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Abstract

Graph domain adaptation has recently enabled knowledge transfer across different graphs.
However, without the semantic information on target graphs, the performance on target
graphs is still far from satisfactory. To address the issue, we study the problem of active
graph domain adaptation, which selects a small quantitative of informative nodes on the
target graph for extra annotation. This problem is highly challenging due to the com-
plicated topological relationships and the distribution discrepancy across graphs. In this
paper, we propose a novel approach named Dual Consistency Delving with Topological
Uncertainty (DELTA) for active graph domain adaptation. Our DELTA consists of an
edge-oriented graph subnetwork and a path-oriented graph subnetwork, which can explore
topological semantics from complementary perspectives. In particular, our edge-oriented
graph subnetwork utilizes the message passing mechanism to learn neighborhood informa-
tion, while our path-oriented graph subnetwork explores high-order relationships from sub-
structures. To jointly learn from two subnetworks, we roughly select informative candidate
nodes with the consideration of consistency across two subnetworks. Then, we aggregate
local semantics from its K-hop subgraph based on node degrees for topological uncertainty
estimation. To overcome potential distribution shifts, we compare target nodes and their
corresponding source nodes for discrepancy scores as an additional component for fine selec-
tion. Extensive experiments on benchmark datasets demonstrate that DELTA outperforms
various state-of-the-art approaches. The code implementation of DELTA is available at
https://github.com/goose315/DELTA.

1 Introduction

Graph data is widely applied in various real-world scenarios, for example in social networks (Guo & Wangj,
2020; Zhang et al.l [2022b), academic networks (Tang et al., 2008; West et all 2016|), transportation net-
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Figure 1: The problem setting of active learning for graph domain adaption. We have a fixed budget and
aim to find the most informative nodes for data annotation.

works (Li et all [2022; Jin et al., 2020), biological networks (Liu et al., 2024} [Shen et al., 2021), compound
networks (Sun et al.l [2022} |Cai et al., 2022), and drug discovery (Li et al., 2024; [Wu et all 2022b). In the
collection of graphs, variations in the standards and timing often cause two graphs in the same domain to
exhibit different node attributes and edge structures (Zhu et al., 2021; Pilanci & Vural, 2020)).

Towards this end, unsupervised graph domain adaptation has received ever-increasing attention in the field of
data mining and graph machine learning. Given a partially labeled source graph and a fully unlabeled target
graph, graph domain adaptation narrows the distributional differences between the source and target graphs,
enabling the model trained on the source domain to better adapt to graph data in the target domain, thereby
improving task performance in the target domain (Hedegaard et al., 2021; [Li et all |[2022} |Cai et all |2024).
Current approaches to graph domain adaptation primarily usually involve adversarial learning (Qiao et al.,
for domain alignment, minimizing the distance between node representations (Wu et al., [2024), or
filtering out irrelevant information between the source and target graphs through the information bottleneck
strategies (Qiao et al. |2024).

However, the performance on the target graph is still far from satisfactory for unsupervised domain adapta-
tion methods due to the absence of labels in the target graph . Due to constraints such as
labeling costs, it is not feasible to extensively label the nodes on the target graph. Although pseudo-labeling
strategies have been developed to address label scarcity issues in target graphs, they still fail to provide
accurate supervision signals for the target graph, resulting in potential error accumulation (Qiao et al.| [2024;
|Guo et al.| 2022} Qiao et al., [2023). To reduce the annotation cost, we study the problem of active graph
domain adaptation (see Figur which aims to acquire the most valuable true labels for the target graph
under a limited labeling budget, thereby maximizing the performance improvement on the target graph in
a cost-effective manner.

Despite significant advancements in graph domain adaptation research, several challenges still need to be
considered when applying active learning to graph domain adaptation (Li et al. 2022; |Wang et al. 2023a;
[Shen et al.| [2023a)). Firstly, though extensive active learning methods (Hsu & Lin|, 2015)) have been proposed
for images and texts, they focus on independent and identically distributed (i.i.d.) data. In contrast, graph
data exhibit complex and high-order topological relationships, such as the number and density of nodes and
edges, the heterogeneity of node degree distribution, and topological structure. These complicated factors
greatly enhance the difficulties of identifying informative nodes on the target graph. Secondly, the source and
target graphs have huge distribution discrepancies, which could deteriorate domain adaptation and result in
biases in uncertainty estimation as well (Li et al., 2022} |Qiao et al.l [2024; 2023]).

In this paper, we address the aforementioned challenges by introducing Dual Consistency Delving with
Topological Uncertainty (DELTA) for active graph domain adaptation. The core of our DELTA is to ex-
plore graph topological data from complementary views for information-rich candidate nodes in the target
graph. In particular, our DELTA consists of an edge-oriented graph subnetwork and a path-oriented graph
subnetwork. Our edge-oriented subnetwork utilizes the message passing mechanism to learn topological se-
mantics implicitly while our path-oriented subnetwork aggregates information from different paths explicitly.
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Then, we combine two subnetworks by measuring the inconsistency across these subnetworks of nodes on
the target graph for coarse selection. Furthermore, we measure the uncertainty by combining node degrees
with K-hop subgraphs to learn from local topological semantics for each node. To mitigate the distribution
shifts, we also calculate the discrepancy scores by comparing target nodes and their corresponding source
nodes. In the end, we combine both uncertainty scores and discrepancy scores for fine selections.

We validate the effectiveness of DELTA through extensive experiments on benchmark datasets, compar-
ing it with state-of-the-art approaches. We also demonstrate our advantages qualitatively through t-SNE
visualization. The main contributions of this study are as follows:

e We study the problem of active graph domain adaptation and benchmark the performance of recent
state-of-the-art approaches in transfer learning scenarios.

e We propose DELTA, a novel and cost-effective active learning sampling strategy that explores topological
semantics from complementary edge and path perspectives, incorporating subgraph-level uncertainty and
degree-weighted attribute discrepancy between the source and target graphs.

e We conduct extensive experiments on popular graph transfer learning benchmarks, demonstrating that
the proposed DELTA performs better than state-of-the-art active learning approaches.

2 Related Work

Active Learning on Graphs. Active learning has been extensively studied in the field of computer
vision (Hsu & Lin|,[2015)), but limited studies have applied active learning to graph-oriented deep learning
et al. |Gao et al 2018} [Chen et al. [2019; [Hu et al. [2020} [Cui et all 2022} [Zhang et all [2022¢;
et al) 2024} [Zhang et al) [2022a)). Earlier research generally does not consider the topological structure
features of graphs. Still, it effectively combines node uncertainty and representativeness
2020), where uncertainty is measured by information entropy, and representativeness is measured by
information density and graph centrality (Gao et al., 2018;|Chen et al.,2019). Many of these methods employ
multi-armed bandit mechanisms to identify the weights of active learning strategies (Cai et al., 2017} Gaol
let all |2018} |Chen et al.| 2019; [Hu et al., 2020). More recent studies combine active learning strategies with
reinforcement learning, formalizing active learning as a Markov decision process (Hu et al., 2020} |Cui et al.|
[2022} |Zhang et all [2022¢; [Yu et all [2024). They use measures such as PageRank centrality and predictive
entropy to evaluate the informativeness and uncertainty of nodes (Zhang et al., 2022c) and combine metrics
like KL divergence to assess the information value of nodes (Cui et al., 2022)). However, although there are
studies applying active learning to GNNs, most are based on a single graph. Few studies focus on applying
this technique to graph transfer learning, which is more challenging compared to single-graph classification
tasks . This study aims to fill this gap by conducting active learning across graphs and
innovatively selecting nodes on the target graph that exhibit significant differences from the source graph.
By leveraging active learning for labeling, we reduce information interference and distributional discrepancies
in cross-graph learning, aligning with the specific characteristics of graph domain adaptation tasks.

