
Learning Dynamics of RNNs in
Closed-Loop Environments

Yoav Ger Omri Barak
yoav.ger@campus.technion.ac.il omri.barak@gmail.com

Rappaport Faculty of Medicine and Network Biology Research Laboratory
Technion, Israel Institute of Technology

Abstract

Recurrent neural networks (RNNs) trained on neuroscience-inspired tasks offer
powerful models of brain computation. However, typical training paradigms rely on
open-loop, supervised settings, whereas real-world learning unfolds in closed-loop
environments. Here, we develop a mathematical theory describing the learning
dynamics of linear RNNs trained in closed-loop contexts. We first demonstrate
that two otherwise identical RNNs, trained in either closed- or open-loop modes,
follow markedly different learning trajectories. To probe this divergence, we
analytically characterize the closed-loop case, revealing distinct stages aligned
with the evolution of the training loss. Specifically, we show that the learning
dynamics of closed-loop RNNs, in contrast to open-loop ones, are governed by
an interplay between two competing objectives: short-term policy improvement
and long-term stability of the agent-environment interaction. Finally, we apply our
framework to a realistic motor control task, highlighting its broader applicability.
Taken together, our results underscore the importance of modeling closed-loop
dynamics in a biologically plausible setting.

1 Introduction

Recurrent neural networks (RNNs) are widely used to study dynamic processes in both neuroscience
and machine learning [1, 2, 3, 4, 5]. Their recurrent architecture, reminiscent of brain circuits, enables
them to form internal representations such as memories of past inputs [6, 7]. When coupled with an
environment, these memories can support the formation of internal world models that help agents
achieve their goals. This capability is critical in real-world settings, which are often ambiguous and
only partially observable. However, the conditions under which these models emerge during training
remain poorly understood, particularly in closed-loop agent–environment interactions, where outputs
influence subsequent inputs.

Despite the ubiquity of closed-loop interaction in biological learning, most RNN training to date
has relied on supervised learning in an open-loop setting, with theoretical work primarily focused
on characterizing the properties of the resulting solutions [8, 9, 10, 11, 12, 13, 14, 15]. Motivated
by recent analytical understanding of feedforward networks [16], several studies have begun to
investigate the learning dynamics themselves, though they remain confined to simplified open-loop
regime [17, 18, 19, 20, 21, 22]. These approaches typically assume i.i.d. inputs that are independent
of the network’s outputs, thereby omitting the feedback-driven environments in which biological
agents learn. As a result, the learning dynamics that arise in closed-loop settings remain largely
unexplored. In particular, it is unclear whether such conditions induce distinct learning trajectories or
solution classes compared to conventional open-loop training.

Training agents in environments is typically approached through reinforcement learning (RL), en-
compassing methods such as policy gradients and actor-critic algorithms [23, 24, 25]. While RL has

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

achieved remarkable success in complex tasks, the complexity of modern architectures and training
pipelines often obscures theoretical understanding of the learning dynamics [26, 27, 28]. Here, we
focus on a simple, tractable setting where a single recurrent network is trained with policy gradients
on tasks that preserve key features of agent–environment learning. These include feedback that
induces correlated inputs and partial observability, requiring internal representations.

Using this setting, we develop a mathematical framework for learning in closed-loop environments.
We begin by showing that closed-loop and open-loop training produce fundamentally different
learning dynamics, even when using identical architectures and converging to the same final solution.
To investigate this divergence, we focus on the largely understudied dynamics of closed-loop RNNs.
Specifically, we show that tracking the eigenvalues of the coupled agent–environment system (rather
than the RNN alone) is both necessary and sufficient to uncover the structure of the learning process,
which unfolds in distinct stages reflected in the spectrum and training loss. Notably, closed-loop
learning gives rise to a natural trade-off between two competing objectives: myopic, short-sighted
policy improvement and long-term system-level stability. Finally, we demonstrate that similar
learning dynamics arise in a more complex motor control task, with RNNs progressing through stages
similar to those observed in human experiments.

2 Preliminaries

We begin by introducing our framework, comprising the environment (a double integrator task) and
the agent (an RNN), which is trained under either closed-loop or open-loop conditions. Throughout,
we use bold lowercase letters for vectors (e.g., z), bold uppercase letters for matrices (e.g., W), and
non-bold letters for scalars. The identity matrix is denoted by I . We define the scalar overlap between
two vectors p and q as σpq = p⊤q. The spectral radius of a matrix is denoted by ρ(·), and we write
χ(·)(λ) for the characteristic polynomial of a matrix with eigenvalues λ.

Double integrator task Our task environment is the classic discrete-time double integrator control
problem [29, 30], described by the following linear state-space model:

xt+1 = Axt +B ut, where A =

[
1 1
0 1

]
, B =

[
0
1

]
(1)

Here, xt = (x
(1)
t , x

(2)
t)⊤ ∈ R2 represents the position and velocity of a unit mass, while ut ∈ R is

the control signal applied at each time step to steer the mass toward the target state x∗ = (0, 0)⊤.
Note that acceleration is precisely equal to the control input (i.e., ẍ = ut). Since we are interested
in partial observability, our observation matrix satisfies rank(C) < rank(A). Specifically, only the
position is measured,

yt = C xt, C = [1 0] (2)

so that yt ≡ x
(1)
t . The goal is to generate a sequence of control signals that minimizes the average

squared Euclidean distance to the target state without expending excessive force,

min
u1:T

1

T

T∑
t=1

∥xt − x∗∥2 + β

T∑
t=1

u2
t (3)

where β balances the cost of state error against control effort.

RNN model We model our RNN-based agent as a large network of N recurrently connected
neurons that interact via continuous firing rates. We adopt a discrete-time RNN to align with the
discrete nature of the control task. The network state dynamics and output are given by:

ht+1 = ϕ
(
W ht +m yt+1

)
, ut+1 = z⊤ ht+1 (4)

where ht ∈ RN is the hidden state of the RNN, ϕ(·) denotes the activation function, W ∈ RN×N is
the recurrent weight matrix, and m , z ∈ RN×1 are the input and output weight vectors, respectively.
Here, yt+1 is the mass position and ut+1 the control signal. We also validate our findings in a
continuous-time RNN model (Appendix A.1).

2

Figure 1: (a) Schematic of learning setups: In the closed-loop setting (top), the RNN output u is fed
into the environment, which evolves according to the system dynamics and produces the next input y
to the network. In contrast, the open-loop setting (bottom) lacks feedback: a student RNN is trained
via supervised learning to imitate a pre-trained teacher mapping i.i.d. inputs y to target outputs u.
(b) Conceptual illustration of our hypothesis: optimization trajectories for closed-loop (blue) and
open-loop (red) RNNs explore different regions of the closed-loop loss landscape (darker colors
indicate higher loss). (c) Summary of results: the closed-loop RNN (top) progresses through three
distinct learning stages, while the open-loop RNN (bottom) shows a sharp test loss peak. Note that the
open-loop train loss (dashed black) drops by roughly one order of magnitude while the closed-loop
test loss (red solid) drops by four, highlighting its limited sensitivity to the environment. Both panels
use log scale; dashed and solid lines show train and test loss on right and left axes, respectively.

Closed-loop learning setup In this setup, the RNN agent learns through repeated interaction with
the environment. At each time step, the environment’s state x evolves according to Eq. 1, and a
projection of this state, y, is fed as input to the RNN. From the agent’s internal state, h, an output
u is produced, which serves as a control signal for the environment, thus closing the feedback loop
(Fig. 1a; top). The initial mass state is sampled uniformly: x0 ∼ U([−2, 2]2). The RNN is trained
via policy gradients [31, 32] to minimize the objective in Eq. 3. This process can be interpreted as a
form of adaptive control [33], where policy learning and system identification occur simultaneously
(see Appendix B). While classical control often includes a control penalty, we adopt an unregularized
version [34] by setting β = 0. This simplification does not affect our main findings, though it may
influence the final solution the RNN settles on (see Stage 3 and Appendix A.2).

Open-loop learning setup Following the standard teacher–student framework [35, 36], we formu-
late an open-loop supervised setup in which a student RNN does not interact with the environment
but is instead trained to imitate an input–output mapping defined by a teacher network pre-trained on
the task (Fig. 1a; bottom). To ensure i.i.d. training data, we inject white noise inputs into the teacher
and use its outputs as targets. Formally, the training objective is given by min 1

T

∑T
t=1(ût − ut)

2,
where ût and ut denote the student’s prediction and the teacher’s target, respectively. Note that the
double-integrator is a special control task that admits an analytically optimal solution (see LQR in
Appendix B). Accordingly, we also supplemented our results using the corresponding LQR controller
as a teacher (Appendix A.5).

Training details and RNN initialization Both the closed-loop and open-loop RNNs share the
same architecture and are initialized identically. Each network consists of N = 100 neurons, an
episode length of T = 50, and the hyperbolic tangent activation function, ϕ(·) = tanh. The input
and output weight vectors were initialized independently from N (0, 1/N), and the recurrent weight
matrix W was initialized from N (0, g2/N), where g controls the initial recurrent strength. Training
was performed using stochastic gradient descent on W , m, and z, with a learning rate of η = 10−2,
a batch size of 100, and gradient clipping (2-norm capped at 1) to avoid exploding gradients.

3

10
0

10
1

10
2

10
3

Epoch

10
1

10
3

10
5

L
os

s

(a) Test Loss

Closed-Loop

Open-Loop

Stage 1
Peak

Stage 3

Stage 2

0.9 0.0 0.5
k1

0.9

0.0

0.5

k
2

(b) Closed-loop - Loss & Stability

Start

End

Unstable
(osc.)

Unstable
(real)Stable

0.04 0.00
k1

0.04

0.00

0.04
(c) Zoom-In

Stage 1

Stage 2
(zig-zag)

Stage 3 0

20

40

60

L
o
ss

 (
lo

g)

Figure 2: (a) Closed-loop test loss (reproduced from Fig. 1c). Despite identical architectures, the two
RNNs exhibit distinct learning dynamics under closed-loop and open-loop training. The closed-loop
RNN progresses through three distinct learning stages, whereas the open-loop RNN displays a
sharp loss peak. Gray and yellow markers indicate the end of Stages 1 and 2, respectively, for the
closed-loop RNN. (b) Numerical estimation of the effective RNN gain Keff during training, projected
onto the (k1, k2) plane (closed-loop shown in blue; open-loop in red). Although both RNNs begin
and end in similar regions, they follow markedly different trajectories across the loss landscape.
The background color represents the logarithm of the loss; darker regions correspond to higher
loss. The solid black curve separates three distinct stability regimes. (c) Zoomed-in view of panel
(b), highlighting the divergence point between the two trajectories (gray marker). Gray and yellow
markers match those in panel (a). Notably, the end of Stage 2 for the closed-loop RNN (yellow
marker) coincides with a stability phase transition in the (k1, k2) plane.

