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Abstract

Numerous models have been developed for scanpath and saliency prediction, which
are typically trained on scanpaths, which model eye movement as a sequence of dis-
crete fixation points connected by saccades, while the rich information contained
in the raw trajectories is often discarded. Moreover, most existing approaches
fail to capture the variability observed among human subjects viewing the same
image. They generally predict a single scanpath of fixed, pre-defined length, which
conflicts with the inherent diversity and stochastic nature of real-world visual
attention. To address these challenges, we propose DiffEye, a diffusion-based
training framework designed to model continuous and diverse eye movement tra-
jectories during free viewing of natural images. Our method builds on a diffusion
model conditioned on visual stimuli and introduces a novel component, namely
Corresponding Positional Embedding (CPE), which aligns spatial gaze information
with the patch-based semantic features of the visual input. By leveraging raw
eye-tracking trajectories rather than relying on scanpaths, DiffEye captures the
inherent variability in human gaze behavior and generates high-quality, realistic
eye movement patterns, despite being trained on a comparatively small dataset.
The generated trajectories can also be converted into scanpaths and saliency maps,
resulting in outputs that more accurately reflect the distribution of human visual
attention. DiffEye is the first method to tackle this task on natural images using a
diffusion model while fully leveraging the richness of raw eye-tracking data. Our
extensive evaluation shows that DiffEye not only achieves state-of-the-art perfor-
mance in scanpath generation but also enables, for the first time, the generation of
continuous eye movement trajectories. Project webpage: https://diff-eye.github.io/

1 Introduction

Humans obtain visual information via a sequence of eye movements that direct the fovea to analyze
important elements of the visual scene. The resulting pattern of fixations and saccades' is dependent
upon the task at hand (e.g., free exploration, visual search, etc.) and determines the visual elements
that receive our attention [1, 2]. The gold standard for quantifying visual attention is eye-tracking,
which records a subject’s eye movements as they view an image (stimulus) on a monitor. Eye tracking
produces a trajectory of eye movements, consisting of a sequence of (z, y) pairs, which is processed to
identify the fixations and saccades. Eye tracking provides valuable insights into the properties of the
visual scene that drive human attention, and is widely-used for applications in virtual reality [3, 4, 5],
foveated rendering [6, 7], and advertising [8, 9]. Eye tracking is also widely used in psychology
to identify differences in how visual information is processed by individuals [10]. For example,
eye tracking has been used to study social cognition in conditions such as autism by identifying
differences in how social cues are processed [11, 12] (e.g., individuals with autism have been shown

*Equal contribution
'Fixations occur when the eye remains relatively still and attention is focused on a specific location. Saccades
are rapid eye movements between fixations that enable quick shifts of focus between regions of interest.
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Figure 1: Comparison of different eye-tracking data types. (a) Original visual stimulus. (b) Saliency
maps highlight regions of interest but do not capture the temporal dynamics of human attention. (c)
Scanpaths offer a compressed representation of eye movement trajectories. (d) Full eye movement
trajectories, recorded via eye trackers, provide detailed insights into attention dynamics. This
example is from the MIT1003 dataset [18]; each color represents a different subject, emphasizing the
importance of modeling inter-subject variability.

to exhibit atypical patterns of attention to faces [13, 14]). Although eye-tracking studies provide
high-quality data, they are costly and time-consuming to conduct, and require significant expertise
for proper experimental design [10]. As a result, there has been growing interest in developing
computational models that can predict visual attention to images.

Modeling human visual attention has traditionally focused on saliency prediction [15, 16]. In this
task, given an image, the goal is to produce a heat map, known as a saliency map, where high values
correspond to regions that are more likely to receive fixations. However, these spatial summaries
neglect the temporal structure of eye movements, which is critical for applications in virtual reality
and psychology research. For example, recent work in developmental science has shown that children
with and without autism demonstrate different spatio-temporal gaze behaviors [17]. To capture
the temporal dimension, researchers have investigated the scanpath prediction task, which involves
predicting a sequence of fixations for a given image. Scan path prediction has historically involved
generating a single deterministic output, which is insufficient to capture the inherent variability of
human attention. Figure 1 illustrates the variation in both scanpaths (c) and eye movement trajectories
(d) for a population of viewers, with each color representing a different subject. As a result, recent
work has shifted towards generative modeling to better reflect the stochastic nature of eye movements.
However, existing approaches to the generative modeling of visual attention suffer from two major
limitations: First, most prior methods operate directly on scanpath data rather than on eye movement
trajectories, resulting in the loss of valuable information for spatio-temporal modeling. For example,
in the MIT1003 dataset [18], the average scanpath consists of 8.4 & 2.6 timesteps, while the raw
trajectories average 723.7 £ 13.4 timesteps, indicating a substantial reduction in spatio-temporal
information. Second, many existing methods model scanpath variability either autoregressively by
sampling intermediate outputs, such as saliency maps derived from fixation history [19, 20, 21], or
perform deterministic scanpath prediction [22], both of which fall short in accurately capturing the
true distribution of gaze behavior.