Graph Domain Adaptation. Existing methods for graph domain adaptation can be categorized into
three main streams 2024): First, methods that enhance node embeddings on the source graph
to improve performance on the target graph. This is achieved through adversarial loss functions
let all [2022} [Yuan et all 2023} [Wu et all 20224} [Yin et all 2023} [Qiao et all, [2023} [Zhang et all 2021)
or by modifying the message passing mechanisms of GNNs (Wu et al., [2020; Dai et al., [2022} Shen et al.
. Second, methods that focus on better adapting the knowledge learned from the source graph domain
to the target graph domain. This is achieved through data augmentation (Jiang et al., [2020; |Qiao et al.,
2024), spectral methods (Pilanci & Vural, [2020; [You et all [2023), spatial methods (Guo et all [2022;
et al [2023), or pseudo-label alignment (Yin et al., [2022; Song et al), [2020). Third, methods that directly
utilize information from the target graph to build models (Wang et al., 2023afb; [Shen et al., [2023a), using
the probability distribution of predicted labels on the target graph (Wu & Rostami, [2023} [Wang et al.l
and semantic information (Wang et all 2023b; |Shen et all 2023b)). However, there is still a lack of
methods that explicitly utilize graph topological information, while existing approaches only explore semantic
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information from a single view, whether edge, path, or node. Current methods also rarely explicitly utilize
the attribute distribution differences between the nodes in the source and target graphs, with most existing
methods addressing this through distribution alignment loss functions (Sun et al.l [2015; |Cai et al., |2024)).
Furthermore, few methods directly address label sparsity in both the source and target graphs. Most existing
studies assume a high proportion of labeled nodes in the source graph (Pilanci & Vural, 2020; [Zhang et al.|
2021 |Guo et al.l [2022; [Wu et al.| [2023; [Sun et al., |2015; |Cai et al., |2024). As a related problem, graph
out-of-distribution detection aims to identify nodes that do not belong to a training distribution [Song &
Wang| (2022)); |Gong & Sun| (2024)); Bao et al.| (2024). In comparison with these aforementioned approaches,
our DELTA enriches the labels of the target graph through active learning and innovatively utilizes an edge-
oriented graph subnetwork and a path-oriented graph subnetwork to explore topological semantics from
complementary perspectives.

Active Learning for Domain Adaptation. Existing research has not fully explored the integration
of active learning with domain adaptation (Zhan et al., 2021} 2022; |Han et all |2023). ALDA uses the
best classifier learned from the source domain as an initial hypothesis in the target domain and adjusts
weights to query labels (Rai et al,, [2010)). Furthermore, the JO-TAL utilizes Maximum Mean Discrepancy
(MMD) to measure marginal probability distribution differences between source and target domain samples,
selecting instances from the unlabeled target domain dataset to minimize this discrepancy (Chattopadhyay!
et al) 2013). Additionally, AADA combines Domain-Adversarial Neural Networks (DANN) with a sample
selection strategy based on Importance Weighted Empirical Risk Minimization (IWERM) to achieve domain-
invariant feature learning (Su et al. 2020). CLUE builds upon AADA by further integrating predictive
entropy to measure information content and using weighted k-means clustering to group similar target
instances (Prabhu et all [2021). Recent studies include EADA and ADCD. EADA selects and annotates the
most informative unlabeled target samples by utilizing free energy, achieving a combination of inter-domain
feature and instance uncertainty (Xie et al.,|2022). ADCD improves active learning in domain adaptation by
combining protocol scoring, domain discriminator scoring, and cosine difference scoring (Menke et al.| 2024).
In summary, there are currently no specialized studies based on active learning for graph domain adaptation.
Given its significant practical implications, research in this direction is necessary (Shi et al., [2024; Redko
et al.l 2020). The proposed DELTA framework aims to fill this gap by comprehensively considering the
complexity of graph topological structures and the distributional discrepancies in cross-graph learning.

3 Preliminaries

3.1 Problem Definition

Consider two graphs, one as the source graph G* = (V¢ E* X° Y*) and one as the target graph G' =
(Vt, E', X", Y"). Here, V* and V! represent the sets of nodes in the source and target graphs, respectively,
E® and E' represent the sets of edges in the source and target graphs, respectively, X* and X' donate
the feature matrix of nodes from the source and target graphs, and Y® and Y? represent the sets of node
class labels in the source and target graphs, respectively. The source graph and target graph have a serious
domain gap but share the same label space, with only a small portion of Y* being labeled and Y* being
completely unlabeled (Wilson & Cookl |2020). The objective of active graph domain adaptation is to find the
most valuable nodes for labeling in the target graph G! within a fixed budget of k, assign them annotations
Yt and perform graph domain adaptation using a graph neural network model shared between the source
and target graphs (Hsu & Lin, |2015; Xie et al.l 2022 Rai et al.l |2010)).

3.2 Graph Domain Adaptation

We briefly present the typical framework of graph domain adaptation, a semi-supervised learning framework
that has been widely applied (Dai et al., 2022 |Yin et al.,|2023} |Qiao et al.l|2024). Graph domain adaptation
aims to ensure that node embeddings output by the feature extractor have similar distributions across
different domains and ultimately label the unlabeled target nodes. Therefore, a classifier on node embeddings
would generate predictions from the shared conditional distributions across the two domains. In formulation,
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Figure 2: Overview of the proposed DELTA framework. DELTA first captures complementary topological
semantics from the target graph via edge-oriented and path-oriented subnetworks. It then identifies candidate
nodes with semantic inconsistencies between these subnetworks. DELTA computes topological uncertainty
using degree weighting and K-hop subgraphs, and domain gap between the source and target graphs for
informative node selection.

given the source and target embedding matrix Z° and Z', respectively, we have:

L= Lsup(Z*,Y*) + ALpa(Z°, Z"), (1)
where Lg,;, denotes the cross-entropy objective on the labeled source graph G*, and Lp4 denotes the domain
adaptation loss, such as the adversarial learning objective Lpa (Qiao et al., |2024):

Lpa = min max [Eicvslog D(zf) +E ey log(1 — D(zé))} . (2)

0a d
D(-) denotes a domain discriminator that predicts whether the input embedding is from the source graph or
the target graph. z; and z§ denotes the node embeddings of node i € V*® and j € V¥, respectively. §; and
¢4 denote the network parameters of the feature extractor and the classifier, respectively.

4 Methodology

4.1 Overview

In this work, we propose a new approach named DELTA for active graph domain adaption. DELTA consists
of three main components as follows. (1) Dual Graph Subnetwork with Consistency Delving, which
consists of an edge-oriented graph subnetwork and a path-oriented graph subnetwork trained on both the
source and target graphs. Then, we explore complementary neighborhood information and high-order rela-
tionships from the target graph, resulting in informative candidate nodes denoted as 7. (2) Topological
Uncertainty Measurement, which explores both target graph node degrees and K-hop subgraphs to ag-
gregate local entropy, thereby capturing the topological uncertainty of the target graph nodes. (3) Domain
Discrepancy Measurement, which calculates the distance between target nodes and their corresponding
source labeled nodes, thus overcoming potential distribution shifts. By aggregating topological uncertainty
and domain discrepancy scores on 7, we select the target graph nodes to be labeled in a single round for
better convenience following (Sener & Savarese, [2017). The overview of the proposed method is illustrated
in Figure

4.2 Dual Graph Subnetwork for Consistency Delving

In our DELTA, we adopt a dual graph subnetwork framework that operates simultaneously on both the
source and target graphs to explore graph semantics from complementary edge-centric and path-centric
perspectives. Since the target graph is entirely unlabeled, while only a portion of the source graph is labeled,
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this allows us to leverage supervision signals from the labeled nodes in the source graph, enabling the model to
learn domain distribution discrepancies between the two graphs, thereby acquiring more accurate topological
information for the nodes in the target graph (Zhao et all 2024} Zhang et all 2024} |Qiao et al. 2023). By
leveraging complementary topological information, DELTA is able to better identify candidate nodes with
more complicated topological information on the target graph, which can then be used for active learning.

4.2.1 Edge-oriented Graph Subnetwork

message passing neural networks have been adopted in a large number of graph machine learning tasks (Dai
et al., 2022)) based on neighborhood aggregation. Therefore, we first introduce an edge-oriented graph
subnetwork, which aggregates information from the neighboring nodes of each node. The subnetwork can
gradually expand the receptive field of the nodes at each layer of the network and thus capture more
topological information (Kipf & Welling] [2016]) in an implicit manner. The update rules of the subnetwork
at layer [ can be expressed as follows:

N~ — AGGREGATE ({hgl‘” je /\@}) : (3)

h{" = UPDATE (n"V,N{'"V), (4)

where hl(.l_l) and Ngl) represents the node embedding and neighborhood embeddings at the (I — 1)-th layer,
respectively. The node representations at each layer are updated through a two-step process. First, the
AGGREGATE function collects information from neighboring nodes. This step is typically achieved through
matrix operations, which generate new feature representations. Then, the UPDATE function applies a
nonlinear transformation to the aggregated information, producing the node features hl(.l) for the current
layer. After stacking Legge layer, the final node embedding for each node 4 is denoted as Zeqge,;-

