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ABSTRACT

We address a novel task for monocular explicit surface reconstruction that ex-
tends traditional surface normal integration over measurements on a regular grid
to direct continuous surface depth estimation. Our solution accepts coordinates
as queries and predicts both the normal and depth of an arbitrary query point by
its relative locations and orientations to the points distributed in its vicinity. In
general, all points are regarded by our model as random samples drawn from an
underlying continuous gradient field of a surface which we parameterize using
a field of polynomials to establish its topology. We establish a mapping from
coordinates to a sequence of learnable polynomial coefficients to model a con-
tinuous surface and train a neural network to approximate it. We decompose a
continuous surface representation into two components: (1) a set of grid points of
unknown orientations whose locations are picked by a quadtree and (2) a set of
sample points whose orientations are directly observable. Our training workflow
estimates the normal of grid points and the locations of depth discontinuities iter-
atively. During each iteration, we generate a normal map of grid points for it to
be processed by a standard bilateral normal integrator to identify the locations of
depth discontinuities, which we use to refine the estimation for grid-based normal
map in the subsequent iteration. As a result, the learned model generates both
normal and depth for arbitrary coordinates accurately in a continuous field. We
provide both theoretical formulation for our design and extensive empirical evi-
dence to demonstrate that our proposed method not only delivers a performance as
effective as its grid-based counterpart approaches but also flexibly and accurately
addresses the continuous cases that existing methods are unable to handle.

1 INTRODUCTION

Normal integration establishes an inverse mapping from a surface’s normal map to its depth. It com-
pletes the production cycle of multiple important 3d computer vision tasks including photometric
stereo, shape from shading, etc., which settles on surface normal as their output. Most existing so-
lutions to normal integration formulate the problem as an inverse problem of recovering a discrete
scalar field from its corresponding gradient map by a numerical solver to the corresponding partial
differential equation (PDE) in a 2D space subject to various boundary conditions. This PDE is of-
ten solved by a large linear system involving spatial numerical differentiation and recent research
effort have been put into modeling and identifying the locations of depth discontinuities properly.
In the discrete domain, PDE solvers consume input stored over a regular grid Quéau et al. (2018a),
where the spacing between adjacent measurements is uniform so that numerical differentiation is
properly defined consistently over the entire integration domain. For two reasons we believe it is
necessary to develop a tool for explicit surface reconstruction that directly interoperates with con-
tinuous representations: on the device end, present vision data acquisition techniques may provide
unstructured representations Peers et al. (2006) including surface normal which is directly made
available for a wide spectrum of downstream tasks Xiu et al. (2023); on the design end, as dense
representations for surface normal becomes an inalienable product of data-driven inverse rendering
pipelines Bae & Davison (2024); He et al. (2024), but a model that explicitly and flexibly abridges
dense representations involving surface normal and surface structure still remains elusive.

We study a new type of task for monocular explicit surface reconstruction and introduce a design that
directly accepts coordinate-based queries and produces estimates of both depth and normal for query
points of arbitrary coordinates. We regard the observed surface points as a set of random samples
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Figure 1: Our proposed design takes a set of unstructured input and establishes a grid of points, xg

with locations specified by a quadtree. This grid of field is overlayed on a continuous field of poly-
nomials, where through mapping approximated by a neural network, Φ, we obtain the corresponding
learnable polynomial coefficients, β, which allows us to setup the a normal map for xg (Section 3).
In addition to depth map Zg , This learned normal map is processed by a bilateral normal integrator
also to deliver the location-wise estimate for non-differentiable depth discontinuities along x-axis
and y-axis (wx and wy), respectively. The updated information about differentiability can be used to
refine the loss function training the network. Moreover, wx and wy can also be used to derive from
Zg to obtain the depth estimate for arbitrary query points in the form of point cloud xyz. Data paths
passing gradients are colored in blue.

drawn from an underlying continuous surface gradient field which we parameterize by polynomials
Cazals & Pouget (2005). To this end, we establish a learnable mapping from the coordinates of
query points to a sequence of polynomial coefficients to describe the geometry of a point-wise
differentiable surface. We introduce a training pipeline to train a neural network that approximates
this mapping. Essentially, because fitting surface by polynomials imposes pair-wise constraints
between two connected points in terms of their respective local spatial gradients, this naturally leads
to a loss function for this neural network to be trained.

