
LARGE LANGUAGE MODELS IN SECURITY CODE REVIEW AND TESTING

EDIN BELJULJI

Zurich University of Applied Sciences (ZHAW)
Winterthur, Switzerland

beljuedi@students.zhaw.ch

GÜRKAN GÜR

Zurich University of Applied Sciences (ZHAW)
Winterthur, Switzerland

gueu@zhaw.ch

Abstract
In this paper, we systematically present and discuss practical
applications of Large Language Models (LLMs) in software
security, concretely in code vulnerability detection, fuzz test-
ing, and exploit generation. Measurements of various research
outcomes are analyzed to answer questions about the perfor-
mance of LLMs in those fields, including a comparison with
tools that follow traditional approaches. In addition, the draw-
backs and a future outlook, along with a delineation of techni-
cal challenges, are provided. Challenges include the cost- and
time-intensive training of LLMs, the limited context-length
understanding of program code, the high false positive rate
due to hallucinations, and keeping the data up-to-date so that
definitions of newly detected vulnerabilities are covered.

1 Introduction

Secure software development is a crucial topic, as vulnerabil-
ities can compromise applications and services, which have
become the foundational pillars of our daily lives. Moreover,
many critical services are based on software-intensive infras-
tructure where confidentiality, integrity, and availability, i.e.,
CIA triad, are key requirements. Therefore, software security
is a pervasive concern that can lead to incidents and breaches
when implemented improperly.

Software development goes through different phases until
the finished product is established. Additionally, each phase
has distinct security aspects that must be taken into consider-
ation. Various methodologies provide a structured approach
to secure software development. For instance, the SecDe-
vOps lifecycle provides an overview of security topics that
should be checked during software development and opera-
tion [13]. Similarly, the Secure Software Development Lifecy-
cle (SSDLC) also targets security but with a focus on software
development [14]. Ultimately, all these methodologies and
frameworks share several common traits: efficient and diligent
vulnerability detection and testing are crucial.

Since the emergence of LLMs, they have garnered signifi-
cant attention from developers for their potential to achieve
secure software. The focus of interest for LLMs stems from its
architecture, which was first introduced in 2017 by Vaswani
et al. [49], in the current form. The architecture, comprising
an encoder and decoder, employs a so-called attention mecha-
nism, allowing the LLM to focus on relevant input sequences.

For training, enormous datasets are used, encompassing a
wide range of topics. The aim is to create foundation models,
which can be used in various ways [3]. For example, LLMs
are already used on different topics, ranging from medicine
to education, and also in software engineering [25], whereas
software security represents a new research field.

In this paper, we provide a systematized description of
LLM’s role in software security, namely for security code
review and testing. We present a high-level introduction to
LLMs, including a technical description, a definition of the
terminologies used, and LLM training methods (Section 3).
The focus relies on secure implementation and security test-
ing of software. Firstly, we elaborate on automated static code
vulnerability detection in Section 4. It serves as an ideal entry
point for a first security check before merging the code into
the codebase in software development. Another technique
for finding vulnerabilities is fuzz testing (Section 5). Here,
we focus on the creation and mutation of fuzzer input while
also including the generation of the fuzz driver as a second
subtopic. In Section 6, we also want to show how these de-
tected vulnerabilities can be converted to exploits by using an
LLM as an automated exploit generator. Lastly, we discuss
our findings in relation to our research questions, outline the
challenges of implementing LLM approaches in this domain,
and provide an outlook on potential future developments (Sec-
tion 7).

Research questions - We build our systemization of knowl-
edge for our scope around the following research questions
in this work:

1 What are practical use cases for LLMs in security
code review and testing, and how do they perform against
traditional tools?

2 What is the impact of LLM itself (i.e., core aspects
such as recency, parameter count, and prompting tech-
niques) on the performance of proposed solutions?

3 What are the current approaches for improving the
performance of LLM-based solutions in our use cases?

4 What are the current challenges, and what are the
prospects for LLMs in security code review and testing?

https://orcid.org/0009-0004-6419-0904
https://orcid.org/0000-0002-3105-4904


Journal of Systems Research (JSys) 2025

Author Description LLM Techniques

To
pi

c

B
E

R
T

D
av

in
ci

L
la

m
a

O
pe

nA
I

O
th

er

Tu
ni

ng

Pr
om

pt

To
ol

D
at

as
et

C Cheshkov et
al. [10] in 2023

Cheshkov et al. created a performance comparison using GPT models from
OpenAI in code vulnerability detection by categorising the vulnerability
with a binary and multi-label classification approach.

x x x x

C,
E

Fu et al. [20] in
2023

Here, the whole lifecycle was considered. This includes tasks like vulnera-
bility detection and its classification, a risk assessment, and a proposal on
how to mitigate the security risk.

x x x x x

C Guo et al. [24]
in 2024

Different LLMs with varying training backgrounds were chosen to conduct
a comparison in a binary classification task. Six LLMs are especially trained
for vulnerability detection, while the other six LLMs were only fine-tuned
or taken as is without special training.

x x x x x x x

C Purba et al. [41]
in 2023

They compared different LLMs and traditional tools by using two different
datasets to see whether the vulnerability is detected or not.

x x x x x x

C Tamberg and
Bahsi [45] in
2025

Tamberg and Bahsi analyzed the use of LLMs in code vulnerability detection
by testing different prompt strategies and comparing the results with the
performance of traditional tools.

x x x x

C Yin et al. [54] in
2024

Yin et al. not only considered the vulnerability task but also researched how
capable LLMs are in detection, risk assessment, location, and reporting of
vulnerabilities.

x x x x x x

C Yu et al. [55] in
2024

Yu et al. applied five different prompts and evaluated which of them led to
the best performance, also in comparison to traditional tools.

x x x x x

F Black et al. [8]
in 2024

They analyzed the effectiveness of LLM in seed generation in combination
with the existing fuzzer Atheris, especially for the programming language
Python.

x x x x

F Tamminga [46]
in 2023

Tamminga focused on an approach for using an LLM as a seed generator in
combination with traditional fuzzers, such as AFL++ and libFuzzer. While
focusing on the programming language Go, a priority was placed on inter-
operability between different programming languages.

x x x x x x

F Xia et al. [52] in
2024

Xia et al. demonstrate a practical implementation of a mutation-based fuzzer,
known as Fuzz4All.

x x x x

F Zhang et al. [59]
in 2024

They created a tool, called LLAMAFUZZ, which can be used to enhance
greybox fuzzing.

x x x x x

F Zhang et al. [58]
in 2024

Zhang et al. demonstrate how an LLM can be used in fuzz driver creation. x x x x x

E Fang et al. [18]
in 2024

The focus is on exploit generation for one-day vulnerabilities using LLMs. x x x x x

E Zhang et al. [60]
in 2023

The topic is about generating exploits using an LLM. It focuses on the use
case of dependency vulnerability alerts and the reduction of false positives.
The result is then compared with traditional tools.

x x x

E Zhou et al. [61]
in 2024

Zhou et al. present a tool called Magneto, which uses fuzzing techniques to
exploit unpatched vulnerabilities from third-party dependencies.

x x x x

O Jiang et al. [29]
in 2024

Here, the challenges as well as recommendations are considered. They focus
on research done in LLM-based fuzzing.

- - - - - - - - -

O Kaddour et
al. [30] in 2023

Kaddour et al. give a general overview of the current challenges encountered
when applying LLMs in practical fields.

- - - - - - - - -

Table 1: Overview of the related work (- : Not applicable).

2



Journal of Systems Research (JSys) 2025

2 Methodology

In this paper, we focus on technical works that utilise LLMs
in software security. We defined a process to search for and
select suitable research papers, outlining the criteria using
the proposal by van Wee and Banister [48] as inspiration for
our methodology. Our focus topics are “code vulnerability
detection (C)”, “fuzz testing (F)” and “exploit generation (E)”.
To ensure readability, we will use the abbreviations defined
in the brackets.

In the first step, we defined search keywords to use within
the databases. A complete list of the used keywords can be
found in Table 2, which depicts the topic and the correspond-
ing search terms. The search terms are primarily structured
based on the topic, including the keyword “LLM”.

Topic Search String

C ChatGPT for Code Vulnerability Detection

C LLM for Code Vulnerability Detection

C LLM for Software Vulnerability Detection

C LLM for Security Code Review

F LLM in Fuzz Testing

F LLM in Fuzz Driver Generation

F LLM for Seed Generation in Fuzzing

E Exploit Generation with LLM in Software Develop-
ment

Table 2: Search terms.

Secondly, we applied those keywords to academic publish-
ing venues and meta-search engines to find relevant papers.
Concretely, we used the following databases:

• ACM [1]
• arXiv [5]
• Elsevier [17]
• Google Scholar [22]
• IEEE [28]
• Springer [43]
• Wiley [51]
Lastly, we applied our selection process, presented in Fig-

ure 1. We began by conducting a short metadata review of
each paper. We also looked at the reputation and citation
score. However, since the systematized knowledge and rel-
evant works in this domain all revolve around fast-moving
research, these scores did not strictly determine the selection,
but rather provided crucial guidance. This was particularly
true when we could not find works with a similar scope. After-
wards, we checked important text passages like the abstract,
discussion, and conclusion for a first assessment of the topic

coverage. In this step, we ensured that the paper’s content
aligned with our research questions and that the LLM was a
primary component. The next step was skimming over the
paper. Since we were interested in practical examples, we ex-
cluded papers with only theoretical coverage. Additionally, we
wanted to ensure that the papers contained valuable insights
for us, particularly by covering benchmarks and comparisons
with traditional tools. In a detailed examination, we focused
on the LLM techniques employed and excluded duplicates
or papers covering similar topics that provided no additional
insights. Lastly, we performed snowballing by analysing the
references used by the papers to identify potential new candi-
date papers.

