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Abstract. While text-to-image diffusion models have been shown to
achieve state-of-the-art results in image synthesis, they have yet to prove
their effectiveness in downstream applications. Previous work has pro-
posed to generate data for image classifier training given limited real
data access. However, these methods struggle to generate in-distribution
images or depict fine-grained features, thereby hindering the general-
ization of classification models trained on synthetic datasets. We pro-
pose DataDream, a framework for synthesizing classification datasets
that more faithfully represents the real data distribution when guided
by few-shot examples of the target classes. DataDream fine-tunes LoRA
weights for the image generation model on the few real images before
generating the training data using the adapted model. We then fine-
tune LoRA weights for CLIP using the synthetic data to improve down-
stream image classification over previous approaches on a large variety
of datasets. We demonstrate the efficacy of DataDream through exten-
sive experiments, surpassing state-of-the-art classification accuracy with
few-shot data across 7 out of 10 datasets, while being competitive on
the other 3. Additionally, we provide insights into the impact of various
factors, such as the number of real-shot and generated images as well as
the fine-tuning compute on model performance. The code is available at
https://github.com/ExplainableML/DataDream.

1 Introduction

The emergence of text-to-image generative models, such as Stable Diffusion [34],
not only enables us to create photo-realistic synthetic images, but it also presents
opportunities to enhance downstream tasks. One potential application lies in
training or fine-tuning task-specific models on synthetic data. This is shown to
be particularly useful in domains where access to real data is limited [9,14,22,40],
as generative models offer a cost-effective means of generating large amounts of
training data. In this paper, we study the impact of synthetic training data on
image classification tasks in low-shot settings, i.e. where we have access to a few
images per class, but the collection of an entire dataset would be prohibitively
expensive.

Previous research has primarily focused on using the class names of a given
dataset [14, 38, 39, 44] to inform the data generation process. Concretely, they

https://github.com/ExplainableML/DataDream
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Dataset: ImageNet; Class: clothes iron
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Dataset: FGVC Aircraft; Class: DHC-3-800

Fig. 1: Synthetic images comparison. The previous methods for synthesizing train-
ing data sometimes misunderstand the class name due to its ambiguity (FakeIt [38]
confuses the clothes iron with the metal iron) or fail to capture fine-grained features
(DISEF [9] generated images lack the propeller in front of the wings in the DHC-3-800
aircraft, a red circle indicates the propeller). Meanwhile, our method accurately gen-
erates images of the class of interest and captures fine-grained details.

generated images with text-to-image diffusion models, using the class names as
conditional input. To better guide the model to generate accurate depictions
of the target object, they incorporated textual descriptions of each class to the
prompt, sourced from language models [14, 44] or human-annotated class de-
scriptions [38]. While intuitive, these methods lead to some generated images
lacking the object of interest. For instance, while the real images for the class
name "clothes iron" from the ImageNet [36] dataset display the appliance for
ironing clothes, the images generated by FakeIt [38] mostly depict iron as the
metal or arbitrary objects made thereof (Figure 1, left). This occurs when the
generative model misunderstands class name ambiguities or rare classes. Such
misalignment between the real and synthetic images limits the generated images’
informational value for image classification and hinders performance gains.

To bridge the gap between real and synthetic images, real images can better
inform the generative model about the characteristics of the real data distribu-
tion [2,9,10,14,48]. For instance, the concurrently developed DISEF [9] method
uses few-shot samples as conditional input to the pre-trained diffusion model by
starting from a partially noised real image when generating the synthetic dataset.
It additionally uses a pre-trained captioning model to diversify the text-to-image
prompt. While this approach improves the alignment of real and synthetic data
distributions, it sometimes falls short of capturing fine-grained features. For ex-
ample, while the real images for the class name "DHC-3-800" in the Aircraft [26]
dataset include a propeller in front of the wings, the synthetic images by DISEF
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lack this detail (Figure 1, right). Accurately representing class-discriminative fea-
tures can be critical for classification tasks, particularly in fine-grained datasets.