In a more general setting, non-differentiable depth discontinuities exist that often prevent a single
polynomial from fitting two points separated by the discontinuity consistently. Because Bilateral
normal integration Cao et al. (2022) over a regular grid provides effective location-specific likeli-
hood estimate for depth discontinuities in terms of the weight assigned to the edges between two
connected grid points, to extend its benefit to the continuous domain, we decompose a continuous
surface representation into two components: (1) a set of points on a non-regular grid whose orienta-
tions are to be estimated, and their connectivity is determined by a quadtree Samet (1984). (2) a set
of sample points with observed surface orientations distributed around the grid points. Accordingly,
there are two types of pair-wise constraints formed by two connected points in terms of how these
two points located geometrically: (1) grid-grid connection, whose bonding is directly determined by
a bilateral normal integrator in terms of a 0-1 weighting; (2) grid-sample connection: the connection
between a grid point and its neighboring sample points whose weighting is derived from the nearby
grid-grid connection.

Therefore, accurate depth map estimate for grid points is essential for continuous surface normal
integration, and this depends on accurate estimation of the corresponding normal map, which is
directly affected by how well the underlying field of polynomials fits it. Hence, including weighting
of pair-wise point connections in a differentiability-aware loss function is critical for training a
neural network that accurately approximates the mapping from field coordinates to the polynomial
coefficients. This implies that the training has to carry out an iterative procedure that alternatively
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refines the estimate for grid-based normal map and for the locations of depth discontinuities that
encode shape topology. Moreover, since all operations are coordinate-driven, our method essentially
delivers an explicit reconstruction for a continuous surface. Figure 1 provides an overview of our
proposed design.

To sum up, our contributions are as follows:

1. A design of computational framework based on coordinate-driven queries that generalizes
the classical normal integration of data stored on a regular grid to measurements of contin-
uous representations.

2. A model of a continuous field of learnable polynomials that represent continuous surface
and a depth discontinuity aware loss function that facilitates its training.

3. Analysis of results obtained from extensive experiments demonstrating that our proposed
method not only performs as effective as the existing method on data stored on regular grid
but also delivers equally good performance on continuous data representations that existing
methods fail to handle.

This paper is organized as follows: Section 2 gives an overview of the existing literature; Section 3
explains the polynomial-based formulation for continuous surface modeling. Section 4 introduces
how the field of polynomial coefficients are trained iteratively and how the inferred locations of
depth discontinuities are used to refine the quality of both normal and depth estimation. Section 5
analyzes and visualizes estimation results obtained processing data of both regular grid and contin-
uous representations. Section 6 discusses future work and concludes this paper.

2 RELATED WORK

Existing literature addresses normal integration as an inverse problem of a everywhere differentiable
surface solved by a PDE solver, while more recent work also focuses on depth discontinuity detec-
tion and preservation. On the other end of spectrum lies a separate line of work that studies normal
estimation for unstructured point cloud. Our work investigates the properties of both.

2.1 FORMULATION

Essentially, PDE solvers delivers a solution that is expected to minimize following energy-based
functional Horn & Brooks (1986):

min
z

∫
Ω

E(∂uz(u, v)− p(n)) + E(∂vz(u, v)− q(n))dudv, (1)

where p = −nx

nz
, q = −ny

nz
, ∂uz and ∂vz are associated with a regular grid. In order for the solver

to be numerically stable, orthogonal constraint is introduced in the presence of large noise Zhu &
Smith (2020). Moreover, there is also a unified treatment using log depth map for both orthographic
projections and perspective projections Quéau et al. (2018a); Durou & Courteille (2007).

2.2 DEPTH EDGE DETECTION AND PRESERVATION

Depth discontinuities are the major barrier preventing a PDE solver from being a direct solution to
real-world applications Durou et al. (2009). A weighting function is introduced as common approach
to the modeling of depth discontinuities:

min
z

∫
Ω

wu(n)E(∂uz − p(n)) + wv(n)E(∂vz − q(n))dudv, (2)

where wu and wv are defined on a regular grid. Energy is naturally minimized when the weight wu

and wv vanishing at the depth discontinuity naturally zeros out the constraint unnecessarily imposed
upon the points located on the opposite sides of a depth discontinuity.

In addition to optimizers that directly suppress large numerical inconsistencies caused by violation
of geometric constraint during their optimization processes Badri et al. (2014); Quéau & Durou
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(c) two points separated by a non-
differentiable discontinuity.