Figure 1: Paper selection process (adapted from [48]).

In addition, survey papers were examined to gain an
overview of current works and the technical domain. The
listed papers were also manually post-filtered to avoid dupli-
cation, misselection, and quality issues. At the end, 17 papers
were selected. Please note that our work is not an exhaustive
literature survey paper but a Systemisation of Knowledge
(SoK) paper presenting a concise and structured analysis of a
focused scope. Ultimately, the scope includes LLMs for code
vulnerability detection and testing, including fuzzing and ex-
ploit generation. A practical challenge remains in comparing

3



Journal of Systems Research (JSys) 2025

the selected papers as a single group. The foundation of the
relevant research outcomes differs fundamentally. Often, dif-
ferent LLMs, testing datasets, techniques, and approaches are
used, making a direct comparison between those selected pa-
pers difficult. However, we are interested in their outcomes
and key findings. Having a broader view of the performance
results of different papers makes it possible to draw conclu-
sions about the current state-of-the-art and remaining chal-
lenges. We thus cannot provide a direct comparison between
the papers, but we can provide a high-level comparison by
analysing the outcomes of the individual papers together.

In Table 1, an outline of those surveyed papers is given. We
categorised them into the three aforementioned categories and
the additional topic “challenges and future outlook (O)". The
final category was facilitated to provide a discussion on poten-
tial future technical research and development directions. The
table consists of metadata information like author, year, and a
short description. Further, an overview is provided about the
used LLMs in those works as well as the applied techniques,
as listed below:

• Tuning: The paper includes fine-tuning mechanisms.
• Prompt: The paper applies prompt engineering tech-

niques.
• Tool: The paper introduces a tool for a specific task with

an advanced architecture, in which the LLM plays a
significant role.

• Dataset: The paper creates or introduces a dataset that
can be used for training or testing.

The research in this field is progressing rapidly. Each new
version of an LLM can bring improvements in performance.
This makes it particularly challenging to provide long-term
value within this paper, since the current measurements are
already outdated with the next iteration. However, we think
that the currently used techniques and application areas will
continue to exist in the same or a similar form. In other words,
the identified research vectors will also be valuable in the
future. Therefore, well-functioning concepts should continue
to be used in the future to obtain better results from LLMs.
Moreover, circumventing the technical limitations will re-
main valid for some time. In light of these points, we believe
that this paper will provide long-term value for the research
community as well as practitioners in the industry.

3 Large Language Models (LLMs)

The task of a language model is to predict and generate
language. To do that, the likelihood of the next upcoming
word needs to be calculated [2]. To illustrate, if we con-
sider the sentence “I need an umbrella because it is ...” the
next best-guessed word could be “raining”. There are dif-
ferent approaches and concepts for constructing a language
model [2]. Initially, statistical language models were em-
ployed, which are based on calculations performed on text-
containing datasets. One implementation is the n-gram lan-

guage model, which predicts the next word based on the pre-
vious n-1 words [2, 3]. Following the introduction and rise
in popularity of neural networks, the underlying technology
in language models underwent significant changes. With a
neural network, one could improve its parameters to get op-
timised outputs by applying training methods using training
datasets [2, 3].

A step forward was achieved with the transformer archi-
tecture, which was introduced in 2017 by Vaswani et al. [49].
This architecture, based on a deep neural network, enables
the creation of LLMs [2]. The name affix “large” comes
from the count of parameters or the size of the used train-
ing dataset [23]. For example, Llama 2 has 70 billion pa-
rameters and used 10 TB of text for training, according to
Karpathy [33]. The architecture builds on a so-called atten-
tion mechanism, which uses weights to distinguish the vital
parts from the input [2]. It consists of an encoder and decoder,
but some approaches use only one of the two parts [3]. The
encoder processes the input and tries to understand it by de-
picting it in a suitable format. The decoder, on the other hand,
is responsible for generating the result by taking the encoder’s
output as input [3].

In Figure 2, the LLM architecture, as well as the training
steps before it can be used by a user, are visualised. The initial
training of an LLM is referred to as pre-training, and it is both
cost- and time-intensive [33]. The reason lies in the training
process itself, which requires the gathering of a large amount
of information and the calculation of numerous parameters.
For example, Llama 4 Maverick [37] has a total of 400 billion
parameters, while DeepSeek-V3 [15] has a total of 671 billion
parameters. For this reason, pre-trained, foundation LLMs are
used as a base and, if needed, adjusted via fine-tuning [3].

The fine-tuning process begins with the gathering of la-
belled datasets. This training data typically contains examples
similar to the data used for the classification task in production.
In the next step, the labelled training data is used to fine-tune
the model. As a result, an adjusted model is obtained. Fine-
tuning is an iterative process. As soon as the productive model
is rolled out, logs should be gathered to correct anomalies by
applying the described process again [33].

Another adjustment technique is prompt engineering. It
focuses on the input, which gets passed to the LLM. Vari-
ous patterns can be used so that the LLM generates output
within the boundaries given by the patterns. Sahoo et al. [42]
created a survey, describing common prompt patterns. Creat-
ing prompts without further refinements is called zero-shot
prompting. In few-shot prompting, examples are included,
intending to give the LLM a clearer instruction. A different
approach is the so-called chain-of-thought prompting. Here,
the LLM is guided on how to calculate the result, such that it
shows its calculation steps. Moreover, many other abbrevia-
tions exist using similar ideas [42].

4



Journal of Systems Research (JSys) 2025

Figure 2: Architecture of LLMs and training methods (adapted from [3, 49]).

4 Automated static code vulnerability detec-
tion

Code review is a technique used in software development,
where the code gets reviewed by a second person before it is
merged into the productive codebase [6]. There are different
reasons to conduct code reviews, some of which are shown in
the study of Bacchelli and Bird [6]. In their survey, they show
that the motivation for doing code reviews is to increase the
overall code quality level of the codebase, find and eliminate
bugs to reduce the error ratio, and for know-how transfer. In
this section, we will focus on security code review, which is
a subcategory of error finding by aiming to detect and find
security flaws in software [16].

Although code reviews offer benefits, they are not always
conducted due to various factors. Codegrip [12] and Ghanbari
et al. [21] have addressed the question of why code reviews
are neglected. Both came up with similar reasons. One reason
was the increased workload and time costs for carrying out a
code review. A company might tend to overlook code reviews
in order to achieve certain goals and increase productivity.
Another reason mentioned by both was motivation. The soft-
ware development team may be disinterested in applying code
reviews because of a lack of interest — not understanding
the benefits, or having a false sense of risk [12, 21]. An addi-
tional reason given by Ghanbari et al. [21] was the technical

complexity of the project environment, leading sometimes to
negligence in applying code quality improvements. Bacchelli
and Bird [6] supplement the list by adding the understanding
of code changes to the challenges. In their interviews with
software developers, they found that the major challenge lies
in understanding why the code change was made and what
influence the change has on the software’s functionality.

Another aspect is the way code reviews are conducted.
There are two types: manual and automatic code reviews [12,
16]. Although most companies do manual code reviews [12],
this is considered liable to errors, which is shown by the study
of Edmundson et al. [16]. They measured the effectiveness of
code vulnerability detection in manual security code reviews
by interviewing software developers. On average, a software
developer could find about a third of the known vulnerabilities.
While this speaks in favour of using automated tools, only
27% of the surveyed companies in [12] are regularly using an
automated code review tool. The reason lies in the missing
know-how against such tools [12].

Because of those hindrances, new approaches are inves-
tigated to automate this process by using general-purpose
LLMs. The benefit stems from the transformer architecture,
which is trained on general data and therefore makes the LLM
suitable for different tasks, with one of them being vulner-
ability detection in software [41]. There are two different
types of automated tools. The static approach (Static Applica-

5



Journal of Systems Research (JSys) 2025

Figure 3: Interaction with ChatGPT giving the task to detect
code vulnerabilities (adapted from [38, 39, 41]).

tion Security Testing, SAST in short) is applied to the source
code, while the dynamic approach (Dynamic Application Se-
curity Testing, DAST in short) is applied to the compiled and
running application [11]. In this section, we will focus on
techniques for static code vulnerability detection.

In Figure 3, an example is shown by using ChatGPT-4 [38]
and a code example from OWASP [39]. The code example
contains a buffer overflow vulnerability. In such a case, the ap-
plication’s memory is overwritten by exceeding the assigned
memory, thereby causing unpredictable behaviour in the appli-
cation [39]. The faulty line is the call to the method gets(),
which is considered unsafe in C since it does not check the
size of the buffer.

The task of the LLM is to notice the vulnerable code snip-
pet. Including the code with a corresponding question to the
prompt (similar to the research from Purba et al. [41]) leads
to ChatGPT [38] detecting the vulnerability, pointing to the
vulnerable code line, and explaining why the code is viewed
as unsafe.

4.1 Adapting LLMs for code vulnerability de-
tection

In the research by Purba et al. [41], they compared different
LLMs and applied vulnerable code to measure how effective
LLMs are in noticing code vulnerabilities. Furthermore, they
compared base models and fine-tuned models. The latter were
trained with labeled data containing examples of both vulner-
able and secure code. As for the testing dataset, they used
code examples containing buffer overflow and SQL injection
vulnerabilities [41].

Similar to Purba et al. [41], Guo et al. [24] tested the capa-
bility of LLMs in the binary classification task with a similar
prompt. In contrast, they compared the performance of differ-
ently trained LLMs. They included general-purpose LLMs,
self-fine-tuned LLMs, and open-source LLMs that were al-
ready trained for code vulnerability detection tasks [24].

