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Abstract

This paper investigates the use of lifted heuristics, inspired
by the more classical ones for the resolution of STRIPS-
like problems, for the efficient resolution of timeline-based
planning problems. We propose, in particular, a new heuristic
strategy which, while maintaining the variables lifted, allows
more accurate decisions. Furthermore, the concepts presented
in this work pave the way for a new type of heuristics which,
at present, allow this kind of solvers a significant performance
improvement.

Introduction

Since their early introduction, domain-independent heuris-
tics have immediately proven to be a fundamental ally in
solving difficult combinatorial problems such as those re-
lated to automated planning. The number of heuristics, in-
troduced in recent years, for the efficient resolution of these
problems has grown significantly to the point of constituting
a research field (called heuristic planning) in its own. The
different approaches that make up a solver’s paraphernalia,
range from the seminal h,qq and A4, (Bonet and Geffner
2001) to the more recent developments relying on delete-
relaxation, like the hF'F heuristic (Hoffmann and Nebel
2001) and the causal graph heuristics (Helmert 2006), on
landmarks, like in (Hoffmann, Porteous, and Sebastia 2004;
Porteous, Sebastia, and Hoffmann 2014), on the critical
path, like the h™ heuristic (Haslum and Geffner 2000;
Haslum, Bonet, and Geffner 2005) or, lastly, on abstraction,
like in (Edelkamp 2014) or in (Helmert, Haslum, and Hoff-
mann 2007; Helmert et al. 2014).

While the above heuristics are significantly heterogeneous
among them (although, often, they share some commonali-
ties), they have in common the fact that they have been de-
veloped specifically for the resolution of a particular type
of problem, characterized by a specific modeling language
called PDDL (Ghallab et al. 1998), representing a natural
evolution of the most long-lived STRIPS (Fikes and Nils-
son 1971) formalism. Despite the PDDL, over the years, has
been extended through different directions by introducing
durative-actions and numeric fluents (Fox and Long 2003),
derived predicates and timed initial literals (Edelkamp and
Hoffmann 2004), continuous changes (Fox and Long 2006),

state-trajectory constraints and preferences (Gerevini et al.
2009) and object-fluents', the development of heuristics for
reasoning with these more expressive formal systems has re-
mained relatively limited to a few cases (e.g., (Piotrowski et
al. 2016; Franco et al. 2019)).

Although it significantly departs from the previous ones,
the timeline-based approach represents a different formal-
ism that, already in its original formulation (Muscettola et
al. 1992), is able to cover a large part of the above features.
Although introduced before the aforementioned formalisms,
this specific planning paradigm has always remained a niche
within the automated planning community. The fragmen-
tation of the different timeline-based formalisms, indeed,
did not allow the emergence of a common language which
would have enabled a fair comparison among the differ-
ent reasoners. Furthermore, analogously to the solvers rea-
soning upon the previous PDDL extensions, timeline-based
planners have to cope with the high expressiveness of the
formalisms which, despite making them particularly suited
at addressing real-world applications, unavoidably leads to
performance issues. The contribution of this paper, a slightly
modified version of (De Benedictis and Cesta 2020), is,
hence, twofold: after providing a new formalization of the
timeline-based problem, aiming to embracing the differ-
ent aspects of the previous formalisms, we propose a new
domain-independent heuristic which, inspired by the more
classical ones, aims at improving the resolution efficiency.

Timeline-based planning

Timeline-based planning was first introduced in (Muscet-
tola et al. 1992; Muscettola 1994) and, since then, many
solvers have been proposed like, for example, KIgI' (Ghal-
lab and Laruelle 1994), EUROPA (Jonsson et al. 2000),
ASPEN (Chien et al. 2010), the TRF (Fratini, Pecora, and
Cesta 2008; Cesta et al. 2009) on which the APSI frame-
work (Fratini et al. 2011) relies and, more recently, PLAT-
INUm (Umbrico et al. 2017). Some theoretical work on
timeline-based planning like (Frank and Jénsson 2003; Jon-
sson et al. 2000) was mostly dedicated to identifying con-
nections with classical planning a-la PDDL (Fox and Long

"http://www.plg.inf.uc3m.es/ipc201 1-deterministic/
attachments/Resources/kovacs-pddl-3.1-2011.pdf



(a) A continuous timeline.

(b) A step-wise timeline.