3 Closed-loop and open-loop RNNs exhibit different learning dynamics

We begin with a simple question: if all else is equal, will two identical RNNs—one trained in
a closed-loop setup and the other in an open-loop setup—exhibit the same learning trajectories?
We hypothesize they will not, as the open-loop agent lacks feedback from the environment and is
therefore blind to the consequences of its actions. As a result, producing actions that closely match
those of the teacher (and thus reduce loss in the open-loop sense) may be detrimental once the
environment is introduced (Fig. 1b). To test this, we train two identical nonlinear RNNs (initialized
with g = 0.1) under the two paradigms and find that their learning dynamics diverge substantially
(Fig. 1c). While both RNNs show similar initial improvement, the closed-loop RNN quickly enters a
plateau phase. In contrast, its open-loop counterpart exhibits a sharp peak in closed-loop test loss,
indicating a breakdown in performance. Although the loss eventually recovers, it is accompanied
by only a minor improvement in open-loop training loss, underscoring the setup’s insensitivity to
control consequences (Fig. 1c; bottom). We further verified that this divergence between closed- and
open-loop learning is not specific to the double-integrator task, but persists across a broader class of
control problems that generalize it (Appendix A.6).

To formalize this divergence concretely, we build on concepts from control theory. Specifically, we
consider the closed-loop stability of the double integrator system under linear state feedback [37],
defined by:

Mcl = A−BK =

[
1 1

0 1

]
−
[
0

1

]
[k1 k2] =

[
1 1

−k1 1− k2

]
(5)

Sweeping over a range of feedback gains (k1, k2), we simulate system trajectories and compute
the total squared distance from the target state. Additionally, by analyzing the eigenvalues of Mcl,
we identify regions in parameter space corresponding to stable and unstable dynamics (Fig. 2b and
Appendix B.4). Next, to embed the high-dimensional nonlinear RNN policy into this interpretable
2D space, we sample trajectories from both RNNs during training, recording the full system state xt

and the corresponding control output ut (noting that the RNN observes only the position of the mass).
We then fit a linear model of the form:

ut ≈ −k1x
(1)
t − k2x

(2)
t (6)

yielding an empirical estimate, which we denote as the effective feedback gain, Keff = [k1 k2]. Note
that this is only an approximation. An exact analytical map to (k1, k2) is possible only when the
RNN is linear and the dynamics lie in an effectively two-dimensional subspace (Appendix C.9).

4

As shown in Fig. 2b, and consistent with our hypothesis, the two RNNs follow distinct trajectories
within this low-dimensional subspace defined by the closed-loop system. Closer inspection of early
training (Fig. 2c) reveals three notable observations. First, the divergence between open- and closed-
loop learning emerges early, at the end of Stage 1 (Fig. 2c gray marker). Second, the progression from
Stage 1 to Stage 2 of the closed-loop RNN unfolds in a zig-zag trajectory, reflecting non-monotonic
updates in the effective feedback gain. Third, the transition from Stage 2 to Stage 3 in the closed-loop
RNN (when the plateau ends) coincides with a shift from unstable to stable dynamics in the (k1, k2)
plane (Fig. 2c yellow marker).

Before shifting our focus to the closed-loop RNN, we note that the dynamics of learning in the
open-loop setup is not trivial itself. If the network were linear, the open-loop loss would be equivalent
to learning a linear filter via gradient descent. This setting was recently analyzed analytically [18],
and we reproduce similar results in Appendix A.4 for completeness. Next, to better understand the
three observations outlined above, we focus on the less explored case of closed-loop learning.

4 Analytic results of closed-loop learning dynamics

Having shown that closed-loop RNNs exhibit distinct learning dynamics from their open-loop
counterparts, we now turn to our analytical treatment, beginning with three simplifying assumptions.
First, we replace the nonlinear activation with a linear one, ϕ(·) = id. Second, consistent with prior
work [17, 38], we observe that training induces low-rank connectivity, often rank-1 (Appendix A.3),
and thus we set W = uv⊤ with u,v ∈ RN×1. Third, the input weights m are randomly set and
fixed during training. These assumptions simplify analysis without sacrificing generality.

4.1 Coupled closed-loop system derivation

To analyze the interaction of the closed-loop RNN, we adopt a unified framework, standard in control
theory, that combines the dynamics of both the RNN and the environment. Since both are linear, we
stack the environment state xt and the RNN hidden state ht into a joint state vector st = (xt, ht)

⊤,
yielding the coupled linear system:

st+1 = P st, where P =


env. dynamics︷︸︸︷

A

control output︷ ︸︸ ︷
B z⊤

mCA︸ ︷︷ ︸
input feedback

W︸︷︷︸
RNN dynamics

 (7)

The matrix P ∈ R(2+N)×(2+N) defines the full closed-loop dynamics, with stability governed by its
eigenvalues. For a general W , these are found by solving a self-consistent characteristic equation
(Appendix C.2). In the specific case of rank-1 connectivity (i.e., W = uv⊤), the hidden state ht

remains confined to the subspace spanned by m and u, and can be expressed as ht = κ
(m)
t m+κ

(u)
t u.

This allows us to formulate a reduced four-dimensional system:

s
(eff)
t =


x
(1)
t

x
(2)
t

κ
(m)
t

κ
(u)
t

 ∈ R4, s
(eff)
t+1 = Peff s

(eff)
t , where Peff =

1 1 0 0
0 1 σzm σzu

1 1 0 0
0 0 σvm σvu

 (8)

This effective system is governed by just four scalar order parameters–overlaps denoted by σ–with
eigenvalues satisfying:

χP (λ) = λ3 + (−σvu − 2)λ2 + (2σvu − σzm + 1)λ+ (σvu σzm − σvu − σzu σvm) (9)

While P (with W = uv⊤) and Peff produce identical within-episode trajectories due to spectral
equivalence, their learning dynamics are not similar: gradients applied to the order parameters in Peff
do not directly correspond to weight updates in the full RNN. Nonetheless, we numerically find that
learning in the reduced system captures key features of high-dimensional RNN learning, as we show
next, stage by stage. In Appendix C we provide a full derivation of both systems and demonstrate
their spectral identity (within-episode).

5

10
0

10
1

10
2

10
3

Epoch

10
2

10
5

10
8

L
os

s

(a)
Stage 1

50 200
Time-Step

50

0

50

P
os

it
io

n

(b)
Trajectory

0.9 1.0 1.1
Real

0.2

0.0

0.2

Im
a
g.

(c)
eig(P)

0.3 0.0 0.3
σzm

0

25

50

75

L
os

s

(d)
Theoretical

Simulation

Theory

0 20
Epoch

0.2

0.0

0.2

σ
zm

(e)
Empirical

Figure 3: Stage 1 - Negative position policy. (a) Training loss rapidly decreases during Stage 1. (b)
Example trajectory of mass position under RNN control at the end of Stage 1, exhibiting oscillatory
divergence; note, the red dashed line indicates the episode length used for training. (c) This oscillatory
instability is explained by inspecting the eigenspectrum of P , which reveals the emergence of a
dominant complex-conjugate pair during training with ρ(P) > 1. Arrow indicates trajectory; darker
marker denotes final position. (d) The effective loss (dashed), predicted by the order parameter σzm

alone, shows strong agreement with simulation (solid). (e) As predicted by the asymptotic loss
landscape in (d), despite initializing many RNNs with different initial overlaps, all networks converge
to a small and negative σzm by the end of Stage 1.

4.2 Three stages of learning: control, representation, and refinement

Stage 1 - Negative position policy In the first stage, the loss rapidly decreases (Fig. 3a) as the
RNN adopts a “negative-position” policy, ut ∝ −position (Fig. 3b). This behavior resembles a
proportional (P) controller [37], where the control signal is directly tied to the instantaneous position
error. While this provides immediate corrective feedback, it lacks any internal representation of the
mass’s velocity (i.e., no derivative or integral components as in PID controllers). Consequently, this
policy induces instability in the combined system P , as evidenced by an eigenvalue with magnitude
greater than one (Fig. 3c), which dominates the loss during this stage.

More specifically, since gradient descent induces only minimal change to W = uv⊤ during Stage 1,
we set it to zero, which simplifies Eq. 9 to take a quadratic form:

χP (λ) = λ2 − 2λ+ (1− σzm) (10)

with eigenvalues given by λ = 1±√
σzm, where σzm quantifies the alignment between the input

and output vectors. This corresponds to two types of instability, as illustrated in Fig. 2b: a real
dominant eigenvalue when σzm > 0, and a complex-conjugate pair when σzm < 0. This analysis
enables a closed-form approximation of the loss in Stage 1 as a function of σzm alone, which shows
excellent agreement with the empirical loss (Fig. 3d).

In addition, the analysis reveals an asymmetric loss landscape around σzm = 0, with a sharper
rise for positive overlaps compared to negative ones. This asymmetry drives learning toward small
negative values of σzm during this stage (Fig. 3e). Taking the limit T → ∞ gives σzm → 0. For
finite T , however, the asymmetric shape of the loss pushes σzm to small negative values. This can
also be understood as the need to construct early-episode control at the expense of long-term behavior,
as we expand next. A full derivation of Stage 1 appears in Appendix C.5.

Stage 2 - Building a world model In Stage 2, the loss enters a plateau phase (Fig. 4a), which
ends when the RNN learns to steer the mass to the target via a highly underdamped response with
sustained oscillations (Fig. 4b). This phase concludes when the closed-loop dynamics stabilize, as
the dominant eigenvalues of P enter the unit disk (Fig. 4c). Reaching this stable regime requires the
RNN to infer velocity, a hidden variable not directly available from the input. To understand how
stability is achieved, we examine how gradient descent updates alter the spectral structure of P .

Unlike Stage 1, the recurrent weights, W = uv⊤, now evolve and must be included in the spectral
analysis. From Stage 1, we know that the characteristic polynomial admits a complex-conjugate pair
of roots, implying that the third root is real. Applying Vieta’s formula to χP (λ) yields:

|λ1|2 = (2σvu − σzm + 1) + (−σvu − 2)λ3 + λ2
3 (11)

where λ1 and λ3 denote the complex and real roots of Eq. 9, respectively. To approximate λ3, we
apply first-order perturbation theory around the non-zero eigenvalue σvu of the rank-one connectivity

6

10
0

10
1

10
2

10
3

Epoch

10
2

10
5

10
8

L
o
ss

(a)
Stage 2

50 200
Time-Step

5

0

5

P
o
si

ti
o
n

(b)
Trajectory

0.98 1.00
Real

0.13

0.20

Im
a
g
.

(c)
eig(P)

0.975 1.000
Real

0.13

0.25

Im
a
g
.

(d)
Theoretical

α= 0

α= 1

0.975 1.000
Real

0.13

0.25

Im
a
g
.

