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Reply to Reviewers’ Comments

We would like to express our sincere gratitude to the editor and reviewers for their valuable
comments and thorough insights. We have made changes in the paper based on the suggestions
of the reviewers. We believe that the revised version addresses the concerns of the reviewers,
and the quality and presentation of our paper have improved significantly.

To simplify the identification of the reviews, we’ve established the following colour-coding
scheme:

• Reviewer 1 (qTtP) = cyan

• Reviewer 2 (PBsR) = teal

• Reviewer 3 (9e7b) = orange

We have also made improvements throughout the document. These mainly include gram-
matical changes and improvements to readability. As there were many changes in Section 7, we
have marked bigger changes in red to ensure visibility.

We structured this response letter to firstly address the main comments from all reviewers.
Afterwards, we go into the specific comments by restating the reviewers’ comments and then
present our responses for each of them.
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1 All reviewers

1.1 Methodology

We restructured the entire Section 2 (Methodology) to provide a more detailed view of how
we selected the papers. We added a complete list of the search strings, the used search databases
and a visualisation of the paper selection process. Moreover, Table 1 was remodelled to give
additional insights by making the chosen LLMs better comparable and by providing a summary
of techniques. With these changes, we hope that we have addressed the feedback correctly and
that our methodology is now clearly explained.

1.2 Alignment to a SoK

To address the feedback for a better alignment with a SoK, we remodelled Section 8 (Discus-
sion). It now includes a more cohesive discussion about the di!erent topics in connection with
the research questions. Also, we made our opinions, conclusions and key takeaways clearer. The
same applies to Section 9 (Conclusion), in which we now also describe our main points from the
discussion.

The structure of our paper remains the same. We think that by providing a more neutral
reporting in the previous sections and a more detailed discussion in Section 8, the di!erence
between the research results and our drawn conclusions is more visible to the reader.

Overall, large parts of Sections 8 and 9 were modified to address this comment.

2 Reviewer 1 (qTtP)

2.1 Comment 1

Comment: Another concern with the presented paper is the methodology used to compare results.
As an example, in relation to Figure 3 data from Purba et al. as well as Tamberg and Bahsi is
compared. While the paper explains how the di!ering results may have been achieved, it makes
no e!ort to explain weather this comparison makes sense, i.e. are they testing the same code?
Are the models provided with the same context? An improvement could be made by already
discussing these concerns in the paper.
Response: This point was not covered in our first submission, and we agree that it is important
to talk about. We thus dedicated a paragraph in Section 2 to this comment.

A practical challenge remains in comparing the selected papers as a single group. The
foundation of the relevant research outcomes di!ers fundamentally. Often, di!erent
LLMs, testing datasets, techniques, and approaches are used, making a direct link
between those selected papers di"cult. However, we are interested in their outcomes
and key findings. Having a broader view of the performance results of the di!erent
papers makes it possible to draw conclusions about the current state of the research
and what challenges the research is facing. We thus cannot provide a direct compar-
ison between the papers, but we can provide a high-level comparison by analysing
the outcomes of the individual papers together.

2.2 Comment 2

Comment: Section 2 states the goal to allow readers to make comparisons over used LLMs. This
does not appear again as an item in the discussion or conclusion, where only general advice is
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given without references to specific LLMs. A short paragraph could be added explaining what
the results of this comparison are, maybe tying in with the conclusions suggested above.
Response: We have now dedicated Section 8.2 (RQ2: What is the impact of the LLM on the
performance?) for this feedback. However, like in the previous comment, a direct recommen-
dation from our side for specific LLMs is di"cult to make. Again, this is mainly because of
the non-uniform benchmarking processes in the research papers. However, we could identify
common patterns which can lead to better-performing LLMs and are discussing those points in
the mentioned section.

2.3 Comment 3

Comment: A final concern is the long-term value of the provided paper. Given the fast-moving
research in AI, how long until the results are outdated? The paper acknowledges this problem
in the related work section as its own criteria to omit older papers, but what about the reviewed
paper itself? Maybe a short paragraph explaining potential risks could be an improvement.
Response: We added a paragraph in Section 1 describing why we think that our paper has long-
term value. While we also think that the measurements will be outdated as soon as a new
version of LLMs is introduced, we think that key concepts will still be needed to improve the
performance of LLMs.

The research in this field is progressing rapidly. Each new version of an LLM can
bring improvements in performance. This makes it particularly challenging to pro-
vide long-term value within this paper, since the current measurements are already
outdated with the next iteration. However, we think that the currently used tech-
niques and application areas will continue to exist in the same or a similar form. In
other words, the identified research vectors will be valuable in the future, as well.
Therefore, well-functioning concepts should continue to be used in the future to ob-
tain better results from LLMs. Also, circumventing the technical limitations will
still be valid for some time. In light of these points, we believe that this paper will
provide long-term value for the research community as well as practitioners in the
industry.

2.4 Comment 4

Comment: The introduction mentions some common security vulnerabilities like Log4j. These
examples are never brought up again. Is there evidence that LLM-based tools could have helped
in these cases?
Response: This introduction aimed to highlight the importance of software security by showing
some examples from the past. Eventually, we are not able to answer this question and cannot
state whether LLMs in their current form would have been able to identify vulnerabilities with
this level of complexity. For the revised version, we decided to exclude those examples to reduce
exaggeration.

2.5 Comment 5

Comment: In Tamberg and Bahsi the conclusion suggests that LLMs outperform traditional
tools, yet your key takeaways state that traditional tools - had an overall better performance. Is
there an explanation for this disparity?
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Response: We think that our conclusion does not contradict the conclusion from Tamberg and
Bahsi. However, the focus of our conclusion was more on the practical application of those tools.
While LLMs achieve better scores in the usual metrics, a key disadvantage is the production
of higher false positive rates, which means additional work for developers. Thus, we decided to
stick with our conclusion but to include a paragraph in Section 4.1.3 giving more information on
our view.

Overall, one can say that traditional tools focus on keeping the false positives low by
compromising on false negatives. However, this approach allows developers to focus
on relevant findings without losing time on false positives. In contrast, LLMs are
finding more true positives but with more false positives, handing over the task to
developers to filter them out.

2.6 Comment 6

Comment: "Eventually, it will maybe find an exploit.“ The wording here is unusual.
Response: We changed the wording.

With this approach, the function may be able to find a vulnerability [61].

2.7 Comment 7

Comment: Some of the spacing for the vertical headers in tables looks o!. Some headlines are
too close to the table borders. This appears in both Table 1 and Table 2, i.e. “Topic” in Table 1.
Response: The tables mentioned in the comment were changed or removed to comply with this
and other feedback. The style of the tables should now be correct.

3 Reviewer 2 (PBsR)

3.1 Comment 1

Comment: The authors did do a literature search on Google Scholar and some indexes provided
by ACM, IEEE, and Springer, as described on page three. I would argue that this can be used
to identify candidate papers, but should be complemented with a search by recent PCs and
augmented by citation data.
Response: We checked other sources and also included sources from pre-publishing venues like
arXiv. Regarding the citation score, reputation, etc., we added an explanation in Section 2,
explaining how we handled those metrics.

We also looked at the reputation and citation score. However, since the topics all
revolve around fast-moving research, we were willing to be accommodating in this
aspect. This was particularly true when we could not find works with similar scope.

3.2 Comment 2

Comment: On page six, Section 5.1 uses a non-standard classification of fuzzing systems. The
third item (greybox fuzzing) suggests the use of:

• blackbox

• whitebox
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• graybox fuzzers. The second "category", however, is "mutation-based fuzzers", which is
orthogonal to the blackbox/whitebox/graybox classification scheme. More of a systematic
approach could be used, maybe even with an illustration where an LLM is used by related
work (and, similarly, where LLMs are not yet used in fuzzing.)