Cheshkov et al. [10] also evaluated how well GPT models
perform in vulnerability detection. Like the previous two ap-

proaches [24, 41], they performed a binary classification but
also added a performance measurement for a multi-label clas-
sifier. The multi-label classification was done by providing
five different CWE vulnerability types and designing a prompt
asking the GPT model if one of those five vulnerabilities is
included in the provided code snippet [10].

Another technique that can influence the results of an LLM
is prompt engineering. Thus, Yu et al. [55] designed five
prompts and tested their effectiveness. They included an in-
struction and modified the prompt by adding or removing
additional information, like project information or CWE de-
scriptions, and using techniques like chain of thought. Tam-
berg and Bahsi [45] also followed the approach of testing
different prompt engineering approaches by applying 23 dif-
ferent prompts inspired by related work.

Yin et al. [54] not only discussed whether LLMs can de-
tect vulnerabilities, but they also investigated whether LLMs
are capable of finding the specific affected code location, dis-
closing why it is seen as a vulnerability, and estimating the
risk coming from the discovered vulnerabilities. They tested
the performance of different base and fine-tuned LLMs by
using public datasets. As for prompt engineering, a few-shot
approach was chosen. The prompt contains a task description
similar to the ones already seen, the code under test, and an
indicator defining one of the four mentioned tasks [54].

Fu et al. [20] further extended this approach and included
the whole lifecycle in their research. They measured the ca-
pability of GPT models to detect vulnerabilities, but also
to classify them. Moreover, the GPT models were tasked
with evaluating the severity of the detected vulnerability and
proposing a mitigation [20].

4.2 Results

In the results of Purba et al. [41], Davinci, with fine-tuning,
achieved the best score across all models considered. Nev-
ertheless, it had an F1 score of 73.2% with a recall of 94%
and a precision score of 60%, indicating that there is a high
false positive rate (FPR). Similarly, all of the compared LLM
models suffered from a high FPR. In contrast, the false nega-
tive rate (FNR) of the Davinci model was low at 6%. In the
work from Cheshkov et al. [10], the binary classifier also had
a high FPR, while the multi-label classifier led to a lower F1
score and a lower precision and recall score. Thus, that work
did not perform well for both classifiers.

Guo et al. [24] made two key findings: Firstly, LLMs per-
form well on known vulnerabilities seen through the training
dataset, but are limited in the generalisation of their learned
knowledge. Secondly, fine-tuning enables smaller LLMs to be
better than larger LLMs in certain tasks. However, a problem
encountered during training, which could also affect the re-
sults of other research, was the inaccuracy of the dataset [24].

As for the prompt, Yu et al. [55] observed that the prompt
with an instruction and containing specific information about

6



Journal of Systems Research (JSys) 2025

the CWEs performed the best. Tamberg and Bahsi [45], who
also made a prompt-based approach, concluded that different
models react differently to the prompt. For GPT-4 Turbo, the
best result could be reached with a dataflow analysis prompt.
This prompt includes a task description, which demands an
analysis of the data flow within the provided source code and
a template on how to answer. After receiving the answer, a
second and a third prompt were added, in which the LLM
is asked to review and improve its answer. For GPT-4 and
Claude 3 Opus, the highest result was reached with a chain
of thought prompt. Here, the process of how to approach the
problem step by step was described, so that the LLM can
follow this manual [45].

Yin et al. [54] concluded that there is potential for LLMs
in the covered tasks, but they still need development. In the
analysis from Fu et al. [20], they deduced that base models
of ChatGPT are not suitable for use in all four observed tasks
because of their poor performance.

4.3 Comparison with traditional tools
Contrary to LLM, Purba et al. [41] and Tamberg and
Bahsi [45] provided an overview of the performance of tradi-
tional tools that execute static code analysis. The traditional
tools work by using syntactic and semantic checks. For ex-
ample, a rule set for a syntactic check could contain a list of
different vulnerable functions, such as the mentioned gets()
function in Figure 3 [35]. To detect intricate vulnerabilities,
semantic checks are necessary. Here, the codebase is trans-
formed into an enhanced control flow representation, allowing
for a more sophisticated vulnerability detection approach [35].

In the research of Purba et al. [41], the tool Checkmarx1

performed the best among the traditional tools with an F1
score of 47.3%. Compared to LLMs, this tool keeps a lower
FPR at 43.1% but has a higher false negative rate (FNR) at
41.1% [41].

Tamberg and Bahsi [45] came to a similar conclusion re-
garding the FPR. However, their model achieved higher pre-
cision at the expense of lower recall compared to the Davinci
model from Purba et al. [41]. One explanation for this out-
come could be the overall performance gain with newer mod-
els, as [45] was published in 2025 using GPT-4, whereas [41]
was published in 2023 using GPT-3.5-Turbo. However, the
reason could also rely on the usage of different prompts, fine-
tuning strategies, or the dataset used for the benchmarking.

A performance comparison from Purba et al. [41], and
Tamberg and Bahsi [45] can be seen in Figure 4. Overall,
one can say that traditional tools focus on keeping the false
positives low by compromising on false negatives. However,
this approach allows developers to focus on relevant findings
without losing time on false positives. In contrast, LLMs
are finding more true positives but with more false positives,
handing over the task to developers to filter them out.

1Checkmarx: https://checkmarx.com/

Figure 4: Performance comparison of different code vulnera-
bility detection tools (adapted from [41, 45]).

5 Fuzz testing

Fuzz testing describes the method of using randomised input
to test how a function reacts to it. The intention is to observe
unusual behaviour and thereby to detect code flaws and po-
tential vulnerabilities [56]. While it is considered effective
in discovering software vulnerabilities, various hindrances
prevent the use of this technique in the industry.

Firstly, the complexity of the environment setup needs to
be taken into account. Fuzzers have different requirements
before they can be applied. Since an existing environment
uses various technologies, including operating systems, pro-
gramming languages, and external libraries, it is difficult to
adapt it to a fuzzer.

Secondly, fuzz driver implementation is challenging. A
fuzz driver describes the link between the test function and
the API. Thus, software developers need to know how the
software works in technical and functional detail so that they
can write a precise abstraction layer of the function for use in
fuzzing [57].

For these reasons, research is done to automate the process.
LLMs are also considered, as their general-purpose imple-
mentation allows them to adapt better to existing setups. This
section focuses on using LLMs in fuzz testing, discussing the
potential of LLMs in this field.

7



Journal of Systems Research (JSys) 2025

5.1 Input generation with LLM fuzzers

A fuzzer can be viewed as a generator that creates random
inputs [56]. Since the underlying implementation of the gener-
ator can vary a lot, different types of fuzzers exist in practice.
In the work of Beaman et al. [7], a definition for the various
types was created, depending on how advanced the fuzzer is.
A fuzzer is mainly categorised by the knowledge it has about
the function and the system under test, and also by how it
generates the input and how it reaches the testing coverage.
In Table 3, we give an overview of the different classifica-
tion types and a short description based on the definitions
from Beaman et al. [7]. Additionally, the table categorizes the
fuzzing-related research covered in this work.

5.1.1 Seed generation with LLM

Seed generation is fundamental for fuzzers, since it represents
the basis of the inputs. It is challenging because it requires
knowledge of the underlying functions, the technologies used,
and the specifications of the software. In addition, the use of
existing solutions may be impractical if the used tech stack is
not compatible [8,34]. Because of the discussed obstacles, au-
tomated tools are preferred. Such automated tools are covered
in the work of Tamminga [46] and Black et al. [8].

Tamminga [46] investigated if an LLM can be modified to
use it as a seed generator for the existing fuzzer libFuzzer2 and
on the programming language Go, but with the aim to be inde-
pendent of the used tech stack. As a basis, pre-trained LLMs
were used and compared against each other. Furthermore, the
LLMs were optimised for seed generation by either using
prompting or by fine-tuning using a self-created dataset [46].

Black et al. [8] focused their seed generator for the Arthe-
sis3 fuzzer, which is a fuzzer for the programming language
Python. As for the prompt, a task description, the function
under test, and a description of the expected output were in-
cluded. To test the effectiveness of seed generation with LLM,
they created a testing pipeline that allows the generated seeds
to be passed to the function under test [8].

To measure the performance, Tamminga [46] created an
evaluation method based on the core idea of the benchmark-
ing process Magma, which was developed by Hazimeh et
al. [26]. The benchmark includes measurements about the
count of detected bugs and the time within which they were
discovered [46]. Ultimately, StarCoderPlus with prompt engi-
neering could detect 39% of the crashes within 30 seconds,
while 64% were triggered within 10 minutes. In comparison,
libFuzzer without any seed generation only reached 23% in
30 seconds, but also 64% in 10 minutes. A performance sum-
mary, based on the measurement from Tamminga [46] is in
Figure 5 visualised.

Black et al. [8] used the reached coverage as a performance

2https://llvm.org/docs/LibFuzzer.html
3https://github.com/google/atheris

Type Definition Research

Input knowledge

Dumb It follows strictly its seed genera-
tion process.

-

Smart Alters the seed generation process
to better suit the function under
test.

[8, 46,
52, 59]

System knowledge

Black-
box

It has no information about the un-
derlying system.

-

White-
box

It has all the information about the
underlying system.

-

Grey-
box

It is a mix between black-box and
white-box, where it has partial in-
formation about the underlying
system.

[8, 46,
52, 59]

Generation method

Random It creates seeds randomly. -

Generation-
based

It generates seeds based on certain
parameters and routines.

[8, 46,
52]

Mutation-
based

It mutates already generated seeds
by adding, removing, or changing
parts from the seed.

[52, 59]

Testing coverage

Directed It tests a specific part of the code
or function.

[8, 46,
52, 59]

Coverage-
based

Code coverage describes the parts
of the code that were executed by
the calling function. The aim is to
achieve the highest possible code
coverage.

