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Abstract

Diffusion models have recently emerged as powerful neural solvers for combinato-
rial optimization (CO). However, existing approaches fail to reveal how variables
are progressively determined during inference, making the final solution opaque
until the last step. To address this limitation, we propose a structured denoising
diffusion model, StruDiCO, which incrementally constructs solutions through
step-wise variable selection. This is achieved via a variable-absorption noising
model, wherein the forward process simulates gradual variable deactivation, con-
verging to an empty solution, while the reverse process incrementally selects
variables to reconstruct the final solution. This design induces structural conti-
nuity across intermediate states, enabling interpretable and trajectory-consistent
partial solutions throughout inference. To further improve the reliability of re-
verse inference, we introduce a constrained consistency sampling strategy, which
suppresses low-confidence variable selection at each step to stabilize the reverse
process. Leveraging the structure-preserving reverse process, we further propose a
lightweight, gradient-free, objective-aware refinement framework, which iteratively
improves solution quality by applying structure-aware perturbations to the current
solution, performing reverse inference through the constraint consistency model,
and decoding with an objective-guided scoring scheme. Extensive experiments
on two canonical CO tasks, the Traveling Salesman Problem (TSP) and Maximal
Independent Set (MIS), show that StruDiCO outperforms state-of-the-art diffusion-
based solvers, achieving up to 3.5x faster inference, 70% lower GPU memory
usage, and significantly improved solution quality, with up to 37.7% drop reduc-
tion on TSP and an average 38.1% improvement on MIS. The codes are publicly
available at https://github. com/yuuuuwang/StruDiCO.

1 Introduction

Combinatorial optimization (CO) entails optimizing discrete decision variables toward specified
objectives and serves as a cornerstone for numerous practical applications requiring efficient decision-
making [1, 12, 3]. However, the inherent NP-hardness of CO problems renders large-scale CO instances
particularly challenging to solve efficiently, traditionally necessitating the design of handcrafted

* Corresponding authors: Junchi Yan and Yi Chang (yanjunchi@sjtu.edu.cn; yichang @jlu.edu.cn). This
work was partly supported by MOST of China (Grant 2023 YFF0905400), NSFC (Grant U2341229, 92370201),
and the China Postdoctoral Science Foundation Fellowship (Grant GZC20230947).

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/yuuuuwang/StruDiCO

Denoising Step

f 6 (th L, G)

m[\\[\ - 5

<5 5@ 7 Ty

: GLL ' {‘/ﬁ? g q(X¢—11%0)

Graph N N N Noising Step
Instance Solution
e B A I I e

G B I E S I I E

] > SRR B ARV L R =
: , AR PRI RS S L7

Figure 1: Overview of the structured denoising diffusion framework for combinatorial optimization.
Structured denotes the preservation and progressive evolution of solution structures across timesteps.
The forward process (0 — T') gradually removes selected edges through a variable-absorption noising
model, while the reverse process incrementally reconstructs the solution by selecting edges.

heuristics. Recently, neural combinatorial optimization (NCO), including both direct solvers [4} 5} 16}
7, 18] and methods that support solving [9} 10, [11], has emerged as a data-driven paradigm, offering
notable improvements in both solution quality and computational efficiency.

Existing NCO solvers can be broadly categorized based on their solution construction paradigm:
autoregressive and non-autoregressive. Autoregressive constructive solvers [[12] [13] [14! [15] [16],
formulates the task as an n-step sequential variable selection problem, where at each step the model
produces a prediction heatmap over variables, conditioning on the current partial solution to decide
the next inclusion. While this step-wise generation enables fine-grained control and interpretability, it
incurs significant computational overhead due to its inherently sequential nature, limiting scalability
to larger instances. In contrast, non-autoregressive solvers [17, 18, [19] 20} 21]] adopt a one-
shot generation strategy. These models directly generate neural heatmaps indicating the predicted
likelihood of each variable being part of the solution, followed by heuristic decoding to enforce
feasibility. Among them, generative models, such as diffusion-based models [22} 23| 24]] have shown
strong performance by modeling instance-conditioned distribution over high-quality solutions through
a sequential denoising process. However, these models still suffer from opaque intermediate states,
providing little insight into how the final solution is gradually formed-since decisions are not explicitly
revealed until the final step. In summary, autoregressive models provide step-wise interpretability
but suffer from sequential computational overhead, whereas non-autoregressive generative models
offer efficient global modeling but lack transparency in the solution trajectory. Bridging this gap is
essential for developing NCO solvers that are both interpretable and efficient.

To bridge the gap between step-wise interpretability and global distribution modeling, we propose
a structured discrete diffusion framework tailored for CO. Specifically, we introduce a variable-
absorption noising model, which progressively deactivates variables during the forward process,
ensuring that each intermediate state corresponds to a structurally valid partial solution. Rather
than treating such interpretability as an end in itself, this structure-preserving design enables more
informed and reliable decision-making throughout the inference trajectory. To enhance the reliability
of reverse inference, we introduce a constrained consistency sampling strategy that masks low-
confidence variables at each step. By narrowing the effective search space, this strategy improves
structural continuity across intermediate states and stabilizes the solution trajectory. Building on this
structure-preserving foundation, we propose a lightweight gradient-free, objective-aware refinement
framework that directly incorporates task objectives into the decoding process. Unlike prior refinement
methods [23} 24] that rely on gradient-based search over relaxed continuous objectives, our approach
eliminates the need for backward computation entirely. The refinement proceeds in three stages: it
first perturbs a feasible solution using structure-aware noise, then performs reverse inference via the
consistency model, and finally reconstructs a new solution through objective-guided greedy decoding.
Together, these innovations yield a diffusion-based solver that achieves high-quality solutions with



significantly reduced computational overhead, while preserving structural interpretability and aligning
inference with task objectives, effectively combining the complementary strengths of autoregressive
and non-autoregressive paradigms. Our contributions toward building an interpretable and
efficient neural solver for CO are summarized as follows:

* We propose a structure-preserving discrete diffusion framework and develop StruDiCO, which
leverages variable-absorption forward diffusion and constrained reverse sampling to produce
interpretable, high-quality solutions for combinatorial optimization tasks.

* We introduce a gradient-free, objective-aware refinement framework that efficiently incorporates
task objectives without requiring backward gradient computation [23} [24]].

* We evaluate our method on TSP and MIS tasks, demonstrating superior solution quality, 3.5x
faster inference, and 70% lower memory usage compared to state-of-the-art neural solvers.

2 Preliminaries, Problem Definition and Related Works

2.1 Combinatorial Optimization on Graphs

Following the notations adopted in [22} 23] [24]], we define G as the universe of CO problem instances
represented by graphs G(V, E) € G, where V' and E denote the node set and edge set respectively.
CO problems can be broadly classified into two types based on the solution composition: edge-
selecting problems which involve selecting a subset of edges, and node-selecting problems which
select a subset of nodes, both subject to the feasibility constraints of the problem. Let x € {0, 1}V
denote the optimization variable. For edge-selecting problems, N = n? and X;.n+; indicates whether
E;; is included in x. For node-selecting problems, N = n and x; indicates whether V; is included in
x. The feasible set 2 consists of x satisfying specific constraints as feasible solutions. A CO problem
on G aims to find a feasible x that minimize the given objective function I(:; G) : {0, 1} — Rxg :

min _I(x;G) s.t. x € Q
xe€{0,1}V

In this paper, we study two primary and representative CO problems: TSP and MIS. TSP defines
on an undirected complete graph G = (V, E’), where V' represents n cities and each edge F;; has a
non-negative weight w;; representing the distance between cities ¢ and j. The problem can then be
formulated as finding a Hamiltonian cycle of minimum weight in G. For MIS, given an undirected
graph G = (V, E), an independent set is a subset of vertices S C V such that no two vertices in S
are adjacent in G. MIS is the problem of finding an independent set of maximum cardinality in G.

