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ABSTRACT

Deep neural networks have been shown to be vulnerable to small perturbations of
their inputs known as adversarial attacks. In this paper, we consider the particular
task of Neural Machine Translation (NMT), where security is often critical. We
investigate the vulnerability of NMT models to adversarial attacks and propose
a new attack algorithm called TransFool. It builds on a multi-term optimization
problem and a gradient projection step to compute adversarial examples that fool
NMT models. By integrating the embedding representation of a language model
in the proposed attack, we generate fluent adversarial examples in the source lan-
guage that maintain a high level of semantic similarity with the clean samples and
render the attack largely undetectable. Experimental results demonstrate that, for
multiple translation tasks and different NMT architectures, our white-box attack
can severely degrade the translation quality for more than 60% of the sentences
while the semantic similarity between the original sentence and the adversarial
example stays very high. Moreover, we show that the proposed attack is transfer-
able to unknown target models and can fool those quite easily. Finally, based on
automatic and human evaluations, our method leads to improvement in terms of
success rate, semantic similarity, and fluency compared to the existing attacks both
in white-box and black-box settings. Hence, TransFool permits to better charac-
terize the vulnerability of NMT systems and outlines the necessity to design strong
defense mechanisms and more robust NMT systems for real-life applications.

1 INTRODUCTION

The impressive performance of Deep Neural Networks (DNNs) in different areas such as computer
vision (He et al., 2016) and Natural Language Processing (NLP) (Vaswani et al., 2017) has led to
their widespread usage in various applications. With such an extensive usage of these models, it is
important to analyze their robustness and potential vulnerabilities. In particular, it has been shown
that the outputs of these models are susceptible to imperceptible changes in the input, known as
adversarial attacks (Szegedy et al., 2014). Adversarial examples, which differ from the original
inputs in an imperceptible manner, cause the target model to generate incorrect outputs. If these
models are not robust enough to these attacks, they cannot be reliably used in applications with
security requirements. To address this issue, many studies have been recently devoted to the effective
generation of adversarial examples, the defense against attacks, and the analysis of the vulnerabilities
of DNN models (Moosavi-Dezfooli et al., 2016; Madry et al., 2018; Ortiz-Jiménez et al., 2021).

The dominant methods to craft imperceptible attacks for continuous data, e.g., audio and image
data, are based on gradient computing and various optimization strategies. However, these methods
cannot be directly extended to NLP models due to the discrete nature of the tokens in the corre-
sponding representations (i.e., words, subwords, and characters). Another challenge in dealing with
textual data is the characterization of the imperceptibility of the adversarial perturbation. The ℓp-
norm is highly utilized in image data to measure imperceptibility but it does not apply to textual data
where manipulating only one token in a sentence may significantly change the semantics. Moreover,
in gradient-based methods, it is challenging to incorporate linguistic constraints in a differentiable
manner. Hence, optimization-based methods are more difficult and less investigated for adversarial
attacks against NLP models. Currently, most attacks in textual data are gradient-free and simply
based on heuristic word replacement, which may result in sub-optimal performance (Alzantot et al.,
2018; Ren et al., 2019; Zang et al., 2020; Jin et al., 2020; Morris et al., 2020; Guo et al., 2021;
Sadrizadeh et al., 2022).

1



Under review as a conference paper at ICLR 2023

In the literature, adversarial attacks have been mainly studied for text classifiers, but less for other
NLP tasks such as Neural Machine Translation (NMT) (Zhang et al., 2020b). In text classifiers, the
number of output labels of the model is limited, and the adversary’s goal is to mislead the target
model to classify the input into any wrong class (untargeted attack) or a wrong predetermined class
(targeted attack). However, in NMT systems, the output of the target model is a sequence of tokens,
which is a much larger space than that of a text classifier (Cheng et al., 2020a), and it is probable
that the ground-truth translation changes after perturbing the input sequence. Hence, it is important
to craft meaning-preserving adversarial sentences with a low impact on the ground-truth translation.

In this paper, we propose TransFool to build meaning-preserving and fluent adversarial attacks
against NMT models. We build a new solution to the challenges associated with gradient-based
adversarial attacks against textual data. To find an adversarial sentence that is fluent and semanti-
cally similar to the input sentence but highly degrades the translation quality of the target model, we
propose a multi-term optimization problem over the tokens of the adversarial example. We consider
the white-box attack setting, where the adversary has access to the target model and its parameters.
White-box attacks are widely studied since they reveal the vulnerabilities of the systems and are
used in benchmarks. To ensure that the generated adversarial examples are imperceptibly similar to
the original sentences, we incorporate a Language Model (LM) in our method in two ways. First,
we consider the loss of a Causal Language Model (CLM) in our optimization problem in order to
impose the syntactic correctness of the adversarial example. Second, by working with the embed-
ding representation of LMs, instead of the NMT model, we ensure that similar tokens are close to
each other in the embedding space (Tenney et al., 2019). It enables the definition of a similarity term
between the respective tokens of the clean and adversarial sequences. Hence, we include a similar-
ity constraint in the proposed optimization problem, which uses the LM embeddings. Finally, our
optimization contains an adversarial term to maximize the loss of the target NMT model.

The generated adversarial example, i.e., the minimizer of the proposed optimization problem, should
consist of meaningful tokens, and hence, the proposed optimization problem should be solved in a
discrete space. By using a gradient projection technique, we first consider the continuous space
of the embedding space and perform a gradient descent step and then, we project the resultant
embedding vectors to the most similar valid token. In the projection step, we use the LM embedding
representation and project the output of the gradient descent step into the nearest meaningful token in
the embedding space (with maximum cosine similarity). We test our method against different NMT
models with transformer structures, which are now widely used for their exceptional performance.
For different NMT architectures and translation tasks, experiments show that our white-box attack
can reduce the BLEU score, a widely-used metric for translation quality evaluation (Post, 2018), to
half for more than 60% of the sentences while it maintains a high level of semantic similarity with
the clean samples. Furthermore, we extend TransFool to black-box settings and show that it can fool
unknown target models. Overall, automatic and human evaluations show that in both white-box and
black-box settings, TransFool outperforms the existing heuristic strategies in terms of success rate,
semantic similarity, and fluency. In summary, our contributions are as follows:

• We define a new optimization problem to compute semantic-preserving and fluent attacks against
NMT models. The objective function contains several terms: adversarial loss to maximize the loss
of the target NMT model; a similarity term to ensure that the adversarial example is similar to the
original sentence; and loss of a CLM to generate fluent and natural adversarial examples.

• We propose a new strategy to incorporate linguistic constraints in our attack in a differentiable
manner. Since LM embeddings provide a meaningful representation of the tokens, we use them
instead of the NMT embeddings to compute the similarity between two tokens.

• We design a white-box attack algorithm, TransFool, against NMT models by solving the proposed
optimization problem with gradient projection. Our attack, which operates at the token level, is
effective against state-of-the-art transformer-based NMT models and outperforms prior works.

• By using the transferability of adversarial attacks to other models, we extend the proposed white-
box attack to the black-box setting. Our attack is highly effective even when the target languages
of the target NMT model and the reference model are different. To our knowledge, this type of
transfer attack, cross-lingual, has not been investigated.

The rest of the paper is organized as follows. We review the related works in Section 2. In Section 3,
we formulate the problem of adversarial attacks against NMT models, and propose an optimization
problem to build adversarial attacks. We describe our attack algorithm in Section 4. In Section 5, we
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discuss the experimental results and evaluate our algorithm against different transformer models and
translation tasks. Moreover, we evaluate our attack in black-box settings and show that TransFool
has very good transfer properties. Finally, the paper is concluded in Section 6.

2 RELATED WORK

Machine translation, an important task in NLP, is the task of automatically converting a sequence
of words in a source language to a sequence of words in a target language (Bahdanau et al., 2015).
By using DNN models, NMT systems are reaching exceptional performance, which has resulted in
their usage in a wide variety of areas, especially in safety and security sensitive applications. But any
faulty output of NMT models may result in irreparable incidents in real-world applications. Hence,
we need to better understand the vulnerabilities of NMT models to perturbations of input samples, in
particular to adversarial examples, to ensure security of applications and robustness of such models.

Adversarial attacks against NMT systems have been studied in recent years. First, Belinkov &
Bisk (2018) show that character-level NMT models are highly vulnerable to character manipula-
tions such as typos in a block-box setting. Similarly, Ebrahimi et al. (2018a) investigate the ro-
bustness of character-level NMT models. They propose a white-box adversarial attack based on
HotFlip (Ebrahimi et al., 2018b) and greedily change the important characters to decrease the trans-
lation quality (untargeted attack) or mute/push a word in the translation (targeted attack). However,
character-level manipulations can be easily detected. To circumvent this issue, many of the adversar-
ial attacks against NMT models are rather based on word replacement. Cheng et al. (2019) propose
a white-box attack where they first select random words of the input sentence and replace them with
a similar word. In particular, in order to limit the search space, they find some candidates with the
help of a language model and choose the token that aligns best with the gradient of the adversarial
loss to cause more damage to the translation. Michel et al. (2019) and Zhang et al. (2021) find
important words in the sentence and replace them with a neighbor word in the embedding space
to create adversarial examples. However, these methods use heuristic strategies which may result
in sub-optimal performance. There are also some other types of attacks against NMT models in
the literature. In (Wallace et al., 2020), a new type of attack, i.e., universal adversarial attack, is
proposed, which consists of a single snippet of text that can be added to any input sentence to mis-
lead the NMT model. However, the added phrase is meaningless, hence easily detectable. Cheng
et al. (2020a) propose Seq2Sick, a targeted white-box attack against NMT models. They introduce
an optimization problem and solve it by gradient projection. The proposed optimization problem
contains an adversarial loss and a group lasso term to ensure that only a few words of the sentence
are modified. Although they have a projection step to the nearest embedding vector, they use the
NMT embeddings, which may not preserve semantic similarity.