In this paper, we hypothesize that generative modeling using the full eye movement trajectories
produced by eye tracking can yield more effective representations of visual attention dynamics, in
comparison to prior works that operate on scanpath data. In particular, we demonstrate that training
on eye movement trajectories results in increased accuracy in scanpath prediction. In addition, we
argue that generative models are better suited than discriminative models for learning from this rich
temporal information, particularly given the variability present in both visual tasks and data collection
processes. To evaluate these hypotheses, we introduce DiffEye, a diffusion-based framework that
is conditioned on a given visual stimulus and trained directly on raw eye movement trajectories to
generate realistic eye-tracking samples. These generated trajectories can then be transformed into
scanpaths or saliency maps. To enhance stimulus conditioning and improve the interaction between
trajectories and the image via cross-attention, we propose a novel positional embedding strategy called
Corresponding Positional Embedding (CPE). This method strengthens conditioning by aligning gaze
information with the semantic features of the stimulus. In addition, we use high resolution image
features to improve semantic precision, leading to more accurate trajectory generation.

In summary, our key contributions are as follows:

* We present the first diffusion-based training framework that directly utilizes the raw eye
movement trajectories obtained from standard eye tracking datasets. Our method outper-



forms existing approaches in scanpath generation on unseen datasets, verifying its generaliz-
ability, and enables the synthesis of continuous eye-tracking data for natural images.

* We introduce a novel positional embedding strategy, Corresponding Positional Embedding
(CPE), which improves conditioning on visual stimuli by aligning spatial locations in both
the image and trajectory space. Notably, our model achieves strong results even when trained
on relatively small datasets.

* Unlike recent models that rely on autoregressive sampling to capture scanpath variability
or produce a single deterministic prediction, our approach leverages diffusion to model the
inherent variability in human gaze behavior across subjects. As a result, it can generate eye
movement trajectories that can be converted into scanpaths of variable lengths, producing
diverse and plausible patterns that reflect the natural variability in human attention.

2 Related Works

Eye Movement Trajectory Generation The closest related work to this paper is DiffGaze [23],
which adopts a diffusion-based approach to generating eye movement trajectories in 360° images.
While the focus on 360° images is innovative, the resulting models cannot be applied to the analysis
of the standard RGB images used in eye tracking research. Moreover, the conditioning approach in
DiffGaze relies on a single global feature vector obtained via spherical convolution. In contrast, our
approach enhances conditioning through the use of CPE and patch level image features. Our ablation
studies (see Table 2) demonstrate the importance of these elements for achieving strong performance.
Unfortunately, a direct comparison to DiffGaze is not possible, since the code and pretrained models
are not publicly available. We hope that the release of our code and models, along with training and
testing splits for eye movement trajectory data from standard datasets, will spur additional research
on this understudied problem.

Scanpath Modeling Works on scanpath generation operate directly on the sequences of fixations
that are extracted by postprocessing eye-tracking data [24]. Given an input image, these models
predict the location and sequence of fixations comprising the generated scanpath. Previous works
have explored a variety of methods and problem formulations. IOR-ROI [25] uses LSTMs to predict
scanpaths but outputs scanpaths of fixed length which limits its generalizability. DeepGaze I1I [19]
samples from saliency maps using the fixation history, and as a result it cannot utilize the global image
representation in predicting each fixation. Gazeformer [22] introduces ZeroGaze for unseen targets,
but their deterministic method cannot produce a distribution of trajectories for a given stimulus. Some
works on scanpath generation have addressed the fact that gaze behavior is dependent upon the task.
Similar to us, PathGAN [26] uses GANs [27] for generative modeling in the FV case, though training
is unstable. At present, the only available datasets containing eye movement trajectories address
the standard free viewing (FV) task. Therefore, an investigation of the performance of our DiffEye
approach on non-FV tasks will depend on future data collection efforts. In contrast, Chen et al. [21]
use reinforcement learning for target present (TP) and visual QA tasks. Other methods [28, 29]
support TP and the related target absent (TA) condition, but not FV. HAT [20] is unique in covering
the three tasks FV, TP, and TA with a single model via a task query, but follows a similar sampling
strategy as DeepGaze III to generate scanpaths. In summary, no prior scanpath generation work has
taken advantage of the benefits of diffusion models, and competing methods for the FV task have a
variety of limitations. Our experiments (see Table 3) compare scanpaths extracted from DiffEye to
prior scanpath generation methods and demonstrate superior performance across a variety of metrics.
We also note that our approach of directly generating eye movement trajectories gives end users the
flexibility to define and extract fixations using any desired approach.

There have been a number of prior scanpath generation works that target 360° images. Similar to the
discussion of DiffGaze above, these methods are not directly comparable to ours and are included
here for the sake of completeness. SaltiNet [30] samples from saliency volumes; Pathformer3D [31]
uses transformers for autoregressive prediction. ScanGAN360 [32] and Scantd [33] apply GANs
and diffusion to the 360° modeling task. Finally, we note that most prior works including ours have
used aggregate eye tracking data across multiple users to model attention at the population level.
In contrast, a recent work from Chen et. al. [34] develops an approach to scanpath prediction for a
single user. The specialization of DiffEye to the 360° image and individual prediction tasks remain
as interesting subjects for future research.