2.2 Optimization Consistency

Given a problem instance GG and its corresponding optimal solution x*, the discrete diffusion noising
process defines a trajectory xo.r = Xg, X1, . - - , X7, Where xo = x* and each x; is sampled from
the conditional distribution g(x; | X¢). In standard diffusion models, generating samples requires
modeling the reverse transitions pg(x;—1 | X¢, G) through multiple iterative steps, which can be
computationally expensive. To enable efficient inference, Consistency Models [25]] introduce the
notion of self-consistency, where the model learns to map any noised state x; at time ¢ directly back to
the clean source x(. Building on this idea, Fast T2T [24] gives the notion of optimization consistency
for CO, in which all states along a noising trajectory are mapped to the same optimal solution x*
conditioned on the instance G. Formally, the consistency function fy(x¢, ¢, G), parameterized by
0, maps a noisy input to a denoised prediction. Under self-consistency, the training objective is to
minimize the discrepancy between any two mappings along the same trajectory:

E(Q) = Et17t2 [d (f9(xt1atlaG)7 f@(xt27t27G))] ) (1)

where d(-, -) is a distance function, e.g., binary cross-entropy. To better leverage the supervision from
x*, an alternative minimizes the distance between each mapping and the ground-truth:

5(9) = Et [d (fg(Xt, t, G), X*)] . (2)

This formulation can be justified by the triangle inequality, which upper-bounds the original objective:

E(e) < Etlth [d (f&(xt17t17G)7 X*) + d(f9(xt27t27G)a X*)] . (3)



This reformulation reduces the problem to supervised learning of the mapping fy using a standard
loss, such as binary cross-entropy, and allows the model to generalize across different noise levels
while consistently recovering the optimal solution.

2.3 Related Work

Neural combinatorial optimization (NCO) has emerged as a promising alternative to traditional
heuristics such as LKH [26,127]]. Existing neural solvers can be broadly categorized into autoregressive
(AR) and non-autoregressive (NAR) paradigms. An illustrative comparison with our structured
diffusion approach is provided in Appendix [A] highlighting key differences in solution construction.

AR methods sequentially construct solutions by selecting decision variables step-by-step. Representa-
tive works include the Attention Model (AM) [12], which first applied transformer-based architectures
to routing problems, and POMO [[13]], which leverages policy optimization with multiple optima
for reinforcement learning. Sym-NCO [14] exploits problem symmetry to enhance generalization
capability, while BQ-NCO [15] formulates CO problems under a bisimulation-quotient MDP to
improve robustness. The RL4CO repository [[16] systematically benchmarks AR-based methods.

NAR methods aim to predict soft-constrained solutions in a one-shot manner, followed by post-
processing to ensure feasibility. Early works such as GCN [17] and Att-GCN [18] employ graph
neural networks [28, 29| [30] for edge prediction under supervised learning. UTSP [20] adopts
an unsupervised learning framework with scattering attention GNNs, and DIMES [19]] proposes
a meta-reinforcement learning strategy combined with active search. Recently, generative mod-
els [31}132] have shown promise in improving prediction [33], and for CO, graph diffusion-based
generative approaches [22| 23| 24| 34] model instance-conditioned distributions over high-quality
solutions. DIFUSCO [22] achieves SOTA performance on TSP and MIS but lacks instance-specific
search. T2T [23]] addresses this via an objective-guided gradient search, and Fast T2T [24] further
applies consistency training to accelerate diffusion sampling and advance NCO performance. Unify
MLATSP [35] advances a unified modular streamline incorporating existing technologies in both
learning and search for both AR and NAR methods.

3 Methodology

We propose a structured diffusion framework for combinatorial optimization. The process begins
with a variable-absorption noising model, which defines a structure-preserving forward process and
its reverse counterpart. To guide the reverse trajectory toward coherent solutions, we introduce a
constrained consistency sampling strategy that selectively activates high-confidence variables at each
step. Finally, we refine the decoded solutions through an objective-aware, gradient-free method that
integrates task objectives directly into decoding without backward computation. Together, these
components form a lightweight and interpretable neural solver.

3.1 Variable-Absorption Noising Process

Our objective is to design a forward diffusion process that generates noisy graph states while strictly
respecting combinatorial constraints, e.g. preserving the validity of partial solutions throughout
the noising trajectoryﬁ} We adopt a discrete diffusion model [22, 23} 24], tailored for structured
combinatorial problems where solutions are encoded as binary vectors x € {0, 1} This formulation
naturally applies to edge-selection tasks such as TSP and node-selection tasks such as MIS.

It begins with an initial state xo ~ ¢(x¢ | G) sampled from a data-dependent distribution that
yields a feasible solution. Then, a sequence of latent states x;.;7 = X1, Xo, ..., X7 is generated by
progressively injecting noise while maintaining structural validity. The forward process factorizes as

T . . S .
q(x1.7 | x0) = [[;_; ¢(x¢ | x¢—1), where each g(x; | x;—1) is a categorical distribution over binary
states. Using a one-hot encoding x € {0, 1}"*2, where each row denotes the selection status of a
variable, the transition is defined as:

q(x¢ | x¢—1) = Cat(x4;, p = X-1Q4), ¢(x¢ | x0) = Cat(x4;,p = 5‘061&)7 4

*Since the process begins from a feasible solution xo and injects noise solely by deactivating selected
variables, each x; along the trajectory is guaranteed to be structurally valid. This guarantee holds only for the
forward process; feasibility in the reverse process typically requires post-processing.



where Q; € [0, 1]2*2 is the forward transition matrix at time ¢, and Q, = Q;Qz - - - Q; is the cumula-
tive transition up to time ¢. In prior works [22}[23]124], the transition matrix Q is typically symmetric

and doubly stochastic: Q¢ = {1 gtﬁt 1 ft

t. This formulation enables reversible transitions and yields a uniform stationary distribution, but
does not guarantee structural validity of intermediate states.

ﬁt:l , where 3; € [0, 1] denotes the transition rate at step

Variable-Absorption Noising Model. To enforce structural validity at all timesteps, we propose a
variable-absorption noising model that induces a monotonic decay in variable activations. Specifically,
a variable can remain unselected (x; = 0) or transition from selected (x; = 1) to unselected, but
cannot revert once dropped. This yields a valid absorption trajectory from X to the null solution
x7 = On € 0V, in which each intermediate state is a feasible partial solution. We implement this
behavior using the following asymmetric transition matrix: Q; = ﬁlt 1 E) BJ , where f3; € [0,1]
denotes the absorption rate at step . Under this formulation, unselected variables are frozen, and
selected variables are independently dropped with probability 3;. This directional and irreversible
transition enforces monotonic variable deactivation and ensures that combinatorial constraints are
respected throughout the forward trajectory.