Other types of attacks against NMT models with different threat models and purposes have also been
investigated in the literature. Some papers focus on making NMT models robust to perturbation to
the inputs (Cheng et al., 2018; 2020b; Tan et al., 2021). Some other papers use adversarial attacks to
enhance the NMT models in some aspects, such as word sense disambiguation (Emelin et al., 2020),
robustness to subword segmentation (Park et al., 2020), and robustness of unsupervised NMT (Yu
et al., 2021). In (Xu et al., 2021; Wang et al., 2021), the data poisoning attacks against NMT models
are studied. Another type of attack whose purpose is to change multiple words while ensuring that
the output of the NMT model remains unchanged is explored in (Chaturvedi et al., 2019; 2021).
Another attack approach is presented in (Cai et al., 2021), where the adversary uses the hardware
faults of systems to fool NMT models.

In summary, most of the existing adversarial attacks against NMT models are not undetectable since
they are based on character manipulation, or they use the NMT embedding space to find similar
tokens. Also, heuristic strategies based on word-replacement are likely to have sub-optimal perfor-
mance. Finally, none of these attacks study the transferability to black-box settings. We introduce
TransFool to craft effective and fluent adversarial sentences which are similar to the original ones.

3 OPTIMIZATION PROBLEM

In this section, we first present our new formulation for generating adversarial examples against
NMT models, along with different terms that form our optimization problem.
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Adversarial Attack. Consider X to be the source language space and Y to be the target language
space. The NMT model f : X → Y generally has an encoder-decoder structure (Bahdanau et al.,
2015; Vaswani et al., 2017) and aims to maximize the translation probability p(yref|x), where x ∈ X
is the input sentence in the source language and yref ∈ Y is the ground-truth translation in the
target language. To process textual data, each sentence is decomposed into a sequence of tokens.
Therefore, the input sentence x = x1x2...xk is split into a sequence of k tokens, where xi is a
token from the vocabulary set VX of the NMT model, which contains all the tokens from the source
language. For each token in the translated sentence yref = yref,1, ...,yref,l, the NMT model generates
a probability vector over the target language vocabulary set VY by applying a softmax function to
the decoder output.

The adversary is looking for an adversarial sentence x′, which is tokenized into a sequence of k
tokens x′ = x′

1x
′
2...x

′
k, in the source language that fools the target NMT model, i.e., the translation

of the adversarial example f(x′) is far from the true translation. However, the adversarial example
x′ and the original sentence x should be imperceptibly close so that the translation of the adversarial
example stays similar to yref.

As is common in the NMT models (Vaswani et al., 2017; Junczys-Dowmunt et al., 2018; Tang
et al., 2020), to feed the discrete sequence of tokens into the NMT model, each token is converted
to a continuous vector, known as an embedding vector, using a lookup table. In particular, let
emb(.) be the embedding function that maps the input token xi to the continuous embedding vector
emb(xi) = ei ∈ Rm, where m is the embedding dimension of the target NMT model. Therefore,
the input of the NMT model is a sequence of embedding vectors representing the tokens of the input
sentence, i.e., ex = [e1, e2, ..., ek] ∈ R(k×m). In the same manner, ex′ = [e′1, e

′
2, ..., e

′
k] ∈ R(k×m)

is defined for the adversarial example.

To generate an adversarial example for a given input sentence, we introduce an optimization problem
with respect to the embedding vectors of the adversarial sentence ex′ . Our optimization problem is
composed of multiple terms: an adversarial loss, a similarity constraint, and the loss of a language
model. An adversarial loss causes the target NMT model to generate faulty translation. Moreover,
with a language model loss and a similarity constraint, we impose the generated adversarial ex-
ample to be a fluent sentence and also semantically similar to the original sentence, respectively.
The proposed optimization problem, which finds the adversarial example x′ from its embedding
representation ex′ by using a lookup table, is defined as follows:

x′ ← argmin
e′
i∈EVX

[LAdv + αLSim + βLLM ], (1)

where α and β are the hyperparameters that control the relative importance of each term. Moreover,
we call the continuous space of the embedding representations the embedding space and denote
it by E , and we show the discrete subspace of the embedding space E containing the embedding
representation of every token in the source language vocabulary set by EVX . We now discuss the
different terms of the optimization function in detail.

Adversarial Loss. In order to create an adversarial example whose translation is far away from
the reference translation yref, we try to maximize the training loss of the target NMT model. Since
the NMT models are trained to generate the next token of the translation given the translation up
until that token, we are looking for the adversarial example that maximizes the probability of wrong
translation (i.e., minimizes the probability of correct translation) for the i-th token, given that the
NMT model has produced the correct translation up to step (i− 1):

LAdv =
1

l

l∑
i=1

log(pf (yref,i|ex′ , {yref,1, ..., yref,(i−1)})), (2)

where pf (yref,i|ex′ , {yref,1, ..., yref,(i−1)}) is the cross entropy between the predicted token distribu-
tion by the NMT model and the delta distribution on the token yref,i, which is one for the correct
translated token, yref,i, and zero otherwise. By minimizing log(pf (.)), normalized by the sentence
length l, we force the output probability vector of the NMT model to differ from the delta distribution
on the token yref,i, which may cause the predicted translation to be wrong.

Similarity Constraint. To ensure that the generated adversarial example is similar to the original
sentence, we need to add a similarity constraint to our optimization problem. It has been shown

4



Under review as a conference paper at ICLR 2023

that the embedding representation of a language model captures the semantics of the tokens (Tenney
et al., 2019; Shavarani & Sarkar, 2021). Suppose that the embedding representation by a language
model of the original sentence (which may differ from the NMT embedding representation ex) is
vx = [v1,v2, ...,vk] ∈ R(k×n), where n is the embedding dimension of the language model. Like-
wise, let vx′ denote the sequence of LM embedding vectors regarding the tokens of the adversarial
example. We can define the distance between the i-th tokens of the original and the adversarial
sentences by computing the cosine distance between their corresponding LM embedding vectors:

∀i ∈ {1, ..., k} : ri = 1− v⊺
i v

′
i

∥vi∥2.∥v′
i∥2

. (3)

The cosine distance is zero if the two tokens are the same and it has larger values for two unrelated
tokens. We want the adversarial sentence to differ from the original sentence in only a few tokens.
Therefore, the cosine distance between most of the tokens in the original and adversarial sentence
should be zero, which causes the cosine distance vector [r1, r2, ..., rk] to be sparse. To ensure the
sparsity of the cosine distance vector, instead of the ℓ0 norm, which is not differentiable, we can
define the similarity constraint as the ℓ1 norm relaxation of the cosine distance vector normalized to
the length of the sentence:

LSim =
1

k

k∑
i=1

1− v⊺
i v

′
i

∥vi∥2.∥v′
i∥2

. (4)

Language Model Loss. Causal language models are trained to maximize the probability of a token
given the previous tokens. Hence, we can use the loss of a CLM, i.e., the negative log-probability,
as a rough and differentiable measure for the fluency of the generated adversarial sentence. The loss
of a CLM, which is normalized to the sentence length, is as follows:

LLM = −1

k

k∑
i=1

log(pg(v
′
i|v′

1, ...,v
′
(i−1))), (5)

where g is a CLM, and pg(v
′
i|v′

1, ...,v
′
(i−1)) is the cross entropy between the predicted token dis-

tribution by the language model and the delta distribution on the token v′
i, which is one for the

corresponding token in the adversarial example, v′
i, and zero otherwise.

To generate adversarial examples against a target NMT model, we propose to solve the optimization
problem (1), which contains an adversarial loss term, a similarity constraint, and a CLM loss.

4 TRANSFOOL ATTACK ALGORITHM

Figure 1: Block diagram of TransFool.

We now introduce our algorithm for generating adver-
sarial examples against NMT models. The block di-
agram of our proposed attack is presented in Figure
1. We are looking for an adversarial example with to-
kens in the vocabulary set VX and the corresponding
embedding vectors in the subspace EVX . Hence, the
optimization problem (1) is discrete. The high-level
idea of our algorithm is to use gradient projection to
solve equation 1 in the discrete subspace EVX .

The objective function of equation 1 is a function of
NMT and LM embedding representations of the ad-
versarial example, ex′ and vx′ , respectively. Since we
aim to minimize the optimization problem with respect
to ex′ , we need to find a transformation between the
embedding space of the language model and the tar-
get NMT model. To this aim, as depicted in Figure
1, we propose to replace the embedding layer of a pre-trained language model with a Fully Con-
nected (FC) layer, which gets the embedding vectors of the NMT model as its input. Then, we train
the language model and the FC layer simultaneously with the causal language modeling objective.
Therefore, we can compute the LM embedding vectors as a function of the NMT embedding vectors:
vi = FC(ei), where FC ∈ Rm×n is the trained FC layer.
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Algorithm 1 TransFool Adversarial Attack

Input:
f(.): Target NMT model, VX : Vocabulary set
FC: Fully connected layer, x: Input sentence
yref : Ground-truth translation of x
λ: BLEU score ratio, α, β: Hyperparameters
K: Maximum No. of iterations, γ: step size

