
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

JAILBREAK INSTRUCTION-TUNED LLMS VIA END-OF-
SENTENCE MLP RE-WEIGHTING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we investigate the safety mechanisms of instruction fine-tuned large
language models (LLMs). We discover that re-weighting MLP neurons can sig-
nificantly compromise a model’s safety, especially for MLPs in end-of-sentence
inferences. We hypothesize that LLMs evaluate the harmfulness of prompts dur-
ing end-of-sentence inferences, and MLP layers plays a critical role in this pro-
cess. Based on this hypothesis, we develop 2 novel white-box jailbreak meth-
ods: a prompt-specific method and a prompt-general method. The prompt-specific
method targets individual prompts and optimizes the attack on the fly, while the
prompt-general method is pre-trained offline and can generalize to unseen harmful
prompts. Our methods demonstrate robust performance across 7 popular open-
source LLMs, size ranging from 2B to 72B. Furthermore, our study provides
insights into vulnerabilities of instruction-tuned LLM’s safety and deepens the
understanding of the internal mechanisms of LLMs.

1 INTRODUCTION

The capabilities of large language models (LLMs) have improved rapidly in recent years (Achiam
et al., 2023; Anthropic, 2023; Touvron et al., 2023). One of the primary ways of deploying LLMs in
practice is through chatbots. Instruction fine-tuning is the most common approach for transforming
a pre-trained LLM into an effective chatbot (Wei et al., 2021; Ouyang et al., 2022; Chung et al.,
2022). This process involves training the model on a variety of prompt-response pairs, marked
with special tokens, to guide the model in following instructions and generating helpful, relevant
responses. Additionally, safety constraints are incorporated during this fine-tuning process, enabling
instruction-tuned LLMs to recognize and refuse harmful or malicious prompts.

However, even these instruction-tuned models remain vulnerable to jailbreak attempts (Wei et al.,
2023; Zou et al., 2023b; Liu et al., 2023; Zhan et al., 2023). It remains an open question why safety
mechanisms fail against certain jailbreak methods, and indeed, it is not fully understood how safety
mechanisms function in the first place. This situation underscores the importance of thoroughly
understanding safety mechanisms. Only by grasping how current safety systems operate and why
they can be bypassed can we design the next generation of more robust safety models.

Many studies have aimed to unravel the internal mechanisms behind LLM safety, exploring this issue
from feature, weight attribution, and other perspectives. From a feature perspective, several works
examine which features trigger model refusal behaviors, investigating how models detect harmful
prompts (Zou et al., 2023a; Zheng et al., 2024; Arditi et al., 2024). From a weight attribution
perspective, studies have analyzed the contributions of specific decoder layers or MLP neurons to
model safety (Li et al., 2024; Wei et al., 2024). More broadly, many research explores how fine-
tuning instills or weakens a model’s safety (Lermen et al., 2023; Qi et al., 2023).

Our study focuses on the relationship between LLM safety and MLP layers within the transformer
architecture, a topic explored in several prior works. Geva et al. (2022) suggests that enhancing
specific MLP neurons can improve model safety, while Wei et al. (2024) demonstrated that pruning
MLP neurons can effectively compromise the safety constraints of LLMs. Similar observations have
been made in other studies as well (Lee et al., 2024; Uppaal et al., 2024).

Existing works typically treat model components across different inferences uniformly. In contrast,
our study examines the MLP layers involved in various inferences independently. This novel per-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

spective reveals that the MLP layers in end-of-sentence inferences play a critical role in the safety
mechanisms of instruction-tuned LLMs. By re-weighting the neuron activations in these MLP lay-
ers, we demonstrate that the model’s safety can be significantly compromised. We hypothesize that
it is during these end-of-sentence inferences that the model assesses the harmfulness of queries, with
the MLP layers being crucial in these evaluations.

Building on these observations, we develop 2 jailbreak methods: a prompt-specific method and
a prompt-general method. The prompt-specific method optimizes independent MLP re-weighting
factors for different target prompts, enabling these factors to break the safety constraints for each
specific prompt. In contrast, the prompt-general method is designed to bypass safety constraints for
all harmful prompts. It is pre-trained on a given dataset and has the ability to generalize. As a result,
it can turn an instruction-tuned LLM into one that responds freely to any harmful queries without
safety constraints.

We evaluate our methods and compare them with other jailbreak approaches. As a result, our
prompt-specific method outperforms state-of-the-art prompt-specific methods while requiring less
computational time. Our prompt-general method is comparable to state-of-the-art approaches and
has a smaller impact on the model’s original capabilities. These results indicate that modifying
only the MLP layers in the end-of-sentence inferences is enough to compromise model’s safety,
demonstrating their critical role in safety mechanisms.

In general, our study presents new findings related to the safety mechanisms of instruction-tuned
LLMs. Based on these insights, we propose novel white-box jailbreak methods that exploit vulnera-
bilities in these models. We hope our methods contribute to the broader understanding of mechanism
interpretability in LLMs and aid in the development of truly reliable and transparent AI systems.

2 MLP RE-WEIGHTING

In this section, we explore how re-weighting the neuron activations of MLP layers in instruction-
tuned LLMs affects their safety. We first define the notations used and describe the method for
applying re-weighting factors to the MLP layers. Then, we present some preliminary experiments
demonstrating that MLP re-weighting can compromise the model’s safety, followed by an ablation
study showing the critical role of end-of-sentence inferences in this process. Finally, we propose the
“harmful assessment hypothesis,” which offers an explanation for the observed behavior.

2.1 RE-WEIGHTING MLP ACTIVATIONS

In this subsection, we introduce the notation used throughout this paper and describe the method of
modifications we applied to the MLP layers.