Saliency Modeling Prior works on saliency prediction have benefited from a deep connection to
research in visual perception [35, 36, 37, 1, 38]. Itti’s seminal work [39] later drew interest from the
computer vision community [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. As saliency methods capture
only spatial attention and ignore the temporal dynamics central to eye movements, they are not able
to address the needs of the diverse applications that motivate this work. Saliency maps can be derived
post hoc from the output of our DiffEye method via fixation extraction [51] and spatial aggregation.
In this regard, DiffEye can be viewed as an alternative approach to saliency prediction based on the
detailed modeling of gaze behavior. However, methods that are designed to directly optimize saliency
prediction performance are capable of higher accuracy than an indirect approach based on fixations.
Further, the saliency baselines we compared against [47, 48, 49, 50] were trained on combinations
of various saliency datasets [18, 43, 52, 53, 54, 55], including MIT1003, while our method is only
trained on the relatively smaller MIT1003 dataset.

3 Methods

3.1 Preliminaries

Given a dataset D = {(I*, { R} szll) N |, where each pair consists of a visual stimulus represented
by an RGB image I’ € R7*">3 and a set of fixed length sequences R € R**? of continuous
eye movement trajectories collected from K’ different subjects for the i stimulus, our goal is to
model the joint distribution of stimuli and trajectories. Each time step in R; corresponds to a two-
dimensional coordinate (x, y), representing the spatial location of gaze at that timestep. For simplicity,
we denote the set of stimuli as S and the set of eye movement trajectories as R, and use R to refer
to a single eye movement trajectory and I for a single visual stimulus. We model the distribution
over R conditioned on S using a diffusion model. This framework enables learning the underlying
generative process of eye movement behavior in response to complex visual stimuli, capturing both
temporal dynamics and spatial variability. To achieve this, DiffEye adopts the denoising diffusion
probabilistic (DDPM) model [56] to learn a distribution pg(R | S) that approximates the true
conditional distribution g(R | S) of eye-tracking data. DDPM consists of a forward process that
progressively adds Gaussian noise to the trajectories over Ty diffusion steps, and a reverse process
that gradually denoises samples to recover realistic trajectories. The diffusion model is trained by
minimizing the denoising objective ming E,, r . [[le — eo(R“") g, I)[|?], where e ~ N(0,1)
is the ground-truth noise and ee(R(tdi“), taitr, 1) is the model’s prediction of noise given the noised
trajectory R(*év)_ diffusion timestep tq, and conditioning image 1.

3.2 Our Approach

Base Model We use a U-Net-based architecture [57] as the noise prediction model in our diffusion
pipeline. The model consists of downsampling, mid, and upsampling blocks, where 1D convolution
layers temporally downsample or upsample the trajectories while increasing or decreasing their
number of features. Self-attention layers are applied after the convolutions to capture temporal
dependencies in the eye-tracking data at multiple resolutions throughout the network. In addition to
the original U-Net design, we incorporate the current diffusion timestep Zg4i¢ by passing it through a
sinusoidal positional embedding module [58], followed by a fully connected layer, a SiLU activation
[59], and another fully connected layer. The resulting timestep embedding is added to the output
of the first convolution layer in each block, allowing the network to condition on ¢4 and enabling
effective diffusion training.

Stimuli Conditioning An essential component of our pipeline is conditioning the model on a given
stimulus in the form of an image. To achieve this, first, the input trajectory is passed through a
1D convolution layer, projecting it from R € RE*2 to Ry € REXD | where L is the number of
trajectory timesteps and D is the embedding dimension.

Initially, we attempt to condition the model using the global feature vectors produced by the DI-
NOv2 [60] Vision Transformer foundation model, chosen for its strong and well-established semantic
representation capabilities. This global vector, originally of size R!*Peoi s projected via a fully
connected layer to R'*? and then concatenated with the projected trajectory tokens to form an input
sequence Egopal € READXD However, this approach alone leads to poor generation quality, as
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Figure 2: An illustration of DiffEye. (a) End-to-end Training. Given an initial trajectory R()
and image I, noise is added to produce R'". FeatUp extracts patch features Fjycn, and both inputs
are passed to the (b) CPE module, which aligns trajectory and patch positions. The resulting
representations R°PE and Fpg are processed by a U-Net with cross-attention at each block and
optimized via diffusion loss. (¢) Inference. Starting from noise, the model denoises for T steps to
generate an eye movement trajectory, which can be used to produce scanpaths or saliency maps.

Table 1: Training data comparison across methods. DiffEye is trained solely on the MIT1003
dataset using full eye trajectory data, while other methods are typically trained on scanpaths and rely
on larger or combined datasets.

