9 75.8 87.0 66.2 66.7 87.0 0.26 5.81 6.66 5.27 0.72
Modm 82.1 75.4 87.8 69.8 68.5 87.7 0.22 5.27 2.82 3.07 0.74
Modmc-pp 81.7 76.4 87.9 73.2 70.5 87.6 0.20 5.19 1.58 2.08 0.75
Modmc-pl 80.8 75.2 88.5 72.8 69.6 89.0 0.22 5.61 2.15 2.05 0.82
Modmc 82.2 76.4 88.3 73.0 70.0 88.1 0.20 5.10 1.63 1.97 0.78

Ablations
Modm−LA 80.8 76.0 87.2 61.5 64.4 86.3 0.56 7.63 3.87 3.53 0.68
Modc 81.8 76.0 88.4 72.7 69.2 88.2 0.17 5.26 3.19 3.79 0.79

Table 2: Results of the mE5-based models for 10 languages. Reported results are averages over all languages in
each evaluation dataset. The best result within the Full group and the Mod group on each dataset is denoted in bold.
The second-best result in the Mod group is underlined.

and mE5, Modmc-pl has the strongest performance607

in cross-lingual classification transfer (CLS), which608

correlates with the degree of isomorphism. In con-609

trast, Modmc-pp is better at STS/STR. This confirms610

the conflicting requirements of downstream tasks611

an importance of skill separation via modularity.612

Merging both CLA adapters in Modmcmitigates in-613

dividual shortcomings, resulting in well-balanced614

performance across all tasks. Surprisingly, com-615

bining the two CLA adapters in Modmc improves616

the performance on monolingual tasks, despite617

each CLA adapter invidually reducing the monolin-618

gual STS/STR compared to Modm. Our complete619

Modmc setup thus makes the best use of our multi-620

parallel paraphrase dataset.621

Ablation: Monolingual Specialization. Addi-622

tional monolingual training for each language as623

an intermediate step before cross-lingual alignment624

distinguishes our modular approach from other pop-625

ular MSE training strategies. We thus ablate the626

contribution of the monolingual specialization step627

(last two rows in Table 1 and Table 2). We first628

remove the LA step, i.e. we omit the MLM train-629

ing with language-specific embedding layer and630

language adapter and directly train the monolin-631

gual SE adapter on the original MSE. For both632

LaBSE and mE5, this leads to a significant perfor-633

mance drop compared with Modm. Without lan-634

guage adaptation, adapter-based SE training even635

underperforms Fullmin monolingual tasks, but im-636

proves over it in cross-lingual tasks: this again sug-637

gest that modular multi-parallel monolingual SE638

training benefits cross-lingual semantic alignment639

more than multilingual training of all parameters.640

To isolate the contribution of the monolingual SE641

adapter, we remove the SE adapter for non-English642

languages from Modmc to get a Modc baseline: now 643

the sentence encoding in other languages is learned 644

only through the alignment to the English repre- 645

sentations. We observe that while the task perfor- 646

mance is only slightly affected, the language bias 647

in STS/STR significantly increases, suggesting that 648

the removal of monolingual SE training is very 649

detrimental to the strong cross-lingual alignment 650

of language-specific representation subspaces. The 651

ablation results prove that our monolingual special- 652

ization steps are not only effective for improving 653

monolingual performance of individual languages, 654

but also plays an indispensable role in cross-lingual 655

alignment. 656

6 Conclusion 657

Multilingual sentence encoders (MSE) encode sen- 658

tences from many languages in a shared seman- 659

tic spaces. As a consequence, they suffer from 660

the curse of multilinguality and trade monolingual 661

performance for cross-lingual alignment. More- 662

over, the choice of different types of data (para- 663

phrases vs. parallel data) results in performance 664

trade-offs across downstream tasks, In this work, 665

we addressed these shortcomings via modularity: 666

we (1) first specialize monolingual SEs via mono- 667

lingual contrastive training on machine-translated 668

paraphrase data, initializing them from the same 669

MSE. Shared initialization and multi-parallel para- 670

phrase data then facilitate the cross-lingual align- 671

ment of the monolingual SEs, which we are able to 672

improve with lightweight cross-lingual alignment 673

adapters. We show (i) that this modular approach 674

yields gains w.r.t. both monolingual and cross- 675

lingual performance and (ii) that MT can help train 676

effective sentence encoders. 677
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Limitations678