[52]

Table 3: Overview of the different classification types of a
fuzzer (based on [7]).

8



Journal of Systems Research (JSys) 2025

Figure 5: Comparison of libFuzzer with different seed generation approaches (adapted from [46]).

measurement. As for the tests, they had three different ap-
proaches. The first approach uses only the fuzzer. In the sec-
ond approach, a combination of fuzzer and LLM is used, and
in the last approach, only the LLM is used. While there was no
clear winner, the combination of fuzzer and LLM performed
the best in most of the test cases, while for the other test cases,
fuzzing alone or LLM alone were better [8].

5.1.2 Mutation-based fuzzer with LLM

Fuzz4All, developed by Xia et al. [52], goes one step further
and takes mutation generation into account. It implements a
fuzzer, which is independent of the used tech stack and can
be used for a wide range of programming languages. In their
work, they present how Fuzz4All is designed and what steps
it runs through. To get fuzzing inputs, the user has to provide
information for Fuzz4All. This can include documentation,
manuals, or the application code. The input is then applied to
the autoprompting step. Since this information is written in
natural language, while the expected output should be code,
Fuzz4All uses two LLMs; one is used for the distillation
phase, while the other is used for the generation phase.

In the distillation phase, the LLM attempts to understand
and bundle the provided user information and to represent it
as candidate prompts containing only the relevant information.
Those candidate prompts are then passed to the generation
phase, in which another LLM tries to generate fuzzing inputs.
Afterwards, the candidates are evaluated against the function
under test by executing a fuzzing test. The evaluation calcu-
lates a score based on criteria like code coverage, triggered
crashes, or, like in the example of Xia et al. [52], the validity
of the input. The candidate prompt with the highest score is
then used as the initial prompt.

The next step in Fuzz4All is the fuzzing loop. It is an
iterative process for generating fuzzing inputs. Some sub-
steps are thereby similar to those of the autoprompting step.
Firstly, the initial input prompt is applied to the generation
LLM, which generates fuzzing inputs. Secondly, the fuzzing
input is applied to the function under test to verify the validity

of the fuzzing input and, ultimately, to trigger bugs. With this
process, code snippets are gained, which can be applied as
fuzzing inputs. Since the aim is to gain as many different
inputs as possible, a mutation step is applied. It mutates the
code snippet based on a randomly chosen strategy, enabling
the LLM to generate different fuzzing inputs. There are three
mutation strategies. Either the code snippets are mutated,
semantically changed, or completely newly generated. Lastly,
the output is used again as input for the LLM generation. This
process is applied iteratively until a stop criterion is met [52].

This structure has different advantages. Firstly, since two
LLMs are in use, one can choose them according to their
capabilities. For the distillation phase, an LLM with a good
understanding of natural language should be chosen. The
second LLM used in the generation phase should be trained
for code generation. Secondly, time efficiency can be achieved
since smaller LLMs can be used, as they only need to focus
on specific tasks [52].

Compared to traditional fuzzers, this approach generates
fewer valid inputs, but it achieves a higher coverage in less
time. Figure 6 shows the comparison of Fuzz4All with tradi-
tional tools based on the measurement from Xia et al. [52].

5.1.3 Greybox fuzzing with LLM

Zhang et al. [59] implemented a tool called LLAMAFUZZ,
which is used for improving greybox fuzzing. Their approach
consists of connecting the ALF++4 fuzzer with Llama 2.
While the LLM is used for input mutation, the fuzzer has
the task to execute the generated input in the function under
test, to monitor the execution, and to pass the result back to
the LLM [59].

LLAMAFUZZ could outperform traditional tools by reach-
ing a higher code coverage and achieving a higher bug count.
Overall, it increased the code coverage by 27.2% in compar-
ison to AFL++ without LLM enhancement and detected 41
bugs more on average [59].

4https://aflplus.plus/

9



Journal of Systems Research (JSys) 2025

Figure 6: Validity and coverage comparison between
Fuzz4All and traditional tools (adapted from [52]).

5.2 Fuzz driver generation

A fuzz driver describes the link between the system under test
and the fuzzer by providing an API. This is a laborious task
since they are typically written manually [57]. Additionally,
the API needs to be as precise as possible since mistakes
in the implementation could increase the falsification of the
result for the system under test [58].

Zhang et al. [58] considered different approaches for
prompt engineering an LLM to gain a fuzz driver generator.
The best-performing strategy they found is iterative prompt
processing. The strategy consists of a generation and several
fix prompts. As seen in Figure 7, the prompt consists of a task
description for the LLM, a code documentation, and a code
snippet of the API. ChatGPT gives, in this case, a proposal of
how implementing the function “FuzzerTest” could look. The
output can also be seen in Figure 7. Afterwards, one or more
fix prompts are applied on cases where the produced LLM
output has compilation errors [58].

Figure 7: Generation prompt and output from ChatGPT
(adapted from [38, 58]).

During the investigation of fuzz driver generation with
LLMs, Zhang et al. [58] discovered that the performance
depends on the complexity of the API. An LLM needs to
be able to forecast how an API works based on the given
questions and user inputs. Therefore, it can be concluded
that as the complexity of the system under test increases, the

10



Journal of Systems Research (JSys) 2025

performance of the LLM decreases. The best performance
was reached by GPT-4, which could answer 78 out of 86
questions in the right configuration [58].

LLM-aided fuzzing is already used in practice. In 2023,
Google [36] added LLM to their OSS-Fuzz project. It is used
to automate vulnerability detection, mainly in open-source
software. While doing so, they found that, in some cases, the
code coverage was improved. In one case, they increased the
code coverage by over 30%. To reach the same level for all
OSS-Fuzz projects, they stated that “several years” of manual
adaptation would have been necessary [36].

6 Exploit generation for software testing with
LLM

As discussed in Section 4, LLM suffers from a high FPR.
But traditional approaches also have false positives [55]. This
causes software developers to question the results of auto-
mated vulnerability detectors. Therefore, showing if and how
a vulnerability is exploitable is essential [60]. One example
is a dependency vulnerability detector. When it reports a vul-
nerability in one of the used libraries, it does not necessarily
mean it is exploitable in the application. A way of showing
the exploitability of a vulnerability is to write an exploit [60].

6.1 Research approaches
In the research of Zhang et al. [60], ChatGPT-4 was used to
generate security tests, which could then be used to test the
exploitability of the vulnerable dependency. The following
parameters were included in the prompt [60]: Task descrip-
tion, function name, vulnerability ID, vulnerable API list, test
function name incl. an exemplar test implementation, and
client code implementation. When the LLM output contained
smaller errors, a manual process was applied to correct the
output.

Fuzzing, which we discussed in Section 5, was used by
Zhou et al. [61] in their tool called Magneto. It aims to exploit
vulnerabilities in complex environments. In their paper, they
explain how the mechanism of Magneto works. In a first
step, information about the vulnerability itself is collected,
including the affected version and the functions, as well as
an exploit and its oracle. This information is then compared
with the dependency tree of the software project, and only
the dependencies matching the vulnerability description are
kept. Afterwards, Magneto tries to understand the underlying
architecture of the software by depicting the call chains of
the software under test. Based on the gathered information,
Magneto tries to exploit the vulnerability. For this, Magneto
needs to find an input so that it can be passed to the function
on top of the call chain while also remaining a capable input
to trigger the vulnerability on the dependency under test. Its
approach is done incrementally, by trying out different seeds,
which are created by an LLM. It starts with the function call

to the dependency and works its way up until it reaches an
exposed function. With this approach, the function may be
able to find a vulnerability [61].

Fang et al. [18] analyzed the efficiency of LLM in exploit
generation for one-day vulnerabilities. To achieve this, they
used different LLMs and leveraged them for exploit genera-
tion. The LLMs were provided with different resources, such
as a web browser, a terminal, and the ability to use a code
interpreter and to create or modify files [18].

As already discussed in Section 4, Fu et al. [20] had a look
at a variety of tasks in the software vulnerability spectrum.
Here, we want to take a glance at the automated severity
estimation and mitigation of vulnerabilities with LLM. For the
severity estimation prompt, Fu et al. [20] proposed to include
a description of what the LLM has to do and to include the
vulnerable function. For the mitigation prompt, they included
several generic examples of vulnerable functions and their
repair methods with a task description, which is similar to a
few-shot prompting approach [20].

6.2 Performance comparison
Zhang et al. [60] tested the GPT model on 55 apps contain-
ing vulnerabilities. As a result, in 24 cases, the vulnerabil-
ity could be successfully exploited. In addition, a compar-
ison was made with the traditional tools SIEGE [27] and
TRANSFER [32]. While TRANSFER [32] achieved writ-
ing four exploits, SIEGE [27] could not generate one. This
leads ChatGPT to surpass them [60]. Magneto, created by
Zhou et al. [61], was at least 75.6% more successful in creat-
ing an exploit compared to traditional tools like SIEGE [27],
TRANSFER [32], and VESTA [9].

Fang et al. [18] tested their prompt-engineered GPT-4
model against the traditional tools ZAP 5 and Metasploit 6.
In the end, they found out that the traditional tools, as well
as the other considered models, were unable to generate ex-
ploits. Only their GPT-4 model could create exploits, but with
a success rate of 87%. To perform that well, the inclusion of
the CVE description in the prompt was mandatory [18].

For the severity estimation and mitigation task, Fu et
al. [20] reached a sobering conclusion, as the model was un-
able to sufficiently estimate severity or propose mitigations.

7 LLM challenges and future outlook

In this section, we delineate our key takeaways, presented
through the lens of the information gathered from the papers
listed in Table 1, and discuss the challenges and potential
future approaches. The identification was made by mapping
the mentioned challenges from the discussed papers while
also considering the general difficulties of LLMs.