3.2 Constrained Consistency Sampling for Reverse Optimization

Following [24, 25], we adopt a multi-
step consistency sampling procedure to
progressively construct the reverse tra- Require: Consistency model fy(-, -, -), graph instance G,
jectory of solutions. The process be- time sequence 7 > - -+ > Ty, 1, threshold ¢

Algorithm 1 Multistep Constrained Consistency Sampling

gins from the empty solution x7 = 0y, 1@ X7 =0n

and at each timestep 7,,, we aim to gen- 2 po(Xo | G) < fo(x7, T, G)

erate a more refined intermediate state ~ 3: Xo ~ po(Xo | G)

X,, . Accordingly, we use a consistency ~ 4: forn =1to N; —1do

model fy to predict a clean solution x, ~ 5:  // variable-absorption process
from the current noisy input: pp(xo | 6 x,, ~ Cat(p = X0Q;, )
X-,—n,Tn,G) = f@(XTannvG)7 Xp ~ 7: pQ(XO | G) — fQ(XTan’IMG)
Bernoulli(pg(xg = 1 | G)). This pre- 8&: // constrained sampling over m
dicted xq serves as a high-confidence  9: m <+ [(pg(xo =1|G) > 9)

proxy, guiding the sampling of the 10: xg ~ Bernoulli(m ® py(x0 =1 | G))
next intermediate state X, ., via the 11: end for
variable-absorption process: X, ., ~ 12: return Solution xg

Cat(p = %0Q,, ), where Q_ denotes
the cumulative absorption transition matrix. The key modeling goal is to construct a trajectory of
intermediate states X7, X, ..., XN, —1, Xo that exhibit increasing structure and semantic coherence,
ultimately leading to a high-quality solution. This construction process alternates between denoising
(via fp) and noise injection (via variable-absorption), forming a progressive trajectory over X.
Although each x prediction is discarded after use, it plays a crucial role in steering the generation of
the next x,. As illustrated in Fig.|1} this reverse process forms a zigzag pattern between model pre-
dictions x( and intermediate states x, with increasing structural coherence, progressively guiding the
construction of the final solution. It is important to note that structural coherence across reverse steps
is primarily induced by the variable-absorption process, which softly enforces a monotonic selection
trajectory (x,, C X, ,). For stricter structural guarantees, see our discussion in Appendix
Constrained Sampling. To reduce noise and improve the stability of this process, we introduce a
threshold-based constrained sampling strategy. After obtaining the prediction py(xo = 1 | G), we
suppress low-confidence variables by applying a hard threshold §:

m=1I(pg(xo =1]G) >0), x¢~ Bernoullilm @ py(xo=1|G)). Q)

The constrained sampling strategy is also supported by theoretical insights. Combinatorially, it reduces
the candidate solution space from 2% to at most 3.7 (%) for a thresholded fraction v € (0, 1).
Statistically, thresholding the predicted heatmap can be seen as truncating the predictive distribution
to a high-confidence region, reducing entropy and sample variance. See proof in Appendix
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Figure 2: Relative comparison of StruDiCO and Fast T2T across six combinatorial optimization tasks.
Metrics include GPU memory usage, inference time, and performance drop (all normalized to Fast
T2T = 100%). Lower values indicate improved efficiency or solution quality.

Table 1: Summary of objective-guided refinement framework. StruDiCO enables multi-step structure
construction, where intermediate states are valid subsets of the soft-constrained solution. B: batch
size; L: number of layers; /N: number of nodes; d: hidden dimension.

Method Multi-Step Objective-Guided Complexity
Structure Construction | Gradient-free Forward Backward Time Memory
Fast T2T [24] X X 2 1 ~ O(BLN?*d) ~ O(2BLN?d)
StruDiCO (Ours) v 4 1 0 O(BLN?d) O(BLN?d)

Theorem 3.1 (Constrained Sampling Reduces Divergence). Let q(xo | G) denote the true distribution
and py(Xo | X+, T, G) the model prediction. Let pg = Masks(pe) be the renormalized distribution ob-

tained by thresholding low-confidence variables, py(Xo) = W, Zs =Yy, lpo(x0) >
8] po(x0), where Zs is the normalization constant representing the retained probability mass. Then,
in terms of the reverse KL divergence, we have Dx1,(Dg || ¢) < Dxw1(pe || q) + s, where the slack

term €5 vanishes as the discarded probability mass 1 — Zs — Q.

Remark. Theorem formally shows that threshold-based constrained sampling reduces the
divergence between the model and the true solution distributions. Specifically, by masking out
low-confidence regions (probability < §) and renormalizing the remaining mass, the KL divergence
decreases whenever the retained region has higher expected likelihood than the discarded region,
a condition that is naturally satisfied during inference where high-confidence variables dominate.
Importantly, while constrained sampling can also be applied to uniform-noise diffusion models [22,
24, its benefits are substantially amplified under the structure-preserving variable-absorption process,
which provides a monotonic and semantically consistent reverse trajectory (see Sec.[4.3).

3.3 Objective-Aware Gradient-Free Refinement

Following the reverse sampling process
in Algorithm[I} we finally sample a soft-
constrained solution xg ~ pg(xo | G). Require: Consistency model fy, graph instance G, pre-
To obtain a feasible solution s € (2, diction py, score function score; = p;/¢;, number of
we apply greedy decoding by sequen- iterations T}, perturbation ratio o7’
tially inserting edges (for TSP) ornodes  1: for t = 1 to 7, do
(for MIS) with the highest confidence 2 m + I(py(xg =1 | G) > 4)
if there are no conflicts, enforcing task- ~ 3: S+ ma@os
specific constraints. This step ensures 4 § < ONEHOTENCODE(s)

5.

6

7

Algorithm 2 Objective-Aware Gradient-Free Refinement

hard feasibility and is commonly used /lapply variable-absorption noise
in [19] 22| 23] 24]]. While feasible, it Sar ~ Cat(3- Q,r)

does not explicitly optimize the task ob- . po < fo(sar | G)

jective and often yields suboptimal solu-  g. s <~ GREEDYDECODE(py, score)
tions. Recent methods like T2T [23] and 9. end for

Fast T2T [24] address this by incorporat- 1. return s

ing task-level supervision via gradient-
guided refinement. These methods itera-
tively perturb a solution and use reverse denoising guided by objective gradients to refine solution,
but at the cost of repeated forward-backward passes and reliance on differentiable approximations,
making them computationally expensive and less suited to discrete combinatorial settings.

To overcome these practical inefficiencies, we propose a lightweight objective-aware gradient-free
refinement strategy. Rather than backpropagating gradients, we integrate task objectives directly into



Table 2: Results on TSP-50 and TSP-100. G: Greedy Decoding.

Algorithm Type TSP-50 TSP-100
Length] Drop|/ Time| Length] Drop] Time]
Concorde [36] Exact 5.688 0.00% 0.074s  7.756 0.00%  0.404s
LKH3 [26] Heuristics 5.688 0.00% 0.058s  7.756 0.00%  0.176s
GCN [17] SL+G+20pt 5.694  0.115% 0.009s  7.807 0.649% 0.019s
GNNGLS* [37] SL+G+20pt 5707  0.333% 0.019s  7.857 1.295% 0.129s
DIMES* [19] Meta+RL+G+20pt  5.823  2.387% 0.018s 8.007  3.232% 0.057s
AM* [12] RL+G+20pt 5,679  0.167% 0.048s  7.826  0.898% 0.438s
POMO [13] RL+G+20pt 5693  0.102% 0.019s  7.854 1.253% 0.116s
Sym-NCO [14] RL+G+20pt 5694  0.122% 0.198s  7.818  0.796% 0.634s
BQ-NCO* [15] RL+G+20pt 5.795 1.894% 0.205s  7.893 1.772% 0.387s
DIFUSCO (T5=50) [22] SL+G 5.692  0.076% 0.229s  7.851 1.216% 0.591s
Fast T2T (7=3) [24] SL+G 5694  0.111% 0.024s  7.798  0.537% 0.038s
StruDiCO (75=3) SL+G 5692 0.071% 0.023s  7.786  0.392% 0.037s
CT2T (T,=501,=30)[23] = SL+G 5.688  0.015% 0.717s  7.765 =~ 0.125% 1.559s
Fast T2T (1,=3,1,=3) [24] SL+G 5.688  0.014% 0.139s  7.760  0.052% 0.182s
StruDiCO (1,=3,7,=3) SL+G 5.688 0.014% 0.051s 7.758  0.036% 0.082s
- DIFUSCO (T,=50) [22] =~ SL+G+20pt 5690 0.046% 023s 7776  0.262% 0.590s
Fast T2T (7,=3) [24] SL+G+20pt 5.689  0.031% 0.026s 7.764  0.101% 0.037s
StruDiCO (75=3) SL+G+20pt 5.689  0.019% 0.026s 17.761 0.067%  0.038s
S T2T (1,=50,1,=30) [23] = SL+G+20pt 5.688  0.012% 1.098s  7.760 ~ 0.058% 1.571s
Fast T2T (1,=3,17,=3) [24] SL+G+2Opt 5.688  0.012% 0.139s  7.759  0.036% 0.180s
StruDiCO (Ts=3,17,=3) SL+G+20pt 5.688 0.011% 0.059s 7.756  0.024% 0.083s