We only experiment with encoder-based MSEs like679

LaBSE and mE5. Though this is the mainstream680

architecture for most MSEs, there are also pre-681

trained MSEs with the encoder-decoder architec-682

ture (Duquenne et al., 2023). Since the pre-training683

training objectives of such models are different684

from the encoder-based models we use (i.e. MLM685

language modelling and contrastive sentence em-686

bedding learning), our current modular training687

approach cannot be directly applied to them with-688

out adaptations. We thus leave the application of689

our modular approach to improve encoder-decoder690

MSEs to future work.691

Having language-specific modules for each lan-692

guage requires that the language of the input text693

is known. If the language is unknown, a prior lan-694

guage identification step is needed to determine695

it, as we do not have a built-in language detec-696

tion module. Fortunately, language identification697

is generally straightforward and reliable models698

that recognize hundreds of languages are readily699

available (Kargaran et al., 2023).700

Ethics Statement701

Our experiments use publicly available datasets and702

benchmarks for training and evaluation: these are703

all commonly used in the NLP research. No per-704

sonal information or sensitive data are involved in705

our work. Existing biases in the public datasets, our706

machine-translated datasets and pre-trained models707

can still be relevant concerns, as we do not specifi-708

cally mitigate them in this work.709
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A Languages1175

Table 3 lists the languages with their codes and1176

scripts.1177

B Implementation Details1178

The pre-trained models and libraries used in our1179

experiments are listed in Table 4. They are used1180

only for research purposes in this work. We do1181

not do specific hyperparameter tuning because of1182

Code Language Script

am Amharic Ge’ez
ar Arabic Arabic
az Azerbaijani Latin
cs Czech Latin
de German Latin
en English Latin
es Spanish Latin
fr French Latin
ha Hausa Latin
it Italish Latin
kk Kazakh Cyrillic
ko Korean Hangul
ky Kyrgyz Cyrillic
mr Marathi Devanagari
nl Dutch Latin
pl Polish Latin
ru Russian Cyrillic
rw Kinyarwanda Latin
te Telugu Ge’ez
tr Turkish Latin
ug Uyghur Arabic
uz Uzbek Latin
zh Chinese Han (simplified)

Table 3: Languages with their code used in this paper
and the scripts.

the large-scale MLM training and the robustness 1183

of contrastive learning against hyperparameters 1184

(Wang et al., 2022). Thus, we mainly use hyper- 1185

parameters recommended by the previous work or 1186

default settings in the packages. 1187

B.1 Full-Parameter Baselines 1188

Both monolingual and cross-lingual contrastive 1189

learning on all baselines are done with a sequence 1190

length of 128, batch size of 128 and learning rate of 1191

2e-5. To make a fair comparison with the modular 1192

variants, we train Fullm and Fullc for 3 epochs on 1193

the 600K monolingual or cross-lingual paraphrase 1194

data, respectively, while the Fullmc is obtained by 1195

3 epochs of monolingual training followed by an- 1196

other 3 epochs of cross-lingual training. We found 1197

that further increasing the number of epochs will 1198

not improve the performance. 1199

B.2 Modular Training 1200

The parameter size of each module and training 1201

time for each step is reported in Table 5. 1202

FOCUS The training of language-specific tok- 1203

enizers and the initialization of language-specific 1204

embedding matrices is done using the deepfocus 1205
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Model HuggingFace Name License

LaBSE sentence-transformers/LaBSE apache-2.0
NLLB facebook/nllb-200-3.3B cc-by-nc-4.0
mE5 base intfloat/multilingual-e5-base mit

Libarary GitHub Link License

transformers https://github.com/huggingface/transformers apache-2.0
sentence-transformers https://github.com/UKPLab/sentence-transformers apache-2.0
adapters https://github.com/adapter-hub/adapters apache-2.0
deepfocus https://github.com/konstantinjdobler/focus mit

Table 4: Models and libraries used in our experiments.

Step Module Parameters % Time

language adaptation embedding layer,
language adapter

8.4% 20h

sentence encoding SE adapter 0.3% 20m

cross-Lingual alignment CLA adapter 1.5% 20m * 2

Table 5: Parameter size (percentage of the original MSE
size of 472 Million) and training time for each module.
The training is done on a A100 40G GPU.