Figure 1: A continuous and a step-wise timeline.

2003). A recent new formalization of timeline-based plan-
ning has been proposed in (Cialdea Mayer, Orlandini, and
Umbrico 2016), while (Gigante et al. 2020) studied its prop-
erties from a computational complexity point of view. The
work on KIET and TRF has tried to clarify some key under-
lying principles but mostly succeeded in underscoring the
role of time and resource reasoning (Cesta and Oddi 1996;
Laborie 2003). The planner CHIMP (Stock et al. 2015) fol-
lows a Meta-CSP approach having meta-Constraints which
havely resembles timelines. The Flexible Acting and Plan-
ning Environment (FAPE) (Dvordk et al. 2014) tightly in-
tegrates timelines with acting. The Action Notation Model-
ing Language (ANML) (Smith, Frank, and Cushing 2008)
is an interesting development which combines the HTN de-
composition methods with the expressiveness of the time-
line representation. Finally, it is worth mentioning that the
timeline-based approaches have been often associated to re-
source managing capabilities. By leveraging on constraint-
based approaches, most of the above approaches like KIET
(Laborie and Ghallab 1995; Laborie 2003), (Cesta, Oddi,
and Smith 2002), (Smith, Frank, and Jénsson 2000) or (Ver-
faillie, Pralet, and Lemaitre 2010) integrate planning and
scheduling capabilities.

In order to better understand what we are talking about
when discussing about timeline-based planning, it is im-
portant to introduce, without going into too much for-
mal details, some basic concepts about constraint networks
(Dechter 2003; Lecoutre 2009). Some of the timeline-based
frameworks like, for example, those described in (Smith,
Frank, and J6nsson 2000; Frank and Jonsson 2003), refer to
timeline-based planning in terms of constraint-based plan-
ning, further emphasizing the central role that constraints
take on within this type of planning. Formally,

Definition 1. A constraint network N is composed of a finite
set of variables, denoted by vars (N), and a finite set of
constraints, denoted by cons (N).

Specifically, constraint networks represent the lowest

level elements on which timeline-based planning relies. The
main data structure for the timeline-based paradigm is, in-
deed, the timeline which, in generic terms, is a function of
time, either discrete or continuous, over a given domain. For-
mally,

Definition 2. A timeline T is a function
T:T—7D

where T is the (either discrete or continuous) domain of
time and D is the (possibly infinite) domain of the timeline.

It is worth noticing that the previous definition is quite gen-
eral, not specifying any limitation neither on the time, which
can be either discrete or continuous, nor on the domain
which can be, in general, of any kind. Specifically, the do-
main of a timeline can be either symbolic (e.g., “a”, “b”, “c”,
etc.) or numeric (e.g., “17, “27, “3”, etc.). Additionally, nu-
meric domains can be either integer (e.g., “10”, “12”, “257,
etc.) or real (e.g., “1.23”, “2.177, “3.14”, etc.). While inte-
ger domains can change in time only step-wise, real domains
can change both step-wise and continuously. Finally, contin-
uous changes can happen both linearly or non-linearly. Fig-
ure 1 (a), for example, represents a continuously updating
non-linear timeline over reals. Figure 1 (b), on the contrary,
shows a step-wise updating timeline.

Since the definition of timeline is completely general, it
is possible to represent, through these, extremely heteroge-
neous concepts. We need, therefore, a unifying element that
allows to represent contents homogeneously, in a way which
is agnostic from the nature of the timeline. To this end, we
introduce the concept of foken and establish that values on
timelines are a direct consequence of tokens through a time-
line extraction procedure (more details soon). Without loss
of generality, a token is an “assertion over a temporal inter-
val”. Formally,

Definition 3. A token is an expression of the form:
n(zo,...,x:), Q[s,e, 7]

where n is a predicate name, x, ... ,x; are the parameters
of the predicate (i.e., constants, numeric variables or sym-
bolic variables), x is the class of the token (i.e., either a fact
or a goal), s and e are the temporal parameters of the token
(i.e., constants or variables) belonging to T such that s < e
and T is the scope parameter of the token (i.e., a constant or
a symbolic variable) representing the timeline on which the
token apply.