In this work, we propose a novel approach, called DataDream, aimed at
adapting generative models using few-shot real data. Motivated by personalized
generative modeling methods [11,35], in which generation models are fine-tuned
with a small set of real images depicting an identical object, our method focuses
on aligning the generative model to a target dataset which has multiple classes
and diverse objects for each class. This differs from previous few-shot dataset
generation methods such as [9,14], which have not explored fine-tuning the gen-
erative model. Concretely, we adapt Stable Diffusion [34] with LoRA [17] in
two ways: DataDreamcls, which trains LoRA per class, and DataDreamdset,
which trains a single LoRA for all classes. To the best of our knowledge, we are
the first to propose using few-shot data to adapt the generative model for syn-
thetic training data, rather than leveraging the frozen, pre-trained generation
model. Following training, we generate images with the same prompt used for
fine-tuning DataDream, resulting in images depicting the object of interest (e.g.
the clothes iron) or fine-grained features (e.g. the propeller of the DHC-3-800
plane) as shown in the last row of Figure 1.

We demonstrate the effectiveness of DataDream through extensive experi-
ments, achieve the state of the art across all datasets when using only synthetic
data, and achieve the best performance on 7 out of 10 datasets when training
with both real few-shot and synthetic data. To understand the effectiveness of
our method, we analyze the alignment between real and synthetic data, reveal-
ing that our method shows better alignment with the distribution of real data
compared to baseline methods. Finally, we explore the scalability of our method
by increasing the number of synthetic data points and real samples, showing
the potential benefits of larger datasets. To summarize, the contributions of our
work are as follows:

1. We introduce DataDream, a novel few-shot method which adapts Stable Dif-
fusion to generate better in-distribution images for downstream training that
outperforms state-of-the-art few-shot classification on 7 out of 10 datasets,
with the other 3 comparable.

2. We emphasize the importance of reporting results with only synthetic data.
We demonstrate that our method achieves superior performance when train-
ing the classifier with solely synthetic data, in some cases outperforming
those trained solely with real few-shot images, indicating that our method
generates images that glean more insightful information from the few-shot
real data.

3. We study the effectiveness of our method by analyzing the distribution align-
ment between synthetic data and real data. Under few-shot guidance, syn-
thetic data generated by our method aligns the best with real data.
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2 Related work

Synthetic image generation has made immense progress, now being capable of
generating images that even humans may find difficult to distinguish from real
images. In the following, we review related work on image generation and train-
ing on synthetic data.

Synthetic Image Generation. The suite of image generation models is grow-
ing, including Variational Auto-Encoders [19], GANs [12], and Diffusion Mod-
els [34]. With their recent popularity, diffusion models such as Stable Diffu-
sion [34], SDXL [31], DALL-E [4, 33], Imagen [37], GLIDE [27], and Wuer-
stchen [30] have revolutionized text-to-image generation. Diffusion models aim
to incrementally de-noise data by modeling the reverse process of a Markov chain
progressively adding Gaussian noise to the sample conditioned on text. At test-
time, this facilitates the generation of synthetic images from specified text and
random noise. These large pre-trained models can be adapted to user specific
needs [11, 35] or better control generation [7, 24]. Textual inversion [11] uses a
small number of images of a specific object to learn a representational language
token which can be used to prompt the frozen generation model to create better
images of that object (e.g. a photo of your cat, rather than a cat). On the other
hand, DreamBooth [35] achieves personalization by fine-tuning the generation
model while providing a unique input token with two losses: one to reconstruct
the personalized concept, and the other to preserve the original model genera-
tions without the unique token.

Training with Synthetic Data. A pool of research has blossomed in its wake,
exploring downstream applications; namely: can models be trained on synthetic
data? Some works augmented real datasets with synthetic images [3, 6, 10, 48].
Others focused on pre-training on large amounts of synthetic data, followed by
fine-tuning on a limited number of real images [13, 40]. Similarly, several works
evaluated the effectiveness of training on entirely synthetic datasets [13,38].

Different tasks have been considered, including classification [3, 6, 14, 38, 39,
48], object detection [22], image generation [1], and representation learning [40].
Attempts have been made to optimize the selection process from large pools of
synthetic data, generally by focusing on two primary factors: faithfulness and
diversity. Faithfulness has been addressed by CLIP filtering [10,14,22], including
additional class information [38], and spectral clustering [22]. On the other hand,
diversity can be increased by lowering the guidance scale [38], generating a wide
variety of natural language prompts with LLMs [13,14], specifying domains [10,
39] or backgrounds [38], and using multiple text prompt templates [6]. Generally,
data collection is considered resource intensive, while generating synthetic data
is comparatively inexpensive and can therefore be done at scale; [38] showed
that as the number of synthetic images increases, model performance can even
surpass that of models trained on a lower fixed number of real images.