Method Datasets Used # Eye Trajectories # Scanpaths # Images
IOR-ROI OSIE [53] - 8,400 560
DeepGazelll MIT1003 [18] and SALICON [43] - 615,045 11,003
Chen et al. AiR [62] - 39,080 1,454
GazeFormer COCO-Searchl18 [63] - 62,020 6,202
COCO-Search18 [63], COCO-FreeView [64],

HAT MIT1003 [18], OSIE [53] 87,565 7,905
DiffEye MIT1003 [18] 8,934 - 1,003

the global feature lacks localized spatial semantics necessary for effective conditioning. To better
incorporate localized spatial information, we utilize patch-level features from DINOv2. Let the patch

features be denoted as Flycn € REXW'*Dea_\here (H'’,W') are the spatial dimensions of the patch

grid. These features are projected via a linear transformation to Fi,; € R W'D Rather than
concatenating these directly with the trajectory, we adopt a cross-attention mechanism that enables
interaction between the projected image patch tokens and the trajectory tokens Ry € RE*P. Cross-
attention is performed between the L trajectory tokens and the N,, = H’ - W' image patch tokens
(flattened from Fj;). Initial attempts with a single cross-attention layer before passing the trajectory
to the U-Net proved insufficient for effective conditioning. To address this, we add cross-attention
layers at the end of each U-Net block, which is empirically proven to enhance the performance.
Additionally, to improve spatial precision, we replace DINOv2 patch embeddings with those from
FeatUp, a model-agnostic framework that restores fine-grained spatial details in deep features [61].
FeatUp outputs a 224 x 224 x Dy feature map, which we interpolate to Hyf, x W} x Dg, where
HY, = Wy, = 32 effectively doubling the spatial resolution relative to standard DINOv?2 features.

Corresponding Positional Embedding (CPE) To further improve spatial alignment, we introduce a
novel positional embedding method, Corresponding Positional Embedding (CPE). Let the t4g-step
noisified input trajectory R*@n be denoted as R € R**2, where each row represents a 2D coordinate
(x4, ;). We first project the trajectory into the hidden dimension, resulting in the embedded trajectory
Ryroj € REXD . Next, we construct a 2D positional embedding grid P € R WD 'based on the
original image resolution (H, W), using sinusoidal encodings [58]. For each timestep i € {1, L},
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Figure 3: Qualitative comparison of scanpath generation. Scanpaths generated by DiffEye and
baseline models are shown alongside ground truth annotations across four different scenes. Each row
represents a unique stimulus, and each column shows the corresponding scanpaths generated from a
specific method.

we retrieve the corresponding positional embedding vector from the grid as p; = Ply;, z;,:] € RP,
where R; = (x;,y;) is the i-th coordinate in the original trajectory R. The final CPE-augmented
trajectory token is then computed as:

REZPE = Rproj [7’] + Dpi (1)

The same positional grid P is also applied to the image features. Let the projected image features
be Fio € R W'D We interpolate the positional grid P to the patch resolution, yielding
P’ e RE'™*W'%D We then add this to the image features:

Fepg = Fyoj + P'. )

By sharing and aligning positional information across both trajectories and image patches, CPE
enables effective spatial correspondence and interaction between gaze behavior and visual content.
Figure 2 summarizes our approach, including end-to-end training (a), the CPE module (b), and
inference (c).

Data Preprocessing We use the MIT1003 dataset [18] ? to train and evaluate our model. To the
best of our knowledge, it is the only publicly available dataset that provides raw eye-tracking data
for natural images obtained during a free-viewing task. The dataset contains recordings from 15
subjects who free-viewed 1,003 images for 3 seconds each, resulting in a total of 15,045 eye-tracking
sequences. Data was collected using the ETL 400 ISCAN system at a sampling rate of 240 Hz.
During preprocessing, we removed all blinks and NaN values, and retained only the sequences with
at least 720 timesteps. After filtering, 8,934 trajectories remained. All remaining trajectories were
truncated or downsampled to a uniform length of 720 samples, as our model is designed to generate
fixed-length eye movement trajectories and the U-Net architecture requires several downsampling
steps which is possible with a sequence length of 720. Additionally, all stimuli were resized to
224 x 224 pixels. The dataset is split into training (90%) and testing (10%) sets based on stimuli,
ensuring that images used for evaluation were not seen during training.

4 Experimentation

Implementation Details We train our model using the Adam optimizer [65] for 3000 epochs with
a fixed learning rate of 1 x 10~*. During training, we utilize the DDPM scheduler with a linear
noise schedule ranging from 1 x 10~% to 2 x 10~2. For sampling, we adopt Denoising Diffusion
Implicit Models (DDIM) [66], which enable high-quality sample generation in significantly fewer
steps without compromising performance. We set the number of diffusion steps to Ty = 1000
during training and reduce it to 50 during sampling for improved efficiency. Throughout both training
and inference, we apply classifier-free guidance (CFG) to effectively condition the model on the

https://people.csail.mit.edu/tjudd/WherePeopleLook/index . html
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Table 2: Ablation study for scanpath and eye movement trajectory generation. We evaluate the con-
tribution of key components in DiffEye by removing modules such as FeatUp, CPE (Corresponding
Positional Embedding), U-Net cross-attention, and patch-level features. Results are reported for both
scanpath and continuous trajectory generation using four trajectory-based evaluation metrics.