greedy decoding using a objective-aware scoring scheme. Inspired by the relaxed objective redefined
in [23]], we combine task rewards and constraint penalties to form guidance signals. Specifically,
we define the variable-wise score as score; = p;/(¢; + €), where € serves as a balancing term,
pi = po(x}y = 1| G) denotes the predicted confidence, and ¢; encodes task-specific penalties:

¢(i)rsp = d(i) (edge distance), o(i)mis = Z p; (conflict potential) (6)
JEN(4)
This scoring scheme favors confident variables that contribute positively to the task objective, e.g.,

shorter edges in TSP or nodes likely to form larger independent sets in MIS, thus guiding decoding in
an objective-aligned direction without requiring gradient computation.

Gradient-Free Iterative Refinement. Building on the proposed objective-aware scoring scheme,
we further introduce an iterative refinement strategy to improve solution quality. Starting from a
feasible solution sg, we apply structure-aware perturbations via variable-absorption noise, denoise the
perturbed state using the consistency model, and greedily decode a new solution using the objective-
aware score. This process explores a local neighborhood around the current solution and concentrates
inference within high-confidence regions. The refinement is fully forward-pass and can be iterated
with minimal overhead, as detailed in Algorithm 2] We justify this procedure through the following
informal proposition.

Proposition 3.1 (Refinement Enhances Solution Reliability, Informal). Let s be a feasible solution
decoded from a predictive distribution pg using an objective-aware greedy strategy. Assume that
the variable-absorption noise operator Q,, introduces bounded perturbations that preserve the
high-confidence regions of py, and that the consistency model fy is locally Lipschitz continuous
under such perturbations. Then, iterative refinement converges toward fixed points that remain within
locally stable, high-confidence regions of the predictive space.

Remark. Our gradient-free refinement strategy is fundamentally enabled by the structural consis-
tency of the variable-absorption noising model. Since each refinement step perturbs only a subset of
already selected variables, the resulting inputs remain semantically aligned with the current solution.
This local consistency is preserved by the denoising process and reinforced by objective-aware greedy
decoding, enabling stable and meaningful refinement across iterations. In contrast, prior diffusion
models based on uniform noise [22} 23| 24]] apply symmetric noise to all variables regardless of
selection status, which destroys partial solution structure and produces perturbed inputs that are poorly
aligned with the original solution. As a result, consistency denoising from such noisy inputs lacks
directional guidance, and greedy decoding does not provide reliable improvement. Therefore, while



Table 3: Results on TSP-500 and TSP-1000. S: Sampling Decoding.

TSP-500 TSP-1000

Algorithm Type Length]  Drop] Time  Length]  Dropl Time

Mathematical Solvers or Heuristics

Concorde [36] Exact 16546  0.00% 18.672s 23.118 0.00%  84.413s
LKH-3 [26] Heuristics 16546  0.00%  1.848s  23.119 0.00% 4.641s
Learning-based Solvers with Greedy Decoding

GCN [17] SL+G+20PT  16.899 2.121%  0.128s - - -

DIMES* [19] RL+G+20pt  17.165 3.742%  0.453s - - -

BQ-NCO* [15] RL+G+20pt  16.838  1.766% 2.454s  23.647 2287%  5.722s
DIFUSCO (T,=50) [22] SL+G 18.136  9.611% 1.442s  25.667 11.022%  4.982s
Fast T2T (Ts=5) [24] SL+G 17.467 5.551% 0251s  24.698 6.831%  0.971s
StruDiCO (T=5) SL+G 17.404 5.172% 0.239s  23.118 5.967%  0.900s
T2T (1,:=50,T,=30) [23] ~ SL+G 17470  5.578% 3.334s  25.168  8.868%  12.871s
Fast T2T (1,=5,T,=5) [24] SL+G 16919 2.244% 1.426s 23936  3.539%  5.988s
StruDiCO (T,=5,T,=5) SL+G 16.887 2.045% 0.651s  23.755 2.753%  2.533s
DIFUSCO (T,=50) [22] = SL+G+20pt 16817 1.641% 1.433s 23567 1.936%  5.036s
Fast T2T (Ts=5) [24] SL+G+20pt 16701  0.922% 0.261s  23.388  1.167%  0.979s
StruDiCO (T5=5) SL+G+20pt 16.669 0.728%  0.247s  23.348  0.996%  0.915s

T2T (1=50,14=30) [23] SL+G+20pt 16.677 0.793%  3.367s  23.397 1.209%  13.089s
Fast T2T (1,=5,T4=5) [24] SL+G+20pt 16.611 0.383% 1.387s  23.257 0.603%  5.779s
StruDiCO (T=5,T,=5) SL+G+20pt 16.602  0.326% 0.674s 23242  0.535%  2.614s

Learning-based Solvers with 4x Sampling Decoding

DIFUSCO (7s=50) [22] SL+S 17.533  5959%  2.131s  25.059  8.399%  19.023s
Fast T2T (15=5) [24] SL+S 17.024  2.874% 0.877s  24.096  4.231%  3.635s
StruDiCO (T,=5) SL+S 16.995 2.696% 0.839s  24.007 3.849%  3.430s
T2T (T,:=50,T,=30) [23] ~ SL+S 17.054  3.070% 9.722s  24.838  7.444%  34.813s
Fast T2T (T=5,1,=5) [24] SL+S 16.710  0978%  5.216s  23.712  2.570%  13.346s
StruDiCO (T=5,T,=5) SL+S 16.688  0.846% 2.312s  23.471 1.527%  6.520s
DIFUSCO (7,=50) [22] = SL+S+20pt  16.694 ~ 0.893% 4.941s 23425 1.326% 19.217s
Fast T2T (15=5) [24] SL+S+20pt 16.633  0.509% 0911s 23286  0.726%  3.733s
StruDiCO (T,=5) SL+S+20pt 16.611 0.383% 0.857s 23273  0.670%  3.541s

T2T (15=50,14=30) [23] SL+S+20pt 16.621  0.453% 12.636s  23.371 1.070%  36.271s
Fast T2T (1%=5,1,=5) [24] = SL+S+20pt 16.580  0.194%  5.095s 23287  0.419% 13.029s
StruDiCO (T=5,T,=5) SL+S+20pt 16.575 0.168% 2.437s  23.178 0.261%  6.836s

refinement can in principle also be applied to uniform-noise models, its effectiveness is substantially
amplified under the monotonic, structure-preserving property of variable-absorption diffusion.

We summarize the key differences between StruDiCO and prior work [24]] in Table |1} Unlike Fast
T2T, which incorporates objective guidance during the denoising process, StruDiCO integrates task
objectives directly into the decoding stage. This design eliminates the need for backward gradient
computation, resulting in significantly lower time and memory complexity while enabling finer
control over structure-aware refinement. In addition, Fig. [2] presents a comparative evaluation across
six benchmark tasks in terms of GPU memory usage, inference time, and solution quality (Drop), with
all metrics normalized to Fast T2T (100%). StruDiCO consistently achieves superior efficiency and
performance, with notable improvements on large-scale instances such as TSP-1000 and MIS-ER.