Roughly speaking, the expression on the left of the “@”
symbol represents the “assertion” while the expression at
its right represents the “interval”. In other words, a token
n(zo,...,x;), @ls, e, 7] asserts that V¢ such that s <t <ee,
the relation n (zg, . . ., ;) holds at the time ¢ on the timeline
7. Furthermore, given a token 7, we call pars (n) its param-
eters xg,...,%;,S,€e,T.

Tokens constitute the main building blocks of timeline-
based plans. Regardless of the resolution procedure, indeed,
the role of any timeline-based solver consists in introducing
new tokens and/or establishing the values of their parame-
ters. A critical aspect to keep in mind, when talking about



tokens, is that, in general, their parameters are variables of
a constraint network and, as such, can be constrained. In
other words, in order to reduce the allowed values for the to-
kens’ constituting parameters, and thus decreasing the mod-
eled system’s allowed behaviors, it is possible to impose
constraints among them (and/or among the parameters and
other possible variables). Such constraints include temporal
constraints, binding constraints between symbolic variables
as well as (non)linear constraints among numerical variables
(possibly including temporal variables).

The set of tokens and constraints is used to describe the
main data structure that is used to represent (partial) plans of
the timeline-based approach: the foken network. Formally,

Definition 4. A token network is a tuple 7 = (T, N),
where:

- T = {no,...,n;} is a set of tokens, such that ¥n €
T,pars (n) Cvars(N).

— N is a constraint network.

Finally, as already mentioned, tokens can be partitioned
into two classes: facts and goals. While facts are, by defi-
nition, inherently true, goals have to be achieved. Causality,
in particular, in the timeline-based approach, is defined by
means of a set o rules indicating how to achieve goals. For-
mally,

Definition 5. A rule is an expression of the form

n(xg,...,x) Qls,e, 7] < r
where:
- n(zg,...,x5) Qs, e, 7| is the head of the rule, i.e. an
expression in which n is a predicate name, x, ..., T

are the parameters of the head (i.e., numeric variables or
symbolic variables), s and e are the temporal parameters
of the head (i.e., constants or variables) belonging to T
such that s < e and T is the scope parameter of the head
(i.e., a constant or a symbolic variable) representing the
timeline on which the rule apply.

— risthebody of the rule (or the requirement), i.e. either an-
other token, a constraint among tokens (possibly includ-
ing the xq, ..., T, S, e, T variables), a conjunction of re-
quirements or a (priced®) disjunction® of requirements.

Specifically, rules define causal relations that must be com-
plied to in order for a given goal to be achieved. Roughly
speaking, for each goal having the “form” of the head of a
rule, the body of the rule (i.e., a logic combination of further
tokens and constraints) must also be present in the token net-
work. An example of rule is given by

Mt is possible, if needed, to associate a cost to the different dis-
juncts of a disjunction so as to model preferences.

3Some formalisms allow the definition of different rules having
the same head, thus modeling the disjunctions. We preferred to re-
place this possibility by explicitly representing disjunctions. This
choice can, in cases where these rules share some of the require-
ments, favor the modeler by reducing the size of the domain.

[e—s>1]A
dt : DriveTo (?z),Q s, e, 7] A
[T ==dt.7]| A [s == dt.e] A \
[Pz == dt.7z]

{ft : FlyTo (?x),Q s, e, 7] /\}

At (?z)Qs, e, 7] + {

[T == ft.7] A [s == ft.e]A
[?z == ft.7z]

By combining tokens, constraints, conjunctions and disjunc-
tions, the above rule states that, in order to be in a given po-
sition, our agent must reach it either by driving or by flying.

We have now all the ingredients to define a timeline-based
planning problem. In particular, the definition can rely on the
above concept of requirement.

Definition 6. A timeline-based planning problem is a triple
P = (T,R,r), where:

— T is a set of timelines.
— R is a set of rules.

— ris arequirement, i.e. either a (fact or goal) token, a con-
straint among tokens, a conjunction of requirements or a
(priced) disjunction of requirements.

It is worth highlighting that, conversely to other timeline-
based approaches, our formalism makes a clear distinction
between tokens and values on timelines. This difference
aims at guaranteeing us a further element of generality. The
transition from tokens to timelines, however, requires the in-
troduction of a further function which allows to extract the
timelines from the tokens. Specifically,

Definition 7. An extraction function Xt is a function for a
timeline T
Xr:Tx2"™ D

where T is the (either discrete or continuous) domain of
time, 7Tt is the set of tokens in the token network, having
T in the domain of their T variable, and D is the domain of
the timeline.