Figure 2: A continuous field of polynomial coefficients β represents a continuous surface in a point-
wise manner. Each point (x, y) is mapped to a local coordinate system whose origin (0, 0, 0) coin-
cides with the corresponding surface point (x, y, z) where z is to be determined (Figure 2a). Inside
this local coordinates, the relative depth δz of points in the neighborhood to the center is explicitly
evaluated by β according to Equation 3. β can be estimated by relating two arbitrary points coexist
in a differentiable neighborhood, as one point’s polynomial can be used to evaluate a neighboring
point’s normal, and vice versa (Figure 2b). If one surface normal is directly observable, then β can
be learned. However, if the path connecting these two points on the surface is non-differentiable,
resulting an invalid constraint that should be removed from training β. Thus, the location of depth
discontinuities needs to be identified in the xy-plane (Figure 2c) in terms of edge weighting.

(2015), the process of devising a weighting function involving depth edge detection can be either
static or dynamic. A static process detaches edge detection and surface depth estimation into two
independent processes. Edge detection can be delivered by directly analyzing normal map Wu &
Tang (2006), handcrafting Xie et al. (2019) or photometric cues Wang et al. (2012), etc.. As the first
step towards integration over scattered normals, our work belongs to this category.

On the other hand, a dynamic process relies on depth estimation online and updates the weighting
function iteratively, assuming weighting function to be in the form w(n, z). For example, one
acn define an α-surface, and at each iteration, gradients for connected neighbors (less than α) are
taken into account. Alternatively, one can also describe this process using anisotropic diffusion
Quéau et al. (2018b). The most recent example involves applying semi-differentiable connectivity
pattern to produce the weighting function, whereas the pattern itself is updated along with the online
estimation of the surface depth Cao et al. (2022).

2.3 POLYNOMIAL SURFACE FITTING AND POINT CLOUD GEOMETRY

Per-point normal of a scattered point cloud can be estimated as a weighted average of neighbor-
ing surface normals Ben-Shabat & Gould (2020). The surface is parameterized using polynomials
Cazals & Pouget (2005), based on which polynomial coefficients are fitted by least-square solver.
The weight is per-point and learned as a product of supervised learning. This learning process can
be improved by making the order and scale of the polynomial location-adaptive Zhu et al. (2021).
Moreover, the implicit 0-level set can be integrated to further improve the global orientation consis-
tency of the normal estimation for a compact surface Li et al. (2024). We extend these formulation to
the inverse domain where the shape structure is not provided. This formulation can also be applied
to shading analysis Xiong et al. (2014).

3 CONTINUOUS SURFACE MODELING

Our model follows the established n-jet model Cazals & Pouget (2005) to parameterize a locally
differentiable surface, based on which we also present a globally consistent design that approximates
a general surface in the presence of depth discontinuities.
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3.1 N-JET SURFACE MODEL AND A FIELD OF POLYNOMIALS

As illustrated in Figure 2a, a locally-differentiable surface is defined in a local coordinate system
with its center coinciding the origin (0, 0, 0). All surface points (δx, δy, δz) satisfy a polynomial
height function Jn : R2 → R that maps the local displacement (δx, δy) to local relative height δz
as follows:

δz =

m∑
k=0

k∑
j=0

βk−j,jδx
k−jδyj , (3)

where m is the order of the polynomial and {βj} denotes a sequence of polynomial coefficients.
Accordingly, surface normal n(δx, δy) = 1√

z2
x+z2

y+1
(zx, zy,−1), where zx and zy are the first-

order partial derivatives taken with respect to x and y, respectively:

zx(δx, δy;βββ) =

m∑
k=0

k∑
j=0

βk−j,jδx
k−j−1δyj (4)

zy(δx, δy;βββ) =

m∑
k=0

k∑
j=0

βk−j,jδx
k−jδyj−1

Since n(δx, δy) is parameterized by coefficients {βj}, by providing sufficient number of observa-
tions for various n(δx, δy), {βj} can be estimated through linear regression estimation.

Since Equation 3 applies to a local neighborhood centering at an arbitrary point (x, y), we are
able to establish a continuous vector field of parameters, βββ(x, y), to describe the global shape in a
consistent manner. This imposes a spatially symmetric constraint as illustrated in Figure 2b, where
if two points,(x1, y1) and (x2, y2), are located on the same differentiable surface, their orientations
can be reciprocally parameterized by each others’ polynomial coefficients, imposing two spatial
constraints between βββ(x1, y1) and βββ(x2, y2): (1) their gradient fields have to fit each others surface
normal, n(x1, y1) and n(x2, y2), respectively; (2), the local relative height in Equation 3 between
these two points is conserved.