Response: To be more aligned with the terms used, we adhered to the literature and revised
the introductory section of Section 5.1 by adding a table discussing all classification types for a
fuzzer. Additionally, we classified the research papers according to the table. However, we think
that the remaining structure should be left since it represents the focus points of the researchers.

A fuzzer can be viewed as a generator which creates random inputs [56]. Since the
underlying implementation of the generator can vary a lot, di!erent types of fuzzers
exist in practice. In the work of Beaman et al. [7], a definition for the various types
was created, depending on how advanced the fuzzer is. A fuzzer is mainly categorised
by the knowledge it has about the function and the system under test, and also by
how it generates the input and how it reaches the testing coverage. In Table 3, we give
an overview of the di!erent classification types and a short description based on the
definitions from Beaman et al. [7]. Additionally, the table contains a categorisation
of the fuzzing-related research we cover in this work.

3.3 Comment 3

Comment: Unidiomatic word choice:

• multifarious is literally the first time I have ever read this word.

• systemised is shown as a spelling error in all tools I checked, use systematized.

• exploitables is shown as a spelling error in all tools I checked, use exploits.

• futuristic approaches has the strong connotation of imagined things, i.e., derived from
science-fiction. Such a meaning is clearly not intended, and should thus be called "recent",
"modern", or "state-of-the-art".

Response: We changed the wording as follows:

• multifarious = various

• systemised = systematized

• exploitables = exploits

• futuristic = modern

3.4 Comment 4

Comment: Stylistic issues:

1. xz should be lower case and set using a teletype font.

2. Tables should use a booktabs layout.

3. The accepted phrasing of "related work" is not "related works", but "related work". (cf.
Merriam-Webster’s dictionary, or Oxford Learner’s Dictionary).
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4. Figures 2 and 6 should be made larger to simpler discern their contents. They also seem
to be screenshots with ChatGPT prompts, so a representation w/o ChatGPT and using a
listing style to separate the generic prompt template from the instantiated prompt would
help readers.

5. Captions are proper grammatical units and thus should end in a "." period.

Response:

1. We changed the introduction part. Thus, we do not name xz anymore. We discuss this
change in Section 2.4.

2. For Table 2, which is newly introduced in this revision, we used a booktabs layout. The
table Section 8 is now integrated as text, and thus the table was removed. For Table 1, we
decided to use a di!erent style to keep a higher readability.

3. We changed the wording to "related work".

4. The figures should represent examples, to give a better understanding of how a prompt as
well as an answer could look. We changed the styling to make it better readable, but also
to suit our other graphics.

5. We added a period in the captions.

3.5 Comment 5

Comment: Page 3, left column, itemization item 3: Please simplify this sentence to make it easier
for readers.
Response: We restructured Section 2 completly. Thus, the wording is now di!erent.

4 Reviewer 3 (9e7b)

4.1 Comment 1

Comment: The introduction states that software security is a new research field for LLMs. I
disagree with this claim, as security researchers have been exploring the use of LLMs for some
time, much like in the field of software engineering. I suggest rephrasing this statement to avoid
overstating the novelty.
Response: We changed the corresponding part to reduce the overstating.

Since the upcoming of LLMs, interest has risen in using them to help developers
achieve secure software.

4.2 Comment 2

Comment: The title of Section 4 refers to "Static" code vulnerability detection, but the content
of the section does not specifically focus on static analysis for identifying vulnerabilities. Instead,
it discusses automated techniques more broadly, some of which may fall under dynamic analysis.
Response: In the context of this paper, the word “static" should refer to the approach used for
code vulnerability detection. Since all of the considered research is focusing on non-running code,
we decided to specify this in the title. However, we never introduced this definition properly.
Thus, we added a paragraph in Section 4 addressing this issue:
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There are two di!erent types of automated tools. The static approach (Static Ap-
plication Security Testing, SAST in short) is applied to the source code, while the
dynamic approach (Dynamic Application Security Testing, DAST in short) is ap-
plied to the compiled and running application [11]. In this section, we will focus on
techniques for static code vulnerability detection.

4.3 Comment 3

Comment: The LLM acronym is introduced multiple times in the paper.
Response: We limited the introduction of the acronym to only two occurrences.

4.4 Comment 4

Comment: Can you elaborate on your paper selection and filtering strategy?
Response: The methodology part was completely restructured and added with additional content.
We think that Section 2 now suits the feedback we received.

4.5 Comment 5

Comment: What key insights or takeaways should readers gain?
Response: The discussion section was extended by additional insights and conclusions. Thus,
Section 8 should now comply with the feedback.
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Abstract
In this paper, we present and discuss practical applications
of Large Language Models (LLMs) in software security, con-
cretely in code vulnerability detection, fuzz testing and exploit
generation. Measurements of various research outcomes are
analysed to answer questions about the performance of LLM
in those fields, including a comparison with tools following
traditional approaches. In addition, the drawbacks and a future
overlook with a delineation of technical challenges are given.
Challenges are found in the cost- and time-intensive training
of LLM, the limited context-length understanding of program
code, the high false positive rate because of hallucinations,
and keeping the data up-to-date so that definitions of newly
detected vulnerabilities are contained.

1 Introduction

Secure software development is an important topic, as vul-
nerabilities can impair applications and services, which have
become the foundational pillars of our daily lives. Moreover,
many critical services are based on software-intensive infras-
tructure where confidentiality, integrity, and availability, i.e.
CIA triad, are key requirements. Therefore, software secu-
rity is an omnipresent concern that can lead to incidents and
breaches when done improperly.

Software development goes through different phases un-
til the finished product is established. On top of that, every
phase has different security aspects that need to be consid-
ered. Various methodologies provide a structured approach to
secure software development. For instance, the SecDevOps
lifecycle gives an overview of security topics that should be
checked during the development and the operation of soft-
ware [13]. Similarly, the Secure Software Development Life-
cycle (SSDLC) also targets security but with a focus on soft-
ware development [14]. Eventually, all these methodologies
and frameworks entail some common traits: Efficient and
diligent vulnerability detection and testing are crucial.

Since the emergence of LLMs, interest has risen in using
them to help developers achieve secure software. The focus
of interest for LLMs comes from its architecture, which was
first introduced in 2017 by Vaswani et al. [49], in the current
form. The architecture, consisting of an encoder and decoder,
uses a so-called attention mechanism, allowing the LLM to
focus on relevant input sequences. As for training, enormous

datasets are used, covering many different topics. The aim
is to create foundation models, which can be used in various
ways [3]. For example, LLMs are already used on different
topics, ranging from medicine to education, and also in soft-
ware engineering [25], while software security represents a
new research field.

In this paper, we provide a systematized description of
LLM’s role in software security, namely for security code
review and testing. We present a high-level introduction to
LLMs, including a technical description, a definition of the
terminologies used, and LLM training methods (Section 3).
The focus relies on secure implementation and security test-
ing of software. Firstly, we elaborate on automated static code
vulnerability detection in Section 4. It is an ideal entry point
for a first security check before merging the code with the
codebase in software development. Another technique for
finding vulnerabilities is fuzz testing (Section 5). Here, we
focus on the creation and mutation of fuzzer input while also
including the generation of fuzz driver as a second subtopic.
In Section 6, we also want to show how these detected vulner-
abilities can be converted to exploits by using an LLM as an
automated exploit generator. Lastly, we discuss our findings
per our research questions, delineate the challenges of imple-
menting LLM approaches in this domain, and give an outlook
on what future developments could look like (Section 7).

Research questions - We build our systemisation of knowl-
edge for our scope around the following research questions
in this work:

1 What are practical use cases for LLMs in security
code review and testing, and how do they perform against
traditional tools?