package (Table 4). We set the vocabulary size to1206

50K for each language. The dimensionality of fast-1207

Text embeddings used to calculate token similarity1208

is set to 300 as recommended. Other parameters1209

remain as default. We use up to 10M sentences1210

for the training of the tokenizer and the auxiliary1211

fastText embeddings on each language.1212

Language Adaptation As the language adapter,1213

we use a LoRA adapter (Hu et al., 2022) on key,1214

query, value matrices of the attention layers, with1215

a rank of 8, alpha of 16 and 0.1 dropout. For each1216

language, we train the embedding layer and the1217

language adapter for 200K steps, with a batch size1218

of 128. For high-resource languages, 200K steps of1219

training only cover a small portion of the available1220

data in MADLAD-400 (Kudugunta et al., 2023).1221

For low-resource languages, we use all data of1222

the corresponding language from CC100 (Conneau1223

et al., 2020) and MADLAD-400 (Kudugunta et al.,1224

2023).1225

Monolingual SE Adapter As the monolingual1226

SE training, we use a LoRA adapter (Hu et al.,1227

2022) on all linear layers, with a rank of 8, alpha of1228

16 and 0.1 dropout. We use the 600K paraphrase1229

data in the corresponding language for contrastive1230

sentence embedding training for each language,1231

with a sequence length of 128, batch size of 1281232

and learning rate of 2e-5 for 1 epoch in mixed1233

precision.1234

Cross-Lingual Alignment For the training of 1235

CLA adapters, we use 600K bilingual paraphrase 1236

data as explained in section 3. Each adapter is 1237

trained with a sequence length of 128, batch size of 1238

256 and learning rate of 2e-5 for 1 epoch in mixed 1239

precision. We use the parallel adapter (He et al., 1240

2022) with default settings in Adapters (Poth et al., 1241

2023) for CLA training. 1242

C Datasets 1243

We provide detailed information on the training 1244

and evaluation datasets. The datasets are used only 1245

for research purposes in this work. 1246

C.1 Paraphrase Data 1247

Table 6 provides an overview of the paraphrase 1248

datasets. The XNLI dataset is licensed with cc-by- 1249

nc-4.0. For the sources of other datasets, please 1250

refer to the information page8. 1251

C.2 STS/STR Evaluation Data 1252

We use the test split of the datasets for zero-shot 1253

evaluation. In the following, we list the sources 1254

of STS/STR data for all individual languages and 1255

language pairs. Note that for symmetric pairs (e.g. 1256

en-de and de-en), the score in our experiments is 1257

the average of both directions. 1258

STS17 The data for en, ar, es, en-ar, en-tr and es- 1259

en in the extended STS17 comes from the original 1260

STS17 (Cer et al., 2017). The data for de, fr, cs, 1261

de-en, en-fr, en-cs, cs-en, de-fr, fr-de, cs-de, de-cs, 1262

cs-fr and fr-cs is created by Hercig and Kral (2021). 1263

And the en-de, fr-en, nl-en and it-en data is trans- 1264

lated by Reimers and Gurevych (2020). Through 1265

combining the data from Hercig and Kral (2021) 1266

and Reimers and Gurevych (2019), we get evalua- 1267

tion sets for nl-de, nl-fr, nl-cs, it-de, it-fr and it-cs. 1268

8https://huggingface.co/datasets/
sentence-transformers/embedding-training-data
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Dataset Description Size

MNLI/XNLI Multi-Genre NLI data. We build 128K (Anchor, Entailment, Contradiction) triplets
using the original data.

128K

Sentence Compression Pairs (long_text, compressed_text) from news articles. 108K

Simple Wiki Matched pairs (English_Wikipedia, Simple_English_Wikipedia) 102K

Altlex Matched pairs (English_Wikipedia, Simple_English_Wikipedia) 113K

Quora Duplicate Questions Duplicate question pairs from Quora. We use the "triplet" subset. 102K

Table 6: Overview of paraphrase datasets. Except for XNLI, all of them are English datasets and are machine-
translated into our target languages for training.

All data except for ko are from the SNLI domain,1269

containing 250 sentence pairs per language pair.1270

The ko data is translated from the English STS1271

benchmark (Cer et al., 2017) by Ham et al. (2020),1272

containing 2850 pairs in various domains. Results1273

for en-cs, de-fr, cs-de, and cs-fr are calculated as1274

the average of symmetric language pairs (e.g. de-fr1275

is the average of de-fr and fr-de).1276

STSB Senel et al. (2024) translate the en data1277

from the STS benchmark (Cer et al., 2017) into 51278

Turkic languages: az, kk, ky, ug and uz. There are1279

800 test sentence pairs from various domains for1280

each language. Since the other training data for1281

Uyghur is written in the Arabic script, we transliter-1282

ate the Cyrillic Uyghur data in the benchmark into1283

the Arabic script using the Uyghur Multi-Script1284

Converter9. The Turkic language data are com-1285

bined with the dataset for ko (Ham et al., 2020)1286

to form evaluation dat for ko-en, ko-az, ko-ky, ko-1287

ug and ko-uz. For STSB, all cross-lingual results1288

are the average of symmetric language pairs (e.g.1289

az-kk is the average of az-kk and kk-az).1290

SICK We use the SICK dataset in English1291

(Marelli et al., 2014), Polish (Dadas et al., 2020),1292

Dutch (Wijnholds and Moortgat, 2021) and Span-1293

ish (Araujo et al., 2022) and combine them to create1294

cross-lingual evaluation data for en-pl, en-nl, en-es,1295

pl-nl, pl-es and nl-es. The test set size is 4.91K for1296

each language (pair). All cross-lingual results are1297

the average of symmetric language pairs.1298

STR24 We use the test data of the supervised1299

track of STR24, including monolingual data for en1300

(2600 pairs), am (342), ha (1206), rw (444), mr1301

(298), te (297). We do not include Spanish because1302

the public test set is not available, nor the Moroccan1303

Arabic and Algerian Arabic because they are not1304

9https://github.com/neouyghur/
Uyghur-Multi-Script-Converter

supported by LaBSE. The data is curated primarily 1305

from news (Ousidhoum et al., 2024). 1306
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