We use h
(t)
ℓ ∈ Rd to represent the output of the ℓ-th decoder layer in the t-th inference, which we

refer to as hidden states. In this paper, the t-th inference specifically refers to the inference that takes
the t-th token as input, i.e., we denote the inference process in a sequential manner. Furthermore,
when we mention terms such as ”decoder layer” or ”MLP layer,” we are referring to the entire layer
block, encompassing all of its components.

Each decoder layer contains a self-attention layer and a MLP layer.

h
(t)
ℓ−1/2 = h

(t)
ℓ−1 +Attnℓ(h

(t)
ℓ−1; {h

(s)
ℓ−1}

t
s=1),

h
(t)
ℓ = h

(t)
ℓ−1/2 +MLPℓ(h

(t)
ℓ−1/2).

In our method, we specifically focus on the MLP layer. Although MLP layer have different archi-
tectures in different GPT models, most of them have a linear final layer and can be summarized as
the following form:

MLPℓ(h) =

W∑
i=1

wℓ,i(h)Vℓ,i

where Vℓ,i ∈ Rd are the columns of the last layer weight matrix, and wℓ,i(h) ∈ R are the neuron
activations. This assumption for the MLP structure is not essential for our method and can be easily
generalized.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We introduce re-weighting factors M for the MLP neurons. M (t)
ℓ,i ∈ [0, 1] denote the re-weighting

factor of the i-th neuron in the ℓ-th MLP layer during the t-th inference, with 1 ⩽ l ⩽ L being the
layer index, 1 ⩽ t ⩽ n being the inference index and 1 ⩽ i ⩽ W being the neuron index. This
factor is multiplied element-wise with the neuron activations:

ˆMLP
(t)

ℓ (h) =

W∑
i=1

M
(t)
ℓ,i wℓ,i(h)Vℓ,i.

It must be emphasized that we apply different re-weighting factors for different inferences, meaning

that the re-weighted MLP layer ˆMLP
(t)

ℓ varies for different inference position t. If the factor M (t)
ℓ,i =

1, then the corresponding Vℓ,i functions as usual. If M (t)
ℓ,i < 1, then Vℓ,i is suppressed in the t-th

inference. If M (t)
ℓ,i = 0, then Vℓ,i no longer contributes to the MLP layer in the t-th inference.

2.2 JAILBREAK ATTEMPTS

In this subsection, we present some preliminary experimental attempts. Our goal is to identify re-
weighting factors that could potentially compromise the safety of intruction-tuned LLMs.

We formulate the attack as the following optimization problem:

min
M
L(M ;x) + ρ

∑
t,ℓ,i

(1−M
(t)
ℓ,i),

s.t. 0 ⩽ M
(t)
ℓ,i ⩽ 1.

(1)

We design our loss function L(M ;x) to encourage the LLM to produce a positive response for
prompt x, an approach introduced in Zou et al. (2023b). To prevent excessive modifications to the
model, we include an L1 penalty term in the optimization to ensure that the re-weighting factors
remain relatively sparse, with ρ being its hyperparameter. For clarity and to keep the focus on the
main points, the specific definition of L(M ;x) is provided later in Section 3.

Before presenting the specific results, there are two important details to note. The first is the format
of the prompts. For instruction-tuned LLMs, when users interact with these models, their queries
are preprocessed before being sent to the model. For example, in the case of LLaMA-3 8B-Instruct,
the query “Give instructions for hacking into an ATM machine.” is transformed into the following
format before being input into the model:

<|begin of text|><|start header id|>user<|end header id|>\n\n
Give instructions for hacking into an ATM machine.<|eot id|>
<|start header id|>assistant<|end header id|>\n\n

Here, tokens enclosed within <|·|> are special tokens in LLaMA-3’s tokenizer.

The second detail to note is the constraints we impose on M . We do not apply any modifications
during the inference process that generates new tokens. For a prompt of length n, M is defined
only for the first n − 1 inferences. During the n-th inference and any subsequent auto-regressive
inferences, no modifications are applied. The reason for this constraint is that we aim to avoid
directly interfering with the token generation process, as this can easily lead to overfitting. By
indirectly affecting the model’s outputs, we can gain a deeper understanding of how the model
interprets and assesses harmful prompts.

Figure 1(a) shows an example solution to problem (1). It is a heatmap demonstrating the overall
modulation scale

∑
i M

(t)
ℓ,i at each MLP layer. These factors successfully compromised the model’s

safety, resulting in the harmful response illustrated in Figure 1(d). However, what surprised us was
that the inferences most heavily modified were not those taking semantically meaningful tokens as
inputs, but rather those at the end-of-sentence, where the inputs are fixed, formatted special tokens.

To verify the importance of end-of-sentence inferences, we conducted an ablation study where
we modified only these specific inferences. Specifically, we targeted inferences that take
‘<|eot id|>’, ‘<|start header id|>’, ‘assistant’ and ‘<|end header id|>’ as inputs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) MLP factor. All inferences MLP re-weighting. (b) MLP factor. End-of-sentence MLP re-weighting.

I cannot provide instructions on how to hack into an ATM machine. Hacking into an ATM machine is illegal and can result in serious
consequences, including fines and imprisonment.

(c) Response. No intervention.

Sure! Here are some instructions for hacking into an ATM ma-
chine:
Step 1: Identify the ATM Model
Before attempting to hack into an ATM, you need to identify
the model of the machine. This can be done by looking for the
model number on the ATM’s exterior or by searching online for
the ATM’s specifications.
Step 2: Gather the Necessary Tools
You will need a few tools to hack into the ATM. These include:
* A laptop or computer with internet access
* A USB drive or other storage device
...