5https://www.zaproxy.org/
6https://www.metasploit.com/

11



Journal of Systems Research (JSys) 2025

7.1 High False-Positive Rate (FPR)

A problem encountered in the discussed topics was the high
FPR and the low accuracy, which was discovered by various
researchers [10, 20, 29, 41, 45].

The recommendation from Cheshkov et al. [10] is to in-
vest further research in prompt engineering. Having a more
enhanced prompt, like the proposed chain-of-thought tech-
nique, could lead to better performance in the LLM for code
vulnerability detection [10]. To correct the errors produced
by the LLM, Jiang et al. [29] suggest using the LLM again
for output correction. This enables the LLM to improve its
output by gaining insights into bugs introduced in its previous
output.

An explanation can also be found in hallucination. Hallu-
cination describes the effect of an LLM that writes factually
incorrect outputs [31]. According to Kamath et al. [31], a rea-
son for this behaviour could be a lack of knowledge because
of missing, biased, or untrue training data in the pre-training
process. To mitigate some of the named reasons, a common
technique is retrieval augmented generation (RAG), which
aims to include external knowledge sources [4]. We describe
this technique in more detail in Section 7.2.

Decoding strategies can also be a culprit for hallucination.
They are often used to introduce randomness in favour of pro-
ducing more natural-sounding language. Therefore, new de-
coding strategies are designed to diminish hallucinations [30].
Two examples are uncertainty-aware beam search [53] and
confident decoding [47].

7.2 Outdated data

Another challenge encountered in training is keeping the in-
formation up to date. Some research from the field of code
vulnerability detection [10, 20, 54, 55] and exploit genera-
tion [18, 61], handled with CWE and CVE definitions. While
they used mostly already known CWEs and CVEs covering
general vulnerability topics, it is essential that the informa-
tion basis of an LLM is up-to-date to also understand new
vulnerability definitions.

There are different new approaches used in updating the
information of a model. The simplest one is to enhance
the prompt by including missing information directly into
the prompt. For example, this is shown by Fang et al. [18],
where they had to include the CVE description to gain a
well-performing model.

A new approach to facing this challenge is RAG. It en-
ables an LLM to expand its knowledge base with additional
resources, such as websites, databases, or other forms of data
storage. Those reference points are then considered when a
corresponding prompt is placed, asking for specific informa-
tion [4].

Model editing can also be used for this challenge. It at-
tempts to identify the incorrect information base of an LLM

and modify it accordingly [30].

7.3 LLM training
Pre-training an LLM is cost- and time-intensive [30]. This
limits the capability of researchers to create LLMs specifically
designed for the purposes we discussed in this paper.

To reduce computational power requirements, efforts are
made to understand so-called scaling laws. Specifically, in the
context of LLM, the interplay between model size, data size,
and computational power is examined. An alteration in one
of those three resources could lead to a corresponding change
in a different resource [50].

A common technique used today to bypass pre-training is
to take a pre-trained model and fine-tune it. As found out by
Guo et al. [24], this allows for better performance in some
tasks compared to larger LLMs. However, it comes with its
challenges, like finding high-quality datasets. This challenge
was mentioned by Guo et al. [24], in which they made the
finding that there was some incorrect labelling in the datasets,
leading to wrong training of the LLM.

Another technique is to apply different prompt strategies as
discussed in various works throughout this paper. The benefit
stems from the relatively easy application, as no modification
to the model itself is required. However, while guidelines and
strategies exist, such as those discussed by Sahoo et al. [42],
it is challenging to determine which prompt yields better
results [30], making it a trial-and-error process.

Also, the requirements for the setup have to be considered,
since they are similar to those for pre-training. To fine-tune a
model, it must be downloaded, installed, and executed [30].
Parameter-efficient fine-tuning (PEFT) is a recent technique to
train the LLM for a specific task. The fundamental concept is
to add a final layer with trainable parameters. During training,
only the parameters of the additional layer are modified while
the other layers remain unchanged [44].

7.4 Limited context length understanding
The applications of the discussed areas in this paper require a
deeper contextual understanding to perform well. As a data
basis, software code is provided, which includes different
information like the architecture, program logic, and docu-
mentation. An LLM has the requirement to understand the
system under test and to perform the described tasks on it.
However, LLMs have a limitation in understanding contexts,
leading to the omission of essential parts [30]. A further ef-
fect can be seen in fuzzing, since the limited context length
understanding leads to an increase in the creation of invalid
seeds [29].

There are various approaches to tackling this type of chal-
lenge, which may be applied in the future. According to Kad-
dour et al. [30], current research focuses on enhancing the
capability of attention mechanisms to comprehend a broader

12



Journal of Systems Research (JSys) 2025

context. Other research is focusing on length generalization
to maintain the advantage of training LLMs on short inputs,
while also being able to understand longer inputs. Kaddour et
al. [30] also discussed using alternatives to transformers. Ar-
chitectures like state space models (SSMs) [19] or receptance-
weighted key value (RWKV) [40] are designed for under-
standing longer contexts.

8 Discussion

In this section, we summarize the key takeaways based on
the analysis of the related work and make the connection to
the research questions. We also provide additional insight by
offering tips and recommendations.

8.1 RQ1: What are practical use cases for
LLMs in security code review and testing,
and how do they perform against tradi-
tional tools?

LLMs have their rightful place in the context of security code
review and testing. While they reach practical relevance in
some topics, others are still in the research stage. In the fol-
lowing subsection, we provide an in-depth analysis of the
prospects for each topic.

8.1.1 Code vulnerability detection

LLMs in code vulnerability detection can overcome various
challenges associated with the use of traditional tools, as their
setup, application, and integration into the code base are sim-
pler than those of conventional tools. However, the LLMs in
the research suffered from a high FPR, limiting the capability
of LLMs in this use case. In comparison, traditional tools fo-
cus more on true positives and thus reduce the exertions from
developers. Based on these findings, our recommendation is
to invest more effort in research and, if the setup allows, to
utilize traditional tools for production in the meantime.

8.1.2 Fuzz testing

In fuzzing, LLMs have advantages. On the one hand, it is
less time-consuming and can find coverage-increasing seeds
faster than its traditional counterparts. On the other hand, it
can be used independently of the technology environment,
while traditional tools have mostly binding requirements.

According to the surveyed literature, LLMs can outper-
form traditional tools in input generation. This is also true
for fuzz driver generation, which is already in use in pro-
ductive cases. This makes LLMs valuable in the context of
fuzz testing, especially for testing a wide range of projects.
Our recommendation is therefore to convert research findings
into practical applications and develop productive, marketable

tools that enable the easy use of LLMs in fuzz testing. How-
ever, some challenges, especially in the limited understanding
of complex implementations, remain.

8.1.3 Exploit generation

The included papers show that exploit generation has po-
tential, especially since they outperform conventional tools.
However, prerequisites must be met, such as providing spe-
cific prompt information or making manual adjustments, to
function properly. Additionally, only certain LLMs achieve
acceptable results, making it dependent on the chosen LLM.

This leads to our conclusion that, at the moment, LLMs
can only be used to a limited extent for exploit generation.
However, since traditional tools also do not perform well,
manual effort is still needed in practice. Nevertheless, further
research investigations should be made.

8.2 RQ2: What is the impact of LLM itself on
the performance of proposed solutions?

The most important component in the considered tools is
the LLM itself. There exist a lot of different LLMs with
varying parameter count, training basis, etc. In the related
work, various models, including both open-source and closed-
source, were used. While the performance between those
works is not directly comparable, some general conclusions
can be drawn:

1. Prompt engineering and fine-tuning can improve the
performance in most cases compared to their base coun-
terparts.

2. Newer LLMs are usually better than their previous ver-
sions.

3. While improvements can be achieved with techniques
already mentioned, an indicator for better performance
can also be the parameter count, while LLMs with more
parameters should perform better.

This is also reflected in related work, where using newer
models leads to better results or even makes an approach pos-
sible. With the introduction of new models (i.e., GPT-5), the
tests should be repeated so that the performance improvement
can be measured. The parameter count of an LLM should also
not be neglected. However, some works show that by apply-
ing prompt engineering or fine-tuning, the performance can
be improved. Thus, this should be taken into consideration,
especially if computational power is limited.

Choosing an LLM is a difficult undertaking and not always
straightforward. Indicators of good LLMs include their intro-
duction dates, with the newer ones being preferable, as well
as their parameter count and general benchmarking results.
Additionally, one can check whether a security-trained ver-
sion exists. Nevertheless, comparing the different LLMs in

13



Journal of Systems Research (JSys) 2025

a benchmarking process is crucial for identifying the best-
performing one.

Also, an interesting concept is to use a combination of
LLMs. This allows for focusing LLMs on one specific task,
making their tuning simpler.

8.3 RQ3: What are the current approaches for
improving the performance of LLM-based
solutions in our use cases?

Different techniques can be used to tweak LLMs to be more
tailored to specific areas of application. Since we included a
range of papers, different approaches were used for the same
aim.

8.3.1 Prompt engineering

Prompt engineering is a common technique that involves
designing and structuring a prompt. The aim is to instruct and
teach the LLM on how to complete a task in a way that is
understandable from the perspective of an LLM.

In the considered works, various prompts were tested, each
containing different levels of information. One common find-
ing was that prompts including more information were more
successful. However, the information must be articulated and
designed in a way that known challenges, such as limited
context length understanding, are not triggered.

Since prompt engineering is not an exact science and varies
from use case to use case, we propose trying different com-
binations of information sources and benchmarking them ac-
cordingly. Additionally, examining recent findings on prompt
engineering techniques is worthwhile. However, there is no
predetermined solution again.