Finally, the few-shot setting is seeing increased interest, where the focus
lies on leveraging large amounts of synthetic data in conjunction with limited
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amounts of real data. More than simply pooling the data sources together, we can
guide the generation of better synthetic data with real data. In [14], the authors
explored two strategies: 1) generating images by starting from a partially noised
few-shot sample and 2) using the similarity of synthetic image features to real
ones to remove low-confidence samples. When adapting the CLIP model using
Classifier Tuning [42] the first strategy works best. Concurrently to our work,
Diversified In-domain Synthesis with Efficient Fine-tuning (DISEF) [9] proposes
to create a synthetic augmentation pipeline which leverages few-shots by start-
ing the geration process from a noised real sample (same as [14]), then promotes
diversity by denoising it conditioned on the caption from a different real image.
The authors apply CLIP filtering to remove synthetic images which would be
classified incorrectly and then adapt CLIP as the classifier with LoRA [17] on ei-
ther the few-real shots alone or the combination of few-shots and synthetic data.
In contrast to these methods, we propose to additionally fine-tune the diffusion
model with LoRA to obtain a better alignment with the real data distribution.

3 Methodology

In this section, we start by describing the preliminaries in §3.1, before introducing
DataDream in §3.2. DataDream fine-tunes the text-to-image diffusion model
with few-shot data. To measure performance, synthetic images are generated
with the adapted model and a classifier trained on both synthetic and real data.

3.1 Preliminaries

Latent diffusion model. We implement our method based on Stable Diffu-
sion [34], a probabilistic generative model that learns to generate realistic im-
ages using a textual prompt. Given data (x, c) ∈ D, where x is an image and c
is a caption describing x, the model learns a conditional distribution p(x|c) by
gradually denoising the Gaussian noise in the latent space. Given a pretrained
encoder E that encodes an image x to a latent z, i.e. z = E(x), the objective
function is defined as:

min
θ

E(x,c)∼D, ϵ∼N (0,1), t

[
∥ ϵ− ϵθ(zt, τ(c), t) ∥22

]
, (1)

where t is a timestep, zt is a latent noised t steps from the latent z, τ is a text en-
coder, and ϵθ is a latent diffusion model. Intuitively, the parameters θ are trained
to denoise the latent zt, given a text prompt c as conditional information. In the
inference phase, a random noise vector zT is passed through the latent diffusion
model T times, along with the caption c, to get a denoised latent z0. z0 is then
fed into a pretrained decoder D to get an image x′ = D(z0) for the text-to-image
generation.

Low-rank adaptation. The Low-Rank Adaption method (LoRA) [17], is a
fine-tuning method to adapt a large pre-trained model to downstream tasks in
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Fig. 2: Overview of DataDream. We fine-tune LoRA weights for the linear weights
of the attention layers in both the text-encoder and the diffusion U-net to generate
images closer to the few-shot images. We can train one set of DataDream weights for
the whole dataset sharing common dataset-specific characteristics between classes, or a
separate set of weights for each class to better learn fine-grained details of each classes.

a parameter-efficient manner. Given pre-trained model weights θ ∈ Rd×k, LoRA
introduces a new parameter δ ∈ Rd×k that is decomposed into two matrices,
δ = BA, where B ∈ Rd×r and A ∈ Rr×k with small LoRA rank r, r ≪ min(d, k).
The LoRA weights are added to the model weights to obtain the fine-tuned
weights, i.e. θ(ft) = θ+ δ, for adaptation to downstream tasks. During training,
θ remains fixed while only δ is updated.

3.2 DataDream method

Our goal is to improve classification performance by leveraging synthetic images
generated by diffusion models. To this end, it is crucial to align the synthetic
image distribution to that of the real images. We achieve alignment by adapting
the diffusion model to a few-shot dataset of real images.