Output:
x′: Generated adversarial example

initialization:
s← empty set, itr ← 0
thr ← BLEU(f(ex),yref ))× λ
∀i ∈ {1, ..., k} eg,i, ep,i ← ei

while itr < K do
itr ← itr + 1
Step 1: Gradient descent in the continuous
embedding space:
eg ← eg − γ.∇ex′ (Ladv +αLSim + βLLM )
vg ← FC(eg)
Step 2: Projection to the discrete subspace
EVX and update if the sentence is new:
for i ∈ {1, ..., k} do

ep,i ← argmax
e∈EVX

FC(e)⊤vg,i

∥FC(e)∥2.∥vg,i∥2

end for
if ep not in set s then

add ep to set s
eg ← ep
if BLEU(f(ep),yref )) ≤ thr then

break (adversarial example is found)
end if

end if
end while
return ex′ ← ep

The pseudo-code of our attack can be found in Algo-
rithm 1. In more detail, we first convert the discrete to-
kens of the sentence to continuous embedding vectors
of the target NMT model, then we use the FC layer
to compute the embedding representations of the to-
kens by the language model. Afterwards, we consider
the continuous relaxation of the optimization problem,
which means that we assume that the embedding vec-
tors are in the continuous embedding space E instead
of EVX . In each iteration of the algorithm, we first up-
date the sequence of embedding vectors ex′ in the op-
posite direction of the gradient (gradient descent). Let
us denote the output of the gradient descent step for the
i-th token by eg,i. Then we project the resultant em-
bedding vectors, which are not necessarily in EVX , to
the nearest token in the vocabulary set VX . Since the
distance in the embedding space of the LM model rep-
resents the relationship between the tokens, we use the
LM embedding representations with cosine similarity
metric in the projection step to find the most similar to-
ken in the vocabulary. We can apply the trained fully
connected layer FC to find the LM embedding repre-
sentations: vg = FC(eg). Hence, the projected NMT
embedding vector, ep,i, for the i-th token is:

ep,i = argmax
e∈EVX

FC(e)⊤vg,i

∥FC(e)∥2.∥vg,i∥2
. (6)

However, due to the discrete nature of data, by applying the projection step in every iteration of
the algorithm, we may face an undesirable situation where the algorithm gets stuck in a loop of
previously computed steps. In order to circumvent this issue, we will only update the embedding
vectors by the output of the projection step if the projected sentence has not been generated before.

We perform the gradient descent and projection steps iteratively until a maximum number of itera-
tions is reached, or the translation quality of the adversarial example relative to the original trans-
lation quality is less than a threshold. To evaluate the translation quality, we use the BLEU score,
which is a widely used metric in the literature:

BLEU(f(ex′),yref ))

BLEU(f(ex),yref ))
≤ λ. (7)

5 EXPERIMENTS

In this section, we first discuss our experimental setup, and then we evaluate TransFool against
different models and translation tasks, both in white-box and black-box settings.

5.1 EXPERIMENTAL SETUP

We conduct experiments on the English-French (En-Fr), English-German (En-De), and English-
Chinese (En-Zh) translation tasks. We use the test set of WMT14 (Bojar et al., 2014) for the En-Fr
and En-De tasks, and the test set of OPUS-100 (Zhang et al., 2020a) for the En-Zh task. Some
statistics of these datasets are presented in Appendix A.

We evaluate TransFool against transformer-based NMT models. To verify that our attack is effective
against various model architectures, we attack the HuggingFace implementation of the Marian NMT
models (Junczys-Dowmunt et al., 2018) and mBART50 multilingual NMT model (Tang et al., 2020).

As explained in Section 4, the similarity constraint and the LM loss of the proposed optimization
problem require an FC layer and a CLM. To this aim, for each NMT model, we train an FC layer
and a CLM (with GPT-2 structure (Radford et al., 2019)) on WikiText-103 dataset. We note that the
input of the FC layer is the target NMT embedding representation of the input sentence.
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Table 1: Performance of white-box attack against different NMT models.

Task Method Marian NMT mBART50
ASR↑ RDBLEU↑ RDchrF↑ Sim.↑ Perp.↓ TER↓ ASR↑ RDBLEU↑ RDchrF↑ Sim.↑ Perp.↓ TER↓

En-Fr
TransFool 69.38 0.57 0.23 0.85 182.45 13.91 60.68 0.53 0.22 0.84 121.12 10.58

kNN 36.53 0.36 0.16 0.82 389.78 19.15 30.84 0.29 0.11 0.85 336.47 21.03
Seq2Sick 27.01 0.21 0.16 0.75 175.31 13.97 25.53 0.19 0.13 0.75 151.92 13.55

En-De
TransFool 69.49 0.65 0.23 0.84 165.53 13.57 62.87 0.61 0.22 0.83 134.90 11.07

kNN 39.22 0.40 0.17 0.82 441.62 19.42 35.99 0.39 0.12 0.86 375.32 21.22
Seq2Sick 35.60 0.31 0.21 0.67 290.32 18.13 35.59 0.31 0.20 0.66 265.62 18.18

En-Zh
TransFool 73.82 0.74 0.31 0.88 102.49 11.82 57.50 0.67 0.26 0.90 74.75 7.77

kNN 31.12 0.33 0.18 0.86 180.27 15.95 27.25 0.32 0.14 0.90 160.27 16.58
Seq2Sick 28.76 0.26 0.25 0.73 161.84 17.48 24.25 0.31 0.18 0.78 105.42 13.58

To find the minimizer of our optimization problem (1), we use the Adam optimizer (Kingma & Ba,
2014) with step size γ = 0.016. Moreover, we set the maximum number of iterations to 500. Our
algorithm has three parameters: coefficients α and β in the optimization function (1), and the relative
BLEU score ratio λ in the stopping criteria (7). We set λ = 0.4, β = 1.8, and α = 20. We chose
these parameters experimentally according to the ablation study, which is available in Appendix B,
in order to optimize the performance in terms of success rate, semantic similarity, and fluency.

We compare our attack with (Michel et al., 2019), which is a white-box untargeted attack against
NMT models.1 We only consider one of their attacks, called kNN, which substitutes some words with
their neighbors in the embedding space; the other attack considers swapping the characters, which
is too easy to detect. We also adapted Seq2Sick (Cheng et al., 2020a), a targeted attack against NMT
models based on an optimization problem in the NMT embedding space, to our untargeted setting.

For evaluation, we report different performance metrics: (1) Attack Success Rate (ASR), which
measures the rate of successful adversarial examples. Similar to (Ebrahimi et al., 2018a), we define
the adversarial example as successful if the BLEU score of its translation is less than half of the
BLEU score of the original translation. (2) Relative decrease of translation quality, by measuring
the translation quality in terms of BLEU score2 and chrF (Popović, 2015). We denote these two
metrics by RDBLEU and RDchrF, respectively. We choose to compute the relative decrease in
translation quality so that scores are comparable across different models and datasets (Michel et al.,
2019). (3) Semantic Similarity (Sim.), which is computed between the original and adversarial
sentences and commonly approximated by the universal sentence encoder (Yang et al., 2020)3. (4)
Perplexity score (Perp.), which is a measure of the fluency of the adversarial example computed
with the perplexity score of GPT-2 (large). (5) Token Error Rate (TER), which measures the
imperceptibility by computing the rate of tokens modified by an adversarial attack.

5.2 RESULTS OF THE WHITE-BOX ATTACK

Now we evaluate TransFool in comparison to kNN and Seq2Sick against different NMT models.
Table 1 shows the results in terms of different evaluation metrics.4 Overall, our attack is able to
decrease the BLEU score of the target model to less than half of the BLEU score of the origi-
nal translation for more than 60% of the sentences for all tasks and models (except for the En-Zh
mBART50 model, where ASR is 57.50%). Also, in all cases, semantic similarity is more than 0.83,
which shows that our attack can maintain a high level of semantic similarity with the clean sentences.

In comparison to the baselines, TransFool obtains a higher success rate against different model
structures and translation tasks, and it is able to reduce the translation quality more severely. Since
the algorithm uses the gradients of the proposed optimization problem and is not based on token
replacement, TransFool can highly degrade the translation quality. Furthermore, the perplexity score
of the adversarial example generated by TransFool is much less than the ones of both baselines
(except for the En-Fr Marian model, where it is a little higher than Seq2Sick), which is due to the

1Code of (Cheng et al., 2019; 2020b), untargeted white-box attacks against NMTs, is not publicly available.
2We use case-sensitive SacreBLEU (Post, 2018) on detokenized sentences.
3We use the multilingual version since we are dealing with multiple languages.
4We discard the sentences whose original BLEU score is zero to prevent improving the results artificially.

We should also note that all results are computed after the re-tokenization of the adversarial example. Since
we are generating the adversarial example at the token-level, there is a small chance that, when the generated
adversarial example is converted to text, the re-tokenization does not produce the same set of tokens.
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Table 2: Adversarial examples∗ against mBART50 (En-De) generated by different methods.

Sentence Text
Org. In Oregon, planners are experimenting with giving drivers different choices.

Ref. Trans. In Oregon experimentieren die Planer damit, Autofahrern eine Reihe von Auswahlmöglichkeiten zu geben.

Org. Trans. In Oregon experimentieren Planer damit, Fahrern verschiedene Wahlen zu geben.

Adv. TransFool In Oregon, planners were experimenting with giving drivers different choices.

Trans. In Oregon experimentierten Planer mit der Bereitstellung unterschiedlicher Wahlmöglichkeiten für Fahrer.

Adv. kNN in Oregon, planners nemmeno experimenting withkjer driver. different choices,
Trans. in Oregon, Planer nemmeno experimentieren mitkjer Fahrer. verschiedene Wahlen,

Adv. Seq2Sick In acontece, planners are studying with Kivakapis against decisions,
Trans. In acontece studieren Planer mit Kivakapis gegen Entscheidungen,
∗Adversarial perturbed tokens are in red, and the perturbations by TransFool are in blue in the original sentence. The changes in the translation
that are the direct results of the perturbation are in brown, while the changes that are due to the failure of the target model are in orange.

integration of the LM embeddings and the LM loss term in the optimization problem. Moreover, the
token error rate of our attack is lower than both baselines, and the semantic similarity is preserved
better by TransFool in almost all cases since we use the LM embeddings instead of the NMT ones
for the similarity constraint. While kNN can also maintain semantic similarity, Seq2Sick does not
perform well in this criterion. We also computed similarity by BERTScore (Zhang et al., 2019)
and BLEURT-20 (Sellam et al., 2020) that highly correlate with human judgments in Appendix D,
which shows that TransFool is better than both baselines in maintaining the semantics. Moreover,
as presented in Appendix D.2, the successful attacks by the baselines, as opposed to TransFool, are
not semantic-preserving or fluent sentences. Finally, the complete setup and results of our human
evaluation are presented in Appendix H, which also shows the superiority of TransFool.