sk Configurati Levenshtein Discrete Fréchet  Dynamic Time Time Delay
as’ onhguration Distance (x10?) | Distance (x102) | ~ Warping (x10%) | Embedding |
Mean Best Mean Best Mean Best Mean Best
DiffEye 0.130  0.097 3520 2449 0157 0.07 88661 53.486
Scanpath wio FeatUp 0133 0100 3546 2423 0163  0.110 91007 60.103
G“’"P"t. wilo CPE 00141 0107 3545 2604 0180  0.128 100792 69.827
eneration w/o U-Net Cross-Attention ~ 0.143 0107 3701 2557 0189  0.130  107.962 68353
wio Patch Level Featres ~ 0.153  0.116 3761 2692 0209 0147 116226 77.997
DiffEye 10.083 8289  3.601 2460 11834 8212 35228 20.968
Eve M ¢ wio FeatUp 10265 8736  3.844 2623 12513 8645  41.224 26453
Taaiectory Generation "0 CPE 10773 9200  3.621 2599 13430 10068  44.403  28.904
rajectory Generalion o/ J-Net Cross-Attention  10.971 ~ 9.394  3.828 2587 14716 10992 56739  38.264
wio Patch-Level Features ~ 11.791 ~ 9947 4088 2761  18.007 13312 77.042 47.354
Stimulus Ground Truth DiffEye Stimulus Ground Truth

w/o U-Net  w/o Patch-Level

Stimulus Ground Truth DiffEye w/o FeatUp w/o CPE Cross-Attn Features

Figure 4: Qualitative analysis and ablation study of continuous eye movement trajectory generation.
(a) Multiple eye movement trajectories generated by DiffEye) alongside ground truth annotations
across four different scenes. (b) Ablation study showing the impact of removing individual architec-
tural components (FeatUp, CPE, cross-attention, and patch-level features) on continuous trajectory
generation.

visual stimulus [67]. This encourages the model to learn both conditional and unconditional denoising
behavior, supporting effective guidance at inference time. See Supplementary for the complete details.
All experiments were conducted using an NVIDIA RTX A6000 GPU.

Baselines and Datasets We compare our method against several baseline models trained for the
scanpath prediction/generations tasks. The baselines include the Human Attention Transformer
(HAT) [20] and GazeFormer [22], both of which are transformer-based architectures, DeepGaze
III [19], a convolutional network, Chen et al. [21], which is a reinforcement learning model that
mainly focuses on visual question answering, and IOR-ROI [25]. Note that GazeFormer can not
generate a distribution but can only predict scanpaths. DeepGaze III and IOR-ROI requires the
number of fixations per scanpath as an input, which we set as 10 for all experiments. Each baseline is
used to generate scanpaths for all test stimuli. Scanpath baselines were trained on scanpaths coming
from various combinations of datasets as shown in Table 1. In contrast, our method is trained solely
on a subset of the raw eye movement trajectories from the MIT1003 dataset which is relatively very
small dataset with fewer pairs of stimuli and eye movement trajectories, yet achieves competitive
performance, demonstrating robustness under limited data. We evaluate our results on the test sets of
the MIT1003 and OSIE [53] ? datasets. It is important to note that the MIT1003 dataset does not
provide official train-test splits; therefore, we created a random split of 100 images with eye-tracking
data from 15 subjects each as described in Section 3.2. As a result, methods such as HAT and
DeepGazelll, whose training data included MIT1003, have already been exposed to the evaluation
data. The OSIE test set contains 70 images with eye-tracking data from 15 subjects.

Evaluation Metrics For scanpath generation, we follow the evaluation protocol proposed in [33, 23].
For each image in the test set, we generate 15 eye-tracking trajectories per model, extract fixation
points using the conversion method described in [18], and construct the corresponding scanpaths.
For models supporting multiple visual tasks, we ensured that scanpaths were generated specifically
for the Free-Viewing task. We evaluate the results using four standard metrics commonly used in

*https://github.com/chenxy99/Scanpaths/tree/main/0SIE
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Table 3: Quantitative comparison of scanpath generation on the MIT1003 and OSIE datasets.
We report the performance of each method using four commonly used trajectory-based metrics:
Levenshtein Distance, Discrete Fréchet Distance, Dynamic Time Warping (DTW), and Time Delay
Embedding (TDE). The label (seen) indicates that the model’s training set includes the test set images.
Bold values indicate the best scores, while underlined values denote the second-best scores.

R Levenshtein Discrete Fréchet Dynamic Time Time Delay
Test Dataset  Method Distance | Distance | (x10%)  Warping | (x10%) Embedding |
Mean Best  Mean Best Mean Best Mean Best
IOR-ROI 13.574 11.092 3.777 2.460 1.834 1.317 108.284  80.944
DeepGaze III (seen) 14.415 11.856 3.553 2.160 1.757 1.141 96.456  65.408
MIT1003 Chen et al. 14.874 12943 3.704 2.602 1.851 1.409 92.100 74.212
- GazeFormer - 12.614 - 3.553 - 1.545 - 93.751
HAT (seen) 18.440 14.645 4.293 2.940 2.680 1.862 131.516 97.232
DiffEye 13.009 9.709 3.529 2.449 1.573 1.067 88.661 53.486
IOR-ROI 14.836  12.152 3.357 2.228 1.699 1.167 92.960  70.624
DeepGaze 11T 15507 12.532 3.206 2.077 1.765 1.166 84.337  57.786
OSIE Chen et al. 17.024 14910 3.275 2.290 1.772 1.276 78.286  61.509
GazeFormer - 15.320 - 3.257 - 1.687 - 81.878
HAT 19.419 15.607 3.712 2.598 2.501 1.757 111.413  83.140
DiffEye 14.771 12.077 3.068 2.238 1.552 1.089 81.925 54.347