We assume access to a few-shot dataset Dfs = {(xi, yi)}KN
i=1 , where xi is an

image, yi ∈ {1, 2, · · ·, N} is its label, K is the number of samples per class, and N
is the number of classes. To match the real data distribution, we fine-tune it with
the few-shot dataset Dfs. Concretely, we introduce LoRA weights in both the
text-encoder and the U-net of the diffusion model, where we make the parameter-
efficient choice of adapting the attention layers. For every attention layer, we
consider the query, key, value, and output projection matrices Wq,Wk,Wv,Wo,
where for each matrix, the linear projection is replaced by

hl,⋆ = W⋆hl−1 +B⋆A⋆hl−1 (2)

with h representing the input/output activations of the projections, and result-
ing in the trainable LoRA weights δ(l) = {A⋆, B⋆|∀⋆ ∈ {q, k, v, o}} for every
attention layer l. We omit bias weights for notational simplicity. All other model
parameters are kept frozen (including W⋆) while δ weights are optimized with
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gradient descent. To start training from the pre-trained diffusion model check-
point, weight matrices B⋆ are initialized with zeros while A⋆ is initialized ran-
domly. As a result, the combined fine-tuning weights B⋆A⋆ are zero initially and
incrementally learn modifications to the original pre-trained weights. At test
time, LoRA weights can be integrated into the model by updating the weights
with W

(ft)
⋆ = W⋆+B⋆A⋆, such that inference time is equivalent to the pre-trained

model. In contrast to DreamBooth [35], we do not fine-tune all network weights
and do not add a preservation loss, as its regularization would prevent a strong
alignment with the real images.

We further consider two settings: 1) DataDreamdset, where we train the
LoRA weights of the diffusion model on the whole dataset Dfs, and 2)
DataDreamcls, where we initialize N sets of LoRA weights {δn|n = 1, · · ·, N},
one for each of the dataset classes trained on the subset Dfs

n = {(x, y)|(x, y) ∈
Dfs, y=n}.

In the DataDreamdset setting, the original model parameters θ are kept frozen
and only the LoRA weights are trained with the objective function

min
δ

LD = min
δ

E(x,y)∼Dfs, ϵ∼N (0,1), t

[
|| ϵ− ϵθ,δ(zt, τδ(C(y)), t) ||22

]
. (3)

In the DataDreamcls setting, Dfs
n and δn would replace Dfs and δ, respectively.

Since we use a text-to-image diffusion model, we define the text condition through
the function C which maps the label y, i.e. class name, to a prompt using
the standard template, "a photo of a [CLS]" [32, 47]. The prompt is passed
through the text encoder and subsequently used during the decoding steps of the
diffusion model. We illustrate both DataDream fine-tuning and our two settings
in Figure 2.

Both settings have distinct advantages. In DataDreamdset, LoRA weight
sharing between classes allows knowledge transfer about common characteristics
within the whole dataset. This would be beneficial in a fine-grained dataset that
shares the coarse-grained features across classes. On the other hand, DataDreamcls
allocates more weights to learn about details of each class, which allows the gen-
eration model to better align with the per-class data distribution.

After adapting the diffusion model to the few-shot dataset, we generate 500
images per class with the adapted model conditioned on the same textual prompt
used for DataDream, forming a synthetic dataset Dsynth. We train a classifier on
either only synthetic images or the combination of synthetic and real few-shot
images Dfs.

For classifier training, we adapt a CLIP model [32], similar to previous work
in few-shot classification [9]. We add LoRA adaptors [17] to both image encoder
and text encoder of CLIP ViT-B/16 model [32]. When training with synthetic
and real images jointly, we use a weighted average of the losses from real data
and synthetic data,

LC = λE(x,y)∼Dfs CE(f(x), y) + (1−λ)E(x,y)∼Dsynth CE(f(x), y) , (4)

where λ is the weight assigned to the loss from real data and the function CE is
a cross-entropy loss.
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4 Experiments

In this section, we present our experimental results on DataDream. We present
details of the experimental setup in §4.1. In §4.2, we compare our methods to
baselines both quantitatively and qualitatively. Furthermore, we analyze the
synthetic data of DataDream to understand why it outperforms baselines in
§4.3, followed by ablation studies in §4.4.

4.1 Experimental setup

Benchmarks. We evaluate our method on 10 datasets: ImageNet [36], Oxford
Pets [29] containing fine-grained pet classes, FGVC Aircraft [26] containing fine-
grained aircraft classes, Food101 [5] containing common food classes, Stanford
Cars [20] containing fine-grained car classes, DTD [8] with texture images, Eu-
roSAT [15] with satellite images, Flowers 102 [28] containing fine-grained flower
classes, SUN397 [43] with scene images, and Caltech 101 [21] with pictures of
common objects.