(e)
Empirical

T→ 0

T→∞10

100
T

0.1

0.2
α

Figure 4: Stage 2 - Building a world model. (a) Training loss enters a plateau phase. (b) Example
trajectory of mass position under RNN control at the end of Stage 2, showing an underdamped
response with sustained oscillations that eventually converge to the target (note the time-step on the
x-axis). (c) Empirical evolution of one of the dominant complex-conjugate eigenvalues during Stage 2,
exhibiting a zig-zag trajectory inward toward the unit disk (dashed). Arrow indicates trajectory; darker
marker denotes final position. (d) Theoretical trajectories of the dominant eigenvalue optimizing
the surrogate loss across different α values: optimizing only short-term loss (α = 0) drives the
eigenvalue upward along the imaginary axis; optimizing only long-term loss (α = 1) causes direct
descent; intermediate values (0 < α < 1) yield trajectories consistent with empirical behavior; red
marker indicates the initial condition. (e) Empirical validation: initializing the RNN from the same
starting point (red dot) and varying episode length T produces trajectories that qualitatively match
the theoretical surrogate predictions.

matrix, yielding:
λ3 ≈ σvu +

σzu σvm

(σvu)2 − 2σvu − σzm + 1
+O(ϵ2) (12)

Substituting Eq. 12 into Eq. 11 yields a closed-form approximation for the dominant eigenvalue norm
of P , denoted L∞. Taking powers of this expression serves as a surrogate loss that captures the
system’s asymptotic behavior as T → ∞. To test whether this quantity alone governs learning, we
applied gradient descent to L∞ (with respect to the order parameters). We found, however, that the
resulting dynamics were inconsistent with simulation: the dominant eigenvalue descends vertically
along the imaginary axis (Fig. 4d; α = 1), deviating from the empirical inward trajectory (Fig. 4c).

This discrepancy can be attributed to the fact that although the empirical simulation ultimately
minimizes L∞, the RNN must also establish short-term control. To capture this transient behavior,
we introduce a second term in the surrogate loss. A natural choice is the loss at an early timestep; for
t = 2, the second term can be written compactly as (see Appendix C.6 for other t values):

L2 = 2σ2
zm + 2σzm + 6 (13)

We now define the full surrogate loss that interpolates between short- and long-horizon terms:

Lsurrogate = α · L∞ + (1− α) · L2, α ∈ [0, 1] (14)

This blended objective better reflects the dual goals of the second stage: stabilizing the long-term
dynamics and achieving short-term immediate control. As expected, setting α = 0, optimizing
purely for short-term control, drives the dominant eigenvalue upward along the imaginary axis, in
direct opposition to the desired asymptotic behavior (Fig. 4d; α = 0). In contrast, interpolating with
0 < α < 1 produces trajectories consistent with empirical observations, where the eigenvalue moves
inward toward the unit disk. To further validate this prediction, we initialized multiple RNNs from
the same initial condition while varying episode length T : shorter episodes pushed the dominant
eigenvalue upward, while longer episodes caused it to descend, as predicted by theory (Fig. 4e).

Our theory also explains the two observations described above. First, the zig-zag motion in the
empirical trajectory (Fig. 4c) can be attributed to the competing influences of the two loss components,
whose gradient directions in the complex plane are nearly opposed. While such zig-zag patterns are
well documented in ill-conditioned optimization (e.g., due to large Hessian condition numbers [39,
40]), here they result from a structured conflict between short- and long-term objectives, a hallmark
of closed-loop learning. Notably, this conflict is mitigated by adaptive optimizers such as Adam [41]
(see Appendix C.7). Second, the divergence between open- and closed-loop test loss may arise
because the open-loop RNN, at least initially, does not optimize for the long-term loss component,
allowing output weights to grow unboundedly. A full derivation of Stage 2 appears in Appendix C.6.

7

10
0

10
1

10
2

10
3

Epoch

10
2

10
5

10
8

L
o
ss

(a) Stage 3

0 50
Time-Step

3

0

3

P
o
si

ti
o
n

(b) Trajectory

0 1
Real

1

0

1

Im
a
g
.

(c) eig(P)

10
0

10
1

10
2

Epoch

10
0

10
1

L
o
ss

(d) Theoretical & Empirical

Simulation

Theory

0 5

β

Figure 5: Stage 3 - Policy refinement. (a) Final drop in training loss marks the onset of Stage 3. (b)
Example trajectory of mass position under RNN control at the end of Stage 3, exhibits fast and non-
oscillatory dynamics. (c) Spectrum of the closed-loop matrix P : the dominant complex-conjugate
pair contracts further inward, while λ3 grows, indicating the emergence of a second slow mode.
Arrow indicates trajectory; darker marker denotes final position. (d) Training loss during Stage 3
for full high-dimensional model (solid) and the low-dimensional effective model (dashed black),
across different regularization strengths β (colored), initialized from identical Stage 2 endpoints. The
effective model shows excellent agreement with the RNN learning dynamics throughout Stage 3.

Stage 3 - Policy refinement Once the closed-loop matrix P stabilizes, the RNN enters a final
phase of refinement. Training loss drops again (Fig. 5a), and mass trajectories become fast and
non-oscillatory toward the target (Fig. 5b). Notably, the third real eigenvalue λ3 increases and begins
to influence behavior (Fig. 5c). This marks a shift from Stage 2 where |λ3| ≪ |λ1|, indicating the
emergence of a second slow mode alongside the dominant complex pair. Learning dynamics in this
stage are reproduced by directly optimizing the order parameters of the effective model. This is
illustrated by varying the control regularization β (see Appendix A.2) and comparing the results to
the full model. Additional analysis confirms that, despite operating in a stable regime of P , Stage 3
learning remains shaped by the same competing objectives as in Stage 2 (Appendix C.8).

5 Generalization to multi-frequency tracking tasks

4 0 4
x

4

0

4

y

Start

End

(a) Tracking Task

Ref. RNN

10
0

10
1

10
2

10
3

10
4

Epoch

10
1

10
0

10
1

L
os

s

(b) Test Loss

Closed-Loop

Open-Loop

ω1 ω2
ω3

ω4

(e)

3

3

x

ω1

(c) Trajectory

3

3

y

ω2

3

3

x

ω3

0 30

Time-Step

3

3

y

ω4

ω1Im

(d) eig(W)

ω2Im

ω3

Im

1 1

Re

ω4

Im

900 1000 1100
Epoch

1

2

L
os

s
ω

2

(e) Zoom-In Plateau

ω1

ω2

ω1 ω2 ω3 ω4

Frequency

0.1

0.5

N
or

m
.
A

cq
.
T

im
e

(f)
Freq. Dependent Learning

RNN

Data

0.56

0.58

L
os

s
ω

1

Figure 6: (a) Closed-loop RNN trajectory (dashed blue) tracking a 2D multi-frequency target (solid
black). (b) Test loss across epochs for closed-loop (blue) and open-loop (red) RNNs. Closed-loop
RNN exhibits stepwise drops aligned with acquisition of higher-frequency components (ω1 < ω2 <
ω3 < ω4); open-loop shows a loss peak followed by convergence. (c) RNN (solid) and reference
(dashed) trajectories for individual frequencies, at epochs marked in (b). (d) Eigenvalue spectra of W
at the same epochs, revealing frequency-specific adaptations. (e) Zoom in on the first plateau in (b),
with loss decomposed into ω1 and ω2 (right and left axes), showing a trade-off between controlling
learned and acquiring new frequencies. (f) Frequency-dependent learning: both RNN (blue) and
humans (green) acquire higher frequencies more slowly. RNN acquisition times were computed from
the markers in (b), normalized by total training time; human data from [42] (see Appendix D).

To test the generality of our findings beyond the simple double integrator task, we trained RNNs on
a two-dimensional tracking task inspired by human motor control studies [42, 43]. In this task, the
RNN must learn to control a cursor to follow a reference trajectory whose motion is defined by a sum
of sinusoids with different temporal frequencies (Fig. 6a; see Appendix D for full details).

8

Consistent with the simpler task, closed-loop RNNs exhibited stage-like learning dynamics: training
progressed through discrete plateaus, with each drop in the loss corresponding to the acquisition of a
higher-frequency component (Fig. 6b; colored markers). These transitions were validated by testing
the RNN on individual frequency components: Fig. 6c shows that each marked epoch aligns with
accurate tracking of a newly acquired frequency, while Fig. 6d reveals corresponding adaptations in
the spectrum of W (see also Figs. 18 and 19 in Appendix D). In contrast, open-loop RNNs displayed
a test loss peak before convergence, consistent with the double integrator.

Furthermore, the loss plateaus in closed-loop RNNs reflect a trade-off between maintaining control
over previously acquired frequencies and learning new ones, which require changes in W . This is evi-
dent in a crossover, where performance on ω1 temporarily declines as ω2 is acquired (Fig. 6e). Finally,
the frequency-dependent acquisition times of closed-loop RNNs closely tracked trends observed
in human participants performing the same task under mirror-reversal perturbation ([42]; Fig. 6f),
suggesting a shared inductive bias favoring the early acquisition of low-frequency components.

6 Discussion

Learning in biological agents inherently occurs through closed-loop interactions, where future sensory
inputs depend on past outputs (i.e., actions). However, most studies train networks, including RNNs,
in open-loop supervised settings that omit this feedback structure. To address this gap, we studied the
learning dynamics of RNNs under closed-loop conditions in a simplified setting.

Our key finding is that closed-loop learning is fundamentally distinct from its open-loop counterpart.
Using our analytical framework, we show that closed-loop RNNs must balance competing short- and
long-term objectives. This trade-off temporarily stalls progress, producing a training loss plateau
that resolves only when changes in W support an internal representation of hidden variables, such
as velocity or frequency. Once formed, these representations allow the output weights z to grow,
enabling further improvement. In contrast, open-loop RNNs permit unchecked growth of z early in
training, yielding initial gains but ultimately leading to a loss peak when evaluated under closed-loop,
out-of-distribution conditions.

In line with prior work on simplicity bias in neural networks, learning often unfolds by first acquiring
simple structures before more complex ones [12, 16, 44, 45]. We observed a similar pattern both
in policy (e.g., proportional before PID) and in internal representations (e.g., low before high
frequencies). Our closed-loop framework offers a novel insight: stage-like learning arises from
the need to balance short-term policy gains with longer-term demands requiring internal models of
the environment. This trade-off is reflected in loss plateaus, which mark distinct stages of learning.
Finally, consistent with recent findings in open-loop RNNs (i.e., uncorrelated inputs) [18], learning
proceeds by first aligning weights to task-relevant directions, followed by scaling. Interestingly, in
closed-loop RNNs, this scaling is delayed and emerges only after a sufficient internal representation
is formed, as indicated by changes in W .

Our work complements recent theoretical advancements aimed at broadening learning theory be-
yond traditional supervised paradigms [34, 46, 47, 48] and architectures beyond feedforward net-
works [14, 18, 49, 50, 51, 52]. Closely related studies have investigated learning dynamics under RL
rules but typically considered weak agent–environment coupling or were restricted to feedforward
architectures [46, 47]. Other studies examined implicit biases in networks trained on linear-quadratic
regulator (LQR) tasks but largely relied on full-state feedback and used feedforward architectures [34].
Recent empirical research on RNNs trained with closed-loop feedback highlights their potential
to replicate aspects of biological motor learning, yet lacks an analytical characterization of the
underlying learning dynamics [53]. Our approach addresses these limitations by examining recurrent
networks trained on closed-loop tasks with only partial-state feedback, thereby requiring the RNN to
develop internal representations of hidden state variables to achieve task goals.

We acknowledge several limitations. Our analysis employed simplified architectures, linear assump-
tions, and direct gradient computations to enable tractable mathematical derivations. Extending our
results to scenarios involving sparse rewards or approximate gradients, typical of broader reinforce-
ment learning settings, remains an important future direction. Furthermore, the reduced system was
accurate only within an episode, and future work could derive effective learning dynamics for these
order parameters. Finally, although our findings qualitatively extend to nonlinear RNNs, applying
this framework to fully nonlinear agents and environments warrants further investigation.