2 What is the impact of the LLM on the performance?

3 What do current approaches look like?

4 What are the current challenges and what are the
prospects for LLMs in security code review and testing?

2 Methodology

In this paper, we focus on technical works that utilise LLMs
in software security. We defined a process to search for and se-
lect suitable research papers and outlined the criteria by using
the proposal of van Wee and Banister [48] as an inspiration

1
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C Cheshkov et
al. [10] in 2023

Cheshkov et al. created a performance comparison using GPT models from
OpenAI in code vulnerability detection by categorising the vulnerability
with a binary and multi-label classification approach.

x x x x

C,
E

Fu et al. [20] in
2023

Here, the whole lifecycle was considered. This includes tasks like vulnera-
bility detection and its classification, a risk assessment and a proposal on
how to mitigate the security risk.

x x x x x

C Guo et al. [24]
in 2024

Different LLMs with varying training backgrounds were chosen to conduct
a comparison in a binary classification task. Six LLMs are especially trained
for vulnerability detection, while the other six LLMs were only fine-tuned
or taken as is without special training.

x x x x x x x

C Purba et al. [41]
in 2023

They compared different LLMs and traditional tools by using two different
datasets to see whether the vulnerability is detected or not.

x x x x x x

C Tamberg and
Bahsi [45] in
2025

Tamberg and Bahsi analysed the use of LLMs in code vulnerability detection
by testing different prompt strategies and comparing the results with the
performance of traditional tools.

x x x x

C Yin et al. [54] in
2024

Yin et al. not only considered the vulnerability task, but they also researched
how capable LLMs are when it comes to detection, risk assessment, location
and reporting of the vulnerability.

x x x x x x

C Yu et al. [55] in
2024

Yu et al. applied five different prompts and evaluated which of them led to
the best performance, also in comparison to traditional tools.

x x x x x

F Black et al. [8]
in 2024

They analysed the effectiveness of LLM in seed generation in combination
with the existing fuzzer Atheris, especially for the programming language
Python.

x x x x

F Tamminga [46]
in 2023

Tamminga focused on an approach for using an LLM as a seed generator
in combination with traditional fuzzers like AFL++ and libFuzzer. While
focusing on the programming language Go, a priority was placed on inter-
operability between different programming languages.

x x x x x x

F Xia et al. [52] in
2024

Xia et al. show a practical implementation for a mutation-based fuzzer,
which is called Fuzz4All.

x x x x

F Zhang et al. [59]
in 2024

They created a tool, called LLAMAFUZZ, which can be used to enhance
greybox fuzzing.

x x x x x

F Zhang et al. [58]
in 2024

Zhang et al. are showing how an LLM can be used in fuzz driver creation. x x x x x

E Fang et al. [18]
in 2024

The focus is on exploit generation for one-day vulnerabilities, using LLMs. x x x x x

E Zhang et al. [60]
in 2023

The topic is about exploit generation by using an LLM. It focuses on the
use case of dependency vulnerability alerts and the diminishing of false
positives. The result is then compared with traditional tools.

x x x

E Zhou et al. [61]
in 2024

Zhou et al. present a tool called Magneto, which uses fuzzing techniques to
exploit unpatched vulnerabilities from third-party dependencies.

x x x x

O Jiang et al. [29]
in 2024

Here, the challenges as well as recommendations are considered. They focus
on research done in LLM-based fuzzing.

O Kaddour et
al. [30] in 2023

Kaddour et al. give a general overview of current challenges when applying
LLMs in practical fields.

Table 1: Overview of the related work.
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for our methodology. Our focus topics are “code vulnerability
detection (C)”, “fuzz testing (F)” and “exploit generation (E)”.
To ensure readability, we will use the abbreviations defined
in the brackets.

In the first step, we defined search keywords to use within
the databases. A complete list of the used keywords can be
found in Table 2, which depicts the topic and the correspond-
ing search terms. The search terms are primarily structured
based on the topic, including the keyword “LLM”.

Topic Search String

C ChatGPT for Code Vulnerability Detection

C LLM for Code Vulnerability Detection

C LLM for Software Vulnerability Detection

C LLM for Security Code Review

F LLM in Fuzz Testing

F LLM in Fuzz Driver Generation

F LLM for Seed Generation in Fuzzing

E Exploit Generation with LLM in Software Develop-
ment

Table 2: Search terms.

Secondly, we applied those keywords to academic publish-
ing venues and meta-search engines to find relevant papers.
Concretely, we used the following databases:

• ACM [1]
• arXiv [5]
• Elsevier [17]
• Google Scholar [22]
• IEEE [28]
• Springer [43]
• Wiley [51]
Lastly, we applied our selection process, presented in Fig-

ure 1. We started by making a short metadata review. We
also looked at the reputation and citation score. However,
since the topics all revolve around fast-moving research, we
were willing to be accommodating in this aspect. This was
particularly true when we could not find works with simi-
lar scope. Afterwards, we checked important text passages
like the abstract, discussion and conclusion for a first assess-
ment of the topic coverage. In this step, we made sure that
the content of the paper was aligned with our research ques-
tions and that the LLM was a main component. The next step
was skimming over the paper. Since we were interested in
practical examples, we excluded papers with only theoreti-
cal coverage. Additionally, we wanted to make sure that the
papers contained valuable insights for us, especially by cover-
ing benchmarks and comparisons with traditional tools. In a

detailed look, we paid attention to the LLM techniques used
and also excluded duplicates or papers covering similar topics
without additional insights. Lastly, we performed snowballing
by analysing the references used by the papers to identify
potential new candidate papers.

Figure 1: Paper selection process (adapted from [48]).

In addition, survey papers were examined to gain an
overview of current works and the technical domain. The
listed papers were also post-filtered manually to avoid any
duplication, misselection, and quality issues. At the end, 17
papers were selected. Please note that our work is not an ex-
haustive literature survey paper but a Systemisation of Knowl-
edge (SoK) paper presenting a concise and structured analysis
of a focused scope. Ultimately, the scope includes LLMs for
code vulnerability detection and testing, including fuzzing
and exploit generation. A practical challenge remains in com-
paring the selected papers as a single group. The foundation of
the relevant research outcomes differs fundamentally. Often,
different LLMs, testing datasets, techniques, and approaches
are used, making a direct link between those selected papers
difficult. However, we are interested in their outcomes and key
findings. Having a broader view of the performance results
of the different papers makes it possible to draw conclusions
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about the current state of the research and what challenges
the research is facing. We thus cannot provide a direct com-
parison between the papers, but we can provide a high-level
comparison by analysing the outcomes of the individual pa-
pers together.

In Table 1, an outline of those surveyed papers is given. We
categorised them into the three aforementioned categories and
the additional topic “challenges and future outlook (O)". The
final category was facilitated to provide a discussion on poten-
tial future technical research and development directions. The
table consists of metadata information like author, year and a
short description. Further, an overview is provided about the
used LLMs in those works as well as the applied techniques,
as listed below:

• Tuning: The paper includes fine-tuning mechanisms.
• Prompt: The paper applies prompt engineering tech-

niques.
• Tool: The paper introduces a tool for a specific task with

an advanced architecture, in which the LLM plays a
significant role.

• Dataset: The paper creates or introduces a dataset that
can be used for training or testing.

The research in this field is progressing rapidly. Each new
version of an LLM can bring improvements in performance.
This makes it particularly challenging to provide long-term
value within this paper, since the current measurements are
already outdated with the next iteration. However, we think
that the currently used techniques and application areas will
continue to exist in the same or a similar form. In other words,
the identified research vectors will be valuable in the future, as
well. Therefore, well-functioning concepts should continue to
be used in the future to obtain better results from LLMs. Also,
circumventing the technical limitations will still be valid for
some time. In light of these points, we believe that this paper
will provide long-term value for the research community as
well as practitioners in the industry.