4.2.2 Path-oriented Graph Subnetwork

However, graph data contains high-order structure semantics, and our edge-oriented graph subnetwork is
difficult to capture them (Ma et al., 2020; |Ye et al., 2024). To solve this, we introduce a path-oriented graph
subnetwork, which can explicitly capture the topological semantics of a graph from the perspective of path
connections (Ma et al.| |2020). In particular, we aggregate information by computing the weighted sum of all
possible paths between nodes. These paths consider not only the direct connections between nodes but also
the indirect connections and the overall structure of the paths. The path-oriented subnetwork can capture
deeper relationships between nodes and the global topological features of the graph. The updated rule of
the path-oriented subnetwork at layer [ can be expressed as follows:

L
HY =& <M1/2 > e—ET”A”Ml/2H(“>W(”)> : (5)
n=0

where Z{::o e A" represents the path aggregation and weighted summation, where n denotes the path
length ranging from 0 to L (with L set to 3). A" is the n-th power of the adjacency matrix A, indicating the
adjacency relationships of nodes at a distance of n hops in the graph. e~ T represents the learnable path
weight, determined by the path energy FE,, and the temperature coeflicient 7T'. H"Y is the input feature
matrix at layer [ — 1, WU s the weight matrix at layer | — 1, and o(+) is the ReLU activation function.
After stacking Leqge layers, the final node embedding for each node ¢ is denoted as zpq:n,;- The inverse

square root of the normalization matrix M™/? = Diag(Ml_l/Q, e ,M‘;}lm) can be defined as:
vVl L .
M =33 e A, (6)
j=1n=0

where [i, j] returns the corresponding element of the matrix. When n > 1, our path-oriented subnetwork
can explore the high-order path-based semantics embedded, which edge-oriented graph subnetwork cannot
explore. The following theorem shows that our path-oriented subnetwork takes all paths with the same
length equally but treats paths with different lengths inequally.
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Theorem 4.1. According to Eqn.[5 in the main text, the message passing process of our path-oriented graph
subnetwork is influenced equally by the paths of the same length. Moreover, if Ey #+# Ey # --- # Ep, the
paths of different lengths contribute differently.

The proof can be found in Appendix [E] From Theorem 4] our path-oriented graph subnetwork is more
dependent on the path view instead of node attributes. Therefore, it can provide a different view from the
edge-oriented subnetwork for topological modeling.

4.2.3 Consistency Delving for Informative Candidate Nodes

The dual graph subnetwork framework allows for the complementary integration of information for the
target graph nodes, which are oriented on edges and paths, respectively. Therefore, appropriate aggregation
of this complementary information is crucial, as we need to select target graph nodes that are rich in
complicated edge and path topological information. Typically, target nodes with high inconsistency across
subnetworks should have high uncertainty and carry complicated semantics. In our DELTA, instead of simply
using nodes with inconsistent predicted classes, we calculate the Euclidean distance between the logit scores
Sedge,j = Pedge(Zedge,;) and Spatn.j = Bpath(Zpath,;) With two classifiers on the target graph and identify the
set of coarse candidate nodes whose Euclidean distance exceeds a customizable consistency threshold ~ as
the coarse candidate set 7, as follows:

d(Sedge.j»Spath,j) = |[Sedge,j — Spath.j |2, (7)

T= {] | d(sedge,j; Spath,j) > 7}‘ (8)

Here, Euclidean distance between two branches can indicate the inconsistency of logic between two branches.
Moreover, if two predictions from different subnetworks are inconsistent, the predictions are sensitive to the
architectures, which indicates the uncertainty of the predictions with rich values to be labeled. Compared
to using two identical subnetworks with different parameters to select nodes with inconsistent predictions,
the dual graph subnetwork architecture allows us to obtain information about target graph nodes from two
different views. This complementary approach enables the capture of more comprehensive node information
and identifies target graph nodes with richer information and inconsistent predictions.

4.3 Topological Uncertainty Measurement for Node Selection

In active learning, uncertainty refers to the degree to which the model’s predictions are less certain for
different samples. By annotating nodes on the target graph where uncertainty is stronger, model performance
can improve (Ma et al., 2024; |[Sharma & Bilgicl |2017; [Fuchsgruber et all 2024). Previous work mainly uses
prediction entropy to measure uncertainty (Cai et al., [2017; |Gao et al, |2018} |Ren et al.| |2022) for each node
independently, while they neglect that the information of each node is highly related to its neighborhood.
To tackle this, we propose topological uncertainty scores based on local subgraphs and degrees to capture
topological semantics.

In particular, for each central node j from 7 of the target graph, we first extract its K-hop subgraph and
the logits of each node within it. Instead of directly averaging the logits of the K-hop subgraph, we compute
the degree d,, of each node in the K-hop subgraph and take the reciprocal as the weight w,, = i. The
weighted K-hop logits for each node can be calculated as follows:

gedge,j = E WmSedge,m > (9)
meK-hop(j)

§path,j = E WmSpath,m (10)
meK-hop(j)

where K is set to 2 empirically (Azabou et al., |2023)). The reason behind using the reciprocal of a node’s
degree as the weight is that if a node has stronger connectivity (higher degree), its topological information
can be inferred from the neighborhood with weaker importance (Fuchsgruber et al., [2024).
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Then, we compute the topological uncertainty scores for each node in 7 as follows:

C

Pentropy (Bedges) = — D P(Vie = 1] 8cdge ;) 10g P(Vie = 1 | Sedge.;), (11)
c=1
C

qsentropy(épath,j) = - ZP(Y]C =1 ‘ épath,j) IOgP(i/jc =1 | §path,j)a (12)
c=1

where Zil P(Y;,=1| Spath,j) represents the probability that the weighted K-hop logits centered at node
7 belong to category c.

Finally, each node j from 7 of the target graph can obtain the topological uncertainty score U; from the
dual graph subnetwork:

Uj = ¢entr0py(§edge,j) + ¢entr0py(épath,j)- (13)

By quantifying the topological uncertainty at the subgraph level, more comprehensive subgraph topological
information can be obtained compared to node-based uncertainty. We also integrate the uncertainty scores
from both the edge and path levels of the dual graph subnetwork, thereby aiding in the identification of
more valuable nodes from different views.

4.4 Domain Discrepancy Measurement for Node Selection

Another obstacle in graph domain adaptation is the distribution differences between the source graph and
the target graph (Yin et all 2023} |[Yan et al., 2017). Even though several domain alignment approaches
have been proposed to reduce the discrepancy, target nodes with high discrepancy with the source nodes
would be more difficult for graph domain adaptation approaches (Qiao et al.,|[2024) to align and thus classify
accurately. To this end, we propose domain discrepancy scores, which measure the attribute distance between
the labeled nodes in the source graph and the candidate node set 7 in the target graph.

Specifically, given the attribute vector x§ of a target graph node j € 7, and the attribute vectors x; of nodes
i in the set of labeled source graph nodes S, we compute the weighted average Euclidean distance between
each j and all labeled nodes in the set S. The weights are determined by the degree d; of nodes in S. The
domain discrepancy score D; for each target graph node j € 7T is defined as follows:

Dies di - |Ix5 — %l
S|

Dj = (14)
The reason behind using the degree of nodes in S as weights is that nodes with higher connectivity in the
source graph are more influential in graph domain adaptation. In detail, they provide stronger supervision
signals, thereby playing a more significant role in domain discrepancy scores. This design not only accounts
for the differences in node attributes between the source and target graphs but also considers the topology
of the source graph. Consequently, through the active learning process, our model focuses on target graph
nodes less related to the source graph, ultimately enhancing the performance of graph domain adaptation.

4.5 Summarization

We combine the topological uncertainty scores U; and domain discrepancy scores D; of the target graph
node j € 7 to compute the composite score:

I, = U; + D;. (15)

We first warm up both branches of subnetworks on the labeled source graph. Given the labeling budget k,
we select the top k nodes on 7 with the highest composite scores for active learning in a one-round manner,
which selects the target graph nodes to be labeled in a single round as in (Sener & Savarese, |2017)). The
supervised loss objective is also applied when learning on the target graph as an additional signal, following
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Algorithm 1 Algorithm of DELTA

Input: Source graph G* = (V*, E%, X*®), labeled source graph set S, target graph G¢ = (V*, Et, X"), anno-
tation budget k, consistency threshold v, K for K-hop subgraph.
Output: Selected target graph nodes for active learning.

1: // Dual Graph Subnetwork Training

2: Train edge-oriented subnetwork on G* and G, obtain logits Sedge,j-
3: Train path-oriented subnetwork on G* and G?, obtain logits Spath,j-
4: // Consistency Exploration

5: Calculate Euclidean distance between scqge,s and spqn,s for each target node j € Vvt
6: Identify candidate node using Eqn.

7. // Topological Uncertainty Measurement

8: for each node j € T do

9:  Extract the K-hop subgraph centered at j.

10:  Calculate topological uncertainty score U; using Eqn.