8.3.2 Fine-tuning

Fine-tuning is more efficient than the training of an LLM and
allows for supplementing the LLM with additional training
datasets. Though in practice, finding qualitative and good
training datasets is difficult. Having incomplete or false
datasets could even worsen the performance of an LLM. Thus,
the key takeaway is to apply fine-tuning; however, creating
clean datasets should also be a focus point.

8.3.3 Tool creation

In the various topics considered, but especially for fuzz test-
ing, researchers have created tools in which an LLM is only
one part of the system. The advantage of combining LLMs
and traditional approaches is the potential to achieve deter-
ministic behavior for precise tasks. For example, for testing
of seeds, a unit test is created that directly applies the gener-
ated seed to the function, reducing the false positive count.
Whenever possible, deterministic tasks should be outsourced

to dedicated processes, allowing for reduced hallucination for
those tasks.

8.4 RQ4: What are the current challenges, and
what are the prospects for LLMs in secu-
rity code review and testing?

In general, the creation and training of LLMs is a common
challenge. Due to the high cost and time consumption in-
volved in creating an LLM, we recommend utilizing existing
general-purpose LLMs and leveraging them through tech-
niques such as prompt engineering and fine-tuning. Since
fine-tuning itself is also resource-intensive, new methods like
PEFT should be explored, especially when resources are miss-
ing for full tuning. Additionally, finding the right datasets for
training can be challenging. The dataset requires cleaning,
and any incorrect data must be removed.

Furthermore, pitfalls can be found in general LLM chal-
lenges like high FPR, outdated data, and limited context length
understanding. While all topics suffer from those challenges,
they are not affected equally.

8.4.1 Code vulnerability detection

For the code vulnerability detection task, the high FPR is the
main challenge. A high FPR in this topic renders an LLM
unusable, as software developers would need to check for
more possible threats. Thus, the aim of future research should
be to reduce the FPR, even if this would mean an increase in
FNR. This would allow a developer to focus on true positives.

For this, aforementioned techniques like prompt engineer-
ing and fine-tuning should be used. Moreover, creating clean
datasets should be a focus point, as they are currently missing.
Moreover, a combination with the topic of exploit generation
is conceivable, since this would allow for implementing a
check.

8.4.2 Fuzz testing

In Fuzzing, FPRs can be mitigated with enhanced controls,
such as applying software tests. However, in this case, the
limited context length makes it challenging for the LLM to
comprehend complex and extensive software.

Therefore, experimenting with the optimal prompt configu-
ration is crucial. Also, providing the right amount of informa-
tion is necessary.

8.4.3 Exploit generation

Exploit generation relies on data actuality, as it needs to know
about new vulnerabilities. However, since training is cost-
intensive, the knowledge base of LLMs suffers from out-
dated data. To overcome this challenge, we recommend using
RAG and connecting the LLM to corresponding vulnerability
databases.

14



Journal of Systems Research (JSys) 2025

9 Conclusion

Practical implementation areas for an LLM in software secu-
rity can be found in code vulnerability detection, fuzz testing,
and exploit generation. The LLMs can be applied to those
tasks by using prompt engineering, fine-tuning, and creating
dedicated tools.

However, the performance varies between those different
disciplines. While LLMs achieve good results in fuzz testing,
they need further research in code vulnerability detection and
exploit generation. This is mainly attributable to challenges
like hallucination, high training costs, data actuality, and the
limited context length understanding. Those challenges lead
to a high FPR in code vulnerability detection, poor perfor-
mance in complex fuzz testing cases, and insufficient knowl-
edge for exploit generation.

To overcome these challenges, we propose in future re-
search to explore prompt engineering and fine-tuning further.
What is more, modern technologies like RAG can help in im-
proving data actuality, while PEFT can help reduce training
costs. There are also new approaches that follow different
directions. This includes agentic AIs as well as the expansion
of their capabilities by connecting them to existing tools over
the Model Context Protocol (MCP).

References

[1] ACM. ACM Digital Library. Accessed: 04.08.2025.
URL: https://dl.acm.org/.

[2] Altexsoft. Language models, explained: How GPT and
other models work, January 2023. Accessed: 2024-10-
31. URL: https://www.altexsoft.com/blog/lan
guage-models-gpt/.

[3] Thimira Amaratunga. Understanding Large Language
Models. Apress Berkeley, CA, 2023. URL: https:
//doi.org/10.1007/979-8-8688-0017-7.

[4] Amazon. Was ist Retrieval-Augmented Generation
(RAG), 2024. Accessed: 2024-11-29. URL: https:
//aws.amazon.com/de/what-is/retrieval-augme
nted-generation/.

[5] arXiv. arXiv. Accessed: 04.08.2025. URL: https:
//arxiv.org/.

[6] Alberto Bacchelli and Christian Bird. Expectations, out-
comes, and challenges of modern code review. In 2013
35th International Conference on Software Engineering
(ICSE), pages 712–721, 2013. https://doi.org/10
.1109/ICSE.2013.6606617.

[7] Craig Beaman, Michael Redbourne, J. Darren Mum-
mery, and Saqib Hakak. Fuzzing vulnerability dis-
covery techniques: Survey, challenges and future di-

rections. Computers & Security, 120:102813, Septem-
ber 2022. URL: https://www.sciencedirect.co
m/science/article/pii/S0167404822002073,
https://doi.org/https://doi.org/10.1016/j.
cose.2022.102813.

[8] Gavin Black, Varghese Mathew Vaidyan, and Gurcan
Comert. Evaluating large language models for enhanced
fuzzing: An analysis framework for LLM-driven seed
generation. IEEE Access, 12:156065–156081, 2024.
https://doi.org/10.1109/ACCESS.2024.3484947.

[9] Zirui Chen, Xing Hu, Xin Xia, Yi Gao, Tongtong Xu,
David Lo, and Xiaohu Yang. Exploiting library vulnera-
bility via migration based automating test generation. In
Proceedings of the IEEE/ACM 46th International Con-
ference on Software Engineering, ICSE ’24, New York,
NY, USA, 2024. Association for Computing Machinery.
URL: https://doi.org/10.1145/3597503.363958
3.

[10] Anton Cheshkov, Pavel Zadorozhny, and Rodion
Levichev. Evaluation of ChatGPT model for vulnera-
bility detection. arXiv e-prints, page arXiv:2304.07232,
April 2023. arXiv:2304.07232, https://doi.org/
10.48550/arXiv.2304.07232.

[11] Edward Chopskie. SAST vs. DAST: 5 key differences
and why to use them together, March 2025. Accessed:
18.07.2025. URL: https://brightsec.com/blog/s
ast-vs-dast/.

[12] Codegrip. Code review trends in 2022. 2022. Accessed:
2024-10-14. URL: https://media.trustradius.co
m/product-downloadables/DD/D7/XID8MVZTH0JF.
pdf.

[13] CodeSigning. What is secure DevOps? SecDevOps
explained. Accessed: 2025-04-05. URL: https://co
designingstore.com/what-is-secure-devops.

[14] Malik Imran Daud. Secure software development model:
A guide for secure software life cycle. In Proceed-
ings of the international MultiConference of Engineers
and Computer Scientists, volume 1, pages 17–19, 2010.
URL: https://www.iaeng.org/publication/IMEC
S2010/IMECS2010_pp724-728.pdf.

[15] DeepSeek. Introducing deepseek-v3, December 2024.
Accessed: 11.04.2025. URL: https://api-docs.de
epseek.com/news/news1226.

[16] Anne Edmundson, Brian Holtkamp, Emanuel Rivera,
Matthew Finifter, Adrian Mettler, and David Wagner.
An empirical study on the effectiveness of security code
review. In Jan Jürjens, Benjamin Livshits, and Ric-
cardo Scandariato, editors, Engineering Secure Software

15

https://dl.acm.org/
https://www.altexsoft.com/blog/language-models-gpt/
https://www.altexsoft.com/blog/language-models-gpt/
https://doi.org/10.1007/979-8-8688-0017-7
https://doi.org/10.1007/979-8-8688-0017-7
https://aws.amazon.com/de/what-is/retrieval-augmented-generation/
https://aws.amazon.com/de/what-is/retrieval-augmented-generation/
https://aws.amazon.com/de/what-is/retrieval-augmented-generation/
https://arxiv.org/
https://arxiv.org/
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE.2013.6606617
https://www.sciencedirect.com/science/article/pii/S0167404822002073
https://www.sciencedirect.com/science/article/pii/S0167404822002073
https://doi.org/https://doi.org/10.1016/j.cose.2022.102813
https://doi.org/https://doi.org/10.1016/j.cose.2022.102813
https://doi.org/10.1109/ACCESS.2024.3484947
https://doi.org/10.1145/3597503.3639583
https://doi.org/10.1145/3597503.3639583
http://arxiv.org/abs/2304.07232
https://doi.org/10.48550/arXiv.2304.07232
https://doi.org/10.48550/arXiv.2304.07232
https://brightsec.com/blog/sast-vs-dast/
https://brightsec.com/blog/sast-vs-dast/
https://media.trustradius.com/product-downloadables/DD/D7/XID8MVZTH0JF.pdf
https://media.trustradius.com/product-downloadables/DD/D7/XID8MVZTH0JF.pdf
https://media.trustradius.com/product-downloadables/DD/D7/XID8MVZTH0JF.pdf
https://codesigningstore.com/what-is-secure-devops
https://codesigningstore.com/what-is-secure-devops
https://www.iaeng.org/publication/IMECS2010/IMECS2010_pp724-728.pdf
https://www.iaeng.org/publication/IMECS2010/IMECS2010_pp724-728.pdf
https://api-docs.deepseek.com/news/news1226
https://api-docs.deepseek.com/news/news1226


Journal of Systems Research (JSys) 2025

and Systems, pages 197–212, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. URL: https://doi.org/
10.1007/978-3-642-36563-8_14.