As can be easily seen by comparing Definition 2 with Def-
inition 7, the result of the extraction function is, basically,
a timeline. Each type of timeline, indeed, has associated
its own timeline extraction procedure which allows to pass
from the associated tokens to the resulting timelines. In other
words, the timeline extraction procedure assigns to the to-
kens a higher-level semantic: according to the nature of the
timeline, the procedure is able to “recognize the meaning”
of the involved tokens. Note that, thanks to the introduction
of the above higher-level semantic, not all token configura-
tions lead to consistent timelines. According to the nature
of the timeline, indeed, some configurations of tokens might
lead to inconsistencies. It is responsibility of the solver to
introduce further constraints so as to avoid such inconsisten-
cies. Another way to see a timeline, indeed, is in terms of
a global constraint (refer, for example, to (Dechter 2003;
Lecoutre 2009)) over those tokens of the token network
which assume the same value for their 7 variables. Such
global constraints, in particular, depend on the nature of the
timeline, hence justifying the introduction of this concept
within the formalism.
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(a) A state-variable timeline.
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(c) A consumable-resource timeline.

Figure 2: Different timelines extracted by tokens.

Examples of timelines, extracted from tokens, are shown
in the Figure 2. Specifically, Figure 2a shows a state-
variable timeline, a step-wise timeline whose domain de-
pends from the tokens which can be assigned, by means
of the 7 variable (omitted, for simplicity), to it. This type
of timeline, in particular, introduces an additional global
constraint that guarantees that different values, on the same
timeline, cannot overlap in time. The state-variable of Fig-
ure 2a, as an example, has two values that overlap as
a consequence of the overlapping of the At (l;) and the
GoingTo (l2) tokens. Such an inconsistency can be solved,
for example, by imposing an ordering constraint between the
tokens (e.g., e; < s2). Another type of timeline, typically
used in pure scheduling problems, is the reusable-resource
(see Figure 2b). This step-wise timeline is characterized by
a maximum capacity and by a resource level which changes
over time according to how the tokens, representing re-
source usages, overlap. The resource constraint guarantees
that concurrent uses of the resource do not exceed its ca-
pacity. Finally, as example of a continuous timeline, the
consumable-resource timeline (see Figure 2¢) is character-
ized by a maximum capacity and by an initial amount. Sim-
ilarly to reusable-resources, the resource level changes over
time according to how the tokens, representing resource pro-
ductions and consumptions, overlap, while the resource con-
straint guarantees that the level never exceeds the resource
capacity nor goes below zero.

It is worth noticing that, unlike existing formalizations, by
enabling any implementing solver to reason about timelines
agnostically from their specific nature, the above definition
allows us to maintain a certain generality. Furthermore, once
provided an extraction function and the algorithms for man-
aging the specific global constraint, new types of timelines
can be introduced without affecting the solvers’ resolution
procedures.

The last aspect to consider regards the solution of a
timeline-based planning problem. Roughly speaking, a solu-
tion is a token network whose all goals have been achieved.
Furthermore, at least one consistent (i.e., does not violate
any constraint) and complete (i.e., it includes all the vari-
ables) assignment of values to the variables of the underly-
ing constraint network must be available. Notice that, among
the constraints of the constraint network, there are also those
which are imposed by the timelines. Formally,

Definition 8. A roken network m = (T, N') is a solution for
a timeline-based planning problem P = (T, R,r) if:

— there exists a complete and consistent assignment of val-
ues to the variables of the constraint network N.

— every goal g € T is achieved (i.e., either the goal g is
recognized as semantically equivalent to another token,
or a rule, whose head is compatible with the token g, is
applied).

Reasoning with timelines

Unfortunately, the above definitions do not provide a com-
putable test for building and verifying solutions. This sec-
tion, therefore, introduces the typical approach for solv-
ing timeline-based planning problems. Specifically, com-
mon timeline-based solvers strongly rely on partial-order
planning (Weld 1994) for reasoning, generalizing the con-
cept of threat for including any possible inconsistency which
might arise as a consequence of the timeline constraints
(e.g., different states overlapping on the same state-variable,
resources overusages, etc.). Despite this generalization, the
search space (and, consequently, the solving algorithm) re-
mains substantially unchanged. In particular, timeline-based
solvers rely on the concept of flaws, that a token network
has, and on the concept of resolvers, for solving them. For-
mally,

Definition 9. A flaw in a token network m = (T, N) is ei-
ther: (i) an open goal (i.e., a goal whose associated rule has
not yet been applied or which has not yet been recognized as
semantically equivalent to another token), (ii) a threat (i.e.,
any possible inconsistency arising as a consequence of the
timeline constraints) or (iii) a disjunction.