Notation-wise, we apply Equation 3 to describe the entire field in terms of (x, y) consistently as:

z(x, y)(δx, δy;βββ) = z(δx, δy;βββ(x, y)), (5)

and we let zx(x, y)(δx, δy;βββ) and zy(x, y)(δx, δy;βββ) follow the same convention of notation.

3.2 SURFACE MODEL WITH DEPTH DISCONTINUITIES

Correctly identifying the location of depth discontinuities (Figure 2c) and properly utilizing this
information for depth estimation is crucial for normal integration. The parameterization scheme
proposed by bilateral normal integrator Cao et al. (2022) has demonstrated excellent performance
on estimating depth map recovery for regular-grid measurements. We propose a decomposed sur-
face parameterization to extend the benefit of this scheme to continuous domain. In particular, we
categorize surface points into two groups: sample points xs whose surface orientations are directly
observable and grid points xg whose locations are aligned with their neighbors along either x-axis
or y-axis.

Accordingly, this decomposed parameterization leads to two types of connections between two
points: (1) grid-grid connection that links two adjacent grid points, which we denote as xg; (2)
grid-sample connection that associates a grid point with one of its child sample points, denoted as
xs, designated by the quadtree. As examplified in Figure 3a, bilateral normal integrator weighs two
axis-aligned edges joining the same grid point by a binomial random variable whose outcomes are
either (0, 1) or (0.5, 0.5), with 0 indicating that the edge is completely cut off by a depth disconti-
nuity and 1 for complete connection, whereas (0.5, 0.5) means the grid point is connected from the
both sides with even balance. In addition, if we are also able to accurately estimate the normal map
Ng(x, y) consisting of all xg , the corresponding depth map Zg(x, y) can be obtained by a traditional
normal integrator. Since a quadtree creates a rectangular “cell” that quarantines a sample point xs, it
can be readily seen that the depth of a sample point xs inside a cell relative to the cell’s four vertices
of xg , and the decomposed parameterization achieves a complete model for continuous surface.

5
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4 CONTINUOUS SURFACE NORMAL INTEGRATION

As discussed in Section 3.1, our model interoperates with a network that establishes a mapping
Φ : R2 → RK that associates a coordinate (x, y) with a sequence of K polynomials coefficients
{βj}, leading to a continuous vector field βββ(x, y) encoding an point-wise n-jet surface whose local
system of coordinates takes (x, y) as its origin. Our model approximates this mapping Φ using
a coordinate-driven neural network, which, through training, is expected to produce an accurate
estimate normal map estimate, Ng(x, y) on grid points.

In addition to learning Ng(x, y), correctly identifying the locations of the depth discontinuities not
only improves the accuracy of depth map for grid points xg but also leads to a better formulation of
the loss function which in turn improves the accuracy of Ng(x, y). Since depth discontinuities are
formulated on the premises that the structure of the surface is known, the training of the model essen-
tially follows an iterative optimization process that alternatively refines βββ(x, y) and the likelihood
estimate of the locations of depth discontinuities.

4.1 LEARNING GRID NORMAL MAP Ng(x, y)

Let (δx, δy) = xs − xg indicate the displacement vector of xs to xg . With a field of polynomial
coefficients βββ(x, y) being parameterized by the network Φ, we choose to train it by fitting both
polynomials βββg(δx, δy) and βββs(0, 0) to n(xs) that is directly observable. Specifically, according to
Equation 4, this leads to a design of loss function in terms of cosine distance function over grid-
sample connections:

ls = 1− |n(zx(xs)(0, 0;βββs), zy(0, 0;βββs)),n(xs)|cos,
lg,s = 1− |n(zx(xg)(δx, δy;βββg), zy(δx, δy;βββg),n(xs)|cos, (6)

which is sufficient to train a surface that is differentiable over the entire field with sufficient observed
samples xs.