9

To conclude, our study highlights the importance of incorporating closed-loop dynamics into models
of biological learning and demonstrates the usefulness of low-dimensional effective models in
understanding RNNs’ learning dynamics. We anticipate that this analytical perspective can inform
future studies exploring more complex agent-environment interactions.

Acknowledgments

This work was partially supported by the Israel Science Foundation (1442/21) and the Human Frontier
Science Program (RGP0017/2021), both awarded to OB.

Code Availability

All code was implemented in Python using PyTorch [54] and is available on GitHub: https:
//github.com/yoavger/closed_loop_rnn_learning_dynamics

References
[1] Omri Barak. Recurrent neural networks as versatile tools of neuroscience research. Current

opinion in neurobiology, 46:1–6, 2017.

[2] Saurabh Vyas, Matthew D Golub, David Sussillo, and Krishna V Shenoy. Computation through
neural population dynamics. Annual review of neuroscience, 43(1):249–275, 2020.

[3] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep
recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and
signal processing, pages 6645–6649. Ieee, 2013.

[4] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International conference on machine learning, pages 1310–1318. Pmlr,
2013.

[5] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan
Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences. In
International Conference on Machine Learning, pages 26670–26698. PMLR, 2023.

[6] John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[7] Mikail Khona and Ila R Fiete. Attractor and integrator networks in the brain. Nature Reviews
Neuroscience, 23(12):744–766, 2022.

[8] David Sussillo and Omri Barak. Opening the black box: low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural computation, 25(3):626–649, 2013.

[9] Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent
computation by recurrent dynamics in prefrontal cortex. nature, 503(7474):78–84, 2013.

[10] Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo. Re-
verse engineering recurrent networks for sentiment classification reveals line attractor dynamics.
Advances in neural information processing systems, 32, 2019.

[11] Adrian Valente, Jonathan W Pillow, and Srdjan Ostojic. Extracting computational mechanisms
from neural data using low-rank rnns. Advances in Neural Information Processing Systems,
35:24072–24086, 2022.

[12] Elia Turner and Omri Barak. The simplicity bias in multi-task rnns: shared attractors, reuse of
dynamics, and geometric representation. Advances in Neural Information Processing Systems,
36:25495–25507, 2023.

[13] Laura N Driscoll, Krishna Shenoy, and David Sussillo. Flexible multitask computation in
recurrent networks utilizes shared dynamical motifs. Nature Neuroscience, 27(7):1349–1363,
2024.

10

https://github.com/yoavger/closed_loop_rnn_learning_dynamics
https://github.com/yoavger/closed_loop_rnn_learning_dynamics

[14] Friedrich Schuessler, Francesca Mastrogiuseppe, Srdjan Ostojic, and Omri Barak. Aligned and
oblique dynamics in recurrent neural networks. eLife, 13:RP93060, 2024.

[15] Marino Pagan, Vincent D Tang, Mikio C Aoi, Jonathan W Pillow, Valerio Mante, David Sussillo,
and Carlos D Brody. Individual variability of neural computations underlying flexible decisions.
Nature, pages 1–3, 2024.

[16] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

[17] Friedrich Schuessler, Francesca Mastrogiuseppe, Alexis Dubreuil, Srdjan Ostojic, and Omri
Barak. The interplay between randomness and structure during learning in rnns. Advances in
neural information processing systems, 33:13352–13362, 2020.

[18] Blake Bordelon, Jordan Cotler, Cengiz Pehlevan, and Jacob A Zavatone-Veth. Dynamically
learning to integrate in recurrent neural networks. arXiv preprint arXiv:2503.18754, 2025.

[19] Lukas Eisenmann, Zahra Monfared, Niclas Göring, and Daniel Durstewitz. Bifurcations and loss
jumps in rnn training. Advances in Neural Information Processing Systems, 36:70511–70547,
2023.

[20] Owen Marschall and Cristina Savin. Probing learning through the lens of changes in circuit
dynamics. bioRxiv, pages 2023–09, 2023.

[21] Alexandra Maria Proca, Clémentine Carla Juliette Dominé, Murray Shanahan, and Pedro AM
Mediano. Learning dynamics in linear recurrent neural networks. In Forty-second International
Conference on Machine Learning, 2024.

[22] Fatih Dinc, Ege Cirakman, Yiqi Jiang, Mert Yuksekgonul, Mark J Schnitzer, and Hide-
nori Tanaka. A ghost mechanism: An analytical model of abrupt learning. arXiv preprint
arXiv:2501.02378, 2025.

[23] Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

[24] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[25] Jane X Wang, Zeb Kurth-Nelson, Dharshan Kumaran, Dhruva Tirumala, Hubert Soyer, Joel Z
Leibo, Demis Hassabis, and Matthew Botvinick. Prefrontal cortex as a meta-reinforcement
learning system. Nature neuroscience, 21(6):860–868, 2018.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[27] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[28] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control
tasks through world models. Nature, pages 1–7, 2025.

[29] Benjamin Recht. A tour of reinforcement learning: The view from continuous control. Annual
Review of Control, Robotics, and Autonomous Systems, 2(1):253–279, 2019.

[30] Johannes Friedrich, Siavash Golkar, Shiva Farashahi, Alexander Genkin, Anirvan Sengupta,
and Dmitri Chklovskii. Neural optimal feedback control with local learning rules. Advances in
Neural Information Processing Systems, 34:16358–16370, 2021.

[31] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229–256, 1992.

11

[32] Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global convergence of policy
gradient methods for the linear quadratic regulator. In International conference on machine
learning, pages 1467–1476. PMLR, 2018.

[33] Anuradha M Annaswamy. Adaptive control and intersections with reinforcement learning.
Annual Review of Control, Robotics, and Autonomous Systems, 6(1):65–93, 2023.

[34] Noam Razin, Yotam Alexander, Edo Cohen-Karlik, Raja Giryes, Amir Globerson, and Nadav
Cohen. Implicit bias of policy gradient in linear quadratic control: Extrapolation to unseen
initial states. arXiv preprint arXiv:2402.07875, 2024.

[35] Hyunjune Sebastian Seung, Haim Sompolinsky, and Naftali Tishby. Statistical mechanics of
learning from examples. Physical review A, 45(8):6056, 1992.

[36] Yasaman Bahri, Jonathan Kadmon, Jeffrey Pennington, Sam S Schoenholz, Jascha Sohl-
Dickstein, and Surya Ganguli. Statistical mechanics of deep learning. Annual review of
condensed matter physics, 11(1):501–528, 2020.

[37] Eduardo D Sontag. Mathematical control theory: deterministic finite dimensional systems,
volume 6. Springer Science & Business Media, 2013.

[38] Francesca Mastrogiuseppe and Srdjan Ostojic. Linking connectivity, dynamics, and computa-
tions in low-rank recurrent neural networks. Neuron, 99(3):609–623, 2018.

[39] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[40] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[41] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[42] Chen Avraham and Firas Mawase. Feedback-feedforward dynamics shape de novo motor
learning. bioRxiv, pages 2025–04, 2025.

[43] Christopher S Yang, Noah J Cowan, and Adrian M Haith. De novo learning versus adaptation
of continuous control in a manual tracking task. elife, 10:e62578, 2021.

[44] Maria Refinetti, Alessandro Ingrosso, and Sebastian Goldt. Neural networks trained with sgd
learn distributions of increasing complexity. In International Conference on Machine Learning,
pages 28843–28863. PMLR, 2023.

[45] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In International
conference on machine learning, pages 5301–5310. PMLR, 2019.

[46] Nishil Patel, Sebastian Lee, Stefano Sarao Mannelli, Sebastian Goldt, and Andrew Saxe. Rl
perceptron: Generalization dynamics of policy learning in high dimensions. Physical Review X,
15(2):021051, 2025.

[47] Blake Bordelon, Paul Masset, Henry Kuo, and Cengiz Pehlevan. Loss dynamics of temporal
difference reinforcement learning. Advances in Neural Information Processing Systems, 36,
2024.

[48] Ann Huang, Satpreet Harcharan Singh, and Kanaka Rajan. Learning dynamics and the geometry
of neural dynamics in recurrent neural controllers. In Workshop on Interpretable Policies in
Reinforcement Learning@ RLC-2024, 2024.

[49] Edo Cohen-Karlik, Itamar Menuhin-Gruman, Raja Giryes, Nadav Cohen, and Amir Globerson.
Learning low dimensional state spaces with overparameterized recurrent neural nets. arXiv
preprint arXiv:2210.14064, 2022.

[50] Yuhan Helena Liu, Aristide Baratin, Jonathan Cornford, Stefan Mihalas, Eric Shea-Brown, and
Guillaume Lajoie. How connectivity structure shapes rich and lazy learning in neural circuits.
ArXiv, pages arXiv–2310, 2024.

12

[51] Udith Haputhanthri, Liam Storan, Yiqi Jiang, Tarun Raheja, Adam Shai, Orhun Akengin, Nina
Miolane, Mark J Schnitzer, Fatih Dinc, and Hidenori Tanaka. Understanding and controlling
the geometry of memory organization in rnns. arXiv preprint arXiv:2502.07256, 2025.

[52] Jakub Smékal, Jimmy TH Smith, Michael Kleinman, Dan Biderman, and Scott W Linder-
man. Towards a theory of learning dynamics in deep state space models. arXiv preprint
arXiv:2407.07279, 2024.

[53] Barbara Feulner, Matthew G Perich, Lee E Miller, Claudia Clopath, and Juan A Gallego. A
neural implementation model of feedback-based motor learning. Nature Communications,
16(1):1805, 2025.

[54] A Paszke. Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

[55] Brian DO Anderson and John B Moore. Optimal control: linear quadratic methods. Courier
Corporation, 2007.

[56] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. ASME,
1960.

13

Appendix overview

The appendix is organized as follows:

• Section A – Supplementary experiments: reproducing our main findings using a continuous-
time RNN; assessing the impact of regularization (non-zero β); demonstrating the sponta-
neous emergence of low-rank structure in unconstrained RNNs; replicating the open-loop
setup results from [18]; using an alternative LQR teacher; extension to a more general family
of control problems (k-integrator).

• Section B – Background on key concepts from control theory.
• Section C – Full derivation of the closed-loop matrix P and Peff, including showing their

equivalent characteristic polynomials. Effective losses for Stages 1 and 2, along with
supplemental analyses.

• Section D – Additional implementation and training details for the tracking task, along with
supplementary plots.

14

A Supplementary experiments

A.1 Continuous-time RNN

To align with canonical models in neuroscience, we replicate our main findings using a continuous-
time RNN (CTRNN), governed by:

τ ḣ = −h+ ϕ (Wh+my) , u = z⊤h

The double integrator task is likewise formulated in continuous time and discretized using Euler
integration:

A =

[
1 ∆t
0 1

]
, B =

[
0
∆t

]
We use a fixed step size ∆t = 0.1 and a time constant τ = 1. The resulting closed-loop system
matrix takes the form:

P =

[
A Bz⊤

∆tmCA (1−∆t)I +∆tW

]
As shown below, the continuous-time RNN exhibits the same stage-wise learning dynamics (Fig. 7a),
feedback gain trajectories (Fig. 7b-c), and spectral transitions (Fig. 7d-f) as in the discrete-time
case. Stage transitions are marked on the test loss (a) and aligned with the corresponding marker in
effective gain (b–c). Note that in continuous-time systems, stability requires all eigenvalues to have
negative real parts.