11: end for

[y
N

. // Domain Discrepancy Measurement
for each node j € 7 do
Compute domain discrepancy score D; using Eqn. @
: end for
// Final Scores Computation
for cach node v; € 7 do
Compute the composite score using Eqn. [T5]
end for

= e e s e

existing graph domain adaptation frameworks (Qiao et al. |2024)). The whole algorithm is summarized in
Algorithm [T} and the computational complexity is provided in Appendix

In summary, the proposed DELTA framework provides a novel approach to active learning across graphs. It
integrates complementary information from edge-oriented and path-oriented graph subnetworks and delves
the inconsistency across two subnetworks for coarse candidate nodes. Then, it combines topological uncer-
tainty scores with domain discrepancy scores for fine selection. This combination quantifies the uncertainty
at the subgraph level within the target graph and the cross-domain distribution discrepancy between the
target and source graphs, which significantly enhances the performance on the target graph with a minimal
annotation budget.

5 Experiment

5.1 Experimental Settings

5.1.1 Datasets and Metrics

ArnetMiner is a system designed for exploring academic social networks (Tang et al., [2008). We select
three citation networks from ArnetMiner: ACMv9 (A), Citationvl (C), and DBLPv7 (D). Each node stands
for a paper, and each edge denotes a citation relationship between the two papers. The node attribute
is generated from the title followed by a bag-of-words model. The selected citation networks, ACMv9,
Citationvl, and DBLPv7, each consist of five node categories. More details of the selected datasets can be
found in Appendix [A]

We adopt Micro-F1 and Macro-F1 as evaluation metrics (Hastie et al.| 2004; Murphy, [2012). Unless otherwise
specified, we report the average and variance of the results for the aforementioned metrics over five runs.
Higher Micro-F1 and Macro-F1 values indicate better results.
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Table 1: Summary of the performance of DELTA and baseline algorithms on each benchmark dataset, 5%
nodes of source datasets are labeled, and 125 nodes of target datasets are labeled by active learning. The
mean and variance over five runs are reported. A denotes acmv9, C donates citationvl, and D donates
dblpv7. Macro donates Macro-F1, Micro donates Micro-F1. The best and second best are displayed in bold
and underlined, respectively.

A—-C A—-D D—-C D—A C—A C—D Average

Methods
Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro  Macro Micro
GIFI 73.9+1.2 75.9+0.9 67.9+£0.7 70.9+0.9 67.0£1.7 69.8+1.4 63.9+1.6 63.7+£1.2 67.8+0.9 69.4+1.1 68.2+1.7 70.7£0.9 68.1 70.1
SGDA 74.5£0.9 76.5+0.8 68.9£1.0 70.9+1.1 70.1£0.6 71.2+0.3 65.24+2.3 66.5+£1.3 68.9+0.5 70.1+£0.7 68.4+1.4 70.8£1.5 69.3 T71.1

Random 75.9+0.9 77.5+0.7 69.7£1.4 72.6+1.3 72.3£0.6 74.1+0.4 67.5+1.0 67.0£1.0 70.3+0.8 69.5+£0.8 70.0+1.9 72.4+1.1 70.9 72.2
GraphPart ~ 76.0+£0.7 77.6+0.6 71.7+0.574.0+0.5 71.5£0.9 73.5+0.4 68.0+0.6 67.3+0.4 71.0+0.7 70.0+0.5 72.1+0.8 74.0£0.7 71.7 72.7
AGE 76.2+1.4 77.9+1.3 70.5+1.7 72.7£1.3 72.3£2.5 T4.1+£2.1 68.7+£1.2 68.0+1.2 70.4+1.0 69.3+0.8 72.841.1 74.0£0.9 71.8 72.7
ANRMAB  74.9£1.0 76.840.8 69.6+1.0 71.94+0.7 70.7+1.3 73.0+£0.8 66.6+0.7 66.0+£0.6 70.0+£0.6 69.0+£0.6 69.5+£1.5 71.8£1.1 70.2 71.4
Dissimilarity 76.34+1.4 77.9+1.3 70.0+2.3 72.6+1.9 73.3+1.9 75.1£1.6 68.1+0.7 67.5+0.6 69.7+£0.8 68.8+0.5 71.0+£2.3 72.841.5 71.4 724
Degree 74.5£0.9 76.3+£0.8 68.7£1.2 71.3+1.1 71.4£1.0 73.5+0.7 66.3+1.0 65.9£0.8 68.4+0.4 67.7£0.5 70.7+0.6 72.2£0.3 70.0 71.1
Density 74.7+£0.8 76.4+0.8 68.8+0.8 71.7£0.8 70.6£1.0 72.9£0.6 66.4+£1.2 66.0+1.1 68.9+1.2 68.0+£1.0 69.4+1.4 71.7+0.9 69.8 T71.1
Uncertainty 76.0+1.2 77.7+1.2 71.0+£1.5 73.24+1.2 71.84+1.7 73.9+1.5 68.5+1.7 67.9+1.4 71.2+0.1 70.3+0.2 70.8£1.3 72.5+0.6 71.6 72.6

Proposed 77.3+1.378.9+1.1 70.44+2.6 72.8+2.1 74.5+1.176.24+0.9 70.9+0.9 70.0+0.7 72.5+0.8 71.5+0.7 73.5+2.0 75.0+1.4 73.2 74.1

5.1.2 Baseline Algorithms

To validate the effectiveness of our DELTA, we compare it with a range of state-of-the-art baselines including
GIFT (Qiao et al., 2024), SGDA (Qiao et all [2023), GraphPart (Ma et al.| 2023, AGE (Cai et al., 2017)),
ANRMAB (Gao et al., 2018]), Dissimilarity (Ren et al., [2022)), Degree (Cai et al.l [2017), Density (Ren et al.
2022), Uncertainty (Settles & Craven, [2008) and Random. Random refers to labeling randomly selected
samples with the budget. More details can be found in Appendix

5.1.3 Implementation Details

We use the GIFI model (Qiao et al., [2024)) as the backbone model for graph domain adaption. The hidden
channels are set to 512, out channels are set to 256, training epochs are 200, the dropout ratio is 0.1, and
the Adam optimizer (Kingma & Bal 2014) is utilized with a learning rate of 0.001, with a weight decay of
le-4. We adopt GCN (Kipf & Welling] 2016|) and PAN (Ma et al.,[2020) to implement our two subnetworks,
respectively. Following previous works (Sener & Savarese, 2017)), we adopt a one-round setting in our
experiments, which is more convenient in the real world with iteration number 1. For the GCN and PAN,
both of them have two layers with 512-dimension node embeddings. The experimental configuration features
a Linux server powered by NVIDIA A100 GPUs (80GB) and an Intel Xeon Gold 6354 CPU. The software
environment includes PyTorch 1.11.0 (Paszke et al. 2019), PyTorch-geometric 2.5.3 (Fey & Lenssen, 2019),
and Python 3.9.16.

5.2 Main Experimental Results

To quantitatively demonstrate the performance of our proposed DELTA, we report the results of DELTA
and other baseline algorithms across six data combinations in Table [I} where 125 target graph nodes are
labeled for active learning. From the results, we can observe that: (1) The proposed DELTA consistently
outperforms the random selection method for active learning node selection, with an average lead of over
2% across the six data combinations. Note that random selection is quite strong with decent performance
with a relatively large number of selected nodes. (2) Except for A—D, DELTA consistently outperforms
other baseline algorithms, with the performance increasement range from 1.2% to 5% across the six data
combinations. In D—C, D—A, and C—A, DELTA shows the largest margin, with an average lead of over 2%.
(3) Baseline algorithms based on uncertainty, or combining uncertainty with other structural metrics, such
as Uncertainty, GraphPart, AGE, and Dissimilarity, significantly outperform baselines using only structural
metrics such as Degree and Density. (4) On average, Micro-F1 is greater than Macro-F1, indicating better
classification performance for the larger classes, which reflects the issue of data imbalance. These results
demonstrate the superior performance of the proposed DELTA, highlighting its advantage in reducing the
annotation cost on the target graph. Notably, DELTA operates in a one-round manner for point selection on
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Figure 3: Performance of proposed method and baseline methods by active learning budget, averaged from
5 different runs. The Macro-F1 scores are plotted.

Table 2: The results of our ablation studies, in which 5% nodes of source datasets are labeled, and 50 nodes
of target datasets are labeled by DELTA. The mean and variance over five runs are reported.