3 Large Language Models (LLMs)

The task of a language model is to predict and generate
language. To do that, the likelihood of the next upcoming
word needs to be calculated [2]. To illustrate, if we consider
the sentence “I need an umbrella because it is ...” the next
best-guessed word could be “raining”. There are different ap-
proaches and concepts for constructing a language model [2].
In the beginning, statistical language models were used, which
are based on calculations made on text-containing datasets.
One implementation is the n-gram language model, which
predicts the next word based on the previous n-1 words [2, 3].
After the introduction and the rise in popularity of neural
networks, the underlying technology in language models
changed. With a neural network, one could improve its param-
eters to get optimised outputs by applying training methods
using training datasets [2, 3].

A step forward was achieved with the transformer archi-
tecture, which was introduced in 2017 by Vaswani et al. [49].
This architecture, which is based on a deep neural network,
enabled the creation of LLMs [2]. The name affix “large”
comes from the count of parameters or the size of the used
training dataset [23]. For example, Llama 2 has 70 billion
parameters and used 10 TB of text for training, according to
Karpathy [33]. The architecture builds on a so-called atten-
tion mechanism, which uses weights to distinguish the vital
parts from the input [2]. It consists of an encoder and decoder,
but some approaches use only one of the two parts [3]. The
encoder processes the input and tries to understand it by de-
picting it in a suitable format. The decoder, on the other hand,
is responsible for generating the result by taking the encoder’s
output as input [3].

In Figure 2, the LLM architecture, as well as the training
steps before it can be used by a user, are visualised. The initial
training of an LLM is called pre-training, and it is cost- and
time-intensive [33]. The reason relies on the training process
itself, which requires the gathering of a lot of information
and the calculation of the parameters. For example, Llama 4
Maverick [37] has a total of 400 billion parameters, while
DeepSeek-V3 [15] has a total of 671 billion parameters. For
this reason, pre-trained, foundation LLMs are used as a base
and, if needed, adjusted via fine-tuning [3].

The fine-tuning process starts with the gathering of labelled
datasets. This training data usually contains examples similar
to the data used for the classification task in production. In
the next step, the labelled training data is used to fine-tune the
model. As a result, an adjusted model is obtained. Fine-tuning
is an iterative process. As soon as the productive model is
rolled out, logs should be gathered to correct anomalies by
applying the described process again [33].

Another adjustment technique is prompt engineering. It
focuses on the input, which gets passed to the LLM. Vari-
ous patterns can be used so that the LLM generates output
within the boundaries given by the patterns. Sahoo et al. [42]
created a survey, describing common prompt patterns. Creat-
ing prompts without further refinements is called zero-shot
prompting. In few-shot prompting, examples are included,
intending to give the LLM a clearer instruction. A different
approach is the so-called chain-of-thought prompting. Here,
the LLM is guided on how to calculate the result, such that it
shows its calculation steps. Auxiliary, many other abbrevia-
tions exist using similar ideas [42].

4 Automated static code vulnerability detec-
tion

Code review is a technique used in software development,
where the code gets reviewed by a second person before it is
merged into the productive codebase [6]. There are different
reasons to conduct code reviews, some of which are shown in
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Figure 2: Architecture of LLMs and training methods (adapted from [3, 49]).

the study of Bacchelli and Bird [6]. In their survey, they show
that the motivation for doing code reviews is to increase the
overall code quality level of the codebase, find and eliminate
bugs to reduce the error ratio and for know-how transfer. In
this section, we will focus on security code review, which is
a subcategory of error finding by aiming to detect and find
security flaws in software [16].

Although there are benefits in conducting code reviews,
they are not always carried out due to various factors. Code-
grip [12] and Ghanbari et al. [21] have addressed the question
of why code reviews are neglected. Both came up with simi-
lar reasons. One reason was the increased workload and time
costs for carrying out a code review. A company might tend
to leave out code reviews to reach certain aims and to in-
crease the output. Another reason mentioned by both was
motivation. The software development team could simply
be disinterested in applying code reviews because of a lack
of interest, not understanding the benefits, or having a false
sense of risk [12,21]. An additional reason given by Ghanbari
et al. [21] was the technical complexity of the project envi-
ronment, leading sometimes to negligence in applying code
quality improvements. Bacchelli and Bird [6] supplement
the list by adding the understanding of code changes to the
challenges. In their interviews with software developers, they
found out that the major challenge lies in understanding why
the code change was made and what influence the change has

on the functionality of the software.
Another aspect is the way code reviews are conducted.

There are two types: manual and automatic code reviews [12,
16]. Although most companies favour manual code re-
views [12], this is considered liable to errors, which is shown
by the study of Edmundson et al. [16]. They measured the
effectiveness of code vulnerability detection in manual secu-
rity code reviews by interviewing software developers. On
average, a software developer could find about a third of the
known vulnerabilities. While this speaks in favour of using
automated tools, just 27% of the surveyed companies in [12]
are regularly using an automated code review tool. The reason
lies in the missing know-how against such tools [12].

Because of those hindrances, new approaches are inves-
tigated to automate this process by using general-purpose
LLMs. The benefit comes from the transformer architecture,
which is trained on general data and therefore makes the LLM
suitable for different tasks, with one of them being vulner-
ability detection in software [41]. There are two different
types of automated tools. The static approach (Static Applica-
tion Security Testing, SAST in short) is applied to the source
code, while the dynamic approach (Dynamic Application Se-
curity Testing, DAST in short) is applied to the compiled and
running application [11]. In this section, we will focus on
techniques for static code vulnerability detection.

In Figure 3, an example is shown by using ChatGPT-4 [38]
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Figure 3: Interaction with ChatGPT giving the task to detect
code vulnerabilities (adapted from [38, 39, 41]).

and a code example from OWASP [39]. The code example
contains a buffer overflow vulnerability. In such a case, the ap-
plication’s memory is overwritten by exceeding the assigned
memory, thereby causing unpredictable behaviour in the appli-
cation [39]. The faulty line is the call to the method gets(),
which is considered unsafe in C since it does not check the
size of the buffer.

The task of the LLM is to notice the vulnerable code snip-
pet. Including the code with a corresponding question to the
prompt (similar to the research from Purba et al. [41]) leads
to ChatGTP [38] detecting the vulnerability, pointing to the
vulnerable code line and explaining why the code is viewed
as unsafe.

4.1 Adapting LLMs for code vulnerability de-
tection

In the research of Purba et al. [41], they compared different
LLMs and applied vulnerable code to measure how effec-
tive LLMs are in noticing code vulnerabilities. Furthermore,
they compared base models and fine-tuned models. The lat-
ter were trained with labelled data containing vulnerable and
secure code examples. As for the testing dataset, they used
code examples containing buffer overflow and SQL injection
vulnerabilities [41].

Similar to Purba et al. [41], Guo et al. [24] tested the
capability of LLMs in the binary classification task with a
similar prompt. As a difference, they compared the perfor-
mance of differently trained LLMs. They included general-
purpose LLMs, self-fine-tuned LLMs and open-source LLMs
that were already trained for code vulnerability detection
tasks [24].

Cheshkov et al. [10] also evaluated how well GPT models
perform in vulnerability detection. Like the previous two ap-
proaches [24, 41], they performed a binary classification but
also added a performance measurement for a multi-label clas-
sifier. The multi-label classification was done by providing
five different CWE vulnerability types and designing a prompt
asking the GPT model if one of those five vulnerabilities is

included in the provided code snippet [10].
Another technique that can influence the results of an LLM

is prompt engineering. Thus, Yu et al. [55] designed five
prompts and tested their effectiveness. They included an in-
struction and modified the prompt by adding or removing
additional information, like project information or CWE de-
scriptions and using techniques like chain of thought. Tam-
berg and Bahsi [45] also followed the approach of testing
different prompt engineering approaches by applying 23 dif-
ferent prompts inspired by related work.