Intuitively, the main resolution principle consists in refin-
ing the token network 7, identifying its flaws and applying
resolvers for solving them, while maintaining the constraints
cons (N) consistent, until the token network 7 has no more
flaws.

Figure 3 specifies a recursive non-deterministic proce-
dure called TP (for Timeline-based Planning) for resolving
timeline-based planning problems. Specifically:

— flaws denotes the set of all flaws in 7 provided by proce-
dures OpenGoals, Threats and Disjunctions; ¢
is a particular flaw in this set.



procedure TP(7)
flaws <— OpenGoals () U Threats () U Disjunctions ()
if flaws = () then return 7
end if
select any flaw ¢ € flaws
resolvers < Resolve (o, )
if resolvers = () then return failure
end if
non-deterministically choose a resolver p € resolvers
7’ < Refine (p, )
return TP (7')
end procedure

Figure 3: The TP procedure for solving timeline-based plan-
ning problems.

— resolvers denotes the set of all possible ways to resolve a
specific flaw ¢ in a plan 7 and is given by the procedure
Resolve. The resolver p is a particular element of this
set.

— 7 is the new plan obtained by refining 7 according to the
resolver p as a consequence of the procedure Refine.

The TP procedure is called with an initial token network
7o, characterized by the problem’s requirement. Each suc-
cessful recursion is a refinement of the current plan accord-
ing to the chosen resolver. In particular, the Resolve pro-
cedure returns all the resolvers that, in the token network
m, solve the ¢ flaw. These resolvers depend, necessarily,
on the type of flaw ¢ and on the current token network 7.
In the case of open goals, for example, resolvers represent
the application of the corresponding rule or the unification
(i.e., same predicate name and same, pairwise, parameter
values, hence recognizing the tokens as semantically equiv-
alent) with another already achieved goal or fact. In the case,
for example, of excessive concurrent resource usages, con-
versely, resolvers could represent ordering constraints be-
tween couples of tokens. As a consequence, each invocation
of the Refine procedure might introduce new tokens, new
variables and/or new constraints to the token network. Intu-
itively, refinement operations should be chosen so as to avoid
adding to the token network any constraint that is not strictly
needed (this is called the least commitment principle).

Toward more effective heuristics

Reasoning within the above formal system is not at all sim-
ple*. It is worth noting that while the choice of the resolver is
a non-deterministic step (i.e., it may be required to backtrack
on this choice), the selection of a flaw is a deterministic step
(i.e., there is no reason to backtrack on this choice) as all
flaws need to be solved before or later in order to reach a so-
lution plan. Despite the order in which flaws are processed is
very important for the efficiency of the procedure, it is unim-
portant for its soundness and completeness. A deterministic
implementation of the TP procedure should rely on algo-
rithms like A* or IDA* so as to avoid that the search may

“Note that it is possible, in general, to represent through this
formalism a self-referential proposition P, whose meaning is “P
is false”, hence showing the formalism’s undecidability.

keep exploring deeper and deeper a single path in the search
space, adding indefinitely new tokens to the partial plan and
never backtracking. As a consequence, choosing the right
flaw and the right resolver becomes a crucial aspect for cop-
ing with the computational complexity and hence efficiently
generating solutions.

The main difficulty derives from the impossibility of 1)
having a perfectly defined current state and ii) measuring the
distance between this state and a desired state indicated in
the formulation of the planning problem. For these reasons
it becomes particularly inconvenient to use or even adapt,
directly, the heuristics developed for classical formalisms.
What we propose in this document is, somehow, to separate
the temporal aspects from the purely causal ones, which in
classical planning are strongly linked to be almost the same
thing, and to apply classical heuristics only to the latter. In
doing so, the rules of the timeline formalism become the
equivalent of the PDDL operators, having the requirements
as preconditions and the head of the rule as the only posi-
tive effect. Once this paradigm shift has been made, it be-
comes possible to adapt the heuristics of classical planning.
Note that, however, this translation is not trivial: if, on the
one hand, there is the simplification of having, for each op-
erator, only a single positive effect (i.e., the solved flaw),
on the other hand there is the difficulty of rendering atoms
“ground” due to the presence of numerical parameters (rep-
resenting, for example, the starting and the ending times of
the tokens). We are therefore forced to reason about a sort of
causal graph having lifted variables.