A—-C A—-D D—-C D—A C—A C—D Average
Methods
Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro  Macro Micro
Vi 75.0£1.1 76.9£1.0 69.1+1.4 71.840.9 72.3+1.1 74.0+£1.2 67.5+0.9 67.0+£0.8 70.5+£0.4 69.7£0.5 69.5+1.4 71.840.8 70.7 71.8
% 68.3+8.8 72.248.9 66.8+0.9 72.5+1.3 70.2+1.1 74.841.6 63.6£5.9 65.1£3.2 68.3+1.6 67.6+1.5 63.0+5.2 68.6+£3.0 66.7 70.1
Vs 75.24£0.4 77.1£0.3 69.24+0.6 71.840.3 71.7+1.1 73.5+0.6 66.4+£0.9 66.0+£0.9 69.5+£0.4 68.8£0.5 69.7+1.4 71.7+1.1 70.3 71.5
V4 75.5+1.2 77.3+1.1 69.3+0.8 72.3+0.3 70.7+1.5 73.2+1.4 66.6+1.3 66.3+1.2 70.1+1.3 69.3+1.1 70.2+1.6 72.3+1.0 70.4 71.8

Proposed 75.7+1.277.5+0.9 70.7+1.573.1+1.0 72.14+1.8 74.0+1.3 67.9+1.167.2+0.8 70.6+0.6 69.7+0.5 71.2+1.573.1+1.2 71.4 72.4

the target graph in active learning, while AGE, ANRMAB, and Dissimilarity involve iterative point selection,
which indicates our DELTA achieves superior performance with lower computational costs.

To investigate the performance of DELTA and baseline algorithms under varying numbers of nodes selected
for active learning, we visualized the results in Figure [3] where the number of selected nodes ranges from
25 to 150. From the results, it can be observed that: (1) Regardless of the number of nodes selected for
active learning, DELTA consistently outperforms all baseline algorithms. (2) As the node number increases,
DELTA’s performance shows a continuous upward trend, and the performance gap between DELTA and
other baseline algorithms tends to widen, which further proves the effectiveness of DELTA. For DELTA’s
performance across the six data combinations with active learning node counts of 100, 125, 150, 175, and
200, please refer to Table [A2]in the Appendix, where the conclusions remain consistent.

5.3 Ablation Study

In this section, we introduce several variants to evaluate the effectiveness of different components in DELTA:
(1) VI adopts two edge-oriented subnetworks with different parameters for inconsistency delving; (2) V2
adopts two path-oriented subnetworks with different parameters for inconsistency delving; (3) V& removes
domain discrepancy scores; (4) V4 removes topological uncertainty scores. Table [2| presents the results
of the ablation study, from which we can observe the following: (1) In most cases, the performance of
DELTA consistently surpasses that of any of its ablated variants, with DELTA outperforming its variants by
approximately 1% on average. (2) VI and V2 indicate the use of two edge-oriented subnetworks or the use of
two path-oriented subnetworks in our dual architecture. These variants do not realize complementary graph
information acquisition, leading to less informative nodes in the candidate node set 7 compared to DELTA,
thereby resulting in inferior performance in most cases. (3) V3 refers to the use of only topological uncertainty
scores without domain discrepancy scores. This variant underperforms DELTA across all datasets due to
the failure to account for attribute differences between the source and target graphs in cross-graph learning,
thus neglecting nodes with higher confusion during active learning. (4) V4 represents the use of only domain
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Figure 5: Performance of the proposed method by the consistency thresholds (left) and the number of hops
for the K-hop subgraph (right), averaged from 5 different runs. In each sub-figure, the Macro-F1 and Micro-
F1 scores are plotted. 50 nodes are selected for active learning.

discrepancy scores without topological uncertainty scores. This variant also shows inferior results compared
to DELTA across all datasets because it fails to consider the uncertainty of the target graph nodes, which
severely degrades the performance. Figure [4] further illustrates the ablation study results when varying the
number of nodes used for active learning, and the conclusions are consistent with those in Table [2]

5.4 Parameter Sensitivity

In this part, we study the performance with respect to different consistency thresholds v and the values of
K. v controls the consistency between the dual graph subnetworks, and K is used to calculate topological
uncertainty scores in K-hop subgraphs. We first conduct experiments by varying + within the parameter
space {0.1, 0.3, 0.5, 0.7} while keeping other parameters fixed. Then, we conduct experiments by varying
K within the parameter space {1, 2, 3, 4, 5} while keeping other parameters fixed, as shown in Figure @
We observe the following: (1) 7 exhibits an upward trend from 0.1 to 0.5, reaching its peak at 0.5, and then
decreases to its lowest value at 0.7. The possible reason for this is that when + is too small, the consistency
constraint on the dual graph subnetworks is too weak, leading to the inclusion of less informative nodes in
T. On the other hand, when + is too large, the consistency constraint becomes too strong, reducing the
diversity of 7. (2) When K is above 2, there is a slight downward trend in performance as K increases,
which might be due to the increase in noise within the topological uncertainty scores. This results in the
subgraph size becoming too large, thereby diminishing the importance of the central node’s logits, leading
to decreased performance. Thus, we recommend setting v to 0.3 and K to 2. Figures and in the
Appendix provide further information with similar conclusions.
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Figure 6: Performance of the proposed method by changing the edge-oriented backbones, averaged from 5
different runs. In each sub-figure, the Macro-F1 and Micro-F1 scores are plotted. 50 nodes are selected for
active learning.

5.5 Further Analysis

In this subsection, we primarily investigate the generalizability of DELTA from two perspectives. First, we
analyze the performance of DELTA when different backbones are employed in the edge-oriented subnetworks.
Second, we compare the runtime of DELTA with baseline algorithms to assess its efficiency. Third, we utilize
t-SNE to visualize the differences in the diversity of selected node distributions between the proposed DELTA
and two classic baseline methods, Uncertainty (Settles & Craven, 2008) and Degree 2017).

5.5.1 Performance on Different Edge-oriented Subnetworks

It is necessary to explore the generalizability of the edge-oriented graph subnetworks under different back-
bones. We replace the edge-oriented graph subnetworks with Graph Attention Networks (GAT) (Velickovid
, Simplifying Graph Convolutional Networks (SGConv) , and Topology adaptive
graph convolutional networks respectively (TAGConv) , as shown in Figure @ These three
types of encoders explore graph convolution operations from three representative perspectives, including
adaptive weight allocation, efficiency optimization, and topological structures, respectively. We observe the
following: (1) The best results are obtained when TAGConv is used as the first edge-oriented subnetwork,
while the results are relatively poorer when GAT or SGConv is used as the edge-oriented subnetwork. (2)
Overall, even with different backbones for the edge-oriented graph subnetwork, the proposed DELTA still
demonstrates superior performance, which validates DELTA’s strong generalizability and the effectiveness
of achieving complementary information through different graph subnetworks. For more insights into the
generalizability across additional datasets, please refer to Figure in the Appendix, where the conclusions
remain robust.

5.5.2 Performance vs Runtime

Figure [7] illustrates the trade-off between runtime and performance for the proposed DELTA compared to
baseline algorithms. From the results, it can be observed that the runtime of DELTA is significantly shorter
than that of AGE, ANRMAB, Dissimilarity scores, and GraphPart, but slightly longer than that of Degree,
Density, and other remaining baselines. However, DELTA achieves the best performance. The potential
reason is that AGE, ANRMAB, and Dissimilarity scores are iterative active learning algorithms with high
time costs for each iteration (Cai et al., 2017; Gao et all) |2018; Ren et al., 2022), while GraphPart involves
community clustering (Ma et al., |2023), which also requires a considerable amount of time. In contrast,
the proposed DELTA takes only one-fifth of the time of AGE, ANRMAB, and Dissimilarity scores yet
outperforms these methods. Figure[A4]in the Appendix reports the runtime analysis across more datasets,
where the conclusions remain robust.
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Figure 8: ACMv9—DBLPv7: visualization of logits scores output by the domain adaptation model on the
target domain using t-SNE, with asterisks indicating the 50 nodes for active learning.