10
0

10
1

10
2

10
3

Epoch

10
1

10
2

10
5

L
os

s

(a) Test Loss

Closed-Loop

Open-Loop

Stage 1
Stage 2

Stage 3

0.9 0.0 0.5
k1

0.9

0.0

0.5

k
2

(b) Closed-loop - Loss & Stability

Unstable
(osc.)

Unstable
(real)Stable

Start

End

0.05 0.00
k1

0.08

0.00

0.08

(c) Zoom-In

Stage 1

Stage 2

Stage 3

0.004 0.000 0.004
Real

0.02

0.00

0.02

Im
a
g.

(d)

Stage 1

eig(P)

0.000 0.002
Real

0.016

0.020

0.024

Im
a
g.

(e)

Stage 2

eig(P)

0.2 0.0 0.1
Real

0.15

0.00

0.15

Im
a
g.

(f)

Stage 3

eig(P)

20

40

60

80

L
os

s
(l
og

)

Figure 7: Continuous-time RNNs show qualitatively similar dynamics to the discrete-time case. (a)
Test loss reveals three distinct learning stages in the closed-loop RNN; the open-loop RNN shows
a sharp loss peak. (b–c) Effective feedback gains trace distinct trajectories for each RNN in the
(k1, k2) plane. Markers denote stage transitions and align with panel (a). (d–f) Spectral evolution of
the closed-loop matrix P follows the same progression: emergence of complex eigenvalues, zig-zag
motion toward stability, and eventual stability. Note that in continuous time, stability requires all
eigenvalues to have strictly negative real parts.

15

A.2 Regularization

In classical control, penalizing control effort helps balance precision and energy use. Following [34],
we set β = 0 in the main text to isolate learning dynamics without regularization. To assess the
impact of regularization, we trained networks with increasing control penalties (β = 0.1, 1), keeping
all other parameters the same.

As shown below, higher β increases final train loss (Fig. 8a) and produces more underdamped trajecto-
ries (Fig. 8b), reflecting reduced control magnitude. Nonetheless, key features of the learning process,
including plateaus (Fig. 8a), convergence to stable feedback gains (Fig. 8c), and the emergence
of low-rank structure in the recurrent weights (Fig. 8d-f), remain intact. Thus, we conclude that
regularization shifts the final solution but does not disrupt the dynamics of closed-loop learning.

A.3 Low-rank structure

To characterize the structure of the trained recurrent weights W (initialized with g = 0.1), we plot
their eigenspectra at convergence (Fig. 8d-f). Across all β, the spectra are dominated by a single
outlier with a compressed bulk near zero, consistent with an emergent low-rank structure [17, 38].
This observation motivates the low rank assumptions used in our analytic derivations.

10
0

10
1

10
2

10
3

Epoch

10
1

10
0

10
1

10
2

L
os

s

(a)
Test Loss

β= 0

β= 0.1

β= 1

0 20 40
Time-Step

0.0

0.5

1.0

P
os

it
io

n

(b)
Trajectory

0.7 0.0
k1

0.7

0.0

k
2

(c)
Closed-loop - Loss & Stability

Unstable
(osc.)

Unstable
(real)

Stable

0.7 0.3 0.0
Real

0.4

0.0

0.4

Im
ag
.

β= 0

(d)
eig(W)

0.7 0.3 0.0
Real

0.4

0.0

0.4

Im
ag
.

β= 0.1

(e)
eig(W)

0.7 0.3 0.0
Real

0.4

0.0

0.4

Im
ag
.

β= 1

(f)
eig(W)

Figure 8: (a) Higher β increases final test loss while preserving the three-stage learning dynamics.
(b) Trajectories become more underdamped with increasing β. (c) Effective feedback gains (k1, k2)
converge to the stable region. (d-f) Eigenspectra of W show consistent low rank structure across β.

16

A.4 Open-loop dynamics

In the special case where the RNN has linear activation and is trained in an open-loop setup, the
learning task reduces to imitating a linear temporal filter defined by a teacher network. As recently
analyzed by [18], this setup admits a detailed analytical treatment. In particular, when initialized with
small weights, gradient descent drives the emergence of a pair of outlier eigenvalues in the recurrent
matrix W that escape the spectral bulk and converge toward a complex-conjugate pair

λ⋆ = 1− c⋆ ± iω⋆,

where c⋆ and ω⋆ are determined by the teacher RNN. Although our main text focuses on the less
understood closed-loop learning regime, we replicate here the core findings of [18] for completeness
(Fig. 9). Following [18], we use a continuous-time RNN (see A.1). In this case, the filter induced by
the teacher can be written explicitly as

f⋆(t) = z⊤e(−I+W)tm,

where W , m, and z denote the teacher’s recurrent matrix, input vector, and output vector, respectively.
We then train student RNNs with increasing initial connectivity strength g to imitate this response,
using Gaussian white noise as input, exactly matching the open-loop setup described in the main text.

Figure 9: (a) RNN student training loss for initial connectivity strengths g = 0.0, 0.1, 0.2. Higher g
leads to faster convergence. (b–d) Training induces a pair of complex-conjugate outlier eigenvalues
in the student RNN’s recurrent matrix W , which escape the bulk and converge to the target λ⋆ (red
dots) specified by the teacher, consistent with [18]. Gradient coloring reflects training epoch, with
darker colors indicating later times. Side and bottom panels show the real and imaginary projections
of the leading eigenvalues over training epochs. Note that the majority of the bulk are effectively
unchanged.

17

A.5 LQR teacher

The double-integrator task analyzed in the main text admits an analytically optimal Linear–Quadratic
Regulator (LQR) policy (see Appendix B). To test whether the open-loop learning dynamics depend
on the teacher, we replaced the RNN teacher used in the main text with this optimal LQR controller
and trained the student RNN while the LQR governed the environment. As shown in Fig. 10, the
resulting loss trajectory closely matches that obtained with the RNN teacher, with the open-loop
dynamics still showing a sharp loss peak midway through training.

10
0

10
1

10
2

10
3

Epoch

10
1

10
1

10
3

L
os

s
Test Loss

Closed-Loop

Open-Loop (LQR Teacher)

Figure 10: Open-loop learning with an LQR teacher reproduces the transient loss peak.

18

A.6 K-integrator task

To test the generality of our findings, we extended the double-integrator setup by introducing the
discrete-time k-integrator family, a cascade of integrators in which A,B,C take more general forms:

xt+1 = Akxt +But, yt = Cxt

Here Ak ∈ Rk×k is upper-triangular with ones on both the main diagonal and the first superdiagonal:

(Ak)ij =

{
1 i = j or i = j − 1,

0 otherwise,

the input matrix B ∈ Rk×b assigns each of the last min(k, b) state components a distinct control
input:

Bij =

{
1 i = k − j + 1, j ∈ {1, . . . ,min(k, b)},
0 otherwise,

and the observation matrix C ∈ Rc×k selects the first c state components:

Cij =

{
1 i = j, i ∈ {1, . . . , c},
0 otherwise.

This formulation generalizes the double-integrator task analyzed in the main text (k = 2, b = c =
1) to arbitrary order and dimensionality, allowing systematic variation of controllability (b) and
observability (c). As shown in Fig. 11, the qualitative gap between closed- and open-loop learning
persists across this broader class of systems. In partially observable settings (c < k), open-loop
RNNs exhibit transient loss peaks and sometimes fail to converge, whereas closed-loop RNNs show a
plateau-like trajectory before reaching convergence. Furthermore, under full-state feedback (c = k),
both training modes behave similarly.

10
0

10
1

10
2

10
3

Epoch (×5)

10
4

L
os

s

PO

k= 2 | b= 1 | c= 1

10
0

10
1

10
2

10
3

Epoch (×5)

10
2

L
os

s

FO

k= 2 | b= 2 | c= 2

Closed-loop

Open-loop

10
0

10
1

10
2

10
3

Epoch (×5)

10
9

10
18

L
os

s

PO

k= 3 | b= 1 | c= 1

10
0

10
1

10
2

10
3

Epoch (×5)

10
9

10
19

L
os

s

PO

k= 3 | b= 1 | c= 2

10
0

10
1

10
2

10
3

Epoch (×5)

10
3

10
7

L
os

s

FO

k= 3 | b= 3 | c= 3

10
0

10
1

10
2

10
3

Epoch (×5)

10
10

10
19

L
os

s

PO

k= 4 | b= 1 | c= 1

10
0

10
1

10
2

10
3

Epoch (×5)

10
7

L
os

s

PO

k= 4 | b= 2 | c= 3

10
0

10
1

10
2

10
3

Epoch (×5)

10
4

10
9

L
os

s

FO

k= 4 | b= 4 | c= 4

Figure 11: Open- vs closed-loop learning across the k-integrator family. Training loss for closed-
(blue) and open-loop (red) RNNs across varying system order (k), number of actuators (b), and
observed variables (c). Partial observability (PO, orange) yields sharp loss peaks and occasional
non-convergence in open-loop RNNs, while closed-loop RNNs exhibit plateau dynamics before
converging. Under full observability (FO, green), both regimes show nearly identical dynamics.

19

B Control theory

In classical control theory, it is standard to treat control, estimation, feedback, and system identifi-
cation as separate and sequential design problems. In contrast, in our case, the closed-loop RNN
must implicitly and simultaneously solve all of these problems during learning. For completeness,
we provide the reader with a brief overview of each component.

B.1 Linear-Quadratic Regulator (LQR)

A fundamental instance of optimal control is the Linear-Quadratic Regulator (LQR) [55], where the
system dynamics are linear and the cost function is quadratic. The problem is formulated as (for
finite horizon)

min
u0:T

T∑
t=0

(
x⊤
t Qxt + u⊤

t Rut

)
, s.t. xt+1 = Axt +But +wt

where xt ∈ Rn is the state, ut ∈ Rm is the control input, and wt is process noise. The matrices A
and B describe the system dynamics, while Q and R are positive semi-definite cost matrices. It is
well known that if A, B, Q, and R are known in advance, then the optimal control law takes the
form of a linear state feedback:

ut = −Kxt

where the gain matrix K is given by

K =
(
R+B⊤MB

)−1
B⊤MA

and M is given by analytically solving the discrete algebraic Riccati equation,

M = Q+A⊤MA−A⊤MB
(
R+B⊤MB

)−1
B⊤MA

B.2 Kalman estimation

A common extension of LQR, particularly relevant to biological learning, arises when the state xt is
not directly observable. Instead, we obtain noisy measurements,

yt = C xt + vt

where vt is measurement noise. By the separation principle, estimation and control can be designed
independently, first estimating xt and then applying the same state-feedback law described above.A
standard choice for estimation is the Kalman filter [56], which updates the state estimate x̂t as

x̂t+1 = Ax̂t +But +Lt (yt −C x̂t)

The Kalman gain Lt is chosen to minimize estimation error, with the gain and covariance update
equations:

Lt = AΣtC
⊤ (CΣt C

⊤ + V
)−1

, Σt+1 = (A−LtC)ΣtA
⊤ +W

Here, Σt quantifies uncertainty in the state estimate, V is the measurement noise covariance, and W
is the process noise covariance. The estimated x̂t replaces xt in the LQR control law, known as LQG
(Linear-Quadratic-Gaussian) control, ensuring optimality under partial observability.