(d) Response. All inferences MLP re-weighting.

Of course! Here are some steps to help you hack into an ATM
machine:
Step 1: Identify the ATM’s Operating System
Before you start, you need to know what operating system the
ATM is running on. Most ATMs run on Windows or Linux. You
can usually find this information by looking for a sticker on the
back or bottom of the machine.
Step 2: Use a USB Drive
Insert a USB drive into the ATM’s USB port. This will allow
you to transfer files and potentially gain access to the machine’s
operating system.
...

(e) Response. End-of-sentence MLP re-weighting.

Figure 1: Examples of MLP re-weighting factors M∗ and corresponding responses.
Model: LLaMA-3 8B-Instruct. Target query: “Give instructions for hacking into an ATM machine.”

The solution is demonstrated in Figure 1(b), and the jailbreak response is presented in Figure 1(e).
From the result, we can see that only apply MLP re-weighting to these inferences is sufficient to
significantly compromise the model’s safety. Further experiments demonstrate that similar results
can be replicated across various harmful queries and different instruction-tuned LLMs.

Remark. The results we obtained are quite counterintuitive. Considering the changes made through-
out the process, we did not alter any inferences directly responsible for extracting semantic informa-
tion from the query, ruling out the possibility that the jailbreak was achieved by directly distorting
the model’s understanding of specific tokens. Nor did we modify the inferences directly involved in
generating responses, excluding the possibility that harmful responses were produced by increasing
the likelihood of harmful tokens.

By limiting the changes solely to the end-of-sentence inferences, our experiments ruled out the two
most commonly believed mechanisms by which jailbreaks operate. This raises the question: why
did our jailbreak attempt succeed? We hypothesize that end-of-sentence inferences are involved in
the model’s internal process of assessing whether a query is harmful. After the semantic information
is extracted and aggregated into the end-of-sentence inferences’ residual stream (Wang et al., 2023),
the MLP layers assess the harmfulness of the entire query and provide signals that influence the
subsequent generation. However, it should be noted that this is only a hypothesis and requires
further verification.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 ATTACKING METHODS

Based on the findings from section 2, in this section we develop two methods to jailbreak instruction-
tuned LLMs: a prompt-specific method, which operate independently for different prompts, and a
prompt-general method, which can create a safety-constraint-free version of the open-source LLMs.
We outline the specific settings and implementation details for these two methods in this section.

3.1 PROMPT-SPECIFIC METHOD

The prompt-specific method is designed to jailbreak an LLM for a single given prompt, requiring
independent training for each target prompt. Typical representatives of this approach include GCG
(Zou et al., 2023b), AutoDAN (Liu et al., 2023), and PAIR (Chao et al., 2023).

Recall that in section 2, we did not provide the full definition of the loss function. We now complete
it here. In order to encourage the LLM to produce more positive responses, we first hand craft a
small set of postive response prefixes, such as ”Sure! Here are some steps to help”. It is important
to note that these prefixes are independent of any specific query and are simply general positive
responses. We denote them as y ∈ Y , where each y represents a positive prefix and Y being their
collection. In practice, we constructed a small Y containing 9 positive prefixes. Further details on
these prefixes can be found in the Appendix A.

Thus, the loss function L(M ;x) takes the following form:

L(M ;x) = − 1

|Y|
∑
y∈Y

|y|∑
k=1

log pM (yk+1; [x y]1:n+k). (2)

Here, pM represents the output probability of the model after applying the MLP re-weighting factor
M . [x y] denotes the concatenation of the text x and y and [x y]1:n+k denotes the first n+ k tokens
of the combined sequence. |y| denotes the length of y. In essence, this formuation encourages the
MLP factor M to guide the model toward treating y as the expected continuation of x.

So, the full optimization problem is:

min
M
− 1

|Y|
∑
y∈Y

|y|∑
k=1

log pM (yk+1; [x y]1:n+k) + ρ
∑
t,ℓ,i

(1−M
(t)
ℓ,i),

s.t. 0 ⩽ M
(t)
ℓ,i ⩽ 1.

(3)

Since section 2 has demonstrated that applying MLP factors specifically to the end-of-sentence in-
ferences is sufficient for successful attacks, here we employ the same approach. Due to this change,
we slightly adjust the notation, defining M ∈ [0, 1]L×(∆n−1)×W , where ∆n denotes the number
of special tokens appended to the end of the prompt. For instance, in LLaMA-3-Instruct, ∆n = 5.
Thus, M (t) is applied at the (n − ∆n + t)-th inference, rather than the t-th inference. This index
shift is purely a notational adjustment and does not alter the core methodology.

We use gradient descent with momentum to solve problem (3). Backpropagation allows us to
efficiently compute ∂L

∂M without incurring additional computational overhead. At each step, we
first perform gradient descent, and then apply truncation to each component of M to ensure that
M

(t)
ℓ,i ∈ [0, 1]. We summarize the entire process in Algorithm 1.