5.5.3 \Visualization

Figure [§shows the t-SNE visualization of the differences between the proposed DELTA and two classic base-
line algorithms, Uncertainty (Settles & Cravenl,|2008) and Degree in the ACMv9—DBLPv7
setting. From this, we can observe the following: (1) The nodes selected by the proposed DELTA cover each
species category and are relatively evenly distributed across the target graph’s node categories, highlighting
the strong diversity of the nodes selected by DELTA. (2) In contrast, the nodes selected by Uncertainty
and Degree are concentrated in 1 to 3 categories, with a highly uneven distribution. This contrast visually
emphasizes the effectiveness and diversity of DELTA, as the richer the true labels of the nodes selected
for active learning in the target graph, the easier it is to optimize the semi-supervised loss function in the
target graph during graph domain adaptation. The more informative the labeled nodes in the target graph,
the greater the improvement in the performance of graph domain adaptation. Figures [A5] and [A€]in the
Appendix show t-SNE visualizations on additional datasets, where the conclusions remain consistent with
those in Figure

6 Discussion and Conclusion

Active learning for graph domain adaptation is both practical and important due to several key challenges
and opportunities. First, annotating graph data is inherently expensive, since graph data is not independent
and identically distributed (i.i.d.), and labeling nodes often requires domain expertise to account for graph
structure, significantly increasing the cost (Yin et al., 2023; Hu et al., 2020). Second, the growing focus on
data-efficient learning, driven by sustainability goals and the need to reduce carbon emissions, highlights the
importance of maximizing the labeling budget’s effectiveness in model training through active learning
let all [2017; |Gao et al. 2018; Ren et all [2022). Third, recent unsupervised domain adaptation methods
demonstrate limited performance without labeled data in the target graph, where minimal but strategic

14



Published in Transactions on Machine Learning Research (02/2025)

labeling can substantially improve results (Qiao et al., |2024; |2023; Prabhu et all [2021). These factors
underscore the practicality and necessity of active learning in this context.

Therefore, in this paper, we investigate the problem of active graph domain adaptation and propose a new
approach named DELTA for this problem. Our DELTA consists of an edge-oriented graph subnetwork and a
path-oriented graph subnetwork to explore topological semantics from complementary perspectives, and then
selects target nodes with high inconsistency as candidate nodes. Then, DELTA combines both node degree
and K-hop subgraphs to explore topological uncertainty for each node. It also calculates degree-weighted
discrepancy scores to focus on target nodes differently from source nodes for fine selection. Extensive
experiments on various benchmark datasets demonstrate the effectiveness of our DELTA. In future work,
we will extend our DELTA to more generalized problems, such as open-set graph domain adaptation, and
utilize large language models to mitigate the annotation burden.
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A Detailed Description of Datasets

Table[AT] presents the descriptive statistics of acmv9, citationvl, and dblpv7. There are significant differences
among the three graphs: acmv9 has the largest size (9,360 nodes and 15,602 edges), citationv1l has the highest
average degree (1.691), and dblpv7 has the smallest graph size and the lowest average degree (5,484 nodes,
8,130 edges, average degree of 1.482). Regarding the node category ratios for the three graphs, the second
category (Networking) is the most prevalent, while the fourth category (Information Security) is the least
represented.

Table Al: The summary statistics of six graphs.

Datasets Node Number Edge Number Class Number Average Degree

ACMv9 9,360 15,602 5 1.667
Citationvl 8,935 15,113 5 1.691
DBLPv7 5,484 8,130 5 1.482

B Baseline Algorithms

GIFI. GIFI is a state-of-the-art semi-supervised graph domain adaptation method, which employs varia-
tional information bottleneck to keep the crucial semantics in the graph data (Qiao et al., [2024).

SGDA. SGDA utilizes an adversarial manner with shift parameters to align the distribution across different
domains (Qiao et al., [2023).

GraphPart. GraphPart first parities the target graph into communities. Then, it runs the K-means
algorithm on each community and selects the node closest to the cluster center for labeling (Ma et al.l |2023)).

AGE AGE calculates the information entropy, information density, and graph centrality for each node in
the target graph, linearly combines these metrics, and selects the node with the highest combined score for
labeling (Cai et al.l [2017)).

ANRMAB ANRMAB uses a multi-armed bandit algorithm to weigh and combine the three metrics of
AGE and selects the node with the highest combined score for labeling (Gao et al., |2018]).

Dissimilarity. Dissimilarity scores build upon AGE by introducing the feature dissimilarity score (FDS)
and structure dissimilarity score (SDS). These scores are linearly combined, and it labels nodes with the
highest combined scores (Ren et al., [2022).

Degree. Selects the node with the highest degree centrality in the target graph for labeling (Cai et al.,
2017; Ren et al., 2022)).

Density. Runs K-means on the hidden representations of the target graph nodes and selects the node with
the highest density score for labeling (Cai et al. |2017; Ren et al., 2022).

Uncertainty. Calculates the entropy of each node and selects the node with the highest entropy for
labeling (Settles & Craven, |2008)).

Random. Randomly selects nodes uniformly across the target graph for labeling.
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C More experiments

In this section, we extend the experiments presented in the main text. First, we expand the comparison with
baseline algorithms by using 100, 125, 150, 175, and 200 nodes for active learning to explore the effectiveness
of the proposed DELTA. Then, we report the parameter sensitivity experiments, generalizability experiments,
runtime vs performance analysis, and visualization analysis on the complete dataset combination.

C.1 Performance Comparison

In Table [A2] we report the comparison between the proposed DELTA and baseline algorithms when the
number of nodes selected for active learning is set to 100, 125, 150, 175, and 200. From the results, we can
observe the following: (1) On average, DELTA consistently outperforms all baseline algorithms. This further
highlights the effectiveness of the proposed DELTA. (2) As the number of nodes selected for active learning
increases, the performance gap of DELTA widens, from an average of 1-4% with 100 nodes to an average of
2-6% with 200 nodes. This indicates that DELTA performs better in medium to large-scale active learning
tasks. (3) As the number of selected nodes increases, baseline methods based on community partitioning,
such as GraphPart, and combined metrics, such as AGE, ANRMAB, and Dissimilarity, gradually fall behind
simpler baseline methods based on single metrics, such as Uncertainty. The underlying reason is that as the
number of selected nodes increases, the internal clusters within these methods become smaller, leading to a
loss of node representativeness.

C.2 Ablation Study

Table [A3] presents additional ablation studies, where V5 denotes the removal of the dual subnetwork and its
consistency-based strategy for identifying informative candidate nodes, leaving only a single edge-oriented
graph network. Similarly, V6 represents the removal of the dual subnetwork and its consistency-based
strategy, retaining only a single path-oriented graph network. From Table we can observe that the
proposed DELTA method still significantly outperforms V6 and, on average, exceeds both V5 and V6. On
the A—C and D—C tasks, DELTA slightly lags behind V5. A possible explanation for this is that DELTA
focuses on identifying nodes with strong prediction inconsistency between the two subnetworks, potentially
overlooking some valuable nodes for active learning whose predictions are consistent across the subnetworks,
thus causing DELTA to neglect them.

C.3 Parameter Sensitivity

Figure[AT]and Figure[A2]report the results on the complete set of six dataset combinations for different values
of v in the parameter space {0.1, 0.3, 0.5, 0.7} and K in the parameter space {1, 2, 3, 4, 5}, respectively.
From Figure [AT] we can observe that the overall performance significantly declines when v exceeds 0.5, while
the results are relatively better when ~ is between 0.3 and 0.5. This further validates our recommendation
in the main text, suggesting that v be set between 0.3 and 0.5 to achieve a balance between the richness of
topological complementary information and node diversity. From Figure [A2] we can observe that DELTA
achieves optimal performance when K is set to 2, which is consistent with our suggestion in the main text.
We recommend setting K between 1 and 2 to balance the richness of subgraph information while preserving
the contribution of the central node in the K-hop subgraph to topological uncertainty.

C.4 Further Analysis

Figure and Figure [A74] respectively report the results of DELTA when varying GNN encoders on the
complete set of six dataset combinations and the performance vs. runtime results on ACMv9— Citationvl,
DBLPv7—ACMv9, and Citationvl—DBLPv7. The results in Figure[A3]are consistent with the observations
in the main text, where TAGConv performs the best when replacing the edge-oriented graph subnetwork.
Overall, when changing edge-oriented encoders, the performance remains strong in comparison to most
baseline algorithms. This further demonstrates the effectiveness of the proposed DELTA framework. From
Figure [A4] we can also observe the same conclusions as in the main text: the proposed DELTA’s time cost
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Figure Al: Performance of proposed method by the consistency thresholds, averaged from 5 different runs.
In each sub-figure, the Macro-F1 and Micro-F1 scores are plotted, the number of hops is set to 2, and 50
nodes are selected for DELTA.
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Figure A2: Performance of proposed method by the number of hops for K-hop subgraph, averaged from 5
different runs. In each sub-figure, the Macro-F1 and Micro-F1 scores are plotted, consistency thresholds are
set to 0.3, and 50 nodes are selected for DELTA.
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Table A2: Summary of the performance of active learning methods on each benchmark dataset, in which
5% nodes of source datasets are labeled, and 100, 125, 150, 175, and 200 nodes of target datasets are labeled
by DELTA, respectively. The mean and variance over five runs are reported. A denotes acmv9, C donates
citationvl, and D donates dblpv7. Macro donates Macro-F1, Micro donates Micro-F1.