Implementation details. We implement DataDream based on Stable Diffu-
sion [34] version 2.1. For each seed, we randomly sample the few-shot images from
the training samples of each dataset. Our method is trained for 200 epochs with a
batch size of 8 for all datasets, with the exception of DataDreamdset on ImageNet,
which is trained for 100 epochs. Hence, DataDreamdset and DataDreamcls share
the same amount of training compute, i.e. each of the N DataDreamcls adapter
weights (one for each class) performs S/N update steps where S is the total
number of steps of DataDreamdset for the whole dataset. We use AdamW [25] as
an optimizer and learning rate 1e−4, with a cosine annealing scheduler. We use
LoRA rank r = 16 for all adapted weights in DataDream. For synthetic image
generation with DataDream, we use 50 steps and guidance scale 2.0. We generate
500 images per class if not mentioned otherwise. For the classifier, we use CLIP
ViT-B/16 [32] as a base model, and fine-tune LoRA applied on both the image
encoder and text encoder of CLIP with rank 16. We set the weight assigned to
the real loss term to λ= 0.8. DataDream is computed on three random seeds.
Additional implementation details can be found in Appendix B.

Baseline methods. As all methods adapt CLIP ViT-B/16 as the classifier,
we provide CLIP zero-shot performance as a baseline. In our first setting, we
update the classifier using only synthetic data. For this, we compare against two
alternative data-generation methods: IsSynth [14] and DISEF [9]. In our second
setting, classifier adaptation uses the synthetic data in addition to the few-shot
real data. We refer to LoRA [17] training with only the real few-shot data as
Real-finetune, to signify that this is the baseline version of DataDream, without
the benefit of our synthetic data, as done in [9]. DataDreamdset, DataDreamcls,
and DISEF [9] all build upon this foundation. These experiments highlight the
benefit of adding synthetic data to the real few-shot images. We also compare
against several SOTA few-shot methods. In these, we include two Parameter
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Method R S IN CAL DTD EuSAT AirC Pets Cars SUN Food FLO Avg

CLIP (zero-shot) [32] 70.2 96.1 46.1 38.1 23.8 91.0 63.1 63.8 85.1 71.8 64.1

IsSynth [14] ✓ 70.0±0.6 95.7±0.7 67.6±0.5 71.3±2.9 34.5±3.4 92.1±0.6 65.9±0.0 72.2±0.0 85.4±0.1 90.0±0.2 74.5±0.9

DISEF [9] ✓ 67.1±0.2 93.4±1.0 66.1±0.6 69.2±2.7 26.8±2.2 91.0±0.0 63.2±0.0 73.5±0.1 85.1±0.0 85.4±0.7 72.1±0.8

DataDreamcls (ours) ✓ 71.6±0.2 96.4±0.0 68.6±2.0 85.4±2.9 60.3±0.9 94.2±0.4 90.5±0.3 74.5±0.0 86.9±0.1 97.2±0.2 82.6±0.7

DataDreamdset (ours) ✓ 71.5±0.0 96.2±0.1 69.5±1.2 80.3±4.1 71.2±0.1 94.0±0.1 92.2±0.1 74.5±0.1 86.7±0.1 98.0±0.4 83.4±0.7

Real-finetune ✓ 73.4±0.2 96.8±0.1 78.3±2.8 93.5±0.7 59.3±2.8 94.0±0.1 87.5±0.6 77.1±0.1 87.6±0.0 98.7±0.1 84.6±0.8

IsSynth [14] ✓ ✓ 73.9±0.1 97.4±0.2 81.6±0.4 93.9±0.1 64.8±0.8 92.1±0.1 88.5±0.3 77.7±0.0 86.0±0.0 99.0±0.0 85.5±0.2

DISEF [9] ✓ ✓ 73.8±0.2 97.0±0.1 81.5±0.6 94.0±0.5 64.3±0.4 92.6±1.2 87.9±0.5 77.6±0.1 86.2±0.6 99.0±0.2 85.4±0.4

DataDreamcls (ours) ✓ ✓ 73.8±0.1 97.6±0.2 81.6±0.4 93.8±0.3 68.3±0.4 94.5±0.3 91.2±0.2 77.5±0.1 87.5±0.1 99.4±0.2 86.5±0.4

DataDreamdset (ours) ✓ ✓ 74.1±0.3 96.9±0.7 81.6±0.6 93.4±0.0 72.3±0.2 94.8±0.3 92.4±0.1 77.5±0.1 87.6±0.1 99.4±0.1 87.0±0.4

Table 1: Few-shot classification performance with DataDream using real 16-
shot and synthetic images where the training dataset includes synthetic data only
(top), or synthetic data + 16 real shots (bottom). All results use CLIP ViT-B/16 as the
base classification model, and 500 synthetic images generated by 16 real shots. Datasets
are IN: ImageNet, CAL: Caltech 101, EuSAT: EuroSAT, AirC: FGVC Aircraft, FLO:
Flowers 102. R/S means using real/synthetic images for fine-tuning. DataDream and
baseline methods are computed on three random seeds.