the eye-tracking literature: Levenshtein Distance, which measures the sequence similarity based on
insertion, deletion, and substitution operations; Discrete Fréchet Distance (DFD), which captures the
similarity between curves while considering their sequential nature; Dynamic Time Warping (DTW),
which aligns sequences that may vary in speed or length; and 7ime Delay Embedding (TDE), which
assesses the temporal structure of trajectories [68]. Each test image is associated with 15 ground truth
scanpaths. We generate 15 scanpaths per model; for deterministic models such as Gazeformer, only a
single prediction is evaluated. For each metric, we report two scores: best and mean. The best score
is obtained by computing the evaluation metric between each ground truth scanpath and all generated
scanpaths, selecting the most similar (or least distant) one, and then averaging over all scanpaths and
images. The mean score is obtained by averaging the metric across all pairwise comparisons between
ground truth and generated scanpaths for each image, followed by averaging across all test images
(see Algorithm 1 in Supplementary.).

Scanpath Generation Results As shown in Table 3, the mean scores highlight our model’s superior
ability to generate trajectories that align closely with the overall distribution of human fixations.
This is demonstrated by the lowest Levenshtein and TDE values, which capture spatial and temporal
deviations across full scanpaths. Furthermore, the DTW and DFD metric, sensitive to the shape
and curvature of the trajectories, indicates that our model better preserves the sequential flow of eye
movements. Figure 3 visually reinforces these findings. In the second row (the image of the climbing
human), the model by Chen et al. overly concentrates predictions around the low-resolution human
head, while DiffEye distributes gaze more naturally across salient regions, including the background,
showing stronger alignment with the ground truth. In contrast, DeepGaze III and HAT produce diffuse
trajectories, suggesting a failure to learn coherent attention patterns. IOR-ROI performs slightly better,
but still deviates from the true distribution. Gazeformer, meanwhile, does not generate a distribution,
but performs prediction, resulting in higher Levenshtein and TDE mean scores, indicating weaker
alignment with human gaze distributions. Note that our model is trained on the MIT1003 dataset and
evaluated on both the MIT1003 test set and the entirely unseen OSIE dataset, demonstrating strong
generalization. Additional qualitative results are included in Supplementary.

Ablation Study We conduct an ablation study to assess the importance of key architectural com-
ponents in DiffEye. Specifically, we compare the full model, comprising FeatUp high-resolution
patch features, the proposed CPE, and cross-attention at all U-Net layers, against variants where
one of these components was removed. As shown in Table 2, ablating any of these components
degrades performance across both scanpath and continuous eye movement trajectory tasks. Removing
FeatUp and replacing it with DINOv2 features leads to a consistent drop in performance. This
confirms the benefit of FeatUp, which provides higher resolution and spatially structured visual
features essential for precise modeling. The CPE module, a novel contribution of our work, also
significantly boosts performance. By aligning eye trajectories with the spatial layout of the visual
stimulus, CPE enhances the model’s ability to localize attention signals effectively, especially evident
in the Levenshtein and Fréchet distances, which are sensitive to spatial alignment. We further evaluate
the effect of distributing cross-attention across all U-Net blocks versus using a single cross-attention
layer at the beginning. Disabling full cross-attention notably worsens performance, suggesting that
deep conditioning through the network is crucial to preserve and propagate stimulus-related signals.



Stimulus Ground Truth DeepGaze I DeepGaze IIE TranSalNet SUM DiffEye

Figure 5: Qualitative comparison of saliency map predictions. Saliency maps generated by DiffEye
and baseline models are shown alongside ground truth maps for four different scenes. Each row cor-
responds to a different stimulus, with columns displaying the stimulus, ground truth, and predictions.

Finally, we test using only a global token instead of patch-level features which is concatenated as an
additional token to the trajectory tokens before passing it through the U-Net. This setup parallels
DiffGaze [23], a model designed for 360° images, which also uses a conditioning mechanism with
global token. Our results show that such global conditioning is insufficient for natural images, where
fine-grained patch-level information is needed to localize saliency and highlight the value of our
patch-based strategy. Please refer to Figure 4 for qualitative comparisons that further illustrate the
contributions of each component. See Supplementary for additional qualitative results for the eye
movement trajectory generation.

Saliency Prediction We compare our method against the SUM model [50], TranSalNet [49],
DeepGaze I [47], and DeepGaze IIE [48] which are all trained specifically for the saliency pre-
diction task. Each baseline model is used to generate saliency maps for the MIT1003 test split
used to evaluate scanpaths. We convert the continuous eye movement trajectories generated from
DiffEye to saliency maps as described in the Supplementary materials. Figure 5 presents qualitative
results for the saliency prediction task comparing Dif fEye with baseline models. Despite not being
explicitly trained for saliency map generation, our model produces visually competitive outputs. For
instance, in the second row, while DeepGaze IIE and SUM primarily focus on the subject’s face,
DiffEye captures a broader set of salient regions, including the face, the bicycle, and the left hand,
closely resembling the ground truth distribution. These results demonstrate our model’s capacity to
generalize beyond its original training objective. Additional evaluations and qualitative results are
provided in Supplementary.