Following a similar routine, there are two ways to evaluate normal map Ng(x, y) using Equation 3.
One is to evaluate the center of a differentiable neighborhood defined by βββg(0, 0), namely, obtaining
the coefficients at xg and evaluate the corresponding polynomials at (0, 0). Alternatively, it is also
possible to evaluate an adjacent but overlapping neighborhood centered at a nearby sample point
xs as βββs(−δx,−δy), which traces the displacement from xg back to xs. To sum up, according to
Equation 4 and 5, Ng(x, y) evaluated at point xg or xs in its vicinity can be read as:

n(xg) =
1√

z2x + z2y + 1
{zx(xg)(0, 0;βββg), zy(xg)(0, 0;βββg),−1} (7)

as well as:

n(xg) =
1√

z2x + z2y + 1
{zx(xs)(−δx,−δy;βββs), zy(xs)(−δx,−δy;βββs),−1} (8)

It is worth noting that, grid-sample connections are determined by the topology assigned by a
quadtree, and not all loss functions derived are valid in the presence of depth discontinuities. There-
fore, we assign a weight for each connection and the loss function should be read using Equation 6
as:

L =
∑
s

ls +
∑
s,g

ws,gls,g, (9)

and we model ws,g using a set of binomial random variables derived from the topology from the
existing design of bilateral normal integration using the learned Ng(x, y).

4.2 ESTIMATING GRID DEPTH MAP Zg(x, y) FROM Ng(x, y)

Bilateral normal integration Cao et al. (2022) models two axis-aligned grid-grid connections joining
the same grid point with a single binomial random variable. We port this parameterization to our
estimation routine of the grid depth map Zg(x, y) based on a learned Ng(x, y). In particular, each
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grid point xg shares four connections with its four neighbors, which are assigned with a weight
denoted as wx+, wx−, wy+, and wy−, respectively. These four quantities measure the outcomes
drawn from two independent binomial random variables as wx+ + wx− = 1 and wy+ + wy− = 1.
Moreover, they are parameterized by comparing the depth differences across the connection pair:
wx+ = σ(δx−z − δx+z) where σ(·) denotes the Sigmoid function.

Moreover, since Ng(x, y) contains grid points with non-uniform spacing, our solver directly utilizes
four connection-wise orthogonality constraints for each grid point at the center as follows:

(nxδ+x+ nzδx+z)wx+ = 0

(nxδ−x+ nzδx−z)wx− = 0 (10)
(nyδ+y + nzδy+z)wy+ = 0

(nyδ−y + nzδy−z)wy− = 0,

where (nx, ny, nz) denotes one measurement in Ng(x, y) and δ+x, δ−x, δ+y and δ−y are explicitly
fed to the solver. δx+z, δx−z, δy+z and δx−z are obtained by applying the corresponding direc-
tional difference operator to the unknowns Zg(x, y). Consequently, assembling these per-point four
conditions together and transforming them to a minimum energy problem leads to a sparse sym-
metric linear system from which Zg(x, y) can be solved by a standard conjugate gradient method.
Additionally, weight of grid-grid connections are alternatively updated alongside Zg(x, y).

We utilize the weight of grid-grid connections wx+, wx−, wy+ and wy− obtained through bilateral
normal integration to derive grid-sample connections ws,g for the loss function defined in Equation
9. To this end, as illustrated in Figure 3b, we divide the vicinity of each xg into four quadrants, each
of which is partitioned by the four grid-grid connections, respectively. We evaluate a weight of each
quadrant to be the product of the associated grid-grid connection weight, and assign this weight to
all sample points located in the same quadrant. Essentially, the product of two independent binomial
random variables means that x-axis and y-axis depth-discontinuities take place independently, and
its outcomes should also be 0-1, indicating the probability of a sample point xs being connected
with the center xg .

4.3 ESTIMATING CONTINUOUS SURFACE DEPTH FROM Zg(x, y)

Continuous surface depth estimation also utilizes grid-sample connections over which relative
heights of xs to a set of nearby grid points xg are integrated to produce a single depth value.
This requires rearranging grid-centered grid-grid connections as four orthogonal boundaries for a
sample-centered rectangular cell. Specifically, each sample point, xs, is circumscribed by these
four boundaries, and we establish four grid-sample connections between the sample point and its
four vertices made of grid points xg .