A—-C A—-D D-C D—-A C—A C—-D Average

Methods

Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro  Macro Micro

100 nodes are selected for active learning

GraphPart  76.0+0.3 77.8+£0.2 72.1+0.8 74.44+0.8 71.4+0.9 73.3£0.9 67.8+£0.3 67.2+0.1 70.3+£0.5 69.4+0.5 71.4+0.8 73.7+0.5 71.5 72.6
AGE 76.4+£1.3 78.0+£1.2 69.7£1.9 72.1+1.4 71.24£0.6 73.3+£0.6 68.24+1.0 67.7+£0.9 70.44+0.7 69.5+£0.5 71.3+1.1 73.1£0.6 71.2 72.3
ANRMAB  74.6+£0.7 76.44+0.6 68.7+0.7 71.2+£0.8 69.3£1.4 71.5+1.3 65.8+2.0 65.4+£1.7 70.4+0.6 69.5+0.5 68.6+1.9 71.6+1.3 69.5 70.9
Dissimilarity 75.8€1.4 77.5+1.3 70.0+2.6 72.5+£2.1 71.1£2.4 73.1+£2.0 65.7+1.6 65.5£1.3 70.2+0.8 69.1+0.8 71.7+£2.7 73.5£2.0 70.8 71.8
Degree 74.2+0.8 75.9+0.7 68.3£1.2 71.2+1.2 69.94£2.0 72.3+£1.1 64.9+0.5 64.8+0.4 67.8+0.7 67.2+£0.7 70.2+1.0 72.3£0.4 69.2 70.6
Density 74.2£0.7 76.2+0.8 69.8£0.9 72.4+1.0 69.3£1.4 71.8+£0.9 65.6+0.7 65.2+£0.8 68.5+0.8 67.8+£0.7 69.3+1.3 71.8£0.7 69.5 70.9
Uncertainty 76.0£1.0 77.8£0.9 70.3£1.5 72.7£1.3 71.9+0.8 73.8£1.1 67.5+1.8 67.1£1.5 70.3£0.8 69.4+0.8 69.2£1.5 71.7+0.9 70.9 72.1
Random 75.3£0.7 77.0+0.7 69.6£1.6 72.5+1.4 71.3+0.8 73.2+0.7 67.1£0.6 66.6+0.5 70.4+1.1 69.4£1.0 68.9£1.2 71.6+0.5 70.4 717
Proposed 77.2+1.278.9+1.2 69.9+2.2 72.5+1.6 74.1+2.376.0+1.9 68.4+1.967.7+1.6 71.9+0.970.8+0.7 71.1+2.8 73.3+1.8 72.1 73.2

125 nodes are selected for active learning

GraphPart  76.0£0.7 77.6+0.6 71.7+0.574.0+0.5 71.5£0.9 73.5+0.4 68.0+0.6 67.3£0.4 71.0£0.7 70.0+0.5 72.1+£0.8 74.0£0.7 71.7 72.7
AGE 76.241.4 77.9+1.3 70.5+£1.7 72.7£1.3 72.3+2.5 74.1+£2.1 68.7£1.2 68.0£1.2 70.4+1.0 69.3£0.8 72.84£1.1 74.0+£0.9 71.8 72.7
ANRMAB  74.9+1.0 76.840.8 69.6+1.0 71.9+0.7 70.7£1.3 73.0+£0.8 66.6+0.7 66.0+0.6 70.0£0.6 69.0+0.6 69.5+1.5 71.8+1.1 70.2 71.4
Dissimilarity 76.3+£1.4 77.94+1.3 70.0+2.3 72.6+1.9 73.3£1.9 75.14+1.6 68.1+0.7 67.5£0.6 69.7+0.8 68.8+0.5 71.0+£2.3 72.841.5 714 724
Degree 74.5£0.9 76.3+£0.8 68.7£1.2 71.3x1.1 71.4%£1.0 73.5£0.7 66.3£1.0 65.9£0.8 68.4+0.4 67.7£0.5 70.7+0.6 72.2+£0.3 70.0 71.1
Density 74.7+£0.8 76.4+0.8 68.8+£0.8 71.7+0.8 70.6£1.0 72.9+0.6 66.4+1.2 66.0+£1.1 68.9+1.2 68.0+1.0 69.4+1.4 71.7£0.9 69.8 T71.1
Uncertainty 76.0+1.2 77.7+£1.2 71.0+1.5 73.2+1.2 71.8+1.7 73.9£1.5 68.5+1.7 67.9+1.4 71.2+0.1 70.3+0.2 70.8£1.3 72.5+0.6 71.6 72.6
Random 75.9£0.9 77.5+0.7 69.7£1.4 72.6+1.3 72.3£0.6 74.1+£0.4 67.5£1.0 67.0£1.0 70.3£0.8 69.5£0.8 70.0+1.9 72.4£1.1 70.9 72.2
Proposed 77.3+1.378.9+1.1 70.44+2.6 72.8+2.1 74.5+1.176.24+0.9 70.9+0.9 70.0+0.7 72.5+0.8 71.5+0.7 73.5+2.0 75.0+1.4 73.2 74.1

150 nodes are selected for active learning

GraphPart  76.5£0.6 77.94+0.5 71.9+1.374.3+1.2 72.0£0.5 73.740.6 68.3+0.5 67.8£0.4 70.1+0.5 69.1+0.5 71.7+0.9 74.3+0.3 71.7 728
AGE 75.4£1.1 77.1£1.0 70.3£2.3 72.7£1.7 728425 74.7£1.8 68.840.9 68.1£0.9 70.7£0.7 69.7£0.7 71.0£2.8 73.1£1.5 715 T72.6
ANRMAB  75.740.7 77.4+0.7 69.3+1.1 71.8+1.0 71.0+£1.0 73.1+£0.8 66.1£1.6 65.7+1.4 70.5+1.2 69.5£1.0 68.6£1.9 71.4+1.1 70.2 71.5
Dissimilarity 76.5+1.4 78.1+£1.2 70.2+1.9 72.7£1.7 73.5+1.3 75.4£0.8 67.1+1.8 66.7£1.7 70.7+0.7 69.8+0.7 69.1£2.3 71.6+1.4 71.2 724
Degree 74.8£0.7 76.5+0.6 68.7£1.3 71.3+£1.2 70.3£1.6 72.7£1.2 66.3+0.4 66.0£0.2 68.4+0.4 67.8£0.3 71.0+0.8 72.5£0.7 69.9 T71.1
Density 75.240.7 76.9+0.6 70.0£1.1 72.840.8 70.3+1.2 72.6+0.5 66.0£1.4 65.6+1.2 68.6+0.8 67.8+£0.8 70.3£1.6 72.6+1.0 70.1 71.4
Uncertainty 75.5+1.6 77.5+1.0 71.2+1.1 73.3+1.0 73.1£1.2 75.14+1.1 68.9+1.3 68.44+1.1 71.1+£1.0 70.240.9 71.94£2.6 73.5+1.7 71.9 73.0
Random 76.2+£0.8 77.8+0.6 70.5£1.5 73.4+1.5 72.1£1.1 74.0£0.7 67.840.8 67.2+£0.7 70.1£1.2 69.2£1.2 70.4+1.9 72.8%£1.2 712 724
Proposed 77.5+1.579.1+1.2 71.54+2.7 73.8+£2.3 75.6+1.6 77.3+1.2 70.2+2.1 69.3+1.8 72.2+0.8 71.1+0.7 72.0£2.5 73.9+1.7 73.2 74.1