Efficient Fine-Tuning (PEFT) techniques: VPT [18] and CoOp [47], which only
use real few-shot data. We additionally compare to two SOTA image generation
techniques, IsSynth [14] and DISEF [9]. For fair comparisons, we use Stable
Diffusion v2.1 to generate images for all baselines instead of the originally used
GLIDE [27] or Stable Diffusion v1.5. More details are described in Appendix C.

4.2 Classification performance with DataDream

Quantitative results on solely synthetic data. We refer to the upper por-
tion of Table 1 for the synthetic-only setting, where we show that DataDream-
generated data achieves state-of-the-art results on all 10 datasets. For example on
FGVC Aircraft [26], DataDreamdset achieves an impressive 47.4% point increase
over the CLIP zero-shot model. In addition, on Stanford Cars [20] DataDreamdset
achieves 92.2%, while IsSynth [14] is at 65.9% and DISEF [9] at 63.2%. On Flow-
ers102 [28], DataDreamdset obtains 98.0% while IsSynth and DISEF reach only
90.0% and 85.4%, respectively. These boosts signify that DataDream is able to
closely follow the real few-shot data distribution in its generated images.

We believe that this evaluation benchmark allows the best assessment of the
quality of the synthetic image generations for training image classifiers. While
adding real data to the synthetic images at training time generally provides a
performance boost, it also makes it harder to quantify the quality of the synthetic
images for the task, because most of the improvement still stems from the real
images. Hence, issues with synthetic data generation, such as redundancy or
class misrepresentation, will be more visible in synthetic-only benchmarks.

Comparing DataDreamcls and DataDreamdset, the results are split over method
superiority. We hypothesize that this difference comes from inherent dataset
properties. For datasets where all classes share high visual similarity, shar-
ing weights becomes beneficial as distribution characteristics generalize across
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Method S IN CAL DTD EuSAT AirC Pets Cars SUN Food FLO Avg

VPT [18] 69.6 95.4 66.1 92.3 36.2 91.8 69.0 70.5 87.0 91.0 76.9

CoOp [47] 68.0 95.2 70.7 87.1 45.5 89.9 81.4 73.0 83.7 97.6 79.2

IsSynth [14] ✓ 73.9 97.4 81.6 93.9 64.8 92.1 88.5 77.7 86.0 99.0 85.5

DISEF [9] ✓ 73.8 97.0 81.5 94.0 64.3 92.6 87.9 77.6 86.2 99.0 85.4

DataDreamdset (ours) ✓ 74.1 96.9 81.6 93.4 72.3 94.8 92.4 77.5 87.6 99.4 87.0

Table 2: Comparing DataDream with few-shot SOTA. We compare DataDream
with SOTA few-shot methods. The base setting, dataset abbreviations, and setting
notations match those in Table 1. S indicates methods using synthetic data generation.

classes. For example, we find that FGVC Aircraft [26] and Stanford Cars [20]
show a significant advantage of DataDreamdset over DataDreamcls. On the other
hand, datasets where classes span a wide range benefit from fully specializing to
the unique classes, as seen in the results for Caltech101 [21] and Food101 [5].

Quantitative results on real + synthetic data. In Table 1 (bottom), we
present the results for the synthetic + real setting. Real-finetune provides the
foundation for this section, consisting of LoRA applied to CLIP with the real
few-shot data. DISEF, DataDreamcls, and DataDreamdset build upon this by
adding their respective synthetic images to the training data, which is generated
from the same few-shot data. Comparing DataDreamdset and DataDreamcls to
Real-finetune, we observe that our synthetic data improves performance on 9 out
of 10 datasets over naive use of real few-shot data. For example, on FGVC Air-
craft [26], our synthetic data facilitates an improvement of 13.0% over using the
real few-shot data naively. In comparison, DISEF only achieves a 5.0% increase.
Furthermore, we improved upon Stanford Cars [20] by 4.9%, where DISEF saw
only a 0.4% increase. This shows that generating images with DataDream consis-
tently provides value not only over naive use of the few-shot examples, but also
over other data generation techniques. In fact, especially in case of the Stanford
Cars dataset, the real images do not provide more information than the syn-
thetic images generated by our model (92.2% on synthetic only vs 92.4% real +
synthetic settings), which is an exciting observation.