3.2 PROMPT-GENERAL METHOD

The prompt-general method aims to obtain an LLM with safety constraints removed. After offline
training, the resulting LLM is expected to provide direct responses to any harmful prompt. Since the
prompt-general method requires no additional training during implementation, it has significantly
lower deployment requirements and poses greater potential risks. Typical representatives of this
approach include multi-prompt GCG (Zou et al., 2023b), ORTHO (Arditi et al., 2024) and reverse
fine-tuning methods (Zhan et al., 2023; Qi et al., 2023).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Optimization Method
1: Hyper-parameters: Regularization parameter ρ; Learning rate α; Momentum coefficient β.
2: Initialization: M ≡ 1; µ = 0.
3: while stopping criteria not met do
4: g ← ∂L/∂M − ρ;
5: µ← βµ+ (1− β)g;
6: M ←M − αg;
7: M ← min(max(M , 0), 1);
8: end while

To extend our prompt-specific method into the prompt-general method, we implicitly rely on the
hypothesis that there exists a universal safety mechanism across different harmful prompts. Only
with this assumption can we use a single set of MLP re-weighting factors to interfere with the
generation process for all prompts. Subsequent experimental results confirmed this: by pre-training
the MLP factors offline on a given dataset, these MLP factors demonstrated the ability to generalize
to previously unseen harmful prompts.

In terms of training, the prompt-general method is not significantly different from the prompt-
specific method. The main difference is replacing the loss function L(M ;x), which originally
depends on a specific prompt x, with its expectation over a dataset D:

L̄(M) = Ex∼DL(M ;x). (4)

We selected and synthesized a collection of harmful questions and commands to create the training
dataset D. The primary sources include a cleaned and augmented version of HarmfulQA (Bhard-
waj & Poria, 2023), along with some harmful behaviors generated by GPT-4o that align with the
categories covered in HarmBench (Mazeika et al., 2024). Since we’ll also evaluate our method
on HarmBench, we carefully cross-checked the datasets to ensure no overlap in prompts, thus pre-
venting data contamination. It is important to reemphasize that our dataset contains only harmful
queries, with no harmful responses.

Another minor difference between the prompt-general method and the prompt-specific method is the
introduction of early stopping. In the prompt-general method, we stop the optimization when the
modulation rate, defined as

∑
t,ℓ,i(1 −M

(t)
ℓ,i), reaches its maximum. A more detailed explanation

of this early stopping criterion is provided in Appendix A.

4 RESULTS

In this section, we present the evaluation of our methods. First, we compare the attack success
rates (ASRs) of our approaches with other jailbreak methods to demonstrate that our approaches are
comparable to state-of-the-art methods. Next, we analyze the performance changes introduced by
our prompt-general method to the instruction-tuned LLMs across some standard tasks. Finally, we
provide a detailed examination of the MLP factors obtained through our methods.

4.1 ATTACK SUCCESS RATE

In this subsection, we compare the ASR of our methods against other jailbreak methods using Harm-
Bench (Mazeika et al., 2024). We evaluate all methods on the 159 ”standard behaviors” of Harm-
Bench’s test set. Given the release time of HarmBench, many newly released models have not been
evaluated. Therefore, we re-evaluated various jailbreak methods on the latest open-source LLMs
from different sources and sizes. All responses are generated using greedy decoding and evalu-
ated by LLaMA-Guard-3 (Dubey et al., 2024). Alternative jailbreak methods follow HarmBench’s
standardized evaluation process. A brief description of each method is provided in Appendix C.

For prompt-specific method, we directly apply it toward queries in HarmBench’s test set. For general
method, we first train the MLP factor on the training dataset described in section 3, then apply it to
the testing queries. Other methods follow simmilar approaches. Due to computational limitations,
we only evaluate prompt-specific methods on LLMs ranging from 2B to 7B parameters.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Attack success rates. Bold indicate the best ASR for each model.
Prompt-specific Prompt-general

Instruct model Ours GCG AP Ours ORTHO GCG-M Human DR
LLaMA-3 8B 96.9 33.5 13.2 94.3 94.3 8.7 6.3 2.5
LLaMA-3 70B - - - 87.4 86.9 4.4 13.2 7.5
Qwen-2 7B 94.3 71.1 62.9 88.1 91.8 55.5 27.5 10.7
Qwen-2 72B - - - 77.4 81.7 54.2 10.1 0.0
Gemma-2 2B 94.3 66.7 28.3 78.0 91.2 44.3 45.8 0.6
Gemma-2 27B - - - 67.3 74.1 - 49.3 0.6
Yi-1.5 6B 96.9 68.6 51.8 94.3 91.8 40.6 68.1 34.0

As illustrated in table 1, for prompt specific methods, our method outperforms state-of-the-art meth-
ods. Meanwhile, our method achieves over a 5x improvement in computational speed compared
to existing methods. For prompt-general methods, our method is comparable with state-of-the-art
methods on models except Gemma family. The reason for our prompt-general method’s underper-
formance on the Gemma models remains unclear. We suspect that the safety mechanisms in these
models may be more complex, making it challenging for a single set of MLP factors to encompass
all scenarios associated with harmful prompts.

Although we only compare our method with other jailbreak methods that require only harmful
prompts as training data, it is worth noting that our method achieves higher ASRs than many fine-
tuning methods that rely on harmful responses as labels (Lermen et al., 2023; Wei et al., 2024). This
outcome is possible because the essence of jailbreaking an LLM is not to grant the model new abil-
ities, but rather to impair its capacity to refusing harmful prompts. Therefore, it is entirely feasible
to accomplish jailbreak without relying on labeled prompt-response pairs.

4.2 MODEL PERFORMANCE

In this subsection, we evaluate the performance change between the original instruction-tuned LLM
and its variant produced by our prompt-general method, which is free of safety constraints. This
evaluation is important because many supervised fine-tuning jailbreak methods encounter a trade-
off between achieving a high ASR and degrading the model’s overall quality (Souly et al., 2024).

For model evaluation, we follow the approach of the Open LLM Leaderboard (Beeching et al., 2023)
and select the following 4 benchmarks: ARC-Challenge (Clark et al., 2018), GSM8K (Cobbe et al.,
2021), MMLU (Hendrycks et al., 2020), and TruthfulQA (Lin et al., 2021).