4 Experiment

We evaluate our method on two classic combinatorial optimization tasks-Traveling Salesman Problem
(TSP) and Maximum Independent Set (MIS)-across a wide range of graph sizes and difficulty levels.
Our evaluation includes comparisons against state-of-the-art (SOTA) exact solvers, heuristics, and
neural baselines. For fair comparison, we adopt the standard diffusion-based configuration where 7’
denotes the number of initial inference steps and T}, the number of guided refinement steps.

We report three metrics across all settings: (1) Objective, the value of the solution (tour length for
TSP, subset size for MIS); (2) Drop, the relative performance degradation compared to reference
solutions; and (3) Time, the average runtime per instance. All models are evaluated with batch size 1
and in single-thread mode unless otherwise specified. More details are provided in the Appendix
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Figure 3: Hyperparameter study on different aspects of our method.

4.1 Results on TSP

Datasets. We follow prior works [12, 22| 23| 24] [35] to generate TSP instances with N &
{50, 100, 500, 1000} nodes, uniformly sampled from the unit square. A TSP instance includes
N 2-D coordinates and a reference solution obtained by heuristics.

Main Results. As shown in Tables [2]and[3] our method achieves highly competitive solution quality
under both greedy and sampling decoding (x4). For example, on TSP-1000, our method achieves
a relative drop of 0.535%, outperforming Fast T2T’s 0.603% under the same T, = 5, T, = 5
configuration. In terms of runtime, our method is 2.2 x faster on average compared to Fast T2T and
over 5x faster than T2T. Moreover, Fig. [2| presents radar plots for memory, runtime, and drop across
TSP variants, normalized to Fast T2T. Our method consistently reduces GPU memory by 30%-70%,
achieves 40 %—65 % faster runtime, and improves solution quality, highlighting the benefit of our
gradient-free refinement and constrained denoising.

Hyperparameter Study. We conduct hy- Taple 4: Generalization results with Greedy Decoding.

perparameter studies on TSP-100 and TSP- Training
1000 to analyze the impact of three core m TSP-30 TSP-100 ISP-500 TSP-1K

hyperparameters in our method: (1) Infer- ¢ %};lgcg ST%ZS%*)’EZ[% ggg? 8-%?? %‘2(5)? ?Z(I)Zv
. _ ' 5=, L 4= . 0 . @ N o . 0
ence step and guided step (Ts = Ty). As E Fast T2T (T.=5, T,=5) [Z4]  0.09%  036%  1.02%  1.26%
shown in Fig. [3a] increasing the number StruDiCO (I;=5, 1,=5) ~ 0.01%  0.01%  031%  0.80%
of steps improves solution quality up toa g DIFUSCO(IL=50) 22 ~ 144%  023%  344%  331%
. . ) =TT (1.=50,T,=30)* 23] 0.56%  0.17%  247%  2.19%
point, with performance saturating around & FustT2T (T.=5.7,=5) 4] 0.12%  002%  040%  0.55%
T, = T, = 5 for both instance sizes. (2) = SwDICO(T.=5.T,=5) 0.16%  0.02%  034%  0.55%
: o di o DIFUSCO (T,=50)* 221 4.16%  3.04%  140%  1.85%
Ma;k threshold (5),' Fig. 1ndlca§es tha} 7 T2T (T,=50, T,=30)* 23] 3.79%  225%  091%  122%
setting an appropriate threshold ¢ is criti- é Fast T2T (T,=5, T,=5) [24]  2.67% 1.77%  038%  0.95%
cal. Low thresholds retain excessive noise, StrubiCO (=5, Ty=5) 346%  296%  033%  049%
: : .. : . DIFUSCO (T,=50)* [22]  4.54%  398%  2.65%  221%
while overly high values limit explorathn. T (1e50, T30 (3] 466%  381%  1e1%  130%
The results demonstrate the tradeoff exis- 2 Fast T2T (T,=5, T,=5) [24]  3.46%  3.08%  1.06%  0.58%
. . . 1 - - v 0
tence and indicate that § = 0.8 can achieve StuDiCO (1,=5, T,=5)  431% 322% 075% 054%

relatively better performance. (3) Perturba-

tion ratio (c). As shown in Fig.[3c] the refinement quality depends sensitively on the perturbation
ratio. Too small values fail to explore alternative candidates, while too large values destroy prior
structure. A moderate value (0.2 < a < 0.5) leads to the lowest Drop for TSP-100 and TSP-1000.

Results for Generalization. We evaluate the cross-scale generalization ability of models by testing
on TSP instances of varying sizes, while keeping the training set fixed. Table @ reports the Drop (%)
under greedy decoding. StruDiCO achieves the lowest performance drop in most settings. Notably,
when tested on TSP-50, the model trained on TSP-1000 yields a drop of only 0.80%, outperforming
Fast T2T (1.26%) and DIFUSCO (2.71%). Similar trends are observed on other test sizes (e.g.,
TSP-500 or TSP-1K), demonstrating that StruDiCO generalizes well across scales.

4.2 Results on MIS

Datasets. Following prior work [[19} 22 23] 24| |40} 411 142], we use two types of graphs: random RB
graphs [43] with 200-300 nodes and Erdés—Rényi (ER) graphs [44]] with 700-800 nodes, where each
edges appears independently with probability p = 0.15.

Main Results. As shown in Table[5] StruDiCO consistently outperforms diffusion-based baselines
in both solution quality and efficiency. On ER graphs, it achieves the best Drop across all decoding



Table 5: Results on MIS. * quoted from [23} [24]].

Algorithm Type RB-[200-300] ER-[700-800]
SIZEt  Dropl Time SIZEt Drop] Time

KaMIS [38] Heuristics Exact  20.090*  0.00%  45.809s | 44.969*  0.00%  60.753s
Gurobi [39] Exact 20.090 0.00% 22.033s | 41.28 8.203%  23.437s
DIFUSCO* (T = 100) [22] SL+G 18.52 7.81% - 36.667 18.462%  4.923s
Fast T2T (T5=5) [24] SL+G 18.875 6.023% 0.085s | 37.820 15.898%  0.262s
StruDiCO (T,=5) SL+G 19.308 3.899% 0.086s | 39.820 11.450% 0.261s

S T2T* (I, = 50,7, = 30) [23] SL+G 1898  549% - ] 39.833 11.419% 6.253s
Fast T2T (1,=5,1,=5) [24] SL+G 19.578 2.540% 0.399s | 40.781 9.313%  1.217s
StruDiCO (1,=5,T4=5) SL+G 19.748 1.707% 0.181s | 42.125 6.324%  0.552s
DIFUSCO* (Ts = 100) [22] SL+S 19.13 4.79% - 39.083  13.092% 17.939s
Fast T2T (T,=5) [24] SL+S 19.430  3.29%  0.228s | 39.767 11.568% 1.0456s
StruDiCO (Ts=5) SL+S 19.756  1.687% 0.229s | 41.531 7.645%  0.941s

S T2T* (I, =50,7, = 30) [23] SL+S 1938 353% - | 41417  7.899% 22.426s
Fast T2T (T,=5,1,=5) [24] SL+S 19.748  1.715% 1.079s | 41.651  7.378%  4.379s
StruDiCO (T,=5,T4=5) SL+S 19.908 0.934% 0.492s | 43.265 3.789%  1.988s

Table 6: Ablation study on TSP and MIS tasks (Gap, |).