[17] Elsevier. ScienceDirect. Accessed: 13.09.2025. URL:
https://www.sciencedirect.com/.

[18] Richard Fang, Rohan Bindu, Akul Gupta, and Daniel
Kang. LLM agents can autonomously exploit one-day
vulnerabilities, 2024. URL: https://arxiv.org/ab
s/2404.08144, arXiv:2404.08144.

[19] Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W.
Thomas, Atri Rudra, and Christopher Ré. Hungry Hun-
gry Hippos: Towards language modeling with State
Space Models, 2023. URL: https://arxiv.org/
abs/2212.14052, arXiv:2212.14052.

[20] Michael Fu, Chakkrit Tantithamthavorn, Van Nguyen,
and Trung Le. ChatGPT for vulnerability detection,
classification, and repair: How far are we?, 2023. URL:
https://arxiv.org/abs/2310.09810, arXiv:2310
.09810.

[21] Hadi Ghanbari, Tero Vartiainen, and Mikko Siponen.
Omission of quality software development practices: A
systematic literature review. ACM Comput. Surv., 51(2),
February 2018. https://doi.org/10.1145/3177746.

[22] Google. Google Scholar. Accessed: 04.08.2025. URL:
https://scholar.google.com/.

[23] Google. Introduction to large language models, Septem-
ber 2024. Accessed: 2024-10-29. URL: https:
//developers.google.com/machine-learning/
resources/intro-llms.

[24] Yuejun Guo, Constantinos Patsakis, Qiang Hu, Qiang
Tang, and Fran Casino. Outside the comfort zone:
Analysing LLM capabilities in software vulnerability
detection, 2024. URL: https://arxiv.org/abs/24
08.16400, arXiv:2408.16400.

[25] Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah,
Muhammad Irfan, Anas Zafar, Muhammad Bilal Shaikh,
Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. A sur-
vey on large language models: Applications, challenges,
limitations, and practical usage. Authorea Preprints,
2023. https://doi.org/10.36227/techrxiv.2358
9741.v1.

[26] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer.
Magma: A ground-truth fuzzing benchmark. Proc. ACM
Meas. Anal. Comput. Syst., 4(3), November 2020. http
s://doi.org/10.1145/3428334.

[27] Emanuele Iannone, Dario Di Nucci, Antonino Sabetta,
and Andrea De Lucia. Toward automated exploit gener-
ation for known vulnerabilities in open-source libraries.
In 2021 IEEE/ACM 29th International Conference on
Program Comprehension (ICPC), pages 396–400, 2021.
https://doi.org/10.1109/ICPC52881.2021.000
46.

[28] IEEE. IEEE Xplore. Accessed: 04.08.2025. URL:
https://ieeexplore.ieee.org/Xplore/home.jsp.

[29] Yu Jiang, Jie Liang, Fuchen Ma, Yuanliang Chen, Chi-
jin Zhou, Yuheng Shen, Zhiyong Wu, Jingzhou Fu,
Mingzhe Wang, Shanshan Li, and Quan Zhang. When
fuzzing meets LLMs: Challenges and opportunities. In
Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineer-
ing, FSE 2024, page 492–496, New York, NY, USA,
2024. Association for Computing Machinery. https:
//doi.org/10.1145/3663529.3663784.

[30] Jean Kaddour, Joshua Harris, Maximilian Mozes, Her-
bie Bradley, Roberta Raileanu, and Robert McHardy.
Challenges and Applications of Large Language Mod-
els. arXiv e-prints, page arXiv:2307.10169, July 2023.
arXiv:2307.10169, https://doi.org/10.48550/a
rXiv.2307.10169.

[31] Uday Kamath, Kevin Keenan, Garrett Somers, and Sarah
Sorenson. LLM Challenges and Solutions, pages 219–
274. Springer Nature Switzerland, Cham, 2024. https:
//doi.org/10.1007/978-3-031-65647-7_6.

[32] Hong Jin Kang, Truong Giang Nguyen, Bach Le, Co-
rina S. Păsăreanu, and David Lo. Test mimicry to
assess the exploitability of library vulnerabilities. In
Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA
2022, page 276–288, New York, NY, USA, 2022. As-
sociation for Computing Machinery. URL: https:
//doi.org/10.1145/3533767.3534398.

[33] Andrej Karpathy. Intro to LLMs, November 2023. Ac-
cessed: 2024-11-22. URL: https://drive.google.c
om/file/d/1pxx_ZI7O-Nwl7ZLNk5hI3WzAsTLwvNU7
/view.

[34] Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang,
and Renwei Zhang. Fuzz testing in practice: Obsta-
cles and solutions. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengi-
neering (SANER), pages 562–566, 2018. https://doi.
org/10.1109/SANER.2018.8330260.

[35] Stephan Lipp, Sebastian Banescu, and Alexander
Pretschner. An empirical study on the effectiveness
of static c code analyzers for vulnerability detection. In

16

https://doi.org/10.1007/978-3-642-36563-8_14
https://doi.org/10.1007/978-3-642-36563-8_14
https://www.sciencedirect.com/
https://arxiv.org/abs/2404.08144
https://arxiv.org/abs/2404.08144
http://arxiv.org/abs/2404.08144
https://arxiv.org/abs/2212.14052
https://arxiv.org/abs/2212.14052
http://arxiv.org/abs/2212.14052
https://arxiv.org/abs/2310.09810
http://arxiv.org/abs/2310.09810
http://arxiv.org/abs/2310.09810
https://doi.org/10.1145/3177746
https://scholar.google.com/
https://developers.google.com/machine-learning/resources/intro-llms
https://developers.google.com/machine-learning/resources/intro-llms
https://developers.google.com/machine-learning/resources/intro-llms
https://arxiv.org/abs/2408.16400
https://arxiv.org/abs/2408.16400
http://arxiv.org/abs/2408.16400
https://doi.org/10.36227/techrxiv.23589741.v1
https://doi.org/10.36227/techrxiv.23589741.v1
https://doi.org/10.1145/3428334
https://doi.org/10.1145/3428334
https://doi.org/10.1109/ICPC52881.2021.00046
https://doi.org/10.1109/ICPC52881.2021.00046
https://ieeexplore.ieee.org/Xplore/home.jsp
https://doi.org/10.1145/3663529.3663784
https://doi.org/10.1145/3663529.3663784
http://arxiv.org/abs/2307.10169
https://doi.org/10.48550/arXiv.2307.10169
https://doi.org/10.48550/arXiv.2307.10169
https://doi.org/10.1007/978-3-031-65647-7_6
https://doi.org/10.1007/978-3-031-65647-7_6
https://doi.org/10.1145/3533767.3534398
https://doi.org/10.1145/3533767.3534398
https://drive.google.com/file/d/1pxx_ZI7O-Nwl7ZLNk5hI3WzAsTLwvNU7/view
https://drive.google.com/file/d/1pxx_ZI7O-Nwl7ZLNk5hI3WzAsTLwvNU7/view
https://drive.google.com/file/d/1pxx_ZI7O-Nwl7ZLNk5hI3WzAsTLwvNU7/view
https://doi.org/10.1109/SANER.2018.8330260
https://doi.org/10.1109/SANER.2018.8330260


Journal of Systems Research (JSys) 2025

Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA
2022, page 544–555, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery. https://doi.org/
10.1145/3533767.3534380.

[36] Dongge Liu, Jonathan Metzman, Oliver Chang, and
Google Open Source Security Team. AI-powered
fuzzing: Breaking the bug hunting barrier, August 2023.
URL: https://security.googleblog.com/2023/0
8/ai-powered-fuzzing-breaking-bug-hunting.h
tml.

[37] Meta. The Llama 4 herd: The beginning of a new era
of natively multimodal ai innovation, April 2025. Ac-
cessed: 11.04.2025. URL: https://ai.meta.com/bl
og/llama-4-multimodal-intelligence/.

[38] OpenAI, 2024. Accessed: 2025-01-12. URL: https:
//chatgpt.com/.

[39] OWASP. Buffer overflow attack. Accessed: 2024-10-13.
URL: https://owasp.org/www-community/attac
ks/Buffer_overflow_attack.

[40] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak,
Samuel Arcadinho, Stella Biderman, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran
GV, Xuzheng He, Haowen Hou, Jiaju Lin, Przemys-
law Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej
Koptyra, Hayden Lau, Krishna Sri Ipsit Mantri, Fer-
dinand Mom, Atsushi Saito, Guangyu Song, Xiangru
Tang, Bolun Wang, Johan S. Wind, Stanislaw Woz-
niak, Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao,
Peng Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu.
RWKV: Reinventing RNNs for the transformer era,
2023. URL: https://arxiv.org/abs/2305.13048,
arXiv:2305.13048.

[41] Moumita Das Purba, Arpita Ghosh, Benjamin J. Rad-
ford, and Bill Chu. Software vulnerability detection
using large language models. In 2023 IEEE 34th Inter-
national Symposium on Software Reliability Engineer-
ing Workshops (ISSREW), pages 112–119, 2023. https:
//doi.org/10.1109/ISSREW60843.2023.00058.

[42] Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha,
Vinija Jain, Samrat Mondal, and Aman Chadha. A Sys-
tematic Survey of Prompt Engineering in Large Lan-
guage Models: Techniques and Applications. arXiv e-
prints, page arXiv:2402.07927, February 2024. arXiv:
2402.07927, https://doi.org/10.48550/arXiv.2
402.07927.

[43] Springer. Springer Nature Link. Accessed: 04.08.2025.
URL: https://link.springer.com/.