Because the grid-grid connections in the same cell are drawn from different binomial variables,
normalization is required to produce a consistent estimate. Our solution is to formulate a binary
clustering problem for each connection independently. In particular, a sample point xs in a cell
is to be evaluated against each of the four boundaries, where the connection over each boundary
encodes one or two clusters with their centers located at its two ends. Here the weight of grid-grid
connection serves as the prior distribution of the clusters. For instance, a grid-grid connection with
0 weight indicates that its two ends belong to two separated clusters; on the other hand, there exists
a single cluster if the weight is greater than 0.5. Quantitatively, we use cosine distance between the
surface normal of the two ends of a grid-sample connection to measure likelihood of the sample
point xs. Hence, normalized per-connection weight of grid-sample connection shall be obtained by
maximizing the following likelihood function:

l(wsg) = |ng1,ns|wgwsg1 + |ng2,ns|(1− wg)wsg2, (11)

where wsg1 + wsg2 = 1, |·, ·| indicates cosine distance and wg is the boundary weight from one of
wx+, wx−, wy+ wy− through regrouping. Accordingly, a per-connection depth for xs is evaluated
as:

z(xs) = zsg1wsg1 + zsg2wsg2. (12)

Furthermore, we evaluate Equation 12 for each connection in a cell and average the four readings
out to produce the final estimation for z(xs). This process is presented in Figure 3c.
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(a) grid-grid connection.
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(b) grid-centered grid-sample
connection.
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(xg , ng)(xg , ng)

(c) sample-centered grid-sample
connection.

Figure 3: Axis-aligned grid-grid connection (Figure 3a) is delivered by bilateral normal integra-
tion Cao et al. (2022). Each grid point is 4-connected, with two neighbors along the x-axis and
two along the y-axis. The connections are modeled in pairs in terms of edge weight denoting out-
comes of a binomial random variable. When the path between these two points are differentiable,
the corresponding weight is (0.5, 0.5) indicating connectivity, and when a depth discontinuity cut
in vertically on one axis, the weight is (1, 0) with 0 indicating dis-connectivity. To estimate normal
ng (Figure 3b), we correlate the corresponding xg with its neighboring sample points xs, where
connection weighting is derived from the weight of grid-grid connection of xg (Section 4.1). To as-
sociate xs with its four neighboring cell vertices (Section 4.3) for depth prediction, we cluster these
points according to cosine distances between their respective surface normal, where the number of
clusters is derived from the re-grouped grid-grid connections (e.g. an edge weight of 0 implies the
existence of two separate clusters). The depth of sample xs is the average of its relative depth to
each cell boundary offset by the grid depth, zg , previously obtained.

Finally, because surface normal can be estimated for an arbitrary query point in the place of ns, the
proposed design can be extended to depth estimation for an arbitrary sample point with unobserved
orientations, hence this routine generalizes to a continuous surface.

5 EXPERIMENT

We prepare two types of input data to our model to test its effectiveness. We first conduct experiment
using input data stored on a standard regular grid to test verify its “backward compatibility”. Namely,
we do not assume the structure of data is known as a priori and the locations of grid points are
determined by a quadtree independently. In this case, we compare our results against results obtained
from existing counterpart normal integration approaches and let them process grid input directly.
Throughout our experiment, we fix the order of per-point polynomials to be 3, meaning the length
of coefficient sequence is constant 9 (e.g. Equation 3 contains 9 additive terms).

In addition, we also prepare a set of scattered measurements in the form of 5-tuple, (x, y, nx, ny, nz),
as exemplified in Figure 1, to which existing designs do not apply. To achieve fair comparison, we
follow a similar routine to our design that applies a quadtree to prepare a best-effort grid based setting
that is suitable for counterpart method to deliver meaningful results. In particular, we establish the
grid-based normal map through nearest neighbor value mapping from the unstructured input data.
We normalize measurement coordinates to be inside a [−1, 1] × [−1, 1] square. Our solution is
implemented using PyTorch Paszke et al. (2017), and experiments are conducted on a single Nvidia
RTX 4090 GPU with 24G RAM. K-Nearest-Neighbor search is performed by Pytorch3D Ravi et al.
(2020). Estimation results are evaluated using Mean Absolute Depth Error (MADE).

5.1 BENCHMARK DATA

Two data sets are used in our experiments: DiLiGenT Shi et al. (2016) containing 9 models and
ground truth normal map with its multi-view version DiLiGenT-MV Li et al. (2020) and Sculpture
Fouhey et al. (2016). In particular, DiLiGenT-MV provides the ground truth shape of 5 of 10 models
originally contained in DiLiGenT, which we adopt for quantitative comparison, and we process the
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bear cow buddha reading pot2

ours (sample) 14.40 47.37 31.73 25.75 29.09
ours (grid) 20.09 31.24 18.79 27.26 31.35
IPF Cao et al. (2021) 24.29 38.66 8.23 33.59 17.35
BiNI Cao et al. (2022) 0.74 19.84 2.07 14.73 11.55

Table 1: Error of depth estimation evaluated in MADE as normal maps of DiLiGenT-MV is taken as
input in grid representations. Our method (grid) performs inferior to BiNI but delivers comparable
to IPF. Moreover, we also include the results obtained using sample queries drawn from continuous
domain, it can be readily seen that our method is insensitive to input data representations and de-
livers reasonably good results in both cases. The geometric interpretation MADE is visualized in
Figure 4.