175 nodes are selected for active learning

GraphPart ~ 76.7+0.8 78.24+0.7 73.0+0.575.2+0.4 71.7£0.8 73.5+0.6 68.0+0.7 67.2+0.7 70.9+0.7 70.1+0.7 71.9+1.1 73.9£0.7 72.0 73.0
AGE 76.2+1.6 77.9+1.4 70.5£2.6 72.9£2.0 73.14+2.5 74.8+2.2 66.4£2.1 66.1+1.8 70.5+1.0 69.5£0.9 73.6+0.8 74.7+£0.7 T1.7 726
ANRMAB 75.6+1.2 77.4+1.1 69.5+1.5 71.94+1.4 72.440.7 74.1£0.6 68.0+£1.0 67.2+0.9 70.8+1.0 69.8+40.9 70.2+2.2 72.3+1.8 T71.1 T72.1
Dissimilarity 75.942.0 77.7+1.7 69.8+2.4 72.4+1.8 74.840.7 76.240.7 67.8+3.0 67.3+2.7 70.6+0.9 69.6+0.6 70.2+3.5 72.7+2.3 71.5 72.6
Degree 74.6+0.8 76.4+0.7 69.5+1.5 72.0+1.3 71.24+0.9 73.4+0.5 65.9+£0.5 65.6+0.4 68.6+0.6 67.9+0.6 69.5+0.8 72.0+0.5 69.9 71.2
Density 75.0£0.9 76.7+£0.8 69.7£2.0 72.4£1.7 69.6+1.3 72.2+0.8 65.8£1.0 65.5+0.9 68.8+0.5 68.1£0.5 70.1+2.0 72.4+1.4 69.8 T1.2
Uncertainty 77.4+1.5 78.9+1.2 70.44+2.8 72.7+2.0 73.9+1.5 75.6+1.4 68.3£2.4 67.7+£2.1 72.04£0.8 71.0+0.8 73.2+1.7 74.3+1.3 72.5 73.4
Random 76.3+1.2 78.0+1.1 69.8+2.3 72.84+1.9 72.24+1.6 74.1+1.4 67.0£1.0 66.6+0.9 71.1+0.6 70.1+0.4 70.7+1.2 73.2+0.7 71.2 724
Proposed 77.4+1.679.1+1.4 72.242.9 74.14+2.5 74.24+1.9 76.2+1.5 70.4+1.769.5+1.5 73.5+0.6 72.4+0.5 72.8+2.1 74.44+1.7 73.4 74.3

200 nodes are selected for active learning

GraphPart  76.7£0.5 78.3+0.4 72.54+1.4 74.7£1.0 71.8£1.4 73.8+1.1 68.2+0.9 67.4+0.8 71.3£0.8 70.2+0.7 72.4+1.1 74.2£0.9 722 73.1
AGE 75.9£1.7 77.6+1.6 71.0£2.0 73.2+1.6 72.841.7 74.4+1.6 68.3+0.8 67.6+£0.8 70.2+1.2 69.2+£1.1 71.5+2.6 73.2£1.7 71.6 T72.5
ANRMAB  75.740.8 77.5+£0.7 69.9+1.6 72.5+1.3 71.5+2.2 73.5£1.5 67.2+1.3 66.6+1.2 71.3+£0.5 70.2+0.6 70.2+£1.9 72.3+1.4 71.0 72.1
Dissimilarity 76.54+1.2 78.2+1.1 70.3+2.4 72.9+1.8 73.2+1.5 74.841.4 68.5+£0.8 67.9+0.7 71.2+1.1 70.2+0.8 73.1+1.1 74.340.7 72.1 73.1
Degree 74.6+£0.7 76.4+0.7 69.2£1.8 71.6+1.5 71.5£0.9 73.5+£0.6 66.0+0.4 65.7+£0.4 68.5+0.8 67.9+£0.7 70.2+0.9 72.2£0.7 70.0 71.2
Density 74.7£0.7 76.6+0.6 69.6£1.6 72.4+1.3 69.1£2.1 71.8+£0.9 65.5+1.2 65.3£1.0 69.1+0.4 68.3£0.5 71.1+0.8 73.1£0.6 69.9 71.3
Uncertainty 75.9+2.1 77.8£1.6 70.7+3.1 72.9+2.0 74.8+1.0 76.3+£0.8 69.4+0.6 68.8+0.6 72.4+0.1 71.440.2 71.4+2.6 73.2+1.8 724 73.4
Random 76.5+£0.9 78.1+0.9 71.6+1.2 74.0+£0.8 72.5£1.0 74.3+£1.1 68.24+0.9 67.5+0.8 70.8+1.4 69.9+£1.0 70.0+2.0 72.6£1.5 71.6 T72.7
Proposed 78.74+0.6 80.2+0.6 74.4+1.9 75.9+1.5 73.6+1.3 75.4+1.3 70.5+1.6 69.7+1.5 73.5+0.5 72.5+0.4 73.843.075.4+2.4 74.1 74.9

is only one-fifth to one-sixth that of AGE, ANRMAB, and Dissimilarity, while it only takes about 10 to 20
seconds more than other baseline algorithms. Nevertheless, DELTA achieves the best performance.

Figure [A5] and Figure [AG] respectively report the t-SNE visualization results of the proposed DELTA com-
pared with Uncertainty and Degree centrality on ACMv9—Citationvl and DBLPv7—ACMv9. From Fig-
ure and Figure [AG] we can observe the same conclusions as in the main text: DELTA achieves a more
balanced and diverse selection of target graph nodes. In contrast, the nodes selected by Uncertainty and De-
gree centrality are concentrated in 1-2 categories, and this imbalanced node distribution significantly reduces
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Figure A3: Performance of proposed method by changing the GNN backbones, averaged from 5 different
runs. In each sub-figure, the Macro-F1 and Micro-F1 scores are plotted. 50 nodes are selected for DELTA.

77.0

76.5

76.0

75.5

Macro-F1

75.0

74.5

ACMvV9 - Citationvl

DBLPv7 - ACMv9

Citationvl —» DBLPv7

| | 7 | |
73
70 v
. v * % 60 v & 72 L 2
o o
# | a
S 68 ¢ * $n % A *
+
® 67 704
®
*® ® hd
10! 10? 10! 102 10! 102
Time (s) Time (s) Time (s)
Proposed ’ GraphPart V AGE @® ANRMAB % Dissimilarity 8 Degree Density A Uncertainty «+ Random

Figure A4: Performance vs. runtime of DELTA and baseline algorithms, in which 125 nodes are selected for
DELTA.
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Table A3: The results of our ablation studies, in which 5% nodes of source datasets are labeled, and 50
nodes of target datasets are labeled by DELTA. The mean and variance over five runs are reported.

Methods A—-C A—D D—-C D—A C—A C—D Average
Macro  Micro  Macro Micro  Macro Micro  Macro Micro  Macro  Micro  Macro  Micro Macro Micro

V5 76.44+0.5 78.04+0.4 69.04+1.471.8+1.0 72.3+0.5 74.0+0.5 66.9+1.566.44+1.2 69.54+0.9 68.7+£0.5 70.3+1.972.5+1.6 70.7 71.9

V6 69.2+4.474.6+5.0 62.5+5.3 70.1+2.4 68.3+5.0 74.4£2.2 67.2+0.767.0+0.7 67.2+3.6 67.0+3.0 66.3+3.771.2£2.9 66.8 70.7

Proposed 75.7£1.277.5+0.9 70.7£1.573.1£1.0 72.1+1.8 74.0£1.3 67.9£1.167.2+0.8 70.64+0.6 69.7£0.5 71.2+1.573.1+£1.2 71.4 724

Uncertainty Degree Our method

® Class1 ® (Class 2 Class 3 ® Class4 ® Class5 * Selected Indices

Figure A5: ACMv9—Citationvl: visualization of logits scores output by the domain adaptation model on
the target domain using t-SNE, with asterisks indicating the 50 nodes for active learning.

the effectiveness of active learning. In comparison, DELTA’s more uniform selection qualitatively provides
evidence for the superior performance achieved by the proposed DELTA.

D Computational Complexity Analysis

Assume V represents the average node number in the input graph, F represents the average edge number in
the input graph, and d is the hidden dimension. Calculating the K-hop subgraph has a time complexity of
O(E+V). Computing the K-hop subgraph for each node results in a total time complexity of O(V(E+V)).
Averaging the logits for each subgraph node has a time complexity of O(Vd). Calculating the softmax for
logits and subgraph logits has a time complexity of O(Vd).

Considering the above steps, the overall time complexity for the uncertainty computation process can be
expressed as:

OV(E+V)+Vd+Vd)=0OV(E+V)+2Vd) =0V (E+V +4d)).

E Proof of Theorem [4.1]

Proof. We have

An[zhj] = Z AiJﬁ Ak17k2 e Akn—l,j' (16)
k17... 7k77.—1
Note that (i, k1, -+, kn—2, kn_1,J) is arandom walk with length n if A[i, k1] = A[k1, ko] =+ = Alkn-1,]] =
1. Therefore,
An[za.ﬂ = Z 1(i,k:1,~-,kn,Q,kn,l,j)exists- (17)
ki, kn—1
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Figure A6: DBLPv7—ACMvV9: visualization of logits scores output by the domain adaptation model on the
target domain using t-SNE, with asterisks indicating the 50 nodes for active learning.

We set the message passing matrix in Eqn. |5 to be st = Zﬁ:o e*%A", which directly influences the
path-oriented subnetwork. Then, we have

L
. . _E
SHid] =D €T D Niky o kskns.g)exists: (18)
ki, kn—1

n=0

From this, we can tell that every path with the same length contributes equally to the message passing
En . .
matrix S¥, and the weight for paths of length n is e~ 7, which finishes our proof. O
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