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Figure 1. MultiPhys enables recovering multi-person 3D motion in a physically-aware manner.. State-of-the-art methods
(SLAHMR [39], top row) for multi-person motion recovery mostly rely on kinematic approaches, which typically ignore physical con-
straints, such as body penetration. Note that while individual poses are kinematically coherent, their spatial placement is suboptimal,
resulting in significant penetration errors. MultiPhys (bottom row) incorporates physics constraints into the reconstruction process, yield-
ing more physically plausible results.

Abstract
We introduce MultiPhys, a method designed for recover-

ing multi-person motion from monocular videos. Our focus
lies in capturing coherent spatial placement between pairs
of individuals across varying degrees of engagement. Mul-
tiPhys, being physically aware, exhibits robustness to jitter-
ing and occlusions, and effectively eliminates penetration
issues between the two individuals. We devise a pipeline in
which the motion estimated by a kinematic-based method is
fed into a physics simulator in an autoregressive manner.
We introduce distinct components that enable our model
to harness the simulator’s properties without compromising
the accuracy of the kinematic estimates. This results in final
motion estimates that are both kinematically coherent and
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physically compliant. Extensive evaluations on three chal-
lenging datasets characterized by substantial inter-person
interaction show that our method significantly reduces er-
rors associated with penetration and foot skating, while per-
forming competitively with the state-of-the-art on motion
accuracy and smoothness. Results and code can be found
in our project page.

1. Introduction
In recent years, significant advancements have been made in
recovering human motion from monocular RGB videos [4,
18, 19, 39, 42, 44]. While most of these works focus on
videos of a single person, estimating motions for multi-
ple people, especially those interacting, becomes signifi-
cantly more challenging. This challenge primarily arises
due to severe occlusion during close interactions, leading
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to multiple body parts being invisible for extended peri-
ods. Fig. 1 illustrates an example of this, causing previous
state-of-the-art [39] to produce motions with heavy inter-
person penetrations. Additionally, previous methods also
suffer from problems such as ground penetration and foot
skating [4, 39, 42]. We argue that this is due to a lack of
physics modeling.

In contrast, prior works in single-person motion esti-
mation have explored incorporating physics into the pro-
cess [18, 19, 44]. These methods typically employ a physics
simulator and train a motion policy to generate motion that
complies with physical constraints while imitating input ob-
servations. However, extending such methods to the sce-
nario of multiple people presents significant challenges.
Due to severe occlusion, detected 2D keypoints become
less reliable and methods that rely on them are prone to
fail [19, 44]. This raises the question of what input rep-
resentation should be used.

To this end, we propose a framework, dubbed Multi-
Phys, that employs a physics simulation engine [34] to re-
cover motion for multiple interacting people in a physics-
plausible manner. Instead of relying on detected 2D key-
points in a feedforward model [19, 44], we initialize our
approach with the output from SLAHMR [39], which per-
forms global optimization on the entire sequence. However,
since SLAHMR is physics-agnostic, its outputs may be
noisy, particularly concerning the spatial placement of the
bodies. This also results in inter-person penetrations. We
devise a pipeline in which these preliminary body poses are
fed into the physics simulator in an autoregressive fashion,
aiming to obtain physically compliant motion estimates.

We observe, however, that naively feeding these poses
makes it difficult for the policy to generate the control sig-
nal to drive the simulation, which results in motion degra-
dation. This happens especially when dealing with highly
dynamic motions, as they present larger pose displacements
between consecutive frames. As a result, the policy strug-
gles to ”catch up” with the reference signal. To counter
this, we design an iterative refinement procedure and ob-
serve that the input poses are better matched while remain-
ing physically compliant.

We evaluate MultiPhys on three challenging datasets.
Our method performs competitively with previous state-of-
the-arts on pose accuracy and smoothness, while signifi-
cantly reducing errors on inter-body and ground penetration
as well as foot skating.

Specifically, compared to SLAHMR [39], we improve
the (inter-body) penetration score by more than 7 times
across all datasets, and the ground penetration score by 30,
5, and 1.35 times on the three datasets, respectively. We also
reduce skating by 35% and 137% on the Hi4D and ExPI
datasets, respectively.

In summary, our contributions are (1) A physics

simulator-based framework for multi-person 3D motion es-
timation in a physically plausible manner. To the best of
our knowledge, our method is the first that incorporates a
physics simulator for multi-person 3D motion estimation;
(2) Extensive evaluation showing that our method achieves
significantly better results on physics-related metrics, while
performing on par with prior works w.r.t. pose accuracy and
smoothness.

2. Related work
Human mesh recovery from videos. Methods that recon-
struct human mesh from videos [11, 13] build upon earlier
works that focus on single images [10], incorporating tem-
poral coherence to enhance motion reconstruction. Con-
sequently, these methods are able to recover smooth and
plausible human motion. While these and other regres-
sion methods that follow the same line of work [1, 17, 24]
make valuable contributions, they often lack the ability to
recover global trajectory – a crucial aspect for a compre-
hensive understanding of human motion. Simply extending
these methods to videos with multiple people leads to spa-
tially incoherent distribution of human meshes. To mitigate
this issue, recent approaches focus on estimating global tra-
jectories from per-frame local human poses [16, 41, 42].
Others take a step further by incorporating motion cues and
additional constraints to more faithfully track the global tra-
jectory [14, 32, 39]. TRACE [32] uses optical flow cues
to track human motions. SLAHMR [39] and PACE [14]
employ SLAM to compute dynamic camera parameters, re-
fining them in an optimization stage. These methods also
include constraints such as motion priors and contact with
an estimated ground plane. Despite their impressive results,
they often overlook fundamental physical constraints gov-
erning human motion in the real world, such as gravity and
collisions with other individuals. To address these limita-
tions, we propose to enforce these constraints explicitly by
leveraging a full-featured physics engine.
Physics-based approaches. Trying to cope with the limi-
tation that most human mesh recovery methods do not in-
clude physic constraints, some works explicitly incorpo-
rate physics notions. HuMoR [26], while not a physics
simulator-based approach, models the human motion dy-
namics using a probabilistic generative prior that is later
used in an optimization framework to recover motion. In the
optimization stage, some losses for foot skating and veloc-
ity are applied to force physical compliance. However, once
again, these are applied as soft constraints. Others [6, 30]
take a step further and incorporate a physics simulator into
their pipeline to reconstruct single-person motion. How-
ever, since most full-featured physics simulators are not dif-
ferentiable, alternative optimization methods must be ex-
plored. For instance, [6] utilizes an evolutionary