255.450

372.32

BiNI                            IPF                        ours(grid)                     ours (sample)  normal

0

Figure 4: Estimation error of “reading” and “pot1”. Despite the numerical variance of MADE
obtained for different methods summarized in Table 1, shape geometry in general is captured and
correctly estimated by our method. See appendix for results of more models.

other 4 for direct visual comparisons. The sculpture dataset provides direct ground truth shape in
mesh, with which we use a renderer Yu et al. (2023) to generate the corresponding ground truth
normal map from an arbitrarily selected angle. Moreover, we apply Halton sampler Berblinger &
Schlier (1991) to draw random samples from the ground truth normal map to obtain the unstructured
input in the form of 5-tuple.

5.2 BENCHMARK METHODS

Two recent approaches, Bilateral Normal Integration (BiNI) Cao et al. (2022) and inverse plane
fitting (IPF) Cao et al. (2021), are used for comparison. In particular, BiNI delivers the state of the art
performance, and it is worth mentioning that a variant of its parameterization of depth discontinuities
is integrated into our workflow.

5.3 NORMAL INTEGRATION OVER REGULAR GRID

The numerical reconstruction error consuming grid-based input from DiLiGenT-MV dataset are
tabulated in Table 1, and the results are visualized in Figure 4.

5.4 NORMAL INTEGRATION OVER CONTINUOUS DOMAIN

The last two columns of Figure 4 show that our solution is insensitive to the structure of input
representation, be it of grid representation or generated from random samples. Moreover, Table 2
tabulates the estimation error of our methods and BiNI when processing the query input sampled
from models in sculpture dataset, and the results are also visualzied and compared in Figure 5.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

head bust statue skeleton

ours (sample) 38.10 64.00 35.20 50.34
BiNI Cao et al. (2022) 120.04 183.59 70.94 101.01

Table 2: Error of depth estimation evaluated in MADE as unstructured depth queries of Sculpture
are randomly-sampled. The results are visualized in Figure 4.

266.350 422.270

153.67

BiNI                        oursnormal

0 219.55

BiNI                        ours

0

normal

Figure 5: Estimation error of sculpture data set with randomly-sampled input. From left to right:
randomly-sampled input normal in the form of 5-tuple query, estimation error of BiNI, estimation
error of ours. It can be seen that our results outperforms BiNI when integrating samples drawn from
a continuous surface.

It can be seen from these comparisons that when the representations of input are unstructured and
randomly sampled, BiNI taking input with grid representation through nearest neighbor matching
delivers an apparently inferior result to the results produced by our method. This shows that learning
an accurate continuous gradient field is crucial for normal integration as there are spatially high
frequency variations that cannot be captured by direct nearest neighbor matching, no matter how
dense the grid points are distributed. Instead, performance gain can be achieved by accurately
modeling the local geometry of the surface and precisely capturing the correlation between two
arbitrarily located surface points.

6 CONCLUSION AND FUTURE WORK

This paper introduces a novel computational framework that, by taking coordinate-based depth
queries, allows for normal integration to be performed over a continuous domain. We propose
to represent continuous surface using a continuous field of learnable polynomial coefficients, and
we integrate a depth-discontinuity-aware edge weighting scheme for pair-wise point connections
into our training pipeline to obtain these parameters. Our experiment on various settings and various
datasets shows that our method not only performs as effectively as existing approaches on traditional
grid-based input, but also successfully delivers continuous surface normal integration that existing
methods cannot handle. Furthermore, because continuous monocular surface representations en-
ables flexible across-view alignment in a multi-view setting, extending this monocular design to
multi-view explicit dense surface reconstructions is the goal of our future work.
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A DIFFERENTIABLE LOCAL SURFACE AND LAPLACE SYSTEM

We set up a system of linear equations according to the first fundamental form of differential geom-
etry. Specifically, a locally differentiable surface can be modeled by a linear Laplace system. In the
presence of depth discontinuities, a weighting function is adopted evaluating pair-wise connections
between two points, as indicated in Equation 10.