Yin et al. [54] not only discussed whether LLMs can de-
tect vulnerabilities, but they also investigated whether LLMs
are capable of finding the specific affected code location, dis-
closing why it is seen as a vulnerability and estimating the
risk coming from the discovered vulnerabilities. They tested
the performance of different base and fine-tuned LLMs by
using public datasets. As for prompt engineering, a few-shot
approach was chosen. The prompt contains a task description
similar to the ones already seen, the code under test, and an
indicator defining one of the four mentioned tasks [54].

Fu et al. [20] took this approach further and included the
whole lifecycle in their research. They measured the capability
of GPT models to detect vulnerabilities, but also to classify
them. Moreover, the GPT models were tasked with evaluating
the severity of the detected vulnerability and proposing a
mitigation [20].

4.2 Results
In the results of Purba et al. [41], Davinci, with fine-tuning,
achieved the best score across all models considered. Nev-
ertheless, it had an F1 score of 73.2% with a recall of 94%
and a precision score of 60%, indicating that there is a high
false positive rate (FPR). Similarly, all of the compared LLM
models suffered from a high FPR. In contrast, the false nega-
tive rate (FNR) of the Davinci model was low at 6%. In the
work from Cheshkov et al. [10], the binary classifier also had
a high FPR, while the multi-label classifier led to a lower F1
score and a lower precision and recall score. Thus, that work
did not perform well for both classifiers.

Guo et al. [24] made two key findings: Firstly, LLMs per-
form well on known vulnerabilities seen through the training
dataset, but are limited in the generalisation of their learned
knowledge. Secondly, fine-tuning enables smaller LLMs to be
better than larger LLMs in certain tasks. However, a problem
encountered during training, which could also affect the re-
sults of other research, was the inaccuracy of the dataset [24].

As for the prompt, Yu et al. [55] observed that the prompt
with an instruction and containing specific information about
the CWEs performed the best. Tamberg and Bahsi [45], who
also made a prompt-based approach, concluded that different
models react differently to the prompt. For GPT-4 Turbo, the
best result could be reached with a dataflow analysis prompt.
This prompt includes a task description, which demands an
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analysis of the data flow within the provided source code and
a template on how to answer. After receiving the answer, a
second and a third prompt were added, in which the LLM
is asked to review and improve its answer. For GPT-4 and
Claude 3 Opus, the highest result was reached with a chain
of thought prompt. Here, the process of how to approach the
problem step by step was described, so that the LLM can
follow this manual [45].

Yin et al. [54] concluded that there is potential for LLMs
in the covered tasks, but they still need development. In the
analysis from Fu et al. [20], they deduced that base models
of ChatGPT are not suitable for use in all four observed tasks
because of their poor performance.

4.3 Comparison with traditional tools

Contrary to LLM, Purba et al. [41] and Tamberg and
Bahsi [45] included an overview of the performance of tra-
ditional tools executing static code analysis. The traditional
tools work by using syntactic and semantic checks. For ex-
ample, a rule set for a syntactic check could contain a list of
different vulnerable functions, such as the mentioned gets()
function in Figure 3 [35]. To detect intricate vulnerabilities,
semantic checks are necessary. Here, the code base gets trans-
formed to an enhanced control flow representation, allowing
for a more sophisticated vulnerability detection approach [35].

In the research of Purba et al. [41], the tool Checkmarx1

performed the best among the traditional tools with an F1
score of 47.3%. Compared to LLMs, this tool keeps a lower
FPR at 43.1% but has a higher false negative rate (FNR) at
41.1% [41].

Tamberg and Bahsi [45] came to a similar conclusion re-
garding the FPR. However, their model reached a higher preci-
sion with a lower recall compared to the Davinci model from
Purba et al. [41]. One explanation for this outcome could be
the overall performance gain with newer models since [45]
was published in 2025 using GPT-4 while [41] was published
in 2023 using GPT-3.5-Turbo. However, the reason could also
rely on the usage of different prompts, fine-tuning strategies
or the dataset used for the benchmarking.

A performance comparison from Purba et al. [41] and Tam-
berg and Bahsi [45] can be seen in Figure 4. Overall, one can
say that traditional tools focus on keeping the false positives
low by compromising on false negatives. However, this ap-
proach allows developers to focus on relevant findings without
losing time on false positives. In contrast, LLMs are finding
more true positives but with more false positives, handing
over the task to developers to filter them out.

1Checkmarx: https://checkmarx.com/

Figure 4: Performance comparison of different code vulnera-
bility detection tools (adapted from [41, 45]).

5 Fuzz testing

Fuzz testing describes the method of using randomised input
to test how a function reacts to it. The intention is to observe
unusual behaviour and thereby to detect code flaws and po-
tential vulnerabilities [56]. While it is considered effective
in discovering software vulnerabilities, different hindrances
prevent this technique’s use in the industry.

Firstly, the complexity of the environment setup needs to
be considered. Fuzzers have different requirements before
they can be applied. Since an existing environment uses vari-
ous technologies, including operating systems, programming
languages and external libraries, it is difficult to adapt it to a
fuzzer.

Secondly, fuzz driver implementation is challenging. A
fuzz driver describes the link between the test function and
the API. Thus, software developers need to know how the
software works in technical and functional detail so that they
can write a precise abstraction layer of the function for use in
fuzzing [57].

For these reasons, research is done to automate the process.
LLMs are also considered since, with their general-purpose
implementation, they can adapt better to existing setups. This
section focuses on using LLMs in fuzz testing, and it discusses
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the potential of LLMs in this field.

5.1 Input generation with LLM fuzzers
A fuzzer can be viewed as a generator which creates random
inputs [56]. Since the underlying implementation of the gener-
ator can vary a lot, different types of fuzzers exist in practice.
In the work of Beaman et al. [7], a definition for the various
types was created, depending on how advanced the fuzzer is.
A fuzzer is mainly categorised by the knowledge it has about
the function and the system under test, and also by how it
generates the input and how it reaches the testing coverage.
In Table 3, we give an overview of the different classifica-
tion types and a short description based on the definitions
from Beaman et al. [7]. Additionally, the table contains a
categorisation of the fuzzing-related research we cover in this
work.

5.1.1 Seed generation with LLM

Seed generation is fundamental for fuzzers, since it represents
the basis of the inputs. It is challenging because it requires
knowledge of the underlying functions, the technologies used,
and the specifications of the software. In addition, the use of
existing solutions may be impractical if the used tech stack is
not compatible [8,34]. Because of the discussed obstacles, au-
tomated tools are preferred. Such automated tools are covered
in the work of Tamminga [46] and Black et al. [8].

Tamminga [46] investigated if an LLM can be modified to
use it as a seed generator for the existing fuzzer libFuzzer2 and
on the programming language Go, but with the aim to be inde-
pendent of the used tech stack. As a basis, pre-trained LLMs
were used and compared against each other. Furthermore, the
LLMs were optimised for seed generation by either using
prompting or by fine-tuning using a self-created dataset [46].

Black et al. [8] focused their seed generator for the Arthe-
sis3 fuzzer, which is a fuzzer for the programming language
Python. As for the prompt, a task description, the function
under test, and a description of the expected output were in-
cluded. To test the effectiveness of seed generation with LLM,
they created a testing pipeline that allows the generated seeds
to be passed to the function under test [8].

To measure the performance, Tamminga [46] created an
evaluation method based on the core idea of the benchmark-
ing process Magma, which was developed by Hazimeh et
al. [26]. The benchmark includes measurements about the
count of detected bugs and the time within which they were
discovered [46]. Ultimately, StarCoderPlus with prompt engi-
neering could detect 39% of the crashes within 30 seconds,
while 64% were triggered within 10 minutes. In comparison,
libFuzzer without any seed generation only reached 23% in

2https://llvm.org/docs/LibFuzzer.html
3https://github.com/google/atheris

Type Definition Research

Input knowledge

Dumb It follows strictly its seed genera-
tion process.

-

Smart Alters the seed generation process
to better suit the function under
test.