[44] Cole Stryker and Ivan Belcic. What is parameter-
efficient fine-tuning (PEFT)?, August 2024. Accessed:
2025-01-12. URL: https://www.ibm.com/think/to
pics/parameter-efficient-fine-tuning.

[45] Karl Tamberg and Hayretdin Bahsi. Harnessing large
language models for software vulnerability detection:
A comprehensive benchmarking study. IEEE Access,
13:29698–29717, 2025. https://doi.org/10.1109/
ACCESS.2025.3541146.

[46] Elwin Tamminga. Utilizing Large Language Models for
Fuzzing: A Novel Deep Learning Approach to Seed Gen-
eration. Master’s thesis, Radboud University, Faculty of
Science, November 2023. URL: https://www.cs.ru.
nl/masters-theses/2023/E_Tamminga___Utiliz
ing_large_language_models_for_fuzzing.pdf.

[47] Ran Tian, Shashi Narayan, Thibault Sellam, and Ankur P.
Parikh. Sticking to the facts: Confident decoding for
faithful data-to-text generation, 2020. URL: https:
//arxiv.org/abs/1910.08684, arXiv:1910.08684.

[48] Bert van Wee and David Banister. Literature review
papers: the search and selection process. Journal of
Decision Systems, 33(4):559–565, April 2023. URL:
"https://doi.org/10.1080/12460125.2023.2197
703", arXiv:https://doi.org/10.1080/12460125
.2023.2197703, https://doi.org/10.1080/124601
25.2023.2197703.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need, 2023.
URL: https://arxiv.org/abs/1706.03762, arXiv:
1706.03762.

[50] Dagang Wei. Demystifying scaling laws in large lan-
guage models, May 2024. Accessed: 2025-01-12. URL:
https://medium.com/@weidagang/demystifying
-scaling-laws-in-large-language-models-14c
af8ac6f80.

[51] Wiley. Wiley Online Library. Accessed: 13.09.2025.
URL: https://onlinelibrary.wiley.com/.

[52] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian,
Michael Pradel, and Lingming Zhang. Fuzz4All: Univer-
sal fuzzing with large language models, 2024. Accessed:
2024-11-01. URL: https://arxiv.org/abs/2308.0
4748, arXiv:2308.04748.

[53] Yijun Xiao and William Yang Wang. On hallucination
and predictive uncertainty in conditional language gen-
eration, 2021. URL: https://arxiv.org/abs/2103
.15025, arXiv:2103.15025.

17

https://doi.org/10.1145/3533767.3534380
https://doi.org/10.1145/3533767.3534380
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://chatgpt.com/
https://chatgpt.com/
https://owasp.org/www-community/attacks/Buffer_overflow_attack
https://owasp.org/www-community/attacks/Buffer_overflow_attack
https://arxiv.org/abs/2305.13048
http://arxiv.org/abs/2305.13048
https://doi.org/10.1109/ISSREW60843.2023.00058
https://doi.org/10.1109/ISSREW60843.2023.00058
http://arxiv.org/abs/2402.07927
http://arxiv.org/abs/2402.07927
https://doi.org/10.48550/arXiv.2402.07927
https://doi.org/10.48550/arXiv.2402.07927
https://link.springer.com/
https://www.ibm.com/think/topics/parameter-efficient-fine-tuning
https://www.ibm.com/think/topics/parameter-efficient-fine-tuning
https://doi.org/10.1109/ACCESS.2025.3541146
https://doi.org/10.1109/ACCESS.2025.3541146
https://www.cs.ru.nl/masters-theses/2023/E_Tamminga___Utilizing_large_language_models_for_fuzzing.pdf
https://www.cs.ru.nl/masters-theses/2023/E_Tamminga___Utilizing_large_language_models_for_fuzzing.pdf
https://www.cs.ru.nl/masters-theses/2023/E_Tamminga___Utilizing_large_language_models_for_fuzzing.pdf
https://arxiv.org/abs/1910.08684
https://arxiv.org/abs/1910.08684
http://arxiv.org/abs/1910.08684
"https://doi.org/10.1080/12460125.2023.2197703"
"https://doi.org/10.1080/12460125.2023.2197703"
http://arxiv.org/abs/https://doi.org/10.1080/12460125.2023.2197703
http://arxiv.org/abs/https://doi.org/10.1080/12460125.2023.2197703
https://doi.org/10.1080/12460125.2023.2197703
https://doi.org/10.1080/12460125.2023.2197703
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://medium.com/@weidagang/demystifying-scaling-laws-in-large-language-models-14caf8ac6f80
https://medium.com/@weidagang/demystifying-scaling-laws-in-large-language-models-14caf8ac6f80
https://medium.com/@weidagang/demystifying-scaling-laws-in-large-language-models-14caf8ac6f80
https://onlinelibrary.wiley.com/
https://arxiv.org/abs/2308.04748
https://arxiv.org/abs/2308.04748
http://arxiv.org/abs/2308.04748
https://arxiv.org/abs/2103.15025
https://arxiv.org/abs/2103.15025
http://arxiv.org/abs/2103.15025


Journal of Systems Research (JSys) 2025

[54] Xin Yin, Chao Ni, and Shaohua Wang. Multitask-based
evaluation of open-source LLM on software vulnera-
bility. IEEE Transactions on Software Engineering,
50(11):3071–3087, 2024. https://doi.org/10.110
9/TSE.2024.3470333.

[55] Jiaxin Yu, Peng Liang, Yujia Fu, Amjed Tahir, Mojtaba
Shahin, Chong Wang, and Yangxiao Cai. An insight into
security code review with LLMs: Capabilities, obstacles
and influential factors, 2024. URL: https://arxiv.or
g/abs/2401.16310, arXiv:2401.16310.

[56] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon
Fraser, and Christian Holler. The Fuzzing Book. CISPA
Helmholtz Center for Information Security, 2024. Ac-
cessed: 2025-01-16. URL: https://www.fuzzingboo
k.org/.

[57] Cen Zhang, Xingwei Lin, Yuekang Li, Yinxing Xue,
Jundong Xie, Hongxu Chen, Xinlei Ying, Jiashui Wang,
and Yang Liu. APICraft: Fuzz driver generation for
closed-source SDK libraries. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2811–2828.
USENIX Association, August 2021. URL: https://
www.usenix.org/conference/usenixsecurity21
/presentation/zhang-cen.

[58] Cen Zhang, Yaowen Zheng, Mingqiang Bai, Yeting
Li, Wei Ma, Xiaofei Xie, Yuekang Li, Limin Sun, and

Yang Liu. How effective are they? exploring large
language model based fuzz driver generation. In Pro-
ceedings of the 33rd ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, ISSTA ’24,
page 1223–1235. ACM, September 2024. https:
//doi.org/10.1145/3650212.3680355.

[59] Hongxiang Zhang, Yuyang Rong, Yifeng He, and Hao
Chen. Llamafuzz: Large language model enhanced
greybox fuzzing, 2024. URL: https://arxiv.org/ab
s/2406.07714, arXiv:2406.07714.

[60] Ying Zhang, Wenjia Song, Zhengjie Ji, Danfeng, Yao,
and Na Meng. How well does LLM generate security
tests? arXiv e-prints, page arXiv:2310.00710, October
2023. arXiv:2310.00710, https://doi.org/10.4
8550/arXiv.2310.00710.

[61] Zhuotong Zhou, Yongzhuo Yang, Susheng Wu, Yiheng
Huang, Bihuan Chen, and Xin Peng. Magneto: A
step-wise approach to exploit vulnerabilities in depen-
dent libraries via LLM-empowered directed fuzzing.
In Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering, ASE
’24, page 1633–1644, New York, NY, USA, 2024. As-
sociation for Computing Machinery. URL: https:
//doi.org/10.1145/3691620.3695531.

18

https://doi.org/10.1109/TSE.2024.3470333
https://doi.org/10.1109/TSE.2024.3470333
https://arxiv.org/abs/2401.16310
https://arxiv.org/abs/2401.16310
http://arxiv.org/abs/2401.16310
https://www.fuzzingbook.org/
https://www.fuzzingbook.org/
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-cen
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-cen
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-cen
https://doi.org/10.1145/3650212.3680355
https://doi.org/10.1145/3650212.3680355
https://arxiv.org/abs/2406.07714
https://arxiv.org/abs/2406.07714
http://arxiv.org/abs/2406.07714
http://arxiv.org/abs/2310.00710
https://doi.org/10.48550/arXiv.2310.00710
https://doi.org/10.48550/arXiv.2310.00710
https://doi.org/10.1145/3691620.3695531
https://doi.org/10.1145/3691620.3695531

	Introduction
	Methodology
	Large Language Models (LLMs)
	Automated static code vulnerability detection
	Adapting LLMs for code vulnerability detection
	Results
	Comparison with traditional tools

	Fuzz testing
	Input generation with LLM fuzzers
	Seed generation with LLM
	Mutation-based fuzzer with LLM
	Greybox fuzzing with LLM

	Fuzz driver generation

	Exploit generation for software testing with LLM
	Research approaches
	Performance comparison

	LLM challenges and future outlook
	High False-Positive Rate (FPR)
	Outdated data
	LLM training
	Limited context length understanding

	Discussion
	RQ1: What are practical use cases for LLMs in security code review and testing, and how do they perform against traditional tools?
	Code vulnerability detection
	Fuzz testing
	Exploit generation

	RQ2: What is the impact of LLM itself on the performance of proposed solutions?
	RQ3: What are the current approaches for improving the performance of LLM-based solutions in our use cases?
	Prompt engineering
	Fine-tuning
	Tool creation

	RQ4: What are the current challenges, and what are the prospects for LLMs in security code review and testing?
	Code vulnerability detection
	Fuzz testing
	Exploit generation


	Conclusion