Quantitative results comparing with SOTA. We compare DataDream with
SOTA few-shot methods in Table 2. Ours, i.e. DataDreamdset, improves over
the previous SOTA on 7 out of 10 datasets, while being competitive on the
other 3. On the FGVC Aircraft [26] dataset, we improve SOTA by 7.5%, on
Pets [29] by 2.2%, and on Stanford Cars [20] by 3.9%. This highlights that
synthetic images generated by DataDream provide more training value than the
previous SOTA generation method. On average, we improve over the next best
synthetic augmentation method by 1.5% and over the best method without data
generation, CoOp [47], by 7.8%.
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Fig. 3: Qualitative results with increasing number of shots vs 16-shot images
generated with SOTA of the class Spitfire from the FGVC Aircraft [26] dataset. The
real few-shot images at the top are used to generate the presented synthetic images at
the bottom. We always use a fixed set of 16 samples, i.e. 1-shot image is a subset of
16-shots, to insure fairness in comparing results with the increasing number of shots.

4.3 Analysis of DataDream

Qualitative results. We provide a qualitative analysis of DataDream in Fig-
ure 3 of the Spitfire class in FGVC Aircraft. To support our 1-, 4-, 8-, and
16-shot generated images, we include the real few-shot examples used to gener-
ate them. We also show previous SOTA images for comparison, from two other
image-generation methods: DISEF [9] and IsSynth [14].

When comparing to the previous SOTA, we notice that DataDream is better
able to generate images that match the target domain. For example, they imitate
that in the context of the dataset, planes are more likely to be photographed
on the ground, in a hangar, or taking off than in the air, unlike both previous
methods that generate images that are unlikely to be found in the dataset. We
also notice that our models are better able to match the color palette of the real
data, as opposed to DISEF, where we find the colors to be too bright compared to
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Fig. 4: Distribution of FID scores per-class. The FID score is calculated per-class
to measure how close the synthetic data distribution is to the real data distribution.

the real data. Furthermore, our model is the only one of all three that replicates
the black border at the bottom of all images, even after only a single shot.

Furthermore, we notice that DISEF has a higher tendency to generate out-
of-distribution data, sometimes omitting the target class entirely and therefore
creating a need for CLIP filtering. We hypothesize this might be due to their
use of diverse captions, which may sometimes guide the image generation too
far from the core distribution. By focusing on fidelity to the class distribution
and keeping our prompts simple, we generate fewer out-of-distribution samples.
This allows us to use all samples generated, which is a better use of resources.

We also notice some interesting differences between DataDreamdset and
DataDreamcls. On the one hand, we find that DataDreamcls is better able to
accurately represent the Spitfire class, especially at a low number of shots. On
the other hand, the additional data in DataDreamdset allows it to avoid certain
overfitting mistakes, such as creating only black and white images after the first
shot, which happens to be a monochrome image.

Comparing DataDream models trained on different numbers of few-shot ex-
amples, we notice an increase in quality with number of images, showing qual-
itatively the benefit of adding even a few more images. Already at four shots,
we obtain images that are not only better quality, but closer to the real data
domain. We also note that the lower the number of shots, the more the model
benefits from careful selection of a diverse and representative group, so that the
model does not pick up on patterns that are not representative of the full data
distribution. At only four shots, we notice that the real images contain a specific
color palette that is not necessarily representative of the full dataset, as evi-
denced by the next four images; this led to the 4-shot results lacking diversity of
color and brightness. This goes to show that wherever possible, careful selection
of representative data is highly beneficial. It also highlights the ability of our
method to find and replicate patterns in the few-shot distribution.