5 Discussion & Limitations

We present DiffEye, a novel diffusion-based model for generating eye movement trajectories on
natural images. Unlike prior methods that rely on deterministic architectures, autoregressive sampling,
and training with compressed representations like saliency maps or discrete scanpaths, DiffEye
captures the variability of human visual behavior using state-of-the-art generative modeling and
trains directly on raw eye-tracking data. To support this, we introduce CPE, a mechanism that
aligns spatial gaze patterns with semantic content via cross-attention between image patches and
trajectory timesteps. By modeling scanpaths as a generative process, DiffEye produces realistic
and diverse gaze behaviors and achieves state-of-the-art results. Beyond technical performance, it
has potential applications in developmental science by simulating population-specific gaze patterns.
This may support the diagnosis of conditions such as autism by generating stimuli that maximize
group-level distinctions in eye-tracking studies. Although DiffEye achieves strong results using
only the MIT1003 dataset—the only known dataset offering raw eye trajectories alongside scanpaths
for natural images—the dataset size remains a key limitation and scaling its performance will require
access to additional data. Future work will explore transfer learning from datasets containing saliency
maps and scanpaths, and aim to include data from both neurotypical and developmentally diverse
populations. We also advocate for the release of raw eye-tracking data. At present, DiffEye generates
only fixed-length outputs at 240 Hz; broader data availability would enable support for variable-length
sequences and diverse sampling rates. Ultimately, Dif fEye could also be used to synthesize training
data, helping to address data scarcity in this field.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: We have explicitly explained our paper’s contribution and scope in the Abstract
and Section 1.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our limitations are discussed in the paper in Section 5.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
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tant role in developing norms that preserve the integrity of the community. Reviewers
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Justification: Our paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have describe all information needed in to reproduce the experimental
results in Sections 3.2, 4.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We are going to release the code upon acceptance of the paper. The datasets
we used are publicly available and we describe how we used them in Section 3.2.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Implementation and dataset details are described in Sections 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: To compute error bars, we would need to perform computationally intensive
simulations.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
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A Appendix / supplemental material

A.1 Classifier Free Guidance

Given a noised eye movement trajectory R(*) at diffusion timestep ¢, we perform two forward
passes through the noise prediction network ey: one conditioned on the visual stimulus 7, yielding

ee(R(tdi“), taier, 1), and another using an unconditional input I, defined as a zero matrix, yielding
eg(R(td“’f), taitr, Luc ). The final guided noise prediction €y is computed as:

9= (1—c) - eg(RY g, Ine) + - eg(RE™ tyie, T), 3)
where c is the classifier-free guidance scale, which we set to 4 during inference. To enable this, we
simulate the unconditional setting during training by randomly replacing the conditioning input I with

a zero matrix in 10% of the training samples. This encourages the model to learn both conditional
and unconditional denoising behavior, supporting effective guidance at inference time.

A.2 Evaluation Algorithm

Below is the algorithm we used to compute the mean and best scores for each of the scanpath and
continuous trajectory metrics.

Algorithm 1 Evaluation of Scanpath and Continuous Trajectory Generation Metrics

Require: Test set of images Z; ground truth scanpaths G; = {gi,...,gn~}; generated scanpaths S; =
{s1,...,8um}; evaluation metric d(, -)
Ensure: Overall best and mean scores across test images
1: Initialize best_scores < [ | and mean_scores < [ |
2: for each image ¢ € Z do
3: Initialize image_best <— [ ] and image_mean < [ ]
4 for each g € G; do
5: Compute distances {d(g,s) | s € S;}
6: best_g < minses; d(g, s)
7: mean_g < 7 >ses, d(g,s)
8 Append best_g to image_best

9: Append mean_g to image_mean

10: end for

11: Append % > image_best to best_scores
12: Append % > image_mean to mean_scores
13: end for

14: return Overall Best = é > best_scores, Overall Mean = ‘—%‘ > mean_scores

A.3 Additional Scanpath Distributions and Evaluations

Please see additional examples of scanpaths generated by DiffEye for the MIT1003 dataset in Fig. 6.

In addition to the trajectory-based metrics, we evaluate our model using Sequence Score (SS) and
Semantic Sequence Score (Sem SS). The results, presented in Table 4, show that our model, DiffEye,
achieves state-of-the-art performance on the MIT1003 dataset, outperforming all baselines in both
SS and Sem SS. Furthermore, our model generalizes effectively by remaining highly competitive
on the unseen OSIE dataset. This robust performance is particularly notable given that DiffEye
was trained on significantly less data than competing models. For instance, while DeepGazelll was
trained on approximately 600,000 scanpaths, our method achieved these results with only 8,900
trajectories, demonstrating our approach’s ability to produce high-quality scanpaths by leveraging
rich, raw trajectory information.

A.4 Additional Continuous Eye Movement Trajectory Distributions

Please see additional examples of continuous eye movement trajectories generated by DiffEye for
the MIT1003 dataset in Fig. 7.

A.5 Analysis of Saliency Prediction
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Stimulus Ground Truth IOR-ROI Chen et al. GazeFormer  DeepGaze III HAT DiffEye

Figure 6: Additional scanpath generation results. Scanpaths generated by DiffEye and baseline
models are shown alongside ground truth annotations across four different scenes. Each row represents
a unique stimulus, and each column shows the generated scanpaths for each method.