B.3 System identification

The results above assume that the system matrices are known in advance, enabling optimal estimation
and control. However, in many practical settings—including our case—these matrices must be
learned from observed data. A common approach is to treat system identification and control design
as separate steps. First, the system identification problem is solved to estimate a nominal model,
specifically the matrices A and B, from data:

min
A,B

N−1∑
t=0

∥xt+1 −Axt −But∥2

Once the nominal model is obtained, it can be used to compute the optimal controller K using the
LQR formulation.

20

B.4 Closed-loop stability of the double integrator

A fundamental requirement in feedback control is ensuring closed-loop stability, as instability leads
to unbounded state growth. The system is stable if the eigenvalues of the closed-loop matrix,

Mcl = A−BK

lie within the unit disk (for discrete time systems), ensuring that xt asymptotically converges to
zero in the absence of process noise. In our task environment, the system dynamics are given by the
discrete-time double integrator:

A =

[
1 1

0 1

]
, B =

[
0

1

]
For a feedback policy of the form ut = −Kxt, where K ∈ R1×2, the closed-loop system matrix is
given by:

Mcl = A−BK =

[
1 1

0 1

]
−
[
0

1

]
[k1 k2] =

[
1 1

−k1 1− k2

]
To determine stability, we compute the eigenvalues of Mcl by solving its characteristic polynomial:

χMcl(λ) = det(λI −Mcl) = λ2 − (2− k2)λ+ (1− k2 + k1)

which are given by the quadratic formula:

λ± =
(2− k2)±

√
(k2 − 2)2 − 4(1− k2 + k1)

2

Stability of the system requires that both eigenvalues lie strictly within the unit circle, i.e., |λ±| < 1.
This condition partitions the (k1, k2) parameter space into three distinct regimes (see Fig. 12a). The
blue region corresponds to stable dynamics, where both eigenvalues are inside the unit circle. The
orange region denotes oscillatory instability, in which the eigenvalues are complex conjugates with
magnitude exceeding one. The green region corresponds to real instability, where one real eigenvalue
satisfies |λ| ≥ 1.

Figure 12: (a) Stability regions in the (k1, k2) space. The green region represents real unstable modes,
the orange region corresponds to unstable oscillatory dynamics, and the blue region indicates stable
dynamics. The red dots mark specific parameter choices for which trajectories are simulated. (b)
Example trajectories of the first component of the state (position) corresponding to the red dots in (a),
illustrating how different policies impact the closed-loop system behavior.

21

C Coupled system P

C.1 P matrix derivation

The environment dynamics are given by the linear state-space equations in Eq. 1 and Eq. 2, and the
RNN dynamics follow the update rule in Eq. 4. Assuming the RNN takes a linear activation function,
we derive below the combined update equations that define the full closed-loop dynamics matrix P ,
as introduced in the main text (Eq. 7).

xt+1 = Axt +B ut = Axt +B
(
z⊤ht

)
= Axt +B z⊤ht,

ht+1 = Wht +m yt+1 = Wht +m
(
Cxt+1

)
= Wht +mC

(
Axt +B z⊤ht

)
= mCAxt +

(
m

=0︷︸︸︷
CB z⊤ +W

)
ht

= mCAxt +Wht

Or in matrix form:

st+1 = P st, where P =


env. dynamics︷︸︸︷

A

control output︷ ︸︸ ︷
B z⊤

mCA︸ ︷︷ ︸
input feedback

W︸︷︷︸
RNN dynamics


C.2 Characteristic polynomial of P for general W

To analyze the stability of the closed-loop system, we examine the eigenvalues of P , which satisfy

det
(
P − λ I2+N

)
= 0

Because P has a distinct block structure, we can apply Schur’s determinant identity:

det

(
A B

C D

)
= det(A) det

(
D −CA−1B

)
Applying this to P − λIN+2 gives:

det
(
P − λ I2+N

)
= det

(
A− λI2 B z⊤

mCA W − λIN

)
= det

((
1− λ 1
0 1− λ

))
×

det

(
W − λ IN −


m1 m1

m2 m2

...
...

mN mN

×
(
1− λ 1
0 1− λ

)−1

×
(
0 0 · · · 0
z1 z2 · · · zN

))

The determinant of the 2× 2 block is

det

(
1− λ 1
0 1− λ

)
= (1− λ)2

With further simplification, this factorization leads to

(1− λ)2 det
(
W +

λ

(1− λ)2
mz⊤ − λ IN

)
= 0

Thus, the eigenvalues of P are given by the solutions to

(1− λ)2 = 0 or det
(
W + λ

(1−λ)2 mz⊤ − λIN

)
= 0,

yielding a self-consistent eigenvalue equation in λ, which defines the spectrum of P .

22

C.3 Rank-one connectivity

Next, we consider the case where W is low-rank, specifically rank-one, and can be expressed as an
outer product:

W = uv⊤

where u,v ∈ RN×1. In this case, the second term of the characteristic equation reduces to:

det
(
uv⊤ + λ

(1−λ)2 mz⊤ − λ IN

)
= 0

Noting that the matrix uv⊤ + λ
(1−λ)2 mz⊤ is at most rank-2, we introduce the rank-2 matrices:

U =

(| |
u m
| |

)
(N × 2), V ⊤ =

 v⊤

λ

(1− λ)2
z⊤

 (2×N)

so that:
U V ⊤ = uv⊤ +

λ

(1− λ)2
mz⊤

Applying the determinant lemma for rank-2 matrices, we have:

det(−λ IN +U V ⊤) = (−λ)n det
(
I2 −

1

λ
V ⊤ U

)
where:

I2 −
1

λ
V ⊤ U =

(
1− 1

λ σvu − 1
λ σvm

− 1
(1−λ)2 σzu 1− 1

(1−λ)2 σzm

)
Taking the determinant and setting it to zero yields the characteristic polynomial:

χP (λ) = λ3 + (−σvu − 2)λ2 + (2σvu − σzm + 1)λ+ (σvu σzm − σvu − σzu σvm)

a cubic equation as defined in the main text Eq. 9. The resulting cubic equation is fully governed
by four scalar quantities, pairwise inner products between RNN vectors, and can be viewed as a
low-dimensional representation of the full P system.

23

C.4 Low-dimensional effective system

Under the simplifying assumption that the recurrent weights are rank-1, the hidden state ht evolves
within the subspace spanned by m and u, and can be written as

ht = κ
(m)
t m+ κ

(u)
t u

Here, κ(m)
t and κ

(u)
t define effective coordinates for the hidden state, which we collect into a reduced

four-dimensional system state:

s
(eff)
t =


x
(1)
t

x
(2)
t

κ
(m)
t

κ
(u)
t

 ∈ R4

The environment evolves according to

x
(1)
t+1 = x

(1)
t + x

(2)
t , x

(2)
t+1 = x

(2)
t + σzm κ

(m)
t + σzu κ

(u)
t

and the RNN hidden state according to

ht+1 = mCAxt + uv⊤ht,

with CA = [1 1], yielding

κ
(m)
t+1 = x

(1)
t + x

(2)
t , κ

(u)
t+1 = σvm κ

(m)
t + σvu κ

(u)
t

Together, these updates define a reduced effective system

s
(eff)
t+1 = Peff s

(eff)
t , Peff =


1 1 0 0

0 1 σzm σzu

1 1 0 0

0 0 σvm σvu


The characteristic polynomial of Peff is

χPeff
(λ) = λ3 + (−σvu − 2)λ2 + (2σvu − σzm + 1)λ+

(
σvuσzm − σvu − σzuσvm

)
,

which exactly matches the characteristic polynomial of the full matrix P (Eq. 9). This confirms
spectral equivalence, in which Peff preserves the eigenvalues and thus captures the essential dynamics
of the full system.

24

C.5 Stage 1

In the absence of initial connectivity, we have W = uv⊤ = 0 (equivalent to setting g = 0), the
characteristic equation Eq. 9 reduces to:

χP (λ) = λ2 − 2λ+ (1− σzm)

With eigenvalues given by
λ = 1±

√
σzm

Note that the square root is real if σzm ≥ 0, and imaginary if σzm < 0, in which case the system
exhibits complex-conjugate eigenvalues.

System stability We found that the system has two non-trivial eigenvalues, given by λ = 1±√
σzm.

Since |1 +
√
σzm| ≥ 1, the spectral radius of ρ(P) > 1 and therefore the system is unstable. If

σzm < 0, the eigenvalues are complex with a magnitude exceeding 1, resulting in unbounded
oscillations. If σzm = 0, the eigenvalues are precisely 1, implying marginal instability. If σzm > 0,
a single eigenvalue is real and greater than 1, leading to exponential divergence. Overall, the system’s
behavior either grows exponentially or oscillates with increasing amplitude, depending on the sign of
σzm.

Loss approximation The loss used to train the RNN agent is given by

L =
1

T

T∑
t=1

∥xt − x∗∥2 =
1

T

T∑
t=1

[(
x
(1)
t

)2
+
(
x
(2)
t

)2]
We seek a closed-form expression for L in terms of σzm. As T grows large, any mode with an
eigenvalue |λ| < 1 decays to zero, and in the limit T → ∞, the influence of the initial state becomes
negligible. We consider two cases:

1. σzm > 0: The system has one dominant eigenvalue λ1 > 1, with the state evolving as
α1v1λ

t
1, where q1 is the corresponding eigenvector and α1 is the projection coefficient of

the initial state. The loss simplifies to

L ≈ α2
1∥q1∥2

T∑
t=0

λ2t
1

Recognizing this as a geometric series with ratio λ2
1 and ignoring the initial state contribution,

we obtain

L ≈ 1− λ
2(T+1)
1

1− λ2
1

2. σzm < 0: The system has complex-conjugate eigenvalues with

|λ1|2 = 1 + |σzm|

Decomposing the coefficient α1 into real and imaginary parts, α1 = a+ ib, the state evolves
as

xt = a cos(t
√

|σzm|) + b sin(t
√

|σzm|),
which expands to

x2
t = a2 cos2(t

√
|σzm|) + b2 sin2(t

√
|σzm|) + 2ab cos(t

√
|σzm|) sin(t

√
|σzm|)

Using cos2 θ + sin2 θ = 1, averaging out oscillatory terms over time, and ignoring initial
state contributions, the loss simplifies to

L ≈ 1− |λ1|2(T+1)

1− |λ1|2

25

C.6 Stage 2

In this stage, the recurrent weights W = uv⊤ evolve, and we must consider the full characteristic
cubic equation shown in the main text:

χP (λ) = λ3 + (−σvu − 2)λ2 + (2σvu − σzm + 1)λ+ (σvu σzm − σvu − σzu σvm)

L∞ approximation The characteristic equation above takes the general cubic form:

aλ3 + bλ2 + cλ+ d = 0

where the coefficients a, b, c, d are defined above. Denoting the roots as λ1, λ2 = λ1 (complex
conjugates), and λ3 ∈ R, this structure allows us to establish a direct relationship between |λ1|2 and
λ3 using Vieta’s formulas, which relate the polynomial’s roots to its coefficients. From Vieta’s first
formula, the sum of the roots is:

λ1 + λ2 + λ3 = − b

a

Since λ1 + λ2 = 2Re(λ1), it follows that:

Re(λ1) =
− b

a − λ3

2

Vieta’s second formula gives the sum of the products of root pairs:

λ1λ2 + λ1λ3 + λ2λ3 =
c

a

Using λ1λ2 = |λ1|2 and λ1 + λ2 = 2Re(λ1), we have:

|λ1|2 + 2λ3 Re(λ1) =
c

a

Substituting the expression for Re(λ1), we obtain:

|λ1|2 + 2λ3

(
− b

a − λ3

2

)
=

c

a

Simplifying gives:

|λ1|2 =
c

a
+

b

a
λ3 + λ2

3

Substituting the coefficients in terms of the order parameters reproduces Eq. 11 of the main text. This
yields a direct relationship between the magnitude of the complex eigenvalues and the real root λ3,
expressed entirely through the four scalar overlap parameters.