[8, 46,
52, 59]

System knowledge

Black-
box

It has no information about the un-
derlying system.

-

White-
box

It has all the information about the
underlying system.

-

Grey-
box

It is a mix between black-box and
white-box, where it partially has
information about the underlying
system.

[8, 46,
52, 59]

Generation method

Random It creates seeds randomly. -

Genration-
based

It generates seeds based on certain
parameters and routines.

[8, 46,
52]

Mutation-
based

It mutates already generated seeds
by adding, removing or changing
parts from the seed.

[52, 59]

Testing coverage

Directed It tests a specific part of the code
or function.

[8, 46,
52, 59]

Coverage-
based

Code coverage describes the parts
of the code which were executed
by the calling function. The aim
is to achieve the highest possible
code coverage.

[52]

Table 3: Overview of the different classification types of a
fuzzer (based on [7]).
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Figure 5: Comparison of libFuzzer with different seed generation approaches (adapted from [46]).

30 seconds, but also 64% in 10 minutes. A performance sum-
mary, based on the measurement from Tamminga [46] is in
Figure 5 visualised.

Black et al. [8] used the reached coverage as a performance
measurement. As for the tests, they had three different ap-
proaches. The first approach uses only the fuzzer. In the sec-
ond approach, a combination of fuzzer and LLM is used, and
in the last approach, only the LLM is used. While there was no
clear winner, the combination of fuzzer and LLM performed
the best in most of the test cases, while for the other test cases,
fuzzing alone or LLM alone were better [8].

5.1.2 Mutation-based fuzzer with LLM

Fuzz4All, developed by Xia et al. [52], goes one step further
and takes mutation generation into account. It implements a
fuzzer, which is independent of the used tech stack and can
be used for a wide range of programming languages. In their
work, they present how Fuzz4All is designed and what steps
it runs through. To get fuzzing inputs, the user has to provide
information for Fuzz4All. This can include documentation,
manuals or the application code. The input is then applied to
the autoprompting step. Since this information is written in
natural language, while the expected output should be code,
Fuzz4All uses two LLM models; one is used for the distilla-
tion phase, while the other is used for the generation phase.

In the distillation phase, the LLM attempts to understand
and bundle the provided user information and to represent it
as candidate prompts containing only the relevant information.
Those candidate prompts are then passed to the generation
phase, in which another LLM tries to generate fuzzing inputs.
Afterwards, the candidates are evaluated against the function
under test by executing a fuzzing test. The evaluation calcu-
lates a score based on criteria like code coverage, triggered
crashes or, like in the example of Xia et al. [52], the validity
of the input. The candidate prompt with the highest score is
then used as the initial prompt.

The next step in Fuzz4All is the fuzzing loop. It is an
iterative process for generating fuzzing inputs. Some sub-

steps are thereby similar to those of the autoprompting step.
Firstly, the initial input prompt is applied to the generation
LLM, which generates fuzzing inputs. Secondly, the fuzzing
input is applied to the function under test to check the validity
of the fuzzing input and, ultimately, to trigger bugs. With this
process, code snippets are gained, which can be applied as
fuzzing inputs. Since the aim is to gain as many different
inputs as possible, a mutation step is applied. It mutates the
code snippet based on a randomly chosen strategy to enable
the LLM to generate different fuzzing inputs. There are three
mutation strategies. Either the code snippets are mutated,
semantically changed or completely newly generated. Lastly,
the output is used again as input for the LLM generation. This
process is applied iteratively until a stop criterion is met [52].

This structure has different advantages. Firstly, since two
LLMs are in use, one can choose them according to their
capabilities. For the distillation phase, an LLM with a good
understanding of natural language should be chosen. The
second LLM used in the generation phase should be trained
for code generation. Secondly, time efficiency can be achieved
since smaller LLM models can be used because the LLMs
need only to focus on specific tasks.

Compared to traditional fuzzers, this approach generates
fewer valid inputs, but it achieves a higher coverage in less
time. Figure 6 shows the comparison of Fuzz4All with tradi-
tional tools based on the measurement from Xia et al. [52].

5.1.3 Greybox fuzzing with LLM

Zhang et al. [59] implemented a tool called LLAMAFUZZ,
which is used for improving greybox fuzzing. Their approach
consists of connecting the ALF++4 fuzzer with Llama 2.
While the LLM is used for input mutation, the fuzzer has
the task to execute the generated input in the function under
test, to monitor the execution and to pass the result back to
the LLM [59].

LLAMAFUZZ could outperform traditional tools by reach-
ing a higher code coverage and achieving a higher bug count.

4https://aflplus.plus/
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Figure 6: Validity and coverage comparison between
Fuzz4All and traditional tools (adapted from [52]).

Overall, it increased the code coverage by 27.2% in compar-
ison to AFL++ without LLM enhancement and detected 41
bugs more on average [59].

5.2 Fuzz driver generation
A fuzz driver describes the link between the system under test
and the fuzzer by providing an API. This is a laborious task
since they are typically written manually [57]. Additionally,
the API needs to be as precise as possible since mistakes
in the implementation could increase the falsification of the
result for the system under test [58].

Zhang et al. [58] considered different approaches for
prompt engineering an LLM to gain a fuzz driver generator.
The best-performing strategy they found is iterative prompt
processing. The strategy consists of a generation and several
fix prompts. As seen in Figure 7, the prompt consists of a task
description for the LLM, a code documentation and a code
snippet of the API. ChatGPT gives, in this case, a proposal of
how implementing the function “FuzzerTest” could look. The
output can also be seen in Figure 7. Afterwards, one or more
fix prompts are applied on cases where the produced LLM
output has compilation errors [58].

Figure 7: Generation prompt and output from ChatGPT
(adapted from [38, 58]).

During the investigation of fuzz driver generation with
LLMs, Zhang et al. [58] discovered that the performance
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depends on the complexity of the API. An LLM needs to
be able to forecast how an API works based on the given
questions and inputs from the user. Therefore, a conclusion
can be drawn that when the complexity of the system under
test rises, the performance of the LLM decreases. The best
performance was reached by GPT-4, which could answer 78
out of 86 questions in the right configuration [58].

LLM-aided fuzzing is already used in practice. In 2023,
Google [36] added LLM to their OSS-Fuzz project. It is used
to automate vulnerability detection, mainly in open-source
software. While doing so, they found that, in some cases, the
code coverage was improved. In one case, they increased the
code coverage by over 30%. To reach the same level for all
OSS-Fuzz projects, they stated that “several years” of manual
adaptation would have been necessary [36].

6 Exploit generation for software testing with
LLM

As discussed in Section 4, LLM suffers from a high FPR.
But traditional approaches also have false positives [55]. This
causes software developers to question the results of auto-
mated vulnerability detectors. Therefore, showing if and how
a vulnerability is exploitable is essential [60]. One example
is a dependency vulnerability detector. When it reports a vul-
nerability in one of the used libraries, it does not necessarily
mean it is exploitable in the application. A way of showing
the exploitability of a vulnerability is to write an exploit [60].

6.1 Research approaches
In the research of Zhang et al. [60], ChatGPT-4 was used to
generate security tests, which could then be used to test the
exploitability of the vulnerable dependency. The following
parameters were included in the prompt [60]: Task descrip-

tion, function name, vulnerability ID, vulnerable API list, test

function name incl. an exemplar test implementation, and

client code implementation. When the LLM output contained
smaller errors, a manual process was applied to correct the
output.