We also compare the runtime of TransFool and that of the two baselines. In each iteration of our
proposed attack, we need to perform a back-propagation through the target NMT model and the
language model to compute the gradients. Also, in some iterations (27 iterations per sentence on
average), a forward pass is required to compute the output of the target NMT model to check the
stopping criteria. For the Marian NMT (En-Fr) model, on a system equipped with an NVIDIA A100
GPU, it takes 26.45 seconds to generate adversarial examples by TransFool. On the same system,
kNN needs 1.45 seconds, and Seq2Sick needs 38.85 seconds to generate adversarial examples for
less effective adversarial attacks, however.

Table 2 shows some adversarial examples against mBART50 (En-De). In comparison to the base-
lines, TransFool makes smaller changes to the sentence. The generated adversarial example is a
correct English sentence, and it is similar to the original sentence. However, kNN and Seq2Sick
generate adversarial sentences that are not necessarily natural or similar to the original sentences.
More examples generated by TransFool, kNN, and Seq2Sick can be found in Appendix D.2. We
also provide some adversarial sentences when we do not use the LM embeddings in our algorithm
in order to show the importance of this component.

Indeed, TransFool outperforms both baselines in terms of success rate. It is able to generate more
natural adversarial examples with a lower number of perturbations (TER) and higher semantic sim-
ilarity with the clean samples in almost all cases. A complete study of hyperparameters and the
effect of using LM embeddings instead of NMT embeddings for computing similarity on TransFool
performance is presented in Appendix B and C, respectively.

5.3 PERFORMANCE IN BLACK-BOX ATTACK SETTINGS

In practice, the adversary’s access to the learning system may be limited. Hence, we propose to
analyze the performance of TransFool in a black-box scenario. It has been shown that adversarial
attacks often transfer to another model that has a different architecture and is even trained with
different datasets (Szegedy et al., 2014). By utilizing this property of adversarial attacks, we extend
TransFool to the black-box scenario. We consider that we have complete access to one NMT model
(the reference model), including its gradients. We implement the proposed gradient-based attack
in algorithm 1 with this model. However, for the stopping criteria of the algorithm, we query the
black-box target NMT model to compute the BLEU score. We can also implement the black-box
transfer attack in the case where the source languages of the reference model and the target model
are the same, but their target languages are different. Since Marian NMT is faster and lighter than
mBART50, we use it as the reference model and evaluate the performance of the black-box attack
against mBART50. We compare the performance of TransFool with WSLS (Zhang et al., 2021), a
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Table 4: Performance of black-box attack, when the target language is different.

Task Marian NMT mBART50
ASR↑ RDBLEU↑ RDchrF↑ Sim.↑ Perp.↓ #Queries↓ ASR↑ RDBLEU↑ RDchrF↑ Sim.↑ Perp.↓ #Queries↓

En-De→ En-Fr 60.53 0.55 0.22 0.84 169.49 24 61.68 0.56 0.22 0.84 169.51 23

En-Fr→ En-De 66.22 0.63 0.22 0.84 198.04 23 63.86 0.63 0.21 0.84 195.50 24

black-box untargeted attack against NMT models based on word-replacement (the choice of back-
translation model used in WSLS is investigated in Appendix F). We also evaluate the performance
of kNN and Seq2Sick in the black-box settings by attacking mBART50 with the adversarial example
generated against Marian NMT (in the white-box settings). The results are reported in Table 3. We
also report the performance when attacking Google Translate, some generated adversarial samples,
and similarity performance computed by BERTScore and BLEURT-20 in Appendix E.

Table 3: Performance of black-box attack against mBART50.

Task Method ASR↑ RDBLEU↑ RDchrF↑ Sim.↑ Perp.↓ TER↓ #Queries↓

En-Fr

TransFool 70.19 0.58 0.22 0.85 175.39 17.08 27
kNN 33.74 0.33 0.15 0.82 383.71 22.57 -

Seq2Sick 25.97 0.21 0.14 0.75 173.63 21.13 -
WSLS 56.21 0.58 0.27 0.84 214.23 31.30 1423

En-De

TransFool 66.76 0.65 0.22 0.84 167.54 16.73 23
kNN 36.70 0.39 0.16 0.82 435.02 22.34 -

Seq2Sick 32.17 0.29 0.20 0.67 286.67 26.59 -
WSLS 44.33 0.50 0.19 0.86 219.32 29.12 1262

En-Zh

TransFool 63.27 0.71 0.27 0.88 100.14 14.76 36
kNN 26.89 0.31 0.17 0.86 176.34 17.07 -

Seq2Sick 23.65 0.30 0.23 0.73 162.67 25.17 -
WSLS 40.00 0.72 0.52 0.83 186.44 32.35 1782

In all tasks, with a few queries
to the target model, our black-box
attack achieves better performance
than the white-box attack against
the target model (mBART50) but
a little worse performance than the
white-box attack against the refer-
ence model (Marian NMT). In all
cases, the success rate, token error
rate, and perplexity of TransFool are
better than all baselines (except for
the En-Fr task, where perplexity is
a little higher than Seq2Sick). The
ability of TransFool and WSLS to maintain semantic similarity is comparable and better than both
other baselines. However, WSLS has the highest token error rate, which makes the attack detectable.
The effect of TransFool on BLEU score is larger than that of the other methods, and its effect on
chrF metric comes after WSLS (except for the En-DE task, where RDchrF of TransFool is the best).

Regarding the complexity, TransFool requires only a few queries to the target model for translation,
while WSLS queries the model more than a thousand times, which is costly and may not be feasible
in practice. For the En-Fr task, on a system equipped with an NVIDIA A100 GPU, it takes 43.36
and 1904.98 seconds to generate adversarial examples by TransFool and WSLS, respectively, which
shows that WSLS is very time-consuming.

We also analyze the transferability of the generated adversarial examples to a black-box NMT model
with the same source language but a different target language. Since we need a dataset with the same
set of sentences for different language pairs, we use the validation set of WMT14 for En-Fr and En-
De tasks. Table 4 shows the results for two cases: Marian NMT or mMBART50 as the target model.
We use Marian NMT as the reference model with a different target language than that of the target
model. In all settings, the generated adversarial examples are highly transferable to another NMT
model with a different target language (i.e., they have high attack success rate and large semantic
similarity). The high transferability of TransFool shows that it is able to capture the common failure
modes in different NMT models, which can be dangerous in real-world applications.

6 CONCLUSION

In this paper, we proposed TransFool, a white-box adversarial attack against NMT models, by in-
troducing a new optimization problem solved by an iterative method based on gradient projection.
We utilized the embedding representation of a language model to impose a similarity constraint on
the adversarial examples. Moreover, by considering the loss of a language model in our optimiza-
tion problem, the generated adversarial examples are more fluent. Extensive automatic and human
evaluations show that TransFool is highly effective in different translation tasks and against different
NMT models. Our attack is also transferable to black-box settings with different structures and even
different target languages. In both white-box and black-box scenarios, TransFool obtains improve-
ment over the baselines in terms of success rate, semantic similarity, and fluency. It is important
to analyze adversarial attacks against NMT models such as TransFool to find the vulnerabilities of
NMT models, measure their robustness, and eventually build more robust NMT models.
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Ethics Statement We introduced TransFool, an adversarial attack against NMT models, with the
motivation of revealing the vulnerabilities of NMT models and paving the way for designing stronger
defenses and building robust NMT models in real-life scenarios. While it remains a possibility that a
threat actor may misuse our attack, we do not condone using our method with the intent of attacking
a real NMT system.

Reproducibility Statement The source code will be publicly available as soon as possible to help
reproduce our results. Moreover, Appendix G contains the license information and more details of
the assets (datasets, codes, and models).
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Supplementary Material
TransFool: An Adversarial Attack against Neural Machine Translation

Models

ABSTRACT

In this supplementary material, we first provide some statistics of the evaluation
datasets in Section A. The ablation study of the hyperparameters of TransFool is
presented in Section B. We investigate the effect of the LM embedding representa-
tion on TransFool and kNN in Section C. More results of the white-box attack are
reported in D: the results of other similarity metrics (Section D.1), performance
over successful attacks (Section D.2), and some generated adversarial examples
(Section D.4). Section E provides more experiments on the black-box attack: the
performance of attacking Google Translate (Section E.1), results of other similar-
ity metrics (Section E.2), and some generated adversarial examples (Section E.3).
We discuss the effect of the back-translation model choice on WSLS in Section
F. Finally, the license information and more details of the assets (datasets, codes,
and models) are provided in Section G.

A SOME STATISTICS OF THE DATASETS

Table 5: Some statistics of the evaluation datasets.

Dataset Average #Test Marian NMT mBART50
Length Samples BLEU chrF BLEU chrF

En-Fr 27 3003 39.88 64.94 36.17 62.66WMT14
En-De 26 3003 27.72 58.50 25.66 57.02WMT14
En-Zh 18 2000 33.11 50.98 29.27 41.92OPUS-100

Some statistics, including the number of sam-
ples, the Average length of the sentences,
and the translation quality of Marian NMT
and mBART50, of the evaluation datasets,
i.e., OPUS100 (En-Zh) WMT14 (En-FR) and
(En-De), are reported in table 5.

B ABLATION STUDY

In this Section, we analyze the effect of different hyperparameters (including the coefficients α and
β in our optimization problem (1), the step size of the gradient descent γ, and the relative BLEU
score ratio λ in the stopping criteria Eq. (7)) on the white-box attack performance in terms of success
rate, semantic similarity, and perplexity score.