We assume each data point represents a discrete sample drawn from a continuous surface. As an
example illustrated in Figure 6, points in a differentiable neighborhood are geometrically related by
their pair-wise distances to the center point. Essentially, this configuration defines a K-connected
graph with N vertices and KN directed edges. Correspondingly, we can setup a sparse KN -by-
N matrix, whose i-th row contains only 1 and −1 pair, with the corresponding column numbers
indicating the head node and the tail node of directed edge i. Notably, when being applied to a
regular grid, D represents a numerical difference operator. In either case, this representation leads
to:

Dz(x) = δz, (13)

where z(x) is N -by-1 vectorized depth field, and δz is a KN -by-1 vector whose entry indicates the
depth difference between the vertices of each edge. With a local coordinate system whose origin x0,
and if the underlying surface is smooth, the first fundamental form in differential geometry dictates

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Figure 6: Sample points are arbitrarily drawn from a locally differentiable surface. Each point is
associated with its neighbors, whose geometry is modeled by a polynomial according to Equation
3. This represents one of K = 5 conditions on pair-wise depth difference δzi binding neighbor x⃗i

with center x⃗0 imposed by the Laplace system of Equation 16. Because of the existence of depth
discontinuity, x⃗4 and x⃗5 have weak connections with x⃗0.

a linear approximation for it. In particular, any point xi in the neighborhood of x0 can be expressed
in terms of its normal n0 = (n0

x, n
0
y, n

0
z) as:

xi ≈ x0 + (1, 0,
n0
x

n0
z

)δix + (0, 1,
n0
y

n0
z

)δiy, (14)

where δiz can be expressed as:
δizn

0
z ≈ −δixn

0
x − δiyn

0
y, (15)

which can be rearranged and reduced to Equation 10.

In practice, numerical instability often arises when Equation 13 is solved directly for D being too
sparse. A remedy is to instead equate the distance of x0 to the plane spanned by its differentiable
neighborhood containing {x0, . . . ,xk}. This amounts to performing a normalized contour integral
around x0 and in discrete domain this is done by multiplying both sides by D and normalized by
the corresponding node degrees. In other words, Equation 13 extends to:

DTN−1
z Dz(x) = DTN−1

z b (16)

where b is a KN -by-1 vector whose each entry evaluates the RHS of equation 15 for an edge and
N−1

z is a KN -by-KN diagonal matrix whose non-zero entry contains the value of the correspond-
ing n0

z . It is worth noting that, by equating δx and δy over the entire domain, we can apply the same
interpretation to derive its regular grid counterpart in the form of a minimal energy formulation.
In short, DTD represents the Laplacian matrix of a graph discretizing a smooth manifold and D
defines the local geometric structure of the surface.

B NETWORK ARCHITECTURE

Figure 7 presents the architecture of the network proposed by our design. The network maps the
coordinates (x, y) to a sequence of coefficients β of 9 entries. This means to evaluate the points
(x + δx, y + δy) in the neighborhood of (x, y) as z(δx, δy) being evaluated according to Equation
3 using the obtained β.

C LOSS FUNCTION

We fit directly the gradient of to surface z(x, y) to the corresponding normal as:
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...fc1 fc7fc4 ... fc12... βPE(x , y)

32

512 512 512 512 9

(β1,. ..β9)

Figure 7: The architecture of the network that approximates the mapping from (x, y) coordinates to
a sequence of coefficients β of 9 entries.

Figure 8: DiLiGenT. From left to right: input normal map of grid representation, estimated point
cloud produced by our method.

L(zx, zy,n) = (zxnz + nx)
2 + (zynz + ny)

2 + (nz

√
z2x + z2y + 1− 1)2 (17)

where n = (nx, ny, nz) is observable and zx and zy are in terms of learnable β.

D RESULT
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458.45

245.50

176.530

Figure 9: DiLiGenT. From left to right: input normal map of grid representation, error map produced
by BiNI, IPF, our method and our method taking unstructured input sampled from the same model.
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Figure 10: DiLiGenT. From left to right: randomly-sampled input normal , per point error produced
by BiNI and our method.
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Figure 11: Sculpture. From left to right: randomly-sampled input normal , per point error produced
by BiNI and our method.
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