Distribution alignment. The qualitative analysis shows DataDream being
able to capture both the presence of objects of interest and the fine-grained
features essential for class discrimination. To gain more insights, we examine
the alignment between synthetic and real datasets. To quantitatively assess the
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Fig. 5: Ablation study of DataDream. Left: We vary the number of synthetic
images per class to understand the scaling effect. Right: We vary the number of real
examples used for training DataDream.

alignment, we use the Frechet Inception Distance (FID) [16] score, a metric that
quantifies the quality of generated images. Concretely, we compute the set of
FID scores for each method by evaluating the distance between the distribution
of synthetic images and that of real images on a per-class basis. Lower FID
indicates synthetic images are closer to the real data distribution. We visualize
the FID scores using histograms, as shown in Figure 4.

In the experiment on ImageNet, we observe that the histogram for our
method skews left, indicating lower FID scores. Meanwhile, the histogram of
DISEF tends to lean towards the right. This is attributed to how DISEF uses
LLM-generated prompts for image generation. While it gives the generated im-
ages diversity, it also introduces out-of-distribution artifacts, as observed in the
qualitative analysis. Compared to DISEF, IsSynth aligns more with the real data,
but may have less diversity due to its usage of a standard prompt, generating
similar images from the conditioned real image. In contrast, our DataDreamdset
balances fidelity, due to the adaptation of the generative model to match few
real shots, and diversity, due to the initial randomness in the generation pipeline.
This results in the synthetic images of DataDreamdset closely matching the real
data distribution. We posit that the better alignment contributes to classification
performance, as demonstrated in §4.2.

4.4 Ablation study

Accuracy scaling by number of synthetic images. Previous literature has
shown that as the number of synthetic images increases, model accuracy may
also increase [38]. Therefore, we provide Figure 5, where the left part shows the
effect on DataDream of increasing the number of images for FGVC Aircraft [26].
We find that as more images are generated, model accuracy increases in all
settings: DataDreamdset and DataDreamcls and Synth and Synth + Real. Even
at 500 images, we observe that performance is not yet saturated. Compared to
Real-finetune, we observe that in the Synth + Real setting, DataDream performs
better already starting at 100 images per class.
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In the synthetic-only setting, DataDreamcls out-performs real images entirely
after generating only 200 images. Another interesting result is the gap between
DataDreamcls and DataDreamdset: this difference holds between any number
of images, showing that DataDreamdset is a better fit for this dataset than
DataDreamcls, regardless of the number of synthetic images. However, remem-
bering from Table 1 that DataDreamdset performed better than DataDreamcls
on 5 out of 10 datasets, we note that this advantage is dataset-dependent rather
than a general trend.

Varying the number of few-shot images K. Furthermore, we operate in
a K-shot regime; therefore, we expect that as K increases, the model accu-
racy should increase as well. As done in [9], we show the effect of 1-, 2-, 4-,
8-, and 16-shots on FGVC Aircraft [26] dataset, for 500 images in the real +
synth setting, compared to previous literature. We observe that as the number of
few-shot images increases, DataDream consistently shows higher accuracy than
previous SOTA. We believe that this behavior is expected; as with any training
or fine-tuning regime, at least a small training dataset base is necessary. Too
few samples could be prone to overfitting, thus reducing variety and failing to
include enough information to successfully understand the overall class distribu-
tion. At the same, since we use LoRA on a subset of all model parameters, we
limit the amount of overfitting from our fine-tuning as compared to full model
fine-tuning. This allows DataDream to outperform Real-finetune even when we
use only a single shot. As more data becomes available, however, DataDream
is able to successfully leverage even as few as four or eight shots to noticeably
adapt to the data distribution, as was shown in Section 4.3. Hence, we obtain a
relative performance boost when compared to other methods.

5 Conclusion

In this paper, we studied the efficacy of leveraging the generative models for im-
proving the image classification performance in few-shot scenarios. We proposed
DataDream, a method to generate synthetic data with the guidance of few-shot
samples, which are then used for training the image classifier. We introduced
LoRA adaptors on both the text encoder and the diffusion U-Net to efficiently
fine-tune the generative model. We proposed two variants: DataDreamdset, which
trains LoRA on the whole targeted dataset, and DataDreamcls, which adapts
LoRA per-class. Our experiments demonstrate that our method consistently im-
proves classification performance across benchmarks, both in the synthetic-only
and synthetic+real settings. Through qualitative analysis, we observed that im-
ages generated by our method more precisely generate objects of interest as well
as fine-grained details, contributing to their alignment with real data distribu-
tions, as quantitatively examined by FID scores. Furthermore, we investigated
the scalability of our method by increasing the number of synthetic data samples
and the number of real samples.
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