In all the experiments, we consider English to French Marian NMT model and evaluate over the
first 1000 sentences of the test set of WMT14. The default values for the hyperparameters are as
follows, except for the hyperparameter that varies in the different experiments, respectively: α = 20,
β = 1.8, γ = 0.016, and λ = 0.4.

Effect of the similarity coefficient α. This hyperparameter determines the strength of the sim-
ilarity term in the optimization problem (1). Figure 2a shows the effect of α on the performance
of our attack. By increasing the similarity coefficient of the proposed optimization problem, we
are forcing our algorithm to find adversarial sentences that are more similar to the original sentence.
Therefore, as shown in Figure 2a, larger values of α result in higher semantic similarity. However, in
this case, it is harder to fool the NMT model, i.e., lower attack success rate, RDBLEU, and RDchrF.
Moreover, it seems that, since the generated adversarial examples are more similar to the original
sentence, they are more natural, and their perplexity score is lower.

Effect of the language model loss coefficient β. We analyze the impact of the hyperparameter
β, which controls the importance of the language model loss term in the proposed optimization
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Figure 2: Effect of different hyperparameters on the performance of TransFool.

problem, in Figure 2b. By increasing this coefficient, we weaken the effect of the similarity term,
i.e., the generated adversarial examples are less similar to the original sentence. As a result, the
success rate and the effect on translation quality, i.e., RDBLEU and RDchrF, increase.

Effect of the step size γ. The step size of the gradient descent step of the algorithm can impact
the performance of our attack, which is investigated in Figure 2c. Increasing the step size results in
larger movement in the embedding space in each iteration of the algorithm. Hence, the generated
adversarial examples are more aggressive, which results in lower semantic similarity and higher
perplexity scores. However, we can find adversarial examples more easily and achieve a higher
attack success rate, RDBLEU, and RDchRF.

Effect of the BLEU score ratio λ. This hyperparameter determines the stopping criteria of our
iterative algorithm. Figure 2d studies the effects of this hyperparameter on the performance of our
attack. As this figure shows, a higher BLEU score ratio causes the algorithm to end in earlier
iterations. Therefore, the changes applied to the sentence are less aggressive, and hence, we achieve
higher semantic similarity and a lower perplexity score. However, the attack success rate, RDBLEU,
and RDchrF decrease since we make fewer changes to the sentences.

C EFFECT OF THE LM EMBEDDING REPRESENTATION

Table 6: Performance of white-box attack against Marian
NMT (En-Fr) with/without language model embeddings.

Method ASR↑ RDBLEU↑ RDchrF↑ Sim.↑ Perp.↓

TransFool w/ LM Emb. 69.48 0.56 0.23 0.85 177.20
TransFool w/ NMT Emb. 68.27 0.57 0.26 0.78 193.32

kNN w/ LM Emb. 32.13 0.32 0.15 0.85 246.52
kNN w/ NMT Emb. 36.65 0.35 0.16 0.82 375.84

Table 6 shows the results of Trans-
Fool and kNN when we use LM em-
beddings or NMT embeddings for
measuring similarity between two
tokens.5 The LM embeddings re-
sult in lower perplexity and higher
semantic similarity for both meth-
ods, which demonstrates the impor-
tance of this component in generat-
ing meaning-preserving fluent adversarial examples.

5In order to have a fair comparison, we fine-tuned hyperparameters of Transfool, in the case when we do
not use LM embeddings, to have a similar attack success rate.
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D MORE RESULTS ON THE WHITE-BOX ATTACK

D.1 SEMANTIC SIMILARITY COMPUTED BY OTHER METRICS

To better assess the ability of adversarial attacks in maintaining semantic similarity, we can compute
the similarity between the original and adversarial sentences using other metrics such as BERTScore
(Zhang et al., 2019) and BLEURT-20 (Sellam et al., 2020). It is shown in (Zhang et al., 2019) that
BERTScore correlates well with human judgments. BLEURT-20 is also shown to correlates better
with human judgment than traditional measures (Freitag et al., 2021). The results are reported in
Table 7. These results indicate that the TransFool is indeed more capable of preserving the semantics
of the input sentence. In the two cases where kNN has better similarity by using the Universal
Sentence Encoder (USE) (Yang et al., 2020), the performance of TransFool is better in terms of
BERTScore and BLEURT-20.

Table 7: Similarity performance of white-box attacks.

Task Method Marian NMT mBART50
USE↑ BERTScore↑ BLEURT-20 ↑ USE↑ BERTScore↑ BLEURT-20 ↑

En-Fr
TransFool 0.85 0.95 0.65 0.84 0.96 0.70

kNN 0.82 0.94 0.61 0.85 0.93 0.67
Seq2Sick 0.75 0.94 0.60 0.75 0.94 0.66

En-De
TransFool 0.84 0.96 0.67 0.83 0.95 0.69

kNN 0.82 0.94 0.61 0.86 0.93 0.67
Seq2Sick 0.67 0.93 0.52 0.66 0.92 0.58

En-Zh
TransFool 0.88 0.96 0.67 0.90 0.97 0.76

kNN 0.86 0.95 0.66 0.90 0.95 0.72
Seq2Sick 0.73 0.94 0.54 0.78 0.95 0.67

D.2 PERFORMANCE OVER SUCCESSFUL ATTACKS

The evaluation metrics of the successful adversarial examples that strongly affect the translation
quality are also important, and they show the capability of the adversarial attack. Hence, we evalu-
ate TransFool, kNN, and Seq2Sick only over the successful adversarial examples.6 The results for
the white-box setting are presented in Table 8. By comparing this Table and Table 1, which shows
the results on the whole dataset, we can see that TransFool performance is consistent among suc-
cessful and unsuccessful attacks. Moreover, successful adversarial examples generated by TransFool
are still semantically similar to the original sentences, and their perplexity score is low. However,
the successful adversarial examples generated by Seq2Sick and kNN do not preserve the semantic
similarity and are not fluent sentences; hence, they are not valid adversarial sentences.

Table 8: Performance of white-box attack over successful adversarial examples.

Task Method Marian NMT mBART50
ASR↑ RDBLEU↑ RDchrF↑ Sim.↑ Perp.↓ TER↓ ASR↑ RDBLEU↑ RDchrF↑ Sim.↑ Perp.↓ TER↓

En-Fr
TransFool 69.38 0.66 0.26 0.83 229.75 15.33 60.68 0.66 0.27 0.82 164.52 12.56

kNN 36.53 0.70 0.30 0.76 746.89 24.52 30.84 0.72 0.28 0.77 691.64 28.05
Seq2Sick 27.01 0.72 0.40 0.56 648.92 25.28 25.53 0.74 0.41 0.53 556.61 25.16

En-De
TransFool 69.49 0.72 0.25 0.83 191.51 14.54 62.87 0.73 0.26 0.81 169.76 12.66

kNN 39.22 0.75 0.29 0.77 675.01 23.07 35.99 0.75 0.23 0.81 574.68 25.75
Seq2Sick 35.60 0.78 0.40 0.53 659.90 25.67 35.59 0.78 0.40 0.52 612.22 26.67

En-Zh
TransFool 73.82 0.76 0.34 0.87 112.28 12.83 57.50 0.73 0.31 0.88 99.08 9.86

kNN 31.12 0.72 0.29 0.80 355.25 22.55 27.25 0.76 0.27 0.85 295.53 23.58
Seq2Sick 28.76 0.72 0.46 0.58 437.49 26.84 24.25 0.79 0.44 0.60 292.55 25.59

D.3 TRADE-OFF BETWEEN SUCCESS RATE AND SIMILARITY/FLUENCY

The results in our ablation study B show that there is a trade-off between the quality of adversarial
example, in terms of semantic-preservation and fluency, and the attack success rate. As studied in

6As defined in Section 5, the adversarial example is successful if the BLEU score of its translation is less
than half of the BLEU score of the original translation.
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(Morris et al., 2020), we can filter adversarial examples with low quality based on hard constraints on
semantic similarity and the number of added grammatical errors caused by adversarial perturbations.
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Figure 3: Tradeoff between success rate and Similar-
ity/fluency. The left figure shows the effect of acceptable
number of added grammar errors by adversarial pertur-
bation. The right figure shows the effect of similarity
threshold.

We can analyze the trade-off between
success rate and similarity/fluency by
setting different thresholds for filtering
adversarial examples. If we evaluate the
similarity by the sentence encoder sug-
gested in (Morris et al., 2020), the suc-
cess rate with different threshold values
for similarity in the case of Marian (En-
Fr) is depicted in Figure 3b. By consid-
ering only the adversarial examples with
a similarity higher than a threshold, the
success rate decreases as the threshold
increases, and the quality of the adversar-
ial examples increases. Similarly, we can
do the same analysis for fluency. As sug-
gested in (Morris et al., 2020), we count
the grammatical errors by LanguageTool
(Naber et al., 2003) for the original sen-
tences and the adversarial examples. Figure 3a depicts the success rate for different thresholds of
the number of added grammatical errors caused by adversarial perturbations.

These analyses show that with tighter constraints, we can generate better adversarial examples while
the success rate decreases. All in all, according to these results, TransFool outperforms the baselines
for different thresholds of similarity and grammatical errors.

D.4 MORE ADVERSARIAL EXAMPLES

In this Section, we present more adversarial examples generated by TransFool, kNN, and Seq2Sick.
In order to show the effect of using LM embeddings on the performance of TransFool, we also
include the generated adversarial examples against English to French Marian NMT model when we
do not use LM embeddings. In all these tables, the tokens modified by TransFool are written in blue
in the original sentence, and the modified tokens by different adversarial attacks are written in red
in their corresponding adversarial sentences. Moreover, the changes made by the adversarial attack
to the translation that are not directly related to the modified tokens are written in orange, while the
changes that are the direct result of modified tokens are written in brown.

As can be seen in the examples presented in Tables 9 and 10, TransFool makes smaller changes to
the sentence. The generated adversarial example is a correct English sentence, and it is similar to
the original sentence. However, kNN, Seq2Sick, and our method with the NMT embeddings make
changes that are perceptible, and the adversarial sentences are not necessarily similar to the original
sentence. The higher semantic similarity of the adversarial sentences generated by TransFool is due
to the integration of LM embeddings and the LM loss in the proposed optimization problem. We
should highlight that TransFool is able to make changes to the adversarial sentence translation that
are not directly related to the modifications of the original sentence but are the result of the NMT
model failure.

Other examples against different tasks and models are presented in Tables 11 to 16.
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Table 9: Adversarial examples against Marian NMT (En-Fr) by various methods (white-box).

Sentence BLEU Text

Org. The most eager is Oregon, which is enlisting 5,000 drivers in the country’s biggest experiment.

Ref. Trans. Le plus déterminé est l’Oregon, qui a mobilisé 5 000 conducteurs pour mener l’expérience la plus impor-
tante du pays.

Org. Trans. 21.66 Le plus avide est l’Oregon, qui recrute 5 000 pilotes dans la plus grande expérience du pays.

Adv. TransFool The most eager isQuebec, which is enlisting 5,000 drivers in the country’s biggest experiment.

Trans. 7.71 Le Québec, qui fait partie de la plus grande expérience du pays, compte 5 000 pilotes. (some parts are not
translated at all.)

Adv. w/ NMT Emb. The most eager isCustom, which is enlisting Disk drivers in the country’s editions Licensee.

Trans. 6.54 Le plus avide estCustom, qui recrute des pilotes de disque dans les éditions du pays Licencié.

Adv. kNN Theve eager is Oregon, C aren enlisting 5,000 drivers in theau’s biggest experiment.

Trans. 5.93 Theve avide est Oregon, C sont enrôlés 5 000 pilotes dans la plus grande expérience de Theau.

Adv. Seq2Sick The most buzz is FREE, which is chooseing Games comments in the country’s great developer.

Trans. 10.31 Le plus buzz est GRATUIT, qui est de choisir Jeux commentaires dans le grand développeur du pays.

Table 10: Adversarial examples against Marian NMT (En-Fr) by various methods (white-box).

Sentence BLEU Text

Org. "They are in the process of abandoning and killing off emergency units that were reformed less than five
years ago," he believes.

Ref. Trans. "Ils sont en train de vider et d’asphyxier des urgences qui ont été rénovées il y a moins de cinq ans",
estime-t-il.

Org. Trans. 37.53 « Ils sont en train d’abandonner et de tuer des unités d’urgence qui ont été réformées il y a moins de cinq
ans », croit-il.

Adv. TransFool "People are in the process of abandoning and killing off emergency units that been reformed less than five
years ago," he believes.

Trans. 23.83 « Les gens abandonnent et tuent les unités d’urgence réformées il y a moins de cinq ans », croit-il. (some
parts are not translated.)

Adv. w/ NMT Emb. "Manager are in the process of abandoning and killing off emergency units that were celebrating less than
five years ago," he believes.

Trans. 27.66 « Le gestionnaire est en train d’abandonner et de tuer des unités d’urgence qui célébraient il y a moins de
cinq ans », croit-il.

Adv. kNN "They are in the process of abandoning and killing off emergency allotment that were reformedvoir8) five
years ago," States believes.

Trans. 21.20 « Ils sont en train d’abandonner et de tuer les allocations d’urgence qui ont été réformées il y a cinq ans8
», estime-t-il.

Adv. Seq2Sick "They are in the process of abandoning and shot off emergency units that were CSIS less than five years
ago," he believes.

Trans. 33.58 « Ils sont en train d’abandonner et de tuer des unités d’urgence qui étaient le SCRS il y a moins de cinq
ans », croit-il.

Table 11: Adversarial examples against Marian NMT (En-Fr) by various methods (white-box).

Sentence BLEU Text
Org. Discovering neighbourhoods, our architecture, our environment are reference points,

Ref. Trans. La découverte de quartiers, notre architecture, nos lieux sont des repères.

Org. Trans. 29.25 Découvrir les quartiers, notre architecture, notre environnement sont des points de référence,

Adv. TransFool Discovering neighbourhoods, our architecture Whose our environment are reference points,

Trans. 7.96 Découverte des quartiers, de notre architecture dont notre environnement est des points de référence,

Adv. kNN Discovering neighbourhoods, these infrastructure, we environment is reference points,

Trans. 6.61 Découverte des quartiers, de ces infrastructures, l’environnement est un point de référence,

Adv. Seq2Sick awayingevaluations, our architecture, our energy are reference points,

Trans. 20.33 l’élimination des évaluations, notre architecture, notre énergie sont des points de référence,
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Table 12: Adversarial examples against Marian NMT (En-De) by various methods (white-box).

Sentence BLEU Text

Org.
The devices, which track every mile a motorist drives and transmit that information to bureaucrats, are at
the center of a controversial attempt in Washington and state planning offices to overhaul the outdated
system for funding America’s major roads.

Ref. Trans.
Die Geräte, die jeden gefahrenen Kilometer aufzeichnen und die Informationen an die Behörden melden,
sind Kernpunkt eines kontroversen Versuchs von Washington und den Planungsbüros der Bundesstaaten,
das veraltete System zur Finanzierung US-amerikanischer Straßen zu überarbeiten.

Org. Trans. 23.65
Die Geräte, die jede Meile ein Autofahrer fährt und diese Informationen an Bürokraten weiterleitet, stehen
im Zentrum eines umstrittenen Versuchs in Washington und in den staatlichen Planungsbüros, das veraltete
System zur Finanzierung der großen Straßen Amerikas zu überarbeiten.

Adv. TransFool
The vehicles, which track every mile a motorist drives and transmit that information to bureaucrats, are at
the center of a unjustified attempt in Washington and city planning offices to overhaul the clearer system
for funding America’s major roads.

Trans. 9.36
Die Fahrzeuge, die jede Meile ein Autofahrer fährt und diese Informationen an Bürokraten weiterleitet,
stehen im Zentrum eines ungerechtfertigten Versuchs in Washington und in den Stadtplanungsbüros, das
klarere System zur Finanzierung der amerikanischen Hauptstraßen zu überarbeiten.

Adv. kNN
The devices in which track every mile a motorist drives and transmit that M to bureaucrats, are 07:0 the
center of a controversial attempt in Washington and state planning offices to overhaul the outdated Estate
for funding America’s major roads.

Trans. 7.79
Die Vorrichtungen, in denen jede Meile ein Autofahrer fährt und diese M an Bürokraten überträgt, sind
07:0 das Zentrum eines umstrittenen Versuchs in Washington und staatlichen Planungsbüros, das veraltete
Estate für die Finanzierung der amerikanischen Hauptstraßen zu überarbeiten.

Adv. Seq2Sick
The devices, which road everyably a motorist drives and transmit that information to walnut socialisms,
are at the center of a Senate attempt in Washington and state planning offices toestablishment the outdated
system for funding America’s major paths.

Trans. 22.48
Die Geräte, die allgegenwärtig ein Autofahrer antreibt und diese Informationen an Walnusssozialismen
überträgt, stehen im Zentrum eines Senatsversuchs in Washington und in den staatlichen Planungsbüros,
das veraltete System zur Finanzierung der wichtigsten Wege Amerikas einzurichten.

Table 13: Adversarial examples against Marian NMT (En-Zh) by various methods (white-box).

Sentence BLEU Text

Org. And what your husband said... if Columbus had done it, we’d all be Indians.

Ref. Trans. 你丈夫说的... 要是哥伦布没发现美洲,我们现在就都是印第安人了

Org. Trans. 25.58 你丈夫说的话... 如果哥伦布做到了我们都会是印第安人

Adv. TransFool And With your husband said... if Columbus had done it, we’d all be Indians.

Trans. 0.0 你丈夫说如果哥伦布做到了我们都会是印第安人 (some parts are not translated.)

Adv. kNN And what your husband said... if Columbus had60, we’ Nineteen all it Indians.

Trans. 24.45 你丈夫说的话... 如果哥伦布有60"我们19个印度人

Adv. Seq2Sick And completing your penalties said... if timely had done it, we’d all be briefed.

Trans. 22.09 完成你的处罚说... 如果及时完成,我们都会得到简报

Table 14: Adversarial examples against mBART50 (En-Fr) crafted by various methods (white-box).

Sentence BLEU Text

Org. Wearing a wingsuit, he flew past over the famous Monserrate Sanctuary at 160km/h. The sanctuary is
located at an altitude of over 3000 meters and numerous spectators had gathered there to watch his exploit.

Ref. Trans. Equipé d’un wingsuit, il est passé à 160 km/h au-dessus du célèbre sanctuaire Monserrate, situé à plus de
3 000 mètres d’altitude, où de nombreux badauds s’étaient rassemblés pour observer son exploit.

Org. Trans. 27.33 Il a survolé à 160 km/h le célèbre sanctuaire de Monserrate, situé à une altitude de plus de 3000 mètres, où
de nombreux spectateurs se sont réunis pour assister à son exploit.

Adv. TransFool Wearing a wingsuit, he flew past over the famous Interesserrage Sanctuary at 160km/h. The sanctuary is
located at an altitude of over 3000 meters and numerous spectators had gathered there to watch his exploit.

Trans. 6.16 Le sanctuaire est situé à une altitude de plus de 3000 mètres et de nombreux spectateurs se sont réunis pour
assister à son exploit. (first part of the sentence is not translated at all.)

Adv. kNN
Wearing a wingsuit. he flew past over the famous Monserrate Sanctuary at 160km/h. The sanctuary is
located at anzu opinionstitude of over 8000 meters and numerous spectators had gathered there the watch
his exploit.

Trans. 23.80 Il a survolé le célèbre sanctuaire de Monserrate à 160 km/h. Le sanctuaire est situé à une opiniontitude de
plus de 8000 mètres et de nombreux spectateurs se sont rassemblés là pour observer son exploit.

Adv. Seq2Sick Wearing a wingsuit, he flew past over the famous Monserrate Sanctuary at 160km/h. The sanctuary is
located at an altitude of over74 meters and numerous spectators had gathered there to watch his exploit.

Trans. 32.52 Il a survolé à 160 km/h le célèbre sanctuaire de Monserrate, situé à plus de 74 mètres d’altitude, où de
nombreux spectateurs se sont réunis pour assister à son exploit.
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Table 15: Adversarial examples against mBART50 (En-De) crafted by various methods (white-box).

Sentence BLEU Text
Org. In Oregon, planners are experimenting with giving drivers different choices.

Ref. Trans. In Oregon experimentieren die Planer damit, Autofahrern eine Reihe von Auswahlmöglichkeiten zu geben.

Org. Trans. 22.38 In Oregon experimentieren Planer damit, Fahrern verschiedene Wahlen zu geben.

Adv. TransFool In Oregon, planners were experimenting with giving drivers different choices.

Trans. 6.27 In Oregon experimentierten Planer mit der Bereitstellung unterschiedlicher Wahlmöglichkeiten für Fahrer.

Adv. kNN in Oregon, planners nemmeno experimenting withkjer driver. different choices,
Trans. 3.94 in Oregon, Planer nemmeno experimentieren mitkjer Fahrer. verschiedene Wahlen,

Adv. Seq2Sick In acontece, planners are studying with Kivakapis against decisions,
Trans. 3.22 In acontece studieren Planer mit Kivakapis gegen Entscheidungen,

Table 16: Adversarial examples against mBART50 (En-Zh) crafted by various methods (white-box).

Sentence BLEU Text

Org. Delegations are requested to submit the names of their representatives to the Secretary of the Preparatory
Committee, Ms. Vivian Pliner-Josephs (room S-2950E; fax: (212) 963-5935).

Ref. Trans. 请各代表团将其代表姓名送交给筹备委员会秘书VivianPliner-Josephs女士(S-2950E室;电
传:(212)963-5935)。

Org. Trans. 61.63 请各代表团向筹备委员会秘书VivianPliner-Josephs(S-2950E室;传真:(212)963-5935)提出代表的姓
名。

Adv. TransFool Delegations are requested to submit the names of their representatives to the Secretary of the Preparatory
Committee, Mr. Vivian Pliner-Josephs (room C-2930E; fax: (211) 96 25-30935).

Trans. 9.55 请各代表团将其代表的姓名提交筹备委员会秘书维维安·普林纳-约瑟夫斯先生(房间C-2930E;传
真:(211)9625-30935)。

Adv. kNN Delegations are requested to submit the names of their representatives that the Secretary of the Preparatory
Committee, Ms. VivianPliner-Joseph, (room S-2950 •, fax: (212) 963-5935).

Trans. 54.37 请各代表团向筹备委员会秘书VivianPliner-Joseph(S-2950室;传真:(212)963-5935)递交代表的姓名。

Adv. Seq2Sick Delegations are requested to submit the names of their representatives to the Secretary of the Preparatory
Committee, Ms.jadan Pliner-Josephs (room S-2950E; 599: 212 96 2010,935.

Trans. 13.40 请 各 代 表 团将 其 代 表 的 姓 名 提 交筹 备 委 员 会 秘 书贾 丹·普 林 纳-约 塞 夫 斯 女 士(S-
2950E室;599:212962010,935)。
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E MORE RESULTS ON THE BLACK-BOX ATTACK

E.1 ATTACKING GOOGLE TRANSLATE

Table 17: Performance of black-box attack against
Google Translate (En-Fr).

Method ASR↑ RDBLEU↑ RDchrF↑ Sim.↑ Perp.↓ WER↓

TransFool 67.83 0.55 0.23 0.85 184.35 20.85
kNN 37.22 0.35 0.17 0.82 389.45 30.24
Seq2Sick 23.49 0.20 0.15 0.75 174.88 20.34

Table 18: Performance of TransFool black-box attack
against Google Translate (En-De), when the target lan-
guage is different..

Task ASR↑ RDBLEU↑ RDchrF↑ Sim.↑ Perp.↓ WER↓

En-Fr→ En-De 67.42 0.65 0.26 0.85 198.56 20.78

To evaluate the effect of different attacks
in practice, we attack Google Translate7

by TransFool, kNN, and Seq2Sick. Since
querying Google Translate is limited per
day, we were not able to attack with
WSLS, which requires high number of
queries. Table 17 presents the perfor-
mance of the English to French transla-
tion task. The results demonstrate that
adversarial sentences crafted by Trans-
Fool can degrade the translation quality
more while preserving the semantics bet-
ter. The perplexity score and word er-
ror rate of TransFool compete with those
metrics of Seq2Sick, but Seq2Sick is not
meaning-preserving and is less effective.

We also performed the cross-lingual
black-box attack. We consider Marian NMT (En-Fr) as the reference model and attack En-De
Google Translate. The results for TransFool are reported in Table 18.

E.2 SEMANTIC SIMILARITY COMPUTED BY OTHER METRICS

Table 19: Similarity performance of black-box attacks.

Task Method USE↑ BERTScore↑ BLEURT-20 ↑

En-Fr
TransFool 0.85 0.95 0.66

WSLS 0.84 0.93 0.58

En-De
TransFool 0.84 0.96 0.67

WSLS 0.86 0.94 0.61

En-Zh
TransFool 0.88 0.96 0.68

WSLS 0.83 0.93 0.56

Similar to the white-box attack, we
compute the similarity between the
adversarial and original sentences by
BERTScore and BLEURT-20, since they
correlate well with human judgments.
The similarity performance of Trans-
Fool and WSLS8 in the black-box set-
tings are demonstrated in Table 19. Ac-
cording to Table 19, TransFool is bet-
ter at maintaining semantic similarity. It
may be because we used LM embeddings instead of the NMT ones in the similarity constraint.

E.3 SOME ADVERSARIAL EXAMPLES

We also present some adversarial examples generated by TransFool and WSLS, in the black-box
setting, in Tables 20 to 22. In these tables, the tokens modified by TransFool are written in blue in
the original sentence, and the modified tokens by different adversarial attacks are written in red in
their corresponding adversarial sentences. Moreover, the changes made by the adversarial attack to
the translation that are not directly related to the modified tokens are written in orange, while the
changes that are the direct result of modified tokens are written in brown.

These examples show that modifications made by TransFool are less detectable, i.e., the generated
adversarial examples are more natural and similar to the original sentence. Moreover, TransFool
makes changes to the translation that are not the direct result of the modified tokens of the adversarial
sentence.

7We should note that since we do not have a tokenizer, we compute Word Error Rate (WER) instead of
Token Error Rate (TER).

8The results of kNN and Seq2Sick are not reported since they are transfer attacks, and their performance is
already reported in Table 7.
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Table 20: Adversarial examples against mBART50 (En-Fr) crafted by various methods (black-box).

Sentence BLEU Text

Org. It is therefore not surprising that he should be holding a mask in the promotional photography for
L’Invitation au Voyage, by Louis Vuitton, of which he is the new face.

Ref. Trans. Rien d’étonnant à ce qu’il ait donc un masque à la main dans la photographie de la campagne L’Invitation
au Voyage, de la marque Louis Vuitton, dont il incarne le nouveau visage.

Org. Trans. 31.15 Il n’est donc pas surprenant qu’il tienne une masque dans la photographie promotionnelle de L’Invitation
au Voyage, de Louis Vuitton, dont il est le nouveau visage.

Adv. TransFool It is therefore not surprising that he should be holding a mask in the promotional painting for L’Invitation
sans Voyage, by Louis Vuitton, of which he is the new face.

Trans. 13.22 Il n’est donc pas surprenant qu’il tienne une masque dans la peinture promotionnelle de Louis Vuitton pour
L’Invitation sans Voyage, dont il est le nouveau visage.

Adv. WSLS me is therefore not surprising that he should be holding a wig inthe the promos portraiture for L’Invitation
au Voyage, by gary Vuitton, of which he is the fresh face.

Trans. 21.21 Je ne suis donc pas surpris qu’il porte une paruche dans le portrait promotionnel de l’Invitation au Voyage,
de Gary Vuitton, dont il est le nouveau visage.

Adv. kNN It is therefore not surprising that he should be holding a mask in the promotional photography for L’In
processedation au Voyage, by Louis gooduitton, of which he is associating new faceConnection

Trans. 13.82 Il n’est donc pas surprenant qu’il tienne une masque dans la photographie promotionnelle de L’In processe-
dation au Voyage, de Louis gooduitton, dont il associe un nouveau visageConnection

Adv. Seq2Sick It is therefore not pasture that he should be holding a hidden in the unclean goodness for L’Invitation au
Voyage, by Louis Vuitton, of which he is the new face.

Trans. 28.75 Il ne s’agit donc pas d’un pâturage qu’il doit tenir caché dans la bonté insalubre pour L’Invitation au
Voyage, de Louis Vuitton, dont il est le nouveau visage.

Table 21: Adversarial examples against mBART50 (En-De) crafted by various methods (black-box).

Sentence BLEU Text
Org. This really is a must for our nation.

Ref. Trans. Das ist wirklich ein Muss für unser Land.

Org. Trans. 61.05 Das ist wirklich ein Muss für unsere Nation.

Adv. TransFool This really is his must for our nation.

Trans. 20.16 Das ist wirklich seine Pflicht für unsere Nation.