Table 4: Quantitative comparison using Sequence Score (SS) and Semantic Sequence Score
(Sem SS) on the MIT1003 and OSIE datasets. We report the mean performance for each method.
Bold values indicate the best scores, while underlined values denote the second-best scores.

MIT1003 OSIE
Model SS(1) SemSS() SS(1) SemSS (1)
DiffEye (Ours) 04782  0.6611 04371  0.5837
HAT 04079 05794 04002  0.5791
Gazeformer 03531 04522 02713 0.3602
DeepGazelll 04440  0.6604  0.4623  0.6459
ROI 04506  0.6603  0.4404  0.6110
Chen et al. 04237  0.6397 04333 05711

Saliency Prediction To evaluate the spatial realism of our generated eye-tracking sequences, we
compared our method against several models trained specifically for the saliency prediction task. The
baselines include: the SUM model [50], which integrates the Mamba architecture with a U-Net to
output saliency maps across diverse image types; TranSalNet [49], which leverages transformers for
saliency prediction; and DeepGaze I [47] and DeepGaze IIE [48], which are based on pretrained
convolutional neural networks.

Table 5: Saliency prediction comparison. Bold is best and underline is second best.

Method AUC-Judd+ AUC-Borjit NSS{ SIM{ CCt KL
DeepGaze | 0.883 0.766 2306 0484 0580 0.980
DeepGaze IIE 0.923 0.830 3321  0.618 0794 0.552
TranSalNet 0.896 0.874 2443 0508 0.658 6.369
SUM 0.931 0.8458 3611 0727 0878 1438
DiffEye 0.832 0.737 1.991 0447 0527 1.991

For each image in the test set, we generated 15 eye-tracking trajectories using our method. From
each trajectory, we extracted fixation points using a script provided by [18], and used these to create
individual fixation maps. These maps were aggregated and convolved with a Gaussian kernel to
produce a single saliency map per image. For the baseline methods, which directly output saliency
maps, we passed the same test images through each model. We then compared all predicted saliency
maps, including ours, to the ground truth saliency maps provided in the dataset using six standard
metrics: AUC-Judd, AUC-Borji, Normalized Scanpath Saliency (NSS), Similarity (SIM), Pearson’s
Correlation Coefficient (CC), and Kullback-Leibler Divergence (KL). Please refer to [69] for a
comprehensive detailing of the saliency metrics used. Fig. 8 shows additional examples of saliency
maps generated by DiffEye and the baselines for the MIT1003 dataset and Table 5 reports the
quantitative results.
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Stimulus Ground Truth DiffEye

Figure 7: Additional qualitative results of continuous eye movement trajectory generation. Addi-
tional eye movement trajectories generated by DiffEye alongside ground truth annotations across
four different scenes.

Stimulus Ground Truth DeepGaze I DeepGaze IIE TranSalNet SUM DiffEye

Figure 8: Additional qualitative results for saliency prediction. Saliency maps generated by DiffEye
and baseline models are shown alongside ground truth maps for four different scenes. Each row
corresponds to a different stimulus image, with columns displaying the stimulus, ground truth saliency
map, and predictions.
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A.6 Analysis of Statistical Properties of Scanpath Generation

To evaluate the plausibility of the generated scanpaths, we compare their statistical properties against
those of ground truth human eye movements. Figure 9 shows the distributions of three key metrics:
saccade amplitude, saccade direction, and inter-saccade angle for both the MIT1003 and OSIE
datasets.

Our model’s performance (blue line) demonstrates a strong alignment with the ground truth distribu-
tions (black dashed line) across all three metrics. In the saccade amplitude distribution, our model
successfully captures the peak at lower pixel values. For saccade direction, our model accurately
reflects the horizontal bias present in human vision (peaks at 0 and +180 degrees). Finally, in the
inter-saccade angle distribution, our model correctly shows a strong tendency for forward movements
(peak near O degrees) and return saccades (smaller peak near 180 degrees). These results are
consistent across both datasets, confirming that our approach generates statistically more realistic
scanpaths than the compared methods.

Saccade Amplitude Distribution Saccade Amplitude Distribution

o - /4 \ N 4 =

o s0 E - 50 o s0
Saccade Direction (degrees) Saccade Direction (degrees)

Inter-Saccade Angle Distribution

(a) MIT1003 (b) OSIE

Figure 9: Comparison of statistical properties for generated scanpaths on the (a) MIT1003 and (b)
OSIE datasets. The distributions for saccade amplitude, saccade direction, and inter-saccade angle of
our model (blue) are compared against ground truth human scanpaths (black, dashed) and several
other methods. Our model consistently provides the closest fit to the ground truth distributions.

24



	Introduction
	Related Works
	Methods
	Preliminaries
	Our Approach

	Experimentation
	Discussion & Limitations
	Appendix / supplemental material
	Classifier Free Guidance
	Evaluation Algorithm
	Additional Scanpath Distributions and Evaluations
	Additional Continuous Eye Movement Trajectory Distributions
	Analysis of Saliency Prediction
	Analysis of Statistical Properties of Scanpath Generation