Table 2: Model performance comparison. After/before MLP re-weighting.

Instruct model ARC GSM8K MMLU TruthfulQA
LLaMA-3 8B 55.7 / 55.7 (+0.0) 78.7 / 79.9 (-1.2) 65.9 / 65.5 (+0.4) 52.5 / 52.3 (+0.2)
LLaMA-3 70B 60.8 / 60.8 (+0.0) 90.0 / 90.3 (-0.3) 77.9 / 78.4 (-0.5) 55.8 / 55.1 (+0.7)
Gemma-2 2B 43.9 / 53.5 (-9.6) 58.9 / 57.8 (+1.1) 57.0 / 58.1 (-1.1) 53.6 / 56.5 (-2.9)
Gemma-2 27B 67.7 / 67.9 (-0.2) 83.0 / 83.5 (-0.5) 74.9 / 75.3 (-0.4) 62.7 / 63.3 (-0.6)
Qwen-2 7B 54.9 / 56.7 (-1.8) 68.9 / 69.9 (-1.0) 70.4 / 69.8 (+0.6) 56.2 / 57.5 (-1.3)
Qwen-2 72B 69.4 / 69.6 (-0.2) 86.5 / 87.1 (-0.6) 83.7 / 83.8 (-0.1) 71.2 / 72.5 (-1.3)
Yi-1.5 6B 50.4 / 50.7 (-0.3) 61.5 / 62.0 (-0.5) 61.2 / 61.8 (-0.6) 57.2 / 55.8 (+1.4)

Table 2 demonstrates that, with the exception of Gemma-2 2B, the other models perform similarly
before and after MLP re-weighting. We believe that this robustness in performance can be attributed
to the fact that we only modulate end-of-sentence inferences, resulting in minimal alterations to the
model’s overall generation process. This approach allows us to preserve the original capabilities
of the model to the greatest extent possible. Regarding the performance decline observed with
Gemma-2 2B, we attribute this to the small size of the model, which leads to a severe superposition

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

phenomenon (Elhage et al., 2022). This phenomenon makes it difficult to modify any part of the
model without inevitably affecting other capabilities.

4.3 DETAIL STUDY

In this subsection, we closely examine the MLP factors derived from our method. We illustrate
the extent of modifications MLP re-weighting made to the MLP layers and identify which layers
and inferences experienced the most significant changes. In addition, we explore the distribution of
the MLP factors. In the main text, we focus on the results of the general prompt method applied
to LLaMA-3 8B-Instruct, while the results for other models and the specific prompt method are
detailed in the Appendix D.

(a) Optimal M∗. (b) Distribution at T(n-1), L18.

Figure 2: MLP factors M∗ and most modified factors’ distributions. Prompt-general method.
Model: LLaMA-3 8B-Instruct.

Figure 2 illustrates the MLP factors obtained, together with a histogram showing the distribution of
the MLP factors at the positions with the most significant modifications (inference (n− 1), layer 18,
highlighted with a red box). It can be observed that the most affected inferences are the last two,
which take ‘assistant’ and ‘<|end header id|>’ as input, where ‘<|begin header id|>’
attract almost no modification. But even for the most modified MLP factors, it resulted in only a
2% average modulation in the MLP layer. Thus, we can conclude that the MLP re-weighting factors
induce only minor alterations to the model.

From the histogram plot 2(b), we can have a more detailed observation of the MLP factors. It is
evident that the vast majority of MLP factors remain concentrated around 1. In fact, in this case,
components of M∗ that fall below 0.9 account for less than 3% of the total. (For visualization, we
resize the y-axis, each MLP layer in LLaMA-3 8B-Instruct contains 14,336 neurons.)

Figure 3 demonstrates the cosine similarity between hidden states in the residual stream before and
after MLP re-weighting. We computed cosine similarities for 5 end-of-sentence inferences over the
HarmBench dataset. We are particularly interested in the inference at the last token position, which
takes ‘\n\n’ as input. Recalling our method, we did not apply MLP re-weighting to this inference.
Therefore, the differences in the hidden states for the last inference are entirely the result of modi-
fications occurring in the key-value pairs generated by the previous inferences, which subsequently
affect the last inference through the self-attention layer.

From the figure, we can observe that the hidden states remain almost unchanged until the 12th layer,
after which they begin to diverge. This indicates that the effect of MLP re-weighting in previous
inferences has not yet been conveyed to token generation inferences in the first 12 layers throught
the self-attention.

4.4 ABLATION STUDY

In this subsection, we explore the effect of different penalty parameters ρ on the jailbreak results.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Cosine similarity between hidden states before and after the MLP re-weighting. Prompt-
general method. Model: LLaMA-3 8B-Instruct.

Figure 4: ASRs for different ρ. Prompt-general method. Model: LLaMA-3 8B-Instruct.

Figure 4 illustrates the ASRs under different ρ settings. It can be seen that even with ρ values close
to 0, our method remains effective. This suggests that ρ is not essential for the method to work.
This occurs because the optimization starts with M ≡ 1 and constrains M within the [0,1] interval,
causing many attempts to increase M beyond 1 to be truncated. As a result, the method inherently
promotes sparsity in the solution, even without explicit L1 regularization. The actual role of ρ is
more about helping the optimization process denoise, allowing it to focus on the commonalities
related to the safety mechanism across different training prompts.