Variant TSP-50 TSP-100 TSP-500 TSP-1000 MIS-RB MIS-ER
Uniform CM (Fast T2T, T,=5) 0.031% 0.101%  0.922% 1.167% 6.023%  15.898%
VA CM (StruDiCO) 0.032%  0.163% 1.091% 1.183% 7476%  23.461%
Uniform + CCS 0.025% 0.081%  0.898% 1.074% 5.878%  16.522%

VA + CCS (StruDiCO, T,=5)  0.019% 0.067%  0.728% 0.797% 3.899%  11.450%

modes: 6.324% under greedy decoding and 3.789 % under sampling, compared to 9.313% / 7.378 %
from Fast T2T and 11.419% / 7.899% from T2T. In terms of runtime, StruDiCO is 11 x faster than
T2T and over 2x faster than Fast T2T under the same refinement setup (T, = 5,7, = 5).

Generalization. Figures [6]- 0] show generalization performance on ER graphs with varying edge
density (p from 0.2 to 0.4) and graph size (from 350-400 to 1400-1600). Our method achieves
consistently better solution sizes, outperforming Fast T2T by up to 8% and DIFUSCO by over 20%
in sparse settings, while maintaining superior scalability.

4.3 Ablation Study

We conduct a detailed ablation study to disentangle the contributions of the Variable-Absorption (VA)
mechanism and Constrained Consistency Sampling (CCS). The results are summarized in Table[§]
1) Replacing the uniform consistency model (CM) with VA slightly degrades performance. This is
because the monotonic absorption process (1 — 0) produces conservative trajectories, structurally
coherent but with limited exploration. By contrast, the uniform CM allows symmetric noise injection
(0 < 1), which supports broader exploration. 2) Although CCS improves both uniform and VA
models, the gain is substantially larger when combined with VA. This highlights that VA provides
semantically consistent intermediate states, enabling CCS to operate in a low-noise, structured space.
Overall, the ablation confirms that VA and CCS are complementary: VA provides structural continuity,
CCS leverages it for reliable variable selection, together accounting for the strong performance.

5 Conclusion

We have introduced a structured denoising diffusion framework tailored for CO problems. By
modeling the forward process as a variable absorption process and the reverse process as a progressive
variable selection mechanism, it enables the construction of interpretable partial solutions at each
inference step. We also propose a gradient-free objective-aware decoding strategy that explicitly
incorporates objective constraints to enhance inference quality on unseen instances. Extensive
experiments on TSP and MIS show the superior efficiency and effectiveness, achieving up to 3.5 %
faster inference, 70% lower memory usage, and substantial improvements in solution quality.
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A Discussion on the Construction Paradigms of NCO

As illustrated in Fig. 4] autoregressive (AR) methods construct solutions by selecting decision
variables (nodes or edges) in a strictly sequential manner, typically requiring O(N) decoding steps,
where N is the number of decision variables. In contrast, non-autoregressive (NAR) methods
predict soft-constrained solutions in a one-shot pass, followed by heuristic post-processing to ensure
feasibility, effectively reducing decision-making to a single step. These two paradigms represent the
two extremes of variable selection granularity in neural combinatorial optimization (NCO).

Naturally, this raises the question: Can we design a construction paradigm that balances granularity
and efficiency, lying between these two extremes? Recently, generative approaches based on diffusion
models have achieved state-of-the-art performance and offer a promising direction. However, they
suffer from two critical limitations:

1. Excessive inference steps. Traditional diffusion models typically involve hundreds or
thousands of steps (e.g., T' = 1000), often exceeding the number of variables in the problem,
which introduces significant inefficiency.

2. Lack of structural interpretability in intermediate states. As shown in Fig.[5a inter-
mediate solutions during denoising are usually dense and noisy (e.g., full graphs for TSP),
offering little insight into how variables are progressively determined.

The recent introduction of consistency models [25] has mitigated the first issue by enabling high-
quality solutions with as few as 3-5 inference steps, refered as FastT2T [24]. Building on this progress,
our work addresses the second issue by proposing a structured diffusion framework with step-wise
interpretability.

As shown in Fig. [5b] our model begins from an empty solution and progressively activates decision
variables with high predicted confidence at each inference step. This process can be viewed as a
variable selection trajectory, where each intermediate state incrementally extends the previous one,

forming a structurally consistent sequence of partial solutions.
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(a) The solving pipeline of Autoregressive construction.
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(b) The solving pipeline of Non-Autoregressive construction.

Figure 4: Comparison of solving pipelines between Autoregressive and Non-Autoregressive construc-
tions.
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Figure 5: Comparison of solving pipelines between FastT2T and StruDiCO. Green solid lines indicate
newly added edges, while green dashed lines represent deleted edges.

B Discussion on Structural Consistency in Denoising

B.1 Limitations of Vanilla Reverse Sampling

Most diffusion-based CO solvers, including our main pipeline (see Sec. [3.2)), follow the standard
multistep consistency sampling protocol [24} 25], as shown in Algorithm [3] which iteratively denoises
and resamples xg given intermediate states x.. While this process can recover high-quality solutions,
it does not strictly enforce any structural constraints on the reverse trajectory, such as feasibility
preservation across steps.

Algorithm 3 Multistep Consistency Sampling

Requlre Consistency model fy(-, -, ), graph instance G, time sequence 71 > -+ > Ty, _1
: Sample xp ~ U
pa(XO ‘ G) — f@(XTaTa G)
xo ~ po(Xo | G)
forn=1to N, —1do
X, ~ Cat(p = %0Q,, )
po(x0 | G) < fo(Xr,,Tn, G)
xo ~ po(Xo | G)
end for
return Solution x

R A A

B.2 Step-Wise Decoding Sampling for Intermediate Feasibility

To further improve step-wise feasibility, we explore a stronger variant: step-wise greedy decoding.
At each reverse step 7, we rank the predicted heatmap pg(xg = 1 | x-, 7, G) in descending order
and activate the top n, variables to form x,, subject to task-specific constraints (e.g., no subtours or
conflicts). Here, n is determined by the expected number of active variables given by the cumulative

transition matrix Q, under the reverse schedule.

This approach better aligns the reverse process with the semantics of the variable-absorption forward
process and can be combined with feasibility filters (e.g., constraint checks) to construct strictly valid
X at every step. However, systematic exploration of this strategy is left as future work.
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C Full Proof of Theorem 3.1

We provide the complete mathematical proof of Theorem [3.1} which formally analyzes the effect of
threshold-based masking on the KL divergence between the predicted and true solution distributions.

Theorem C.1 (Constrained Sampling Reduces Divergence, Full Version). Let q(xo | G) be the true
distribution and p9(Xo | X+, T, G) the model prediction. Fix a threshold § € (0,1) and define the
constrained support

Ms={i € [N]:po(x; =1]%,,7,G) >0}, @)
Ss = {xo : supp(xo) € M;}. ®)
Let the masked (renormalized) model be

Po (X()) H[XO S 85]

_ _ 9
Po(x0) 7 ; €))
Zs =Y polxo) € (0,1], (10)
x0ESs
and define the log-likelihood ratio £(x¢) = log%. Assume q(x¢9) > 0 whenever pg(xg) > 0 (so
that Dxr,(pe|lq) < o0). Then the reverse-KL difference admits the exact decomposition
Dxv(polla) = Dxi(pellq) — (1 — Zs) (As + cs), (11)
where
As = Epyisg) [€(x0)] = Epy(fs5) [€(x0)], (12)
—log Zs
= —=2" (>0). 13
(%) 1_ Z5 (_ 0) ( )
Consequently,
Dxw(pollg) < Dxw(pella) + es, (14)
es=(1—Zs) [~ (D5 +c5)] (15)

and in particular, if As > —c;s then Dk1,(Pellq) < Dkui(pellq), with strict inequality whenever
Zs < 1 and the inequality is strict.