The overall proposed idea consists in applying, in a coarse
way, all the possible resolvers for all the possible flaws un-
til some termination criteria, i.e., unifications and resolvers
which do not add further flaws, is met. Specifically, since
flaws and resolvers are causally related (i.e., resolvers might
introduce flaws which are solved by other resolvers, etc.) it
is possible to build an AND/OR graph for representing such
causal relations. By doing so, instead of searching in the
space of the token networks, we have a single disjunctive
token network containing all the possible plans (or, hope-
fully, only the “most interesting” ones) that can be found
starting from the initial token network 7. By exploiting the
topology of such a graph it is possible to generate an esti-
mation of “how far” a flaw is from being solved and exploit
this estimation for guiding the resolution process. Specifi-
cally, taking inspiration from the h,qq and the h,, 4, heuris-
tics introduced in (Bonet and Geffner 2001), the cost of a re-
solver, which can be seen as an AND node, can be estimated
as the maximum (in case of h,,., heuristic, or the sum, in
case of the h,q4q heuristic) of the estimated costs of the flaws
introduced by the resolver itself plus an intrinsic resolver’s
cost, while the estimated cost of a flaw, which can be seen
as an OR node, can be estimated as the minimum of the es-
timated costs of its possible resolvers. Since all flaws must
be solved, the solver chooses, among those that have to yet
been solved, the most expensive one (i.e., the one that, most
likely, will detect an inconsistency earlier) and will solve
it with the least expensive resolver (i.e., the one that, more
likely, will lead to a solution).



The lifted heuristic formulation

Before formally introducing the proposed heuristics, it is
worth providing some definitions. Specifically, since the
presence of flaws and resolvers, within the current partial
solution, is controlled by a set of propositional variables, we
refer to flaws by means of ¢ variables (we will use sub-
scripts to describe specific flaws, e.g., g, ¢1, etc.) and to
resolvers by means of p variables (similarly to flaws, we
will use subscripts to describe specific resolvers, e.g., pg, p1,
etc.). Specifically, the value of such variables will be used
to recognize active flaws that have to be solved (i.e., those
flaws whose ¢ variables assume the true value) and applied
resolvers (i.e., those resolvers whose p variables assume the
true value). Additionally, given a flaw ¢, we refer to the set
of its possible resolvers by means of res () and to the (pos-
sibly empty) set of resolvers which are responsible for intro-
ducing it by means of cause (¢). The latter set is usually
constituted by the sole resolver representing the application
of the rule which introduced the flaw. Nonetheless, this set
can also be empty in case of top-level flaws, in which case
the true value is assigned to their controlling ¢ variables
or, also, can contain more than one resolver in case the flaw
is a consequence of their simultaneous application (e.g., a
flaw representing two states overlapping on the same state-
variable is activated whenever the rules that introduce the
two states are applied simultaneously). Finally, given a re-
solver p, we refer to the set of its preconditions (e.g., the set
of tokens introduced by the application of a rule) by means
of precs (p) and to the flaw solved through its application
by means of ef f (p).

The above definitions allow us to formally introduce our
heuristics. Specifically, let G be the estimated cost function,
the estimated cost of a flaw ¢ and of a resolver p are charac-
terized by the following equations:

G (SD) = minpéres(p)G (P)
G (p) =cC (P) + maxcpéprecs(p)G (90)

where ¢ (p) is the intrinsic cost of the p resolver, i.e., a pos-
itive number representing the “cost” of disjuncts, in case of
priced disjunctions, or the value 1, in other cases.