Fuzzing, which we discussed in Section 5, was used by
Zhou et al. [61] in their tool called Magneto. It aims to exploit
vulnerabilities in complex environments. They explain the
mechanism of Magneto as follows: In a first step, informa-
tion about the vulnerability itself is collected, including the
affected version and the functions, as well as an exploit and
its oracle. This information is then compared with the depen-
dency tree of the software project, and only the dependencies
matching the vulnerability description are kept. Afterwards,
Magneto tries to understand the underlying architecture of
the software by depicting the call chains of the software un-
der test. Based on the gathered information, Magneto tries
to exploit the vulnerability. For this, Magneto needs to find
an input so that it can be passed to the function on top of

the call chain while also remaining a capable input to trigger
the vulnerability on the dependency under test. Its approach
is done incrementally, by trying out different seeds, which
are created by an LLM. It starts with the function call to the
dependency and works its way up until it reaches an exposed
function.With this approach, the function may be able to find
a vulnerability [61].

Fang et al. [18] analysed the efficiency of LLM in exploit
generation for one-day vulnerabilities. To do this, they used
different LLMs and leveraged them for exploit generation.
The LLMs were provided with different resources, such as a
web browser, a terminal, and the ability to use a code inter-
preter and to create or modify files [18].

As already discussed in Section 4, Fu et al. [20] had a look
at a variety of tasks in the software vulnerability spectrum.
Here, we want to take a glance at the automated severity
estimation and mitigation of vulnerabilities with LLM. For the
severity estimation prompt, Fu et al. [20] proposed to include
a description of what the LLM has to do and to include the
vulnerable function. For the mitigation prompt, they included
several generic examples of vulnerable functions and their
repair methods with a task description, which is similar to a
few-shot prompting approach [20].

6.2 Performance comparison
Zhang et al. [60] tested the GPT model on 55 apps contain-
ing vulnerabilities. As a result, in 24 cases, the vulnerabil-
ity could be successfully exploited. In addition, a compar-
ison was made with the traditional tools SIEGE [27] and
TRANSFER [32]. While TRANSFER [32] achieved writ-
ing four exploits, SIEGE [27] could not generate one. This
leads ChatGPT to surpass them [60]. Magneto, created by
Zhou et al. [61], was at least 75.6% more successful in creat-
ing an exploit compared to traditional tools like SIEGE [27],
TRANSFER [32] and VESTA [9].

Fang et al. [18] tested their prompt-engineered GPT-4
model against the traditional tools ZAP 5 and Metasploit 6.
In the end, they found out that the traditional tools, as well
as the other considered models, were not able to generate
exploits. Only their GPT-4 model could create exploits, but
with a success rate of 87%. To perform that well, the inclusion
of the CVE description in the prompt was mandatory [18].

For the severity estimation and mitigation task, Fu et
al. [20] came to a sobering result since the model was not able
to sufficiently estimate the severity or propose mitigations.

7 LLM challenges and future outlook

In this section, we delineate our key takeaways through the
lens of the gathered information from the listed papers in

5https://www.zaproxy.org/
6https://www.metasploit.com/
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Table 1 and discuss the challenges and possible future ap-
proaches. The identification was made by mapping the men-
tioned challenges from the discussed papers while also con-
sidering the general difficulties of LLMs.

7.1 High False-Positive Rate (FPR)

A problem encountered in the discussed topics was the high
FPR and the low accuracy, which was discovered by various
researchers [10, 20, 29, 41, 45].

The recommendation from Cheshkov et al. [10] is to in-
vest further research in prompt engineering. Having a more
enhanced prompt, like the proposed chain-of-thought tech-
nique, could lead to better performance in the LLM for code
vulnerability detection [10]. To correct the errors produced
by the LLM, Jiang et al. [29] suggest using the LLM again
for output correction. This enables the LLM to improve its
output by gaining insights into bugs introduced in its previous
output.

An explanation can also be found in hallucination. Hallu-
cination describes the effect of an LLM that writes factually
incorrect outputs [31]. According to Kamath et al. [31], a rea-
son for this behaviour could be a lack of knowledge because
of missing, biased, or untrue training data in the pre-training
process. To mitigate some of the named reasons, a common
technique is retrieval augmented generation (RAG), which
aims to include external knowledge sources [4]. We describe
this technique in more detail in Section 7.2.

Decoding strategies can also be a culprit for hallucination.
They are often used to introduce randomness in favour of pro-
ducing more natural-sounding language. Therefore, new de-
coding strategies are designed to diminish hallucinations [30].
Two examples are uncertainty-aware beam search [53] and
confident decoding [47].

7.2 Outdated data

Another challenge encountered in training is keeping the in-
formation up to date. Some research from the field of code
vulnerability detection [10, 20, 54, 55] and exploit genera-
tion [18, 61], handled with CWE and CVE definitions. While
they used mostly already known CWEs and CVEs covering
general vulnerability topics, it is important that the informa-
tion basis of an LLM is up-to-date to also understand new
vulnerability definitions.

There are different new approaches used in updating the
information of a model. The simplest is to enhance the prompt
by including missing information directly into the prompt.
For example, this is shown by Fang et al. [18], where they
had to include the CVE description to gain a well-performing
model.

A new approach to facing this challenge is RAG. It en-
ables an LLM to extend its knowledge base with additional

resources like websites, databases or other forms of data stor-
age. Those reference points are then considered when a corre-
sponding prompt is placed, asking for specific information [4].

Model editing can also be used for this challenge. It tries
to identify the incorrect information base of an LLM and to
modify it correspondingly [30].

7.3 LLM training
Pre-training an LLM is cost- and time-intensive [30]. This
limits the capability of researchers to create LLMs specifically
designed for the purposes we discussed in this paper.

To reduce computational power requirements, efforts are
made to understand so-called scaling laws. Concretely, in the
context of LLM, the interplay between the model size, data
size and computational power is analysed. An alternation in
one of those three resources could lead to a corresponding
change in a different resource [50].

A common technique used today to bypass pre-training is
to take a pre-trained model and fine-tune it. As found out by
Guo et al. [24], this allows for better performance in some
tasks compared to larger LLMs. However, it comes with its
challenges, like finding high-quality datasets. This challenge
was mentioned by Guo et al. [24], in which they made the
finding that there was some incorrect labelling in the datasets,
leading to wrong training of the LLM.

Another technique is to apply different prompt strategies
as discussed in various works throughout this paper. The
benefit comes from the relatively easy application since no
modification to the model itself has to be made. However,
while there exist some guidelines and strategies, like those
from Sahoo et al. [42], it is difficult to determine which prompt
leads to better results [30], making it a trial-and-error process.

Also, the requirements for the setup have to be considered,
since they are similar to the ones for pre-training. To fine-tune
a model, it must be downloaded, installed and executed [30].
Parameter-efficient fine-tuning (PEFT) is a recent technique to
train the LLM for a specific task. The fundamental concept is
to add a final layer with trainable parameters. During training,
only the parameters of the additional layer are modified while
the other layers remain unchanged [44].

7.4 Limited context length understanding
The applications of the discussed areas in this paper require a
deeper contextual understanding to perform well. As a data
basis, software code is provided, which includes different
information like the architecture, program logic and docu-
mentation. An LLM has the requirement to understand the
system under test and to perform the described tasks on it.
However, LLMs have a limitation in understanding contexts,
leading to missing essential parts [30]. A further effect can be
seen in fuzzing, since the limited context length understanding
leads to an increase in the creation of invalid seeds [29].
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There are different ways to tackle this type of challenge,
which may be applied in the future. According to Kaddour et
al. [30], current research focuses on improving the capability
of attention mechanisms to understand a wider context. Other
research is focusing on length generalisation to keep the ad-
vantage of training LLMs on short input, while also being
able to understand longer inputs. Kaddour et al. [30] also dis-
cussed using alternatives to transformers. Architectures like
state space models (SSMs) [19] or receptance weighted key
value (RWKV) [40] are designed for understanding longer
context.

8 Discussion

In this section, we summarise the key takeaways based on
the analysis of the related work and make the connection to
the research questions. We also provide additional insight by
offering tips and recommendations.

8.1 RQ1: What are practical use cases for
LLMs in security code review and testing,
and how do they perform against tradi-
tional tools?