Proof. All sums below are over the discrete space of xo. We use the shorthand p(xq) = pg (X |
x., T, &), q(x0) = q(x0 | G), and p(xg) = Pe(x0), suppressing the conditioning for readability.
Step 1: Reverse-KL under masking. By definition of p and Zs,

p(x0)
_ , € Ss,
p(Xo) _ Zé X0 S
0, X0 ¢ 85.

Since g > 0 wherever p > 0, we have ¢ > 0 on S5 (because p > 0 there if and only if p > 0). Then

(16)

Dra(plle) = 3 o) log : Ej;i (a7
_ xoze;% p(;O) log p(;((;z({)zé (18)
- p(;:) 1og§g2; = IOgZ(;x;Sé p(;:> (19)
= Ep(.(s) [log z g‘;” — log Zs 20)
= Ep(155) [{(%0)] — log Zs. 21
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Step 2: Reverse-KL of the original model. Decompose p into its mass on S5 and S§:

= Xp) lo P(xo)
Dxw(plla) = %jp( o) log = (22)
= > p(xo)l(x0) + Y p(x0)(x0) (23)
X0€Ss x0¢Ss
= Zs Ep(155) [l(x0)] + (1= Zs) Epsg) [(x0)]- (24)

Step 3: Taking the difference. Subtracting (B) from (A) gives

Dxv(Pllg) — Dxwu(pllg) (25)
= (EP(.‘S(;)M] - log Z(s) - (25 Ep(.‘gé)[ﬁ] + (1 - Z5)Ep(.|5§)[£]> (26)
= (1= Zs)Eps)l) = (1 = Zs) Ep(sg)[] — log Zs 27)
=—(1- Zs)<Ep(-|sg)W - Epus(;)[f]) —log Zs (28)
As
= —(1 - Z(;) Ag - log Z(s. (29)
When Z; = 1 the mask is identity and both sides are equal; for Z5 € (0, 1) rewrite the last term as
—log Z
—10gZ5=(1—Za)ﬁ=(1—Zé)Ca7 (30)
1-2Zs
which yields the exact decomposition Eq. (TT):
Dxv(pllg) = Dxw(pllg) — (1 — Zs) (As + cs). G

Step 4: Upper bound and sufficient condition. Since for any real z, x = =y — (—x)1 with
x4 = max{z, 0}, we get the one-sided bound

Dxr.(pllg) < Dxw(pllg) + (1 — Zs) [ — (As +c5)] .- (32)

Moreover, whenever As > —c;s (equivalently Ep(,wg)[ﬂ > Ep(.1s5)[f] — cs), the difference in
Eq. (T1) is nonpositive and thus Dk, (p|lg) < Dk (pl|q), with strict improvement if Z5 < 1 and the
inequality is strict. O

D Supplementary Experiments

D.1 Applied to Capacitated Vehicle Routing Problem

To further demonstrate the generality of StruDiCO beyond classical edge-selection (TSP) and node-
selection (MIS) tasks, we extend it to the Capacitated Vehicle Routing Problem (CVRP), a more
challenging CO task that involves both global routing structures and hard feasibility constraints,
such as customer demands and vehicle capacities. The refinement procedure for CVRP follows the
same design as that for TSP: greedy decoding is performed based on the learned heatmap, with the
objective guided by a distance-based penalty term. We evaluate StruDiCO on CVRP-50, CVRP-100,
and CVRP-200 under standard benchmark settings [[16]. To further improve both solution feasibility
and cost, we incorporate a local search heuristic (Classic-LS [45]]) during inference. As summarized
in Table [/} these results demonstrate that StruDiCO effectively generalizes to CVRP, consistently
improving over learning-based baselines while remaining efficient.

D.2 Results on Real-World Data

We evaluate our model trained on randomly generated 100-node instances against real-world TSPLIB
benchmarks containing 50-200 nodes. For fair comparison, we adopt the same hyperparameter
settings as [24]], with Ty = Ty = 10. As shown in Table @ StruDiCO demonstrates superior
performance, achieving an average optimality gap of only 0.13%.
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Table 7: Results on CVRP. LS: Local Search.

. CVRP 50 CVRP 100 CVRP 200

Algorithm Type

Length] Drop] Time Length] Drop] Time Length) Drop]l Time
HGS [46] Heuristics 10.37 0.00% 1s 15.56  0.00%  20s 19.63 0.00%  60s
Sym-NCO [16] RL+LS 10.57 1.95% 0.09s 15.93 2.37% 0.19s 20.19  2.86% 0.36s
COExpander [47] SL+LS 10.77 3.90% 0.04s 1622 4.25% 0.06s 20.59 4.89% 0.15s
StruDiCO (T,=3,T,=3) SL+LS 10.48 1.12%  0.05s 15.85 1.88% 0.11s 20.25 3.19% 0.26s
StruDiCO (7,=5,T,=5) SL+LS 10.45 0.85% 0.07s 15.80 1.53% 0.17s 20.16 2.71% 0.38s

Table 8: Solution quality for methods trained on random 100-node problems and evaluated on
TSPLIB instances with 50-200 nodes. * denotes results quoted from previous works [24]].

Instances AM* GCN* Learn20PT* GNNGLS* DIFUSCO* T2T* Fast T2T*  Ours

eil51 16.767%  40.025% 1.725% 1.529% 2.82% 0.14% 0.00% 0.00%
berlin52 4.169% 33.225% 0.449% 0.142% 0.00% 0.00% 0.00% 0.00%
st70 1.737% 24.785% 0.040% 0.764% 0.00% 0.00% 0.00% 0.00%
eil76 1.992% 27.411% 0.096% 0.163% 0.34% 0.00% 0.00% 0.00%
pr76 0.816% 27.793% 1.228% 0.039% 1.12% 0.40% 0.00% -0.00%
rat99 2.645% 17.633% 0.123% 0.550% 0.09% 0.09% 0.00% 0.00%
kroA100 4.017% 28.828% 18.313% 0.728% 0.10% 0.00% 0.00% 0.00%
kroB100 5.142% 34.686% 1.119% 0.147% 2.29% 0.74% 0.65% 0.00%
kroC100 0.972% 35.506% 0.349% 1.571% 0.00% 0.00% 0.00% 0.00%
kroD100 2.717% 38.018% 0.866% 0.572% 0.07% 0.00% 0.00% 0.00%
kroE100 1.470% 26.589% 1.832% 1.216% 3.83% 0.27% 0.13% 2.15%
rd100 3.407% 50.432% 1.725% 0.003% 0.08% 0.00% 0.00% 0.11%
eill01 2.994% 21.776% 1.529% 0.03% 0.03% 0.00% 0.00% 0.00%
1lin105 1.739% 34.902% 1.867% 0.606% 0.00% 0.00% 0.00% 0.18%
pr107 3.933% 80.564% 0.898% 0.439% 0.91% 0.61% 0.62% 0.18%
pri24 2.677% 70.146% 10.232% 0.755% 1.02% 0.08% 0.08% -0.00%
bier127 5.908%  45.561% 3.044% 1.948% 0.94% 0.54% 1.50% 0.04%
ch130 3.182% 39.090% 0.709% 3.519% 0.29% 0.06% 0.00% 0.24%
pr136 5.064% 58.673% 0.000% 3.387% 0.19% 0.10% 0.01% 0.04%
prl44 7.641% 55.837% 1.526% 3.581% 0.80% 0.50% 0.39% 0.00%
ch150 1.584%  49.743% 0.321% 2.113% 0.57% 0.49% 0.00% 0.04%
kroA150 3.784%  45.411% 0.724% 2.984% 0.34% 0.14% 0.00% 0.24%
kroB150 2.437% 56.745% 0.886% 3.258% 0.30% 0.00% 0.07% 0.00%
prl52 7.494%  49.376% 3.119% 3.119% 1.69% 0.83% 0.19% 0.69%
ul59 7.551% 38.338% 0.054% 1.020% 0.82% 0.00% 0.00% 0.00%
rat195 6.893% 24.968% 0.743% 1.666% 1.48% 1.27% 0.79% -0.00%
d198 373.020%  62.952% 0.522% 4.727% 3.32% 1.97% 0.86% -0.00%
kroA200 7.106%  40.885% 1.441% 2.029% 2.28% 0.57% 0.49% 0.00%
kroB200 8.541%  43.643% 0.646% 2.589% 2.35% 0.92% 2.50% -0.00%
Mean 16.767%  40.025% 1.725% 1.529% 0.97 % 0.35% 0.28% 0.13%