Similar to planning models based on satisfability (Kautz
and Selman 1992), it is possible to introduce propositional
constraints to the ¢ and p variables so as to guarantee the
causal relations. By doing so, once the graph has been built,
it is possible to frame the search space within a given bound-
ary, dropping the computational complexity of the search
procedure to a “simpler” NP-hard’. Furthermore, the intro-
duction of these variables allows the use of propagation tech-
niques and, in the event of inconsistencies, conflict analysis
(and, hence, non-chronological backtracking) techniques,
typical of SAT/SMT based solvers. The planning problem
is therefore reduced to the assignment of ¢rue values to the

3There is, intuitively, no guarantee that the built graph contains
a solution. Similarly to what happens in Graphplan (Blum and Furst
1997), indeed, it might be required the addition of a “layer” to the
graph.
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Figure 4: An example of causal graph with lifted variables.

variables associated to the resolvers while observing the as-
signment, as a consequence of constraint propagation, of
true values to the variables associated to the flaws.
Additionally, in order to establish the presence or not
of the tokens inside the solution, a state variable o €
{inactive, active, uni fied} is associated to each token. A
partial solution will hence consist solely of those tokens of
the token network which are active. Moreover, in case such
tokens are goals, the bodies of the associated rules must also
be present within the solution. The unified tokens do not par-
ticipate directly in the partial solution, since they are recog-
nized as semantically equivalent to other active tokens, yet,
since possibly subject to constraints, they might indirectly
influence the “shape” of the solution. Finally, inactive tokens
do not participate at all in the solution. We refer to tokens,
later on, by means of ¢ variables (we will use subscripts to
describe specific tokens, e.g., gy, 01, etc.) and to the flaws
introduced by tokens by means of the ¢ (o) function.

An explanatory example

In order to better understand how the heuristic and causal-
ity constraints work we introduce, in this section, a very
simple example involving an agent moving between differ-
ent locations either by driving or by flying (which, in turn,
requires good weather). Figure 4 shows an example of the
graph which is generated for solving the problem of going
from [y (a fact) to /; (a goal).

Estimated costs for flaws (boxes) and resolvers (ovals) are
on their upper right. Notice that, in the example, the flaw
(o can only be solved by resolver pg which is directly ap-
plied (solid lines represent what is in the current partial so-
lution). Additionally, since ¢y = ¢ (03), the active value
is assigned to 3. The first flaw to be solved is, hence, 1,
which can be solved either with resolver p;, having an esti-
mated cost of 3, or with resolver p, having an estimated cost
of 4°. Applying, for example, the least expensive resolver p;
would lead, as a consequence of constraint propagation, to
the activation of the flaw o (notice that precs (p1) = {¢2}
and cause (pa) = {p1}) which can be solved with the sole
resolver ps, which in turn activates the flaw ¢4 which is

®In the figure, the estimated costs are represented in the upper
right of the flaws/resolvers and are computed through the hy,qq
heuristic. Whenever they do not coincide, in parenthesis is also rep-
resented the value from the h,qq heuristic.



solved with resolver ps leading to a solution. Finally, since
p4 = ¢ (0g), the uni fied value is assigned to og.

Current results

The causal graph, described in the previous section, has been
implemented within the ORATIO solver’. In order to show
the effectiveness of the proposed approach, we tested the
solver, enhanced with the above heuristic, on different in-
stances of the GOAC domain. Specifically, the Goal Ori-
ented Autonomous Controller (GOAC) was an ESA initia-
tive aimed at defining a new generation of software au-
tonomous controllers to support increasing levels of auton-
omy for robotic task achievement. In particular, the domain,
initially defined in (Fratini et al. 2011) and more recently
cited in (Coles et al. 2019), aims at controlling a rover to
take a set of pictures, store them on board and dump the pic-
tures when a given communication channel was available.
The interesting aspect of this domain is that communica-
tion can only take place within specific visibility windows
that take into account the astronomical motions of the plan-
ets/satellites which, in some cases, may stand between the
transmitting and receiving stations. The presence of these
visibility windows, in particular, requires an explicit mod-
eling of temporal aspects in order to adequately plan the
transmission of information and can hence easily be mod-
eled through, and solved by, timeline-based planners. The
problem is made more interesting by the presence of con-
straints which include the available resources (e.g., memory
and battery) as well as by having a distance matrix, among
the possible locations, which might be not completely con-
nected.