LLMs have their right to exist in the context of security code
review and testing. While in some topics they reach prac-
tical relevance, others are still in the research stage. In the
following subchapter, we go into detail about each topic’s
prospects.

8.1.1 Code vulnerability detection

LLMs in code vulnerability detection can overcome various
challenges from the use of traditional tools, since their setup,
application and leveraging to the code base is simpler than
that of conventional tools. However, the LLMs in the research
suffered from a high FPR, limiting the capability of LLMs
in this use case. In comparison, traditional tools focus more
on true positives and thus reduce the exertions from develop-
ers. Because of those findings, our recommendation is to put
more effort into research and, if the setup allows, to rely on
traditional tools for production at the moment.

8.1.2 Fuzz testing

In fuzzing, LLMs have advantages. On the one hand, it is
less time-consuming and can find coverage-increasing seeds
faster than its traditional counterparts. On the other hand, it
can be used independently of the technology environment,
while traditional tools have mostly binding requirements.

In all considered work, the LLM could outperform tradi-
tional tools in input generation. This is also true for fuzz
driver generation, which is already used in productive use

cases. This makes LLMs in the context of fuzz testing valu-
able, especially for testing a wide range of projects. Our rec-
ommendation is therefore to convert research findings into
practice and develop productive and marketable tools that
enable the easy use of LLMs in fuzz testing. However, some
challenges, especially in the limited understanding of complex
implementations, remain.

8.1.3 Exploit generation

The included papers show that exploit generation has po-
tential, especially since they outperform conventional tools.
However, prerequisites have to be met, like providing spe-
cific prompt information or manual adjustments, to function
properly. Additionally, only certain LLMs achieve acceptable
results, making it dependent on the chosen LLM.

This leads to our conclusion that, at the moment, LLMs
can only be used to a limited extent for exploit generation.
However, since traditional tools also do not perform well,
manual effort is still needed in practice. Nevertheless, further
research investigations should be made.

8.2 RQ2: What is the impact of the LLM on
the performance?

The most important component in the considered tools is
the LLM itself. There exist a lot of different LLMs with
varying parameter count, training basis, etc. In the related
work, various models were used, including open-source and
closed-source. While the performance between those works
is not directly comparable, some general conclusions can be
drawn:

1. Prompt engineering and fine-tuning can improve the
performance in most cases compared to their base coun-
terparts.

2. Newer LLMs are usually better than their previous ver-
sions.

3. While improvements can be achieved with techniques
already mentioned, an indicator for better performance
can also be the parameter count, while LLMs with more
parameters should perform better.

This also reflects in the works, where using newer models
leads to better results or even makes an approach possible.
With the introduction of new models (i.e. GPT-5), the tests
should be repeated so that the performance improvement can
be measured. The parameter count of an LLM should also
not be neglected. However, some works show that by apply-
ing prompt engineering or fine-tuning, the performance can
be improved. Thus, this should be taken into consideration,
especially if computational power is limited.

Choosing an LLM is a difficult undertaking and not always
obvious. Indicators for good LLMs are their introduction
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dates, the newer the better, as well as their parameter count and
general benchmarking results. Additionally, one can take a
look at whether a security-trained version exists. Nevertheless,
comparing the different LLMs in a benchmarking process is
essential to identify the best-performing one.

Also, an interesting concept is to use a combination of
LLMs. This allows for focusing LLMs on one specific task,
making their tuning simpler.

8.3 RQ3: What do current approaches look
like?

Different techniques can be used to tweak LLMs to be more
tailored to specific areas of application. Since we included a
range of papers, different approaches were used for the same
aim.

8.3.1 Prompt engineering

Prompt engineering is a common technique which involves
designing and structuring a prompt. The aim is to instruct and
teach the LLM on how to complete a task in a way that is
understandable from the perspective of an LLM.

In the considered works, various prompts were tested, each
containing different levels of information. One common find-
ing was that prompts including more information were more
successful. However, the information has to be articulated
and designed such that known challenges like limited context
length understanding are not triggered.

Since prompt engineering is not an exact science and varies
from use case to use case, we propose to try different com-
binations of information sources and to benchmark them ac-
cordingly. Also, having a look at recent findings of prompt
engineering techniques is worthwhile. However, again, there
is no predetermined solution.

8.3.2 Fine-tuning

Fine-tuning is more efficient than the training of an LLM and
allows for supplementing the LLM with additional training
datasets. Though in practice, finding qualitative and good
training datasets is difficult. Having incomplete or false
datasets could even worsen the performance of an LLM. Thus,
the key takeaway is to apply fine-tuning, but the creation of
clean datasets should be a focus point too.

8.3.3 Tool creation

In the different considered topics, but especially for fuzz test-
ing, the researchers created tools in which an LLM is only
one part of the system. The advantage of the combination of
LLMs and traditional approaches is the possibility of having
deterministic behaviour for precise tasks. For example, for
the testing of seeds, a unit test is created that directly applies

the generated seed to the function, reducing the false pos-
itive count. Whenever possible, deterministic tasks should
be outsourced to dedicated processes, so that for those tasks,
hallucination can be reduced.

8.4 RQ4: What are the current challenges and
what are the prospects for LLMs in secu-
rity code review and testing

In general, the creation and training of LLMs is a common
challenge. Because of the high cost and time consumption
involved when creating an LLM, we recommend using ex-
isting general-purpose LLMs and leveraging them by using
techniques like prompt engineering and fine-tuning. Since
fine-tuning itself is also resource-intensive, new methods like
PEFT should be explored, especially when resources are miss-
ing for full tuning. Also, finding the right datasets for training
is difficult. The dataset has to be cleaned, and wrong data has
to be removed.

Furthermore, pitfalls can be found in general LLM chal-
lenges like high FPR, outdated data and limited context length
understanding. While all topics suffer from those challenges,
they are not affected equally.

8.4.1 Code vulnerability detection

For the code vulnerability detection task, the high FPR is the
main challenge. A high FPR in this topic makes an LLM
unusable, since software developers would need to check
more possible threats. Thus, the aim for future research should
be the reduction of the FPR, even if this would mean an
increase in FNR. This would allow a developer to focus on
true positives.

For this, already mentioned techniques like prompt engi-
neering and fine-tuning should be used. Also, the creation
of clean datasets should be a focus point, since those are
currently missing. Moreover, a combination with the topic
exploit generation is conceivable, since this would allow for
implementing a check.

8.4.2 Fuzz testing

In Fuzzing, FPRs can be mitigated with enhanced controls,
such as applying software tests. However, here, the limited
context length makes it difficult for the LLM to understand
complex and extensive software.

Thus, experimenting with the right prompt configuration is
essential. Also, providing the right amount of information is
necessary.

8.4.3 Exploit generation

Exploit generation lives from data actuality, since it needs
to know the information about new vulnerabilities. However,
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since training is cost-intensive, the knowledge base of LLMs
suffers from outdated data.

To overcome this challenge, our recommendation is to use
RAG and to connect the LLM to corresponding vulnerability
databases.

9 Conclusion

Practical implementation areas for an LLM in software secu-
rity can be found in code vulnerability detection, fuzz testing
and exploit generation. The LLMs can be applied to those
tasks by using prompt engineering, fine-tuning and creating
dedicated tools.

However, the performance varies between those different
disciplines. While LLMs achieve excellent results in fuzz
testing, they need further research in code vulnerability de-
tection and exploit generation. This is mainly attributable
to challenges like hallucination, high training costs, data ac-
tuality and the limited context length understanding. Those
challenges lead to a high FPR in code vulnerability detec-
tion, poor performance in complex fuzz testing cases and
insufficient knowledge for exploit generation.

To overcome those challenges, we propose in future re-
search to explore prompt engineering and fine-tuning further.
What is more, modern technologies like RAG can help in im-
proving data actuality, while PEFT can help reduce training
costs.
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