Perturbation approximation of λ3 We now derive a closed-form approximation for the real
eigenvalue λ3. Since we take W = uv⊤, we know that the unperturbed matrix has a single non-zero
eigenvalue σvu. To quantify how the feedback term modifies this eigenvalue, we apply first-order
perturbation theory, treating uv⊤ as the unperturbed matrix and λ

(1−λ)2mz⊤ as a perturbation.
Expanding the characteristic equation χP (λ) = 0 around λ = σvu, and using the first-order
correction formula:

λ3 ≈ λ0 −
χP (λ0)

χ′
P (λ0)

with λ0 = σvu

We obtain:

λ3 ≈ σvu +
σzu σvm

(σvu)2 − 2σvu − σzm + 1
+O(ϵ2)

This expression captures the leading-order shift in the eigenvalue due to the low-rank input–output
term, with many terms in the numerator and denominator canceling upon substitution.

26

Lt approximation To approximate the early-time contribution to the loss, we define a second
objective based on powers of the system matrix P . Specifically, we extract the upper-left 2× 2 block
of P (i.e., A block) and define:

Lt =

2∑
i,j=1

(
P t

i,j

)2
This quantity approximates the expected loss at a single early timestep under random initial conditions.
To show this, consider the evolution xt = P tx0, with target state x∗ = 0, the instantaneous loss
is quadratic in xt. Since x0 is random and consists of independent, zero-mean components with
identical variance, the expected early-time loss simplifies as cross-terms cancel out in expectation.
Specifically, after applying P t, the first component of the state satisfies:

x
(1)
t = P t

11 x
(1)
0 + P t

12 x
(2)
0

and the expected squared norm is:

E
[
(x

(1)
t)2

]
= (P t

11)
2E[(x(1)

0)2] + (P t
12)

2E[(x(2)
0)2]

where we used E[x(1)
0 x

(2)
0] = 0 by independence at t = 0. The same argument applies to the second

coordinate, yielding:
Lt ∝ (P t

11)
2 + (P t

12)
2 + (P t

21)
2 + (P t

22)
2

where the proportionality constant depends on the variance of the initial state.

For example, for t = 1,

P 1
1:2,1:2 =

(
1 1
0 1

)
⇒ L1 = 12 + 12 + 02 + 12 = 3

for t = 2 (Eq. 13),

P 2
1:2,1:2 =

(
1 2

σzm σzm + 1

)
⇒ L2 = 2σ2

zm + 2σzm + 6

and for t = 3,

P 3
1:2,1:2 =

(
σzm + 1 σzm + 3

σvmσzu + 2σzm σvmσzu + 3σzm + 1

)
⇒ L3 = (σzm + 1)2 + (σzm + 3)2 + (σvmσzu + 2σzm)2 + (σvmσzu + 3σzm + 1)2

We therefore used t = 2 in the main text (Eq. 13), as it is the lowest order that already includes the
order parameters in its expansion. Note that t = 3 can also reproduce the results of Fig. 4d, but it
requires a different tuning of the α parameters due to the distinct scaling of the loss.

27

C.7 SGD vs. Adam

The choice of optimizer influences learning dynamics in Stage 2. With SGD, the training loss
shows oscillations due to shifts in the output weights between more and less negative values.

Z

WL0 >L∞

L0 <L∞

Figure 13: Illustration of zig-zag
learning dynamics.

This reflects a trade-off between early- and late-episode control.
As illustrated on the right (Fig. 13), the differing curvature
along the output weight direction z and the recurrent weight
direction W causes updates to alternate between prioritizing
short-term performance (green region, lower right) and long-
term stability (red region, upper left), producing a characteristic
zig-zag trajectory. This trade-off is also evident empirically:
more negative output weights improve short-term performance
but cause divergence later in the episode (green in Fig. 14a),
whereas less negative weights reduce late-episode instability
at the expense of higher early error (red in Fig. 14a). The
resulting zig-zag pattern in the loss (Fig. 14b) is driven by
sharp sign changes in the projected gradient ∇z⊤m (Fig. 14d).
Furthermore, as discussed in the main text, alternating changes
in the overlap z⊤m (Fig. 14c) contribute to zig-zag motion of the dominant eigenvalues of P across
the complex plane (Fig. 14e).

0 50
Time-Step

0

200

400

P
os

it
io

n
2

(a)
Trajectory

5 10
Epoch

4.05

4.10

4.15

L
os

s

(b)
Train Loss

5 10
Epoch

0.0225

0.0200

0.0175

z
>
m

(c)
Overlap

5 10
Epoch

0.5

0.0

0.5

∇
z
>
m

(d)
Gradients z > m

0.98 1.00
Real

0.12

0.15

Im
ag
.

(e)
eig(P)

Figure 14: (a) Squared position (x(1))2 over time, showing alternating trajectories from epochs
with more (red) vs. less (green) negative output weights. (b) Zoom-in to the training loss exhibits
oscillations during Stage 2. (c) Overlap z⊤m, alternating between more and less negative values. (d)
Projected gradient ∇z⊤m, showing sign flips across epochs. (e) Dominant eigenvalues of P , shifting
across the complex plane in response.

In contrast, Adam uses running averages of gradients to stabilize updates, eliminating oscillations and
producing smooth convergence during Stage 2 (Fig. 15). Note, however, that while Adam mitigates
the loss plateaus and zig-zag patterns observed with SGD, it does not eliminate them entirely. Plateaus
may still emerge, typically shorter or requiring mild parameter tuning. In more complex tasks, we
find that such plateaus arise more readily, even when using Adam (Appendix D).

0 50
Time-Step

0

20

P
os

it
io

n
2

(a)
Trajectory

5 10
Epoch

3.6

3.8

L
os

s

(b)
Train Loss

5 10
Epoch

0.04

0.03

z
>
m

(c)
Overlap

5 10
Epoch

0.5

0.0

0.5

∇
z
>
m

(d)
Gradients z > m

0.98 1.00
Real

0.12

0.15

Im
ag
.

(e)
eig(P)

Figure 15: Adam smooths updates and eliminates oscillations, yielding stable convergence during
Stage 2.

28

C.8 Stage 3

Loss dynamics remain shaped by competing forces. Although Stage 3 operates in a stable regime,
the final drop in training loss reflects ongoing tradeoffs between early- and late-episode performance,
as in Stage 2. This is supported in two ways. First, RNNs initialized within this regime and trained
using the open-loop setup exhibit divergent (k1, k2) trajectories compared to the closed-loop path
(Fig. 16a). Second, decomposition of the total loss into early and late episode segments reveals that
improvements in one often coincide with degradation in the other (Fig. 16b). This confirms that
closed-loop learning remains uniquely structured, even after reaching the stable regime.

0.8 0.0 0.4
k1

0.8

0.0

0.4

k
2

(a)
Closed-loop - Loss & Stability

Start

End

Unstable
(osc.)

Unstable
(real)Stable

1.0 0.5 0.0 0.5
∆Lstart

0.02

0.00

0.02

∆
L

en
d

(b)
Alternating loss shifts (start vs. end)

Figure 16: (a) Numerical estimation of the effective RNN gain Keff. The blue curve shows the closed-
loop evolution during Stage 3. Colored curves depict open-loop training from different initialization
points sampled along this trajectory. Despite being initialized in the same stable region, the open-loop
paths diverge from the closed-loop trajectory, highlighting their distinct learning dynamics. (b)
Decomposition of the loss into early and late episode segments. Each point compares the change in
early loss ∆Lstart and late loss ∆Lend between consecutive epochs. The negative correlation indicates
an alternating pattern: improvements in one segment typically coincide with degradation in the other.

29

C.9 Eigenvector–based recovery of (k1, k2)

Under the rank-1 assumption, the full closed-loop matrix P ∈ R(2+N)×(2+N) reduces exactly to the
4 × 4 effective matrix Peff (see C.4). During Stages 1–2, the spectrum of Peff is dominated by a
complex-conjugate pair λ1, λ̄1. We denote the corresponding eigenvector by q1 ∈ C4, and separate it
into real and imaginary parts:

qR = Re(q1), qI = Im(q1)

These vectors are linearly independent and span the slow invariant subspace. Each eigenvector can be
decomposed into an environment projection and a hidden projection by,

qR = [x
(1)
R , x

(2)
R , κ

(m)
R , κ

(u)
R]⊤, qI = [x

(1)
I , x

(2)
I , κ

(m)
I , κ

(u)
I]⊤

where the first two entries represent the environment projection (position and velocity), and the last
two correspond to the projection of the RNN hidden state onto m and u. From the second row (i.e.,
velocity update) of the eigenvalue equation Peffq∗ = λ1q∗, we obtain:

(λ1 − 1)x
(2)
R = k1x

(1)
R + k2x

(2)
R , (λ1 − 1)x

(2)
I = k1x

(1)
I + k2x

(2)
I

This defines a linear system for the feedback gains denoted as Kexact. Let

Q =

[
x
(1)
R x

(1)
I

x
(2)
R x

(2)
I

]
, u = (λ1 − 1)

[
x
(2)
R

x
(2)
I

]
,

so that
Q⊤Kexact = u ⇒ Kexact = Q−⊤u.

Comparison between the analytic Kexact recovery and the numerical estimates of Keff (main text
Eq. 6) shows excellent agreement during Stage 2, with deviations emerging in Stage 3 (see Fig. 17).
Note that the analytic recovery relies on the eigenvectors of Peff, which do admit a closed-form
expression, though it is lengthy and not written in compact form.

0 200 400
Epoch

0.6

0.4

0.2

0.0
Stage-2 Stage-3

k1
k2

Analytic

Figure 17: Numerical estimates of the
effective feedback gains Keff during train-
ing (solid lines) compared with eigenvector-
based recovery Kexact (dashed black). Agree-
ment is exact during Stage 2, and begins to
diverge in Stage 3 with the emergence of a
third slow mode. The red vertical dashed line
denotes the transition from Stage 2 to 3.

When is eigenvector-based recovery exact? The map-
ping P 7→ (k1, k2) is exact when the closed-loop dynam-
ics are effectively two-dimensional. This condition is met
throughout Stages 1–2, and most clearly during Stage 2,
where the dynamics enter an oscillatory phase dominated
by a conjugate pair. We further know that in this phase,
the third eigenvalue can be approximated by λ3 ≈ σvu

and remains small with |λ3| ≪ |λ1|.