Figure 5 shows the execution times of different timeline-
based solvers (i.e., EPSL (Cesta, Orlandini, and Umbrico
2013), AP2 (Fratini et al. 2011), J-TRE (De Benedictis and
Cesta 2012), one of the precursors of ORATIO using a less
accurate heuristic (De Benedictis and Cesta 2016), and the
more recent PLATINUm (Umbrico et al. 2017)) as well as
a couple of temporal-planning solvers (i.e., OPTIC (Ben-
ton, Coles, and Coles 2012) and COLIN (see (Coles et al.
2012)), both based on a classic FF-style forward chaining
search (Hoffmann 2001)) in solving different instances of
the GOAC problem. In particular, problems are obtained by
varying the problem complexity along the number of pic-
tures to be taken and the number of communication win-
dows. Among all the generated problem instances, in partic-
ular, the ones with higher number of required pictures and
higher number of visibility windows result as the hardest
ones. The right mix of causal and temporal aspects makes
the GOAC problem particularly complex to the point that
some of the planners, beyond a certain number of pictures
to collect and data dumps, show serious scalability issues.
As shown in the figure, besides being considerably more
efficient, compared to other timeline-based planners, ORA-
TIO is also able to solve more complex instances. Com-
pared to the temporal-planning solvers, however, it is clear
that, despite significant improvements, there is still a per-
formance gap to fill. Possible explanations of this gap in-
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Figure 5: Execution times of different solvers to instances,
of increasing complexity, of the GOAC problem.

clude the maintenance, in the current state of the solvers,
of the consistency between the various constraints (which
is not required in the forward state space search planners),
in addition to the greater effectiveness of the FF heuristics.
Another aspect to take into consideration regards the possi-
bility of making the graph more accurate, so as to be able
to represent heuristics as h? (Haslum and Geffner 2000;
Haslum, Bonet, and Geffner 2005). Since it is not possible
to recognize the mutual exclusivity between the resolvers
directly from the rules’ structure, we have not yet found an
effective approach for implementing it.

Comments on the results. Although, for the moment,
there are solvers able to solve the GOAC problem more ef-
ficiently than the ORATIO solver, we believe that the cur-
rent results are nevertheless significant. In the first place, in-
deed, the heuristic described in this document proposes a
complete paradigm shift for timeline-base planners: we pass
from heuristics based on the current partial solution (i.e., the
current token network 7) to heuristics based on all possible
plans that can be generated from starting from the planning
problem. In so doing, we have the possibility to anticipate
the consequences of decisions before they are even taken
and this results in more accurate plan synthesis. A second
aspect to consider regards the possibility of modeling (and,
above all, integrating) different kinds of reasoning which de-
part from those more closely related to automated planning.
By removing the temporal parameters from the tokens, in-
deed, we obtain a form of reasoning which is similar to con-
strained logic programming. The proposed heuristics, in par-
ticular, still remain valid, and paves the way for the efficient
integration of different forms of reasoning such as, for ex-
ample, automated planning and semantic reasoning. To bet-
ter understand this aspect we can consider as an example the
execution of Prolog program, whose efficiency strongly de-



pends on the order in which the goals are defined within the
rules as well as on the order in which the rules are defined.
Different rules having the same goals defined in a different
order are, indeed, semantically equivalent. The programmer,
however, could be wrong at defining such orders or, even
worse, the most efficient order could depend on the value
of the parameters, unavoidably affecting the performance of
the resolution process. The introduction of heuristics such as
those presented would alleviate these types of problems.

Conclusions

The reasons for introducing a new timeline-based formal-
ism are manifold and range from the possibility to model,
through a uniform formalism, continuous changes over time
(see, for example, Figure 1a) to make the plans more flexi-
ble in the execution phase (relaxing the constraint, present
in some formalisms, that forces the timelines to be com-
pletely filled over time). Whatever the formalism, reasoning
upon these systems remains particularly challenging from a
computational point of view. For this reason we have intro-
duced a new heuristic that takes into account, before starting
the search, all possible resolvers for all possible flaws that
may emerge from the resolution process, so as to be able
to make choices according to a more accurate criterion. Al-
though encouraging, the results show that there is still work
to be done. As an example, since it is possible to recognize
mutex resolvers by propagating constraints, it is worth to in-
vestigate different approaches for representing the h? heuris-
tic. Analogously, the proper adaptation of landmark-based
heuristics, might represent a fruitful path toward the reso-
lution efficiency. We hence believe that, through this docu-
ment, we can lay the foundations for the definition of a new
typology of heuristics for the efficient resolution of timeline-
based planning problems.
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