D.3 Supplementary Results of Generalization Study

To further evaluate the generalization ability of StruDiCO, we conduct additional experiments on
MIS instances with varying edge densities and graph sizes. Specifically, we test models trained on
ER graphs with p = 0.15 and n = 700-800 on out-of-distribution graphs with different p values (0.2,
0.3, 0.4) and node counts (350400, 1400-1600). As shown in Figures [(H9] StruDiCO consistently
outperforms prior diffusion-based baselines (e.g., DIFUSCO [22f], T2T [23], Fast T2T [24]]) under
both greedy and sampling decoding, demonstrating superior adaptability to distribution shifts in both
graph sparsity and scale.

E Experimetnal Details

E.1 Hardware

All models are trained and tested using NVIDIA A40 (48G) GPUs and Intel(R) Xeon(R) Gold 5220
CPU @ 2.20GHz.
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E.2 Sparsification

For large-scale TSP problems, we follow [22] 23] 24]] to employ sparse graphs, as sparsified by
constraining each node to connect to only its k nearest neighbors, determined by Euclidean distances.
For TSP-500, we set k = 50, and for TSP-1000, & = 100. This strategy prevents the exponential
increase in edges typical in dense graphs as node count rises.

E.3 Dataset

Our dataset settings follow previous works [22] 23] 24] to ensure fair and consistent comparisons.
The reference solutions for TSP-50/100 are labeled using the Concorde exact solver [36], while TSP-
500/1000 solutions are generated by the LKH-3 heuristic solver [26]. The test sets for TSP-50/100
contain 1280 instances sourced from [[12], [17], and those for TSP-500/1000 contain 128 instances
from [18]]. For the MIS task, we use KaMIS [38]] to generate reference solutions for both RB and
ER graphs. The RB training set consists of 90,000 randomly generated instances, and the test set
includes 500 instances. For ER graphs, we generate 163,840 training instances, and the test set is
obtained from [19]].

E.4 Hyperparameters

We have organized the training settings and model parameters of StruDiCO in Table 9]
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Table 9: Details about the training hyperparameters of StruDiCO.

Problem Dataset Size Batch Size Epoch Learning Rate Hidden Dimension Noise Degree

TSP-50 1,502k 32 50 2e-4 256 0.5
TSP-100 1,502k 12 50 2e-4 256 0.5
TSP-500 128k 6 50 2e-4 256 0.5
TSP-1000 64k 4 50 2e-4 256 0.5
MIS-RB 90k 4 50 2e-4 256 0.3
MIS-ER 163k 4 50 2e-4 128 0.5

F Network Architecture Details

F.1 Input Embedding Layer

Given node vector z € RV*2, weighted edge vector e € R¥, denoising timestep t € {71, ..., 7ar},
where N denotes the number of nodes in the graph, and E denotes the number of edges, we compute
the sinusoidal features of each input element respectively:

Z; = concat(Z; 0, Ti1) 2n
#; j = concat (sin ;S/Jd , COS ;(;/Jd ,sin ;f;/]d , COS ;;/Jd, ...,sin %, cos ;;/Jd) (22)
- . € €i . € €i . € €i
€; = concat (sm TO/d’COS To/d,sm Tz/d,cos T2/d,...7smm7cos Td/ ) (23)
{ = concat (Sin t cos ¢ sin t cos ¢ ...,sin L cos t) 24)
T0/d’ T0/d’ T2/d’ T2/d’ ’ Td/d’ Td/d

where d is the embedding dimension, 7" is a large number (usually selected as 10000), and concat(-)
denotes concatenation.

Next, we compute the input features of the graph convolution layer:

) = WP, (25)
e = Wie; (26)
t9 = W2 (ReLU(W21)) (27)

where t° € R%, d, is the time feature embedding dimension. Specifically, for TSP, the embedding
input edge vector e is a weighted adjacency matrix, which represents the distance between different
nodes, and e is computed as above. For MIS, we initialize e” to a zero matrix 0Z*<,

F.2 Graph Convolution Layer

Following [17]], the cross-layer convolution operation is formulated as:

2"t = 2} + ReLUBN(Wiz{ + > ni; © Wia})) (28)
jri
et = el + ReLUBN(Wiel, + Wizl + Wia})) (29)
!
;= (©;) (30)

Zj’wio—(eéj’) te

where 2! and e! ; denote the node feature vector and edge feature vector at layer I, Wy, -+, W5 €

R"*" denote the model weights, and 7! ; denotes the dense attention map. The convolution operation
integrates the edge feature to accommodate the significance of edges in routing problems.
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For TSP, we aggregate the timestep feature with the edge convolutional feature and reformulate the
update for edge features as follows:

e/t = el; + ReLU(BN(Wiel; + Wixl + Wixl)) + W{(ReLU(t°)) (31)

For MIS, we aggregate the timestep feature with the node convolutional feature and reformulate the
update for node features as follows:

2t =zl + ReLUBN(Wia! + >l © Wiah)) + Wi (ReLU(t”)) (32)

grvi

F.3 Output Layer

The prediction of the edge heatmap in TSP and node heatmap in MIS is as follows:

eij = Softmax(norm(ReLU(Weeﬁj))) (33)
x; = Softmax(norm(ReLU(W,,z}))) (34)

where L is the number of GCN layers and norm is layer normalization.

F.4 Hyper-parameters

For both TSP and MIS tasks, we construct a 12-layer GCN derived above. We set the node, edge, and
timestep embedding dimension d = 256, 128 for TSP and MIS tasks, respectively.

G Limitations and Broader Impacts

Despite the effectiveness of our proposed method, several limitations remain. First, our model is
trained under a supervised learning paradigm, which relies on access to a substantial number of
labeled optimal or near-optimal solutions. While this setting is practical for many standard CO
benchmarks, it may present limitations when extending to domains where high-quality supervision
is difficult or expensive to obtain. Second, although we demonstrate improved generalization
over existing diffusion-based solvers [24] in fixed-scale settings, the model still faces challenges
in handling real-world CO problems with unknown or variable instance sizes. Third, while our
diffusion process incrementally constructs solutions in a structured manner, it still follows a non-
autoregressive paradigm and thus requires heuristic post-processing (e.g., greedy decoding) to enforce
final feasibility. This dependency may constrain its applicability in tasks where domain-specific
heuristics are unavailable or expensive to design.

This work contributes to the growing field of learning-based combinatorial optimization, with
potential applications in logistics, circuit design, scheduling, and operations research. By introducing
interpretable and efficient generative methods, our approach can improve decision-making in domains
that require both scalability and transparency.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Sec.[I]and Sec.[]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Appendix [C]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix [E]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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Answer: [Yes]
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* The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Appendix[G]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original papers that introduce models and datasets used in the paper have
been cited.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Currently, the paper does not release new assets. Our source code will released
upon the acceptance of the paper with comprehensive documents.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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