Adv. WSLS This really becomes a must outfor our nation.

Trans. 33.03 Das wird wirklich ein Muss für unsere Nation.

Adv. kNN This realities and a requisiteAstr our nation.

Trans. 4.77 Diese Realitäten und eine notwendige Astrologie unserer Nation.

Adv. Seq2Sick This really is a must for our imperfect.
Trans. 61.05 Das ist wirklich ein Muss für unsere Unvollkommenheit.

Table 22: Adversarial examples against mBART50 (En-Zh) crafted by various methods (black-box).

Sentence BLEU Text

Org. (c) To provide care and support by strengthening programming for orphans and vulnerable children in-
fected/affected by AIDS and by expanding life skills training for young people.

Ref. Trans. (c)以加强协助艾滋病孤儿和被艾滋病感染/影响脆弱儿童的方案,以及扩大助益年轻人的生活技能
培训方式,提供照顾和支助。

Org. Trans. 21.07 (c)通过加强对艾滋病感染/受害的孤儿和脆弱儿童的方案和扩大对年轻人的生活技能培训,提供照
顾和支助。

Adv. TransFool [c) To provide care and support by strengthening programming for orphans and vulnerable children Dis-
abled/ afflicted by AIDS and by expanding life skill training for young people.

Trans. 9.22 [c)通过加强为孤儿和受艾滋病影响的弱势儿童提供照顾和支助,并扩大对年轻人的生活技能培
训。

Adv. WSLS (c) To provide nursing and unstinted_support by strengthening i_Lifetv for orphans and susceptable
children infected/affected by CPR_mannequins and by broadening life skills training for young people.

Trans. 12.57 (c)通过加强孤儿和受CPR_迷彩感染/影响的易受感染儿童的i_Lifetv,并为年轻人提供更广泛的生活
技能培训,提供护理和无毒的支助。

Adv. kNN ( so) address provide care and support by strengthening prioritization for orphans and vulnerable children
infected/affected by AIDS and by expanding life skills issue for young people.

Trans. 5.63 因此,通过加强对艾滋病感染/受害的孤儿和脆弱儿童的优先事项和扩大对年轻人的生活技能的问
题,解决提供照顾和支助。

Adv. Seq2Sick (c) To provide care and support by strengthening digital for dress and harmful children Journal/ Letter
by Region and by disappear Violence skills training for young people.

Trans. 14.99 (c)通过加强服装和有害儿童的数字,按区域分发新闻/信,并为年轻人提供暴力技能培训,提供照顾和
支持。
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F EFFECT OF BACK-TRANSLATION MODEL CHOICE ON WSLS
PERFORMANCE

Table 23: Performance of WSLS (En-De) with two back-
translation models.

Back-Translation ASR RDBLEU RDchrF Sim. Perp. #Queries

Marian NMT 44.33 0.50 0.19 0.86 219.32 1262

(Ng et al., 2019) 51.68 0.58 0.21 0.81 241.96 1307

WSLS uses a back-translation model
for crafting an adversarial example.
In (Zhang et al., 2021), the authors
investigate the En-De task and use
the winner model of the WMT19 De-
En sub-track (Ng et al., 2019) for
the back-translation model. However,
they do not evaluate their method for
En-Fr and En-Zh tasks. To evaluate the performance of WSLS in Table 3, We have used pre-trained
Marian NMT models for all three back-translation models. In order to show the effect of our choice
of back-translation model, we compare the performance of WSLS for the En-De task when we use
Marian NMT or (Ng et al., 2019) as the back-translation model in Table 23. As this Table shows,
WSLS with Marian NMT as the back-translation model results in even more semantic similarity
and lower perplexity score. On the other hand, WSLS with (Ng et al., 2019) as the back-translation
model has a slightly more success rate. These results show that our choice of back-translation model
does not highly affect the performance of WSLS.

G LICENSE INFORMATION AND DETAILS

In this Section, we provide some details about the datasets, codes, and models used in this paper.
We should note that we used the models and datasets that are available in HuggingFace transformers
(Wolf et al., 2020) and datasets (Lhoest et al., 2021) libraries.9 They are licensed under Apache
License 2.0. Moreover, we used PyTorch for all experiments (Paszke et al., 2019), which is released
under the BSD license10.

G.1 DATASETS

WMT14 In the Ninth Workshop on Statistical Machine Translation, WMT14 was introduced for
four tasks. We used the En-De and En-Fr news translation tasks. There is no license available for
this dataset.

OPUS-100 OPUS-100 is a multilingual translation corpus for 100 languages, which is randomly
sampled from the OPUS collection (Tiedemann, 2012). There is no license available for this dataset.

G.2 MODELS

Marian NMT Marian is a Neural Machine Translation framework, which is mainly developed by
the Microsoft Translator team, and it is released under MIT License11. This model uses a beam size
of 4.

mBART50 mBART50 is a multilingual machine translation model of 50 languages, which has
been introduced by Facebook. This model is published in the Fairseq library, which is released
under MIT License12. This model uses a beam size of 5.

9These two libraries are available at this GitHub repository: https://github.com/huggingface.
10https://github.com/pytorch/pytorch/blob/master/LICENSE
11https://github.com/marian-nmt/marian/blob/master/LICENSE.md
12https://github.com/facebookresearch/fairseq/blob/main/LICENSE
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G.3 CODES

kNN In order to compare our method with kNN (Michel et al., 2019), we used the code provided
by the authors, which is released under the BSD 3-Clause "New" or "Revised" License.13

Seq2Sick To compare our method with Seq2Sick (Cheng et al., 2020a), we used the code pub-
lished by the authors.14 There is no license available for their code.

WSLS We implemented and evaluated WSLS (Zhang et al., 2021) using the source code published
by the authors.15 There is no license available for this GitHub repository.

H HUMAN EVALUATION

We conduct a preliminary human evaluation campaign of TransFool, kNN, and Seq2Sick attacks on
Marian NMT (En-Fr) in the white-box setting. We randomly choose 90 sentences from the test set of
the WMT14 (En-FR) dataset with the adversarial samples and their translations by the NMT model.
We split 90 sentences into three different surveys to obtain a manageable size for each annotator. We
recruited two annotators for each survey. For the English surveys, we ensure that the annotators are
highly proficient English speakers. Similarly, for the French survey, we ensure that the annotators
are highly proficient in French.

Before starting the rating task, we provided annotators with detailed guidelines similar to (Cer et al.,
2017; Michel et al., 2019). The task is to rate the sentences for each criterion on a continuous scale
(0-100) inspired by WMT18 practice (Ma et al., 2018) and Direct Assessment (Graham et al., 2013;
2017). For each sentence, we evaluate three aspects in three different surveys:

• Fluency: We show the three adversarial sentences and the original sentence on the same
page (in random order). We ask the annotators how much they agree with the "The sentence
is fluent." statement for each sentence.

• Semantic preservation: We show the original sentence on top and the three adversarial
sentences afterwards (in random order). We ask the annotators how much they agree with
the "The sentence is similar to the reference text." statement for each sentence.

• Translation quality: Inspired by monolingual direct assessment (Ma et al., 2018; Graham
et al., 2013; 2017), we evaluate the translation quality by showing the reference translation
on top and the translations of three adversarial sentences afterwards (in random order). We
ask the annotators how much they agree with the "The sentence is similar to the reference
text." statement for each translation.

We calculate 95% confidence intervals by using 15K bootstrap replications. The results are depicted
in Figure 4. These results demonstrate that although the adversarial examples generated by Trans-
Fool are more semantic-preserving and fluent than both baselines. According to the provided guide
to the annotators for semantic similarity, the score of 67.8 shows that the two sentences are roughly
equivalent, but some details may differ. Moreover, a fluency of 66.4 demonstrates that although the
generated adversarial examples by TransFool are more fluent than the baselines, there is still room
to improve the performance in this regard.

We follow the direct assessment strategy to measure the effectiveness of the adversarial attacks on
translation quality. According to (Ma et al., 2018), since a sufficient level of agreement of trans-
lation quality is difficult to achieve with human evaluation, direct assessment simplifies the task
to a simpler monolingual assessment instead of a bilingual task. The similarity of the translations
of the adversarial sentences with the reference translation is shown in Figure 4c. The similarity
of Seq2Sick is worse than other attacks. However, its similarity in the source language is worse.
Therefore, we compute the decrease of similarity (between the original and adversarial sentences)

13The source code is available at https://github.com/pmichel31415/translate/tree/
paul/pytorch_translate/research/adversarial/experiments and the license is avialable
at https://github.com/pmichel31415/translate/blob/paul/LICENSE

14The source code is available at https://github.com/cmhcbb/Seq2Sick.
15https://github.com/JHL-HUST/AdvNMT-WSLS/tree/79945881f75d92ae44e9ebc10500d8590c09bb13
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Figure 4: Human evaluation results for TransFool, kNN, and Seq2Sick attacks against Marian NMT
(En-Fr).

from the source language to the target language. The results in Figure 4d show that all attacks affect
the translation quality and the effect of TransFool is more pronounced than that of both baselines.

Table 24: Inter-annotator agreement for human evaluation.

Sentence Type Fluency Similarity in En Similairty in Fr

Original 0.68 - -

TransFool 0.85 0.82 0.79

kNN 0.91 0.82 0.86

Seq2Sick 0.89 0.88 0.83

Finally, we calculate Inter-Annotator
Agreement (IAA). There are two hu-
man judgments for each sentence.
We average both scores to compute
the final score for each sentence. To
ensure that the two annotators agree,
we only consider sentences where
their two corresponding scores are
less than 30. We compute IAA in
terms of Pearson Correlation coefficient instead of the commonly used Cohen’s K since scores are
in a continuous scale. The results are presented in Table 24. Overall, we conclude that we achieve a
reasonable inter-annotator agreement for all sentence types and evaluation metrics.
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