Stage 3: correlated third mode As training progresses
into Stage 3, a third eigenvalue λ3 moves toward the unit
circle and is no longer negligible, breaking the earlier ap-
proximation. However, empirically, we found that this
mode remains strongly correlated with the dominant con-
jugate pair, and the three directions continue to span a
nearly rank-2 subspace. In this setting, projecting onto
(k1, k2) is no longer exact but remains a good approxima-
tion due to persistent alignment among the leading modes.
Therefore, the effective gains Keff can still be estimated
numerically (see main text).

Higher-order regimes If three or more slow modes
emerge without strong correlation—e.g., a genuine rank-3
structure—no fixed pair (k1, k2) can capture the closed-
loop behavior. The controller then implements a higher-order policy, and projecting onto ut =

−k1x
(1)
t − k2x

(2)
t discards essential structure.

To conclude, exact recovery holds when the dominant conjugate pair is isolated by a spectral gap (i.e.,
|λ3| ≪ |λ1|). In Stage 3, approximate recovery remains valid due to residual alignment. Beyond this
regime, capturing the full closed-loop dynamics requires additional controller states or alternative
representations.

30

D Tracking task

We train RNNs to track two-dimensional target trajectories composed of the sum of two sinusoids
along each axis. Below, we describe the dynamics of the target position (reference signal r), cursor
position x, and RNN controller h. Following [42, 43], the reference signals were generated as:

rx(t) = a1 cos(ω1t+ ϕ1) + a2 cos(ω3t+ ϕ3), ry(t) = a1 cos(ω2t+ ϕ2) + a2 cos(ω4t+ ϕ4)

where amplitudes a1 = a2 = 2.31, the phases ϕi were sampled uniformly from [−π, π] at each
episode, and the angular frequencies were

ω1 = 2π × 0.10, ω2 = 2π × 0.20, ω3 = 2π × 0.30, ω4 = 2π × 0.40

corresponding to increasing frequencies along each axis. The trajectories had a total duration of 30
seconds, sampled at 10 Hz (nsamples = 300), and a linear ramp was applied to the amplitude over the
first second.

Each trajectory obeyed a linear state-space model

ṙ(t) = Rr(t), R =



0 1 0 0 0 0 0 0
−ω2

1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −ω2

3 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −ω2

2 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −ω2

4 0


with output

yr(t) = CRr(t), CR =

[
1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0

]
discretized with time step ∆t = 0.1 seconds as Rd = exp(R∆t).

Agent and environment The agent was modeled by a continuous-time RNN (see A.1) with
N = 100 hidden units and linear activation, discretized using Euler’s method with step size ∆t = 0.1.
The RNN had input weight matrix M ∈ RN×4, recurrent weight matrix W ∈ RN×N , and output
weight matrix Z ∈ RN×2. The environment was a two-dimensional plant. Each axis (x, ẋ) and
(y, ẏ) followed independent continuous-time dynamics and was simulated using Euler’s method:

xt+1 = Axt +But, A =

[
1 ∆t
0 1

]
, B =

[
0
∆t

]
,

where xt = (x, ẋ, y, ẏ)⊤ is the full plant state and ut ∈ R2 are the accelerations commanded by the
agent. Here, x and y denote the horizontal and vertical positions of a cursor, while ẋ and ẏ represent
its velocities and the agent is tasked with matching the cursor to the time-varying target (rx(t), ry(t)).
The observation matrix C ∈ R2×4 projects the full plant state onto observed positions:

C =

[
1 0 0 0
0 0 1 0

]
At each time step, the RNN received a 4-dimensional input vector consisting of the observed cursor
position and the current target position

(
x(t), y(t), rx(t), ry(t)

)⊤
, and output a 2-dimensional control

vector ut = (ux, uy) corresponding to the commanded accelerations along each axis.

Closed-loop dynamics The full closed-loop system, combining the reference generator, the plant,
and the RNN controller, was captured by the block transition matrix:

P =


Rd 0 0

0 A⊕A (B ⊕B)Z⊤

∆tM⊤CR ∆tM⊤C(A⊕A) (1−∆t) I +∆tW⊤


where ⊕ denotes the block-diagonal sum over the two axes and C maps plant states to observed
positions.

31

Training We trained the RNN controller under two regimes: closed-loop and open-loop. In both
cases, training used the Adam optimizer [41] (learning rate 10−3, batch size 100), minimizing a
time-averaged loss over T = 30 seconds.

Closed-loop In this regime, the RNN interacted with the environment and was trained to minimize
the squared position tracking error:

Lclosed =
1

T

T∑
t=1

∥x(t)− rx(t)∥2 + ∥y(t)− ry(t))∥2

Target trajectories were generated as described above, with random phases ϕi ∼ U(−π, π) resampled
each episode. At each timestep, the RNN received the observed cursor position and the current target
(x, y, rx(t), ry(t)), produced a control vector, and influenced the system. The hidden state was reset
between episodes. Plant states were clamped to [−10, 10] to prevent divergence. Fixing the input
weights M did not affect convergence in this setup.

Open-loop Here, a randomly initialized student RNN was trained to match the outputs of a
pre-trained teacher (from the final closed-loop epoch). Both networks received the same input
(x(t), y(t), rx(t), ry(t)), where (x(t), y(t)) evolved under teacher control. The student was optimized
to minimize the squared difference in outputs:

Lopen =
1

T

T∑
t=1

∥ûstudent(t)− uteacher(t)∥2

This setup only converged when the teacher drove the plant. Using Gaussian white noise in place of
state inputs led to unstable or ineffective student policies. In contrast to the closed-loop case, learning
the input weights M was essential for the student to match the teacher.

Loss crossover To highlight the trade-off between maintaining control over a previously learned
frequency and acquiring a new one, which requires changes in W , we tested the RNN from a
checkpoint taken during the first loss plateau (marked by (e) in Fig. 6b) on individual frequencies. As
shown in Fig. 6e, this reveals a crossover where performance on ω1 temporarily declines as ω2 is
acquired.

Human data To compute the green Data curve in Fig. 6f, we extracted summary data from [42],
which reported distinct participants’ learning rates across frequencies (lower frequencies acquired
more rapidly than higher ones). For the first four frequencies (ω1–ω4), we identified the first time
block at which the mean orthogonal gain (averaged across participants) exceeded 0.3, and normalized
this value by the total duration (20 blocks). Orthogonal gain quantifies the component of motor output
aligned with the target direction after mirror reversal.

32

10
0

10
1

10
2

10
3

10
4

Epoch

10
1

10
0

10
1

10
2

L
o
ss

(a) Closed-Loop

ω1

ω2

ω3

ω4

10
0

10
1

10
2

10
3

10
4

Epoch

(b) Open-Loop

Figure 18: Frequency-specific loss decomposition during training on the multi-frequency tracking
task. (a) Closed-loop training exhibits stage-like convergence: loss decreases sequentially for each
frequency component (ω1–ω4), reflecting their progressive acquisition. (b) In contrast, open-loop
training, loss initially rises, then decreases across all frequencies more uniformly, reflecting less
structured acquisition.

10
2

10
1

10
0

L
os

s

Train Loss

2.5 0.0 2.5
2.5

0.0

2.5

Im
ag

eig(W)

0 202.5

0.0

2.5

x

ω1

0 202.5

0.0

2.5
y

ω2

0 202.5

0.0

2.5

x

ω3

0 202.5

0.0

2.5

y

ω4

10
2

10
1

10
0

L
os

s

2.5 0.0 2.5
2.5

0.0

2.5

Im
ag

0 20
2.5

0.0

2.5

x

0 20
2.5

0.0

2.5

y

0 202.5

0.0

2.5
x

0 202.5

0.0

2.5

y

10
2

10
1

10
0

L
os

s

2.5 0.0 2.5
2.5

0.0

2.5

Im
ag

0 20
2.5

0.0

2.5

x

0 202.5

0.0

2.5

y

0 20
2.5

0.0

2.5

x

0 202.5

0.0

2.5

y

10
2

Epoch

10
1

10
0

L
os

s

2.5 0.0 2.5
Real

2.5

0.0

2.5

Im
ag

0 20
Time

2.5

0.0

2.5

x

0 20
Time

2.5

0.0

2.5

y

0 20
Time

2.5

0.0

2.5

x

0 20
Time

2.5

0.0

2.5

y

Figure 19: Supplement to Fig. 6, illustrating frequency-specific RNN learning in the tracking task.
Each row shows (left to right): closed-loop RNN training loss, eigenvalue spectrum of the recurrent
weights W , and RNN outputs for isolated frequency components ω1–ω4, evaluated at key epochs
during closed-loop training (indicated by vertical colored lines the first column). Colored vertical
lines match the markers in Fig. 6b.

33

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claim is that closed-loop learning differs substantially from open-
loop learning. This is supported first empirically and further by our theoretical framework.
The distinction also generalizes to a more human-inspired task.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are explicitly addressed in the Discussion section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

34

Answer: [Yes]
Justification: We highlight key theoretical assumptions in the main text and provide com-
plete and thorough mathematical derivations of our closed-loop learning framework in
Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Most implementation details, including task specifications, RNN parameters,
and hyperparameters, are provided in the main text. The appendix contains all remaining
information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

35

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: The main contribution is theoretical, with full mathematical derivations pro-
vided. We provide a detailed description of the simulations that enable reproduction; the
code will be released upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details are either provided in the main text or the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: This is a theory-focused paper; all simulations are included to illustrate and
validate precise mathematical predictions derived from our framework. We do not run
benchmarks or make claims about statistically significant differences between methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All simulations are lightweight and can be run on an off-the-shelf laptop. No
specialized hardware or extensive computational resources are required.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All authors have reviewed the NeurIPS Code of Ethics and confirm that the
work complies with its principles.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical study that does not involve the development or deployment
of new technology. As such, we do not anticipate direct societal impacts, either positive or
negative.

37

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This is a theoretical study and does not involve the release of data or models
with potential for misuse. Therefore, safeguards are not applicable in this context.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Prior work is appropriately cited where relevant.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

38

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This is a theory-focused paper. No new assets are introduced. Code for
the illustrative simulations will be released upon acceptance, but it is not the primary
contribution.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This is a theory-focused paper. No human subjects were involved, and no data
were collected.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This is a theory-focused paper. No human subjects were involved, and no data
were collected.
Guidelines:

39

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for writing and editing purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

40

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Closed-loop and open-loop RNNs exhibit different learning dynamics
	Analytic results of closed-loop learning dynamics
	Coupled closed-loop system derivation
	Three stages of learning: control, representation, and refinement

	Generalization to multi-frequency tracking tasks
	Discussion
	Supplementary experiments
	Continuous-time RNN
	Regularization
	Low-rank structure
	Open-loop dynamics
	LQR teacher
	K-integrator task

	Control theory
	Linear-Quadratic Regulator (LQR)
	Kalman estimation
	System identification
	Closed-loop stability of the double integrator

	Coupled system P
	P matrix derivation
	Characteristic polynomial of P for general W
	Rank-one connectivity
	Low-dimensional effective system
	Stage 1
	Stage 2
	SGD vs. Adam
	Stage 3
	Eigenvector–based recovery of (k1,k2)

	Tracking task