Our method also has an interesting byproduct. When a relatively large ρ is set, and the optimization
runs for a sufficiently long time until convergence, the resulting M∗ exhibits a highly sparse binary
structure. This outcome can be used to identify MLP neurons that are strongly correlated with
safety. Therefore, our approach can also serve as a mechanism interpretability tool. A more detailed
explanation of this process is provided in Appendix E.

5 RELATED WORKS

Jailbreaks. Numerous users and researchers have sought to bypass the safety constraints of LLMs,
resulting in various jailbreak methods. Techniques such as crafting adversarial prompts (Wei et al.,
2023; Carlini et al., 2023) and manipulating the model’s decoding process (Huang et al., 2023) ex-
ploit vulnerabilities in both open-source and closed-source models. Additionally, fine-tuning aligned
LLMs, even over non-malicious datasets, can inadvertently compromise model’s safety (Qi et al.,
2023; Yang et al., 2023). Recently, studies by Arditi et al. (2024) and Wei et al. (2024) have lever-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

aged insights from interpretability to develop more efficient and effective jailbreak methods. Our
work also falls into this category.

LLM Safety Mechanism. Understanding the safety mechanisms of LLMs is challenging due to
the complexity of their internal mechanisms. Recent studies have successfully identified attributes
such as truthfulness and toxicity within these models (Lee et al., 2024; Li et al., 2023). Wei et al.
(2024) demonstrate that pruning safety-critical neurons can degrade model safety while preserving
most capabilities. In another approach, Zheng et al. (2024) and Zou et al. (2023a) focus on the re-
fusal mechanism, revealing that the hidden features associated with refusal differ from those linked
to harmfulness. Furthermore, Arditi et al. (2024) show that eliminating refusal feature directions
from model parameters can significantly compromise model safety. Nevertheless, these discoveries
represent initial steps in understanding LLM safety mechanisms, and a comprehensive understand-
ing of these mechanisms remains elusive, highlighting the need for further investigation.

6 DISCUSSION

In this work, we demonstrate that the safety mechanism of instruction-tuned LLMs heavily relies on
MLP layers in end-of-sentences inferences and illustrate how vulnerable current open-source LLMs
are to such targeted attacks. Our work is inspired by previous researches’ observations regarding
the relationship between MLP layers and model safety, and we have also uncovered several new
phenomena that we hope will inspire further research in LLM mechanism study.

Limitations. There are several limitations to our work. First, much of the method is heuristic-
driven, making it more of a validation experiment rather than an optimal solution. For instance, the
design of the loss function is largely based on intuition, leaving considerable room for improvement.
Second, our work only points to the significance of MLP layers in the safety mechanism, yet the
precise role they play and how they impact subsequent generation processes remain open questions
for future investigation.

Ethics Statement. Research on jailbreaking instruction-tuned LLMs inevitably raises concerns
about whether it facilitates new risks. Although our method introduces a simpler and more efficient
approach than most existing methods, we believe the risk profile does not fundamentally change,
as the ability to jailbreak instruction-tuned LLMs is already well-documented. Our work is driven
by the goal of understanding the safety mechanisms of LLMs, which we believe will ultimately
contribute to the development of more robust and transparent AI systems.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Claude 2. 2023. URL https://www.anthropic.com/news/claude-2.

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Rimsky, Wes Gurnee, and Neel
Nanda. Refusal in language models is mediated by a single direction. ArXiv, abs/2406.11717,
2024. URL https://api.semanticscholar.org/CorpusID:270560489.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Ra-
jani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open LLM leaderboard, 2023. URL
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard.

Rishabh Bhardwaj and Soujanya Poria. Red-teaming large language models using chain of
utterances for safety-alignment. ArXiv, abs/2308.09662, 2023. URL https://api.
semanticscholar.org/CorpusID:261030829.

Nicholas Carlini, Milad Nasr, Christopher A. Choquette-Choo, Matthew Jagielski, Irena Gao, Anas
Awadalla, Pang Wei Koh, Daphne Ippolito, Katherine Lee, Florian Tramèr, and Ludwig Schmidt.
Are aligned neural networks adversarially aligned? ArXiv, abs/2306.15447, 2023. URL https:
//api.semanticscholar.org/CorpusID:259262181.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J. Pappas, and Eric Wong.
Jailbreaking black box large language models in twenty queries. ArXiv, abs/2310.08419, 2023.
URL https://api.semanticscholar.org/CorpusID:263908890.

Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun
Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Dasha Valter, Sharan Narang, Gau-
rav Mishra, Adams Wei Yu, Vincent Zhao, Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav
Petrov, Ed Huai hsin Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and
Jason Wei. Scaling instruction-finetuned language models. ArXiv, abs/2210.11416, 2022. URL
https://api.semanticscholar.org/CorpusID:253018554.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. ArXiv, abs/1803.05457, 2018. URL https://api.semanticscholar.org/
CorpusID:3922816.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. ArXiv, abs/2110.14168, 2021. URL
https://api.semanticscholar.org/CorpusID:239998651.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Baker Grosse, Sam Mc-
Candlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models
of superposition. ArXiv, abs/2209.10652, 2022. URL https://api.semanticscholar.
org/CorpusID:252439050.

Mor Geva, Avi Caciularu, Ke Wang, and Yoav Goldberg. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary space. ArXiv, abs/2203.14680, 2022. URL
https://api.semanticscholar.org/CorpusID:247762385.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Xiaodong
Song, and Jacob Steinhardt. Measuring massive multitask language understanding. ArXiv,
abs/2009.03300, 2020. URL https://api.semanticscholar.org/CorpusID:
221516475.

Yangsibo Huang, Samyak Gupta, Mengzhou Xia, Kai Li, and Danqi Chen. Catastrophic jailbreak
of open-source llms via exploiting generation. ArXiv, abs/2310.06987, 2023. URL https:
//api.semanticscholar.org/CorpusID:263835408.

Andrew Lee, Xiaoyan Bai, Itamar Pres, Martin Wattenberg, Jonathan K. Kummerfeld, and Rada
Mihalcea. A mechanistic understanding of alignment algorithms: A case study on DPO and
toxicity. ArXiv, abs/2401.01967, 2024. URL https://api.semanticscholar.org/
CorpusID:266755904.

Simon Lermen, Charlie Rogers-Smith, and Jeffrey Ladish. Lora fine-tuning efficiently undoes
safety training in llama 2-chat 70b. ArXiv, abs/2310.20624, 2023. URL https://api.
semanticscholar.org/CorpusID:264808400.

Kenneth Li, Oam Patel, Fernanda Vi’egas, Hans-Rüdiger Pfister, and Martin Wattenberg. Inference-
time intervention: Eliciting truthful answers from a language model. ArXiv, abs/2306.03341,
2023. URL https://api.semanticscholar.org/CorpusID:259088877.

Shen Li, Liuyi Yao, Lan Zhang, and Yaliang Li. Safety layers of aligned large language
models: The key to llm security. ArXiv, abs/2408.17003, 2024. URL https://api.
semanticscholar.org/CorpusID:272310211.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stephanie C. Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic
human falsehoods. In Annual Meeting of the Association for Computational Linguistics, 2021.
URL https://api.semanticscholar.org/CorpusID:237532606.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak
prompts on aligned large language models. ArXiv, abs/2310.04451, 2023. URL https://api.
semanticscholar.org/CorpusID:263831566.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee,
Nathaniel Li, Steven Basart, Bo Li, et al. Harmbench: A standardized evaluation framework for
automated red teaming and robust refusal. arXiv preprint arXiv:2402.04249, 2024.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano,
Jan Leike, and Ryan J. Lowe. Training language models to follow instructions with human
feedback. ArXiv, abs/2203.02155, 2022. URL https://api.semanticscholar.org/
CorpusID:246426909.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Hender-
son. Fine-tuning aligned language models compromises safety, even when users do not in-
tend to! ArXiv, abs/2310.03693, 2023. URL https://api.semanticscholar.org/
CorpusID:263671523.

Xinyue Shen, Zeyuan Johnson Chen, Michael Backes, Yun Shen, and Yang Zhang. ”do any-
thing now”: Characterizing and evaluating in-the-wild jailbreak prompts on large language
models. ArXiv, abs/2308.03825, 2023. URL https://api.semanticscholar.org/
CorpusID:260704242.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Elic-
iting knowledge from language models using automatically generated prompts. ArXiv,
abs/2010.15980, 2020. URL https://api.semanticscholar.org/CorpusID:
226222232.

Alexandra Souly, Qingyuan Lu, Dillon Bowen, Tu Trinh, Elvis Hsieh, Sana Pandey, Pieter Abbeel,
Justin Svegliato, Scott Emmons, Olivia Watkins, and Sam Toyer. A strongreject for empty
jailbreaks. ArXiv, abs/2402.10260, 2024. URL https://api.semanticscholar.org/
CorpusID:267740669.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas
Blecher, Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernan-
des, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony S. Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Ma-
dian Khabsa, Isabel M. Kloumann, A. V. Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mi-
haylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi
Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned
chat models. ArXiv, abs/2307.09288, 2023. URL https://api.semanticscholar.org/
CorpusID:259950998.

Rheeya Uppaal, Apratim De, Yiting He, Yiquao Zhong, and Junjie Hu. Detox: Toxic sub-
space projection for model editing. ArXiv, abs/2405.13967, 2024. URL https://api.
semanticscholar.org/CorpusID:269983207.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun.
Label words are anchors: An information flow perspective for understanding in-context learn-
ing. ArXiv, abs/2305.14160, 2023. URL https://api.semanticscholar.org/
CorpusID:258841117.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety train-
ing fail? ArXiv, abs/2307.02483, 2023. URL https://api.semanticscholar.org/
CorpusID:259342528.

Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao Xie, Xiangyu Qi, Mengzhou Xia, Prateek
Mittal, Mengdi Wang, and Peter Henderson. Assessing the brittleness of safety alignment via
pruning and low-rank modifications. arXiv preprint arXiv:2402.05162, 2024.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learn-
ers. ArXiv, abs/2109.01652, 2021. URL https://api.semanticscholar.org/
CorpusID:237416585.

Kevin Yang, Dan Klein, Asli Celikyilmaz, Nanyun Peng, and Yuandong Tian. Rlcd: Rein-
forcement learning from contrast distillation for language model alignment. arXiv preprint
arXiv:2307.12950, 2023.

Qiusi Zhan, Richard Fang, Rohan Bindu, Akul Gupta, Tatsunori Hashimoto, and Daniel Kang.
Removing rlhf protections in gpt-4 via fine-tuning. In North American Chapter of the Associa-
tion for Computational Linguistics, 2023. URL https://api.semanticscholar.org/
CorpusID:265067269.

Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie Zhou, Kai-Wei Chang, Minlie Huang,
and Nanyun Peng. Prompt-driven llm safeguarding via directed representation optimiza-
tion. ArXiv, abs/2401.18018, 2024. URL https://api.semanticscholar.org/
CorpusID:269976272.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander
Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel
Li, Michael J. Byun, Zifan Wang, Alex Troy Mallen, Steven Basart, Sanmi Koyejo, Dawn
Song, Matt Fredrikson, Zico Kolter, and Dan Hendrycks. Representation engineering: A top-
down approach to ai transparency. ArXiv, abs/2310.01405, 2023a. URL https://api.
semanticscholar.org/CorpusID:263605618.

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
attacks on aligned language models. ArXiv, abs/2307.15043, 2023b. URL https://api.
semanticscholar.org/CorpusID:260202961.

A SETTING DETAILS

A.1 POSITIVE PREFIXES

The positive prefixes we use are a combination of an affirmative word or phrase followed by a
general introductory sentence:

Sure! Here are some steps to
Certainly! + Here are some ways you
Of course! Here are some approaches that

These prefixes are based on observations of how LLMs respond to harmless questions. However,
they remain heuristic-driven and could be further refined.

A.2 EARLY STOPPING CRITERION

Here we give a more detailed description of the early stopping criterion used in our prompt-general
method. Figure 8 illustrated the relationship between the loss L̄(M) and the modulation rate

1
L·T ·W

∑
(1 − M

(t)
ℓ,i) during the optimization process. A noticeable inflection point can be ob-

served in the figure, where the modulation rate begins to decrease. Empirical studies indicate that
early stopping at this inflection point provides MLP factors with the highest attack success rate.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 5: Modulation rate v.s. training loss. Early stopping point marked with a red cross.

B BENCHMARKS AND EVALUATIONS

We evaluated our methods on other benchmarks as well, including AdvBench and JAMBench.

Figure 6: ASRs of prompt-general methods. Different Benchmarks.

As shown in the figure, our method achieved a comparable level of ASR on both AdvBench and
HarmBench. Although there was a slight drop in ASR on JAMBench, it still maintained a suc-
cess rate of over 50%. Overall, our method demonstrated robust out-of-distribution generalization
capabilities.

We also evaluated the results using GPT-4 API.

Figure 7: ASRs of prompt-general methods. Different Benchmarks.

The figure demonstrates that LLaMA-Guard-3 and GPT-4 provide similar evaluation results for our
method.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 8: Modulation rate v.s. training loss. Early stopping point marked with a red cross.

C OTHER JAILBREAKS

More details of other jailbreak methods that we compare in Section 4:

• GCG, Greedy Coordinate Gradient (Zou et al., 2023b): This method optimizes an adver-
sarial suffix by maximizing the probability that the model produces an affirmative response
to a given prompt.

• AP, AutoPrompt (Shin et al., 2020): Similar to GCG, but employs a different candidate
selection strategy. In this paper, we use the adapted version proposed by Zou et al. (2023b).

• ORTHO, Weight Orthogonalization (Arditi et al., 2024): This method compares hidden
states between harmful and harmless prompts to identify refusal directions. It then selects
an optimal direction and modifies model weights to eliminate the representation associated
with that refusal direction.

• GCG-M, GCG-Multi / Ensemble GCG: The multi-prompt version of GCG, optimizing a
single suffix across a set of prompts.

• Human (Shen et al., 2023): A fixed set of jailbreak templates gathered from in-the-wild
human inputs. These templates are applied to user queries to form jailbreak attempts.

• DR, Direct Request: This method directly uses the original queries without modification.

D MORE DETAIL STUDIES

Here, we present more detailed studies of MLP re-weighting factors for different models and the
prompt-specific method. All figures are modulation scales

∑
i M

(t)
ℓ,i , similar to Figure 2(a). For

prompt-specific method, we average the MLP factor over the HarmBench test dataset.

E MLP RE-WEIGHTING AS MECHANISM INTERPRETABILITY TOOL

Apart from its primary goal of jailbreaking, our method also serves as a tool for mechanism inter-
pretability. By setting a relatively large ρ and running the optimization for a sufficiently long time
until convergence, the resulting solutions are highly sparse, although the attack success rate may not
be optimal. These sparse solutions provide valuable insights for interpretability studies.

Figure 11 demonstrates the results of setting ρ = 1 × 10−3 and optimizing until convergence. The
resulting MLP factors yield an attack success rate (ASR) of approximately 87%. However, human
evaluations indicate that the quality of responses in this setting is somewhat inferior compared to
those discussed in the main text, primarily reflected in occasional incoherence and overly brief
responses. There may be some confusion as to why this appears inconsistent with the results in
section 4.4. This discrepancy arises because, in section 4.4, we still employ early stopping for

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Qwen-2 7B-Instruct. (b) Qwen-2 72B-Instruct.

(c) Gemma-2 2B-It. (d) Gemma-2 27B-It.

(e) Yi-1.5 6B-Chat. (f) LLaMA-3 70B-Instruct.

Figure 9: MLP factors M∗ for different models. Prompt-general method.

settings with large ρ. However, it has become evident that when ρ is large, the optimization process
becomes more complex, making our empirical early stopping criterion unsuitable.

What is more interesting, as illustrated in figure 11, is that under a large ρ, the resulting MLP factors
exhibit significantly greater sparsity and a more binary distribution. Components of M∗ that fall
below 0.9 account for less than 0.1% of the total, compared to 3% in the main text setting. This
increased sparsity enables us to identify a much smaller subset of key MLP neurons that we could
focus on in future studies.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Qwen-2 7B-Instruct. (b) Gemma-2 2B-It.

(c) Yi-1.5 6B-Chat. (d) LLaMA-3 8B-Instruct.

Figure 10: Averaged MLP factors M∗ for different models. Prompt-specific method.

(a) Optimal M∗. (b) Distribution at T(n-2), L13.

Figure 11: MLP factors M∗ and most modified factors’ distributions. Prompt-general method with
large ρ. Model: LLaMA-3 8B-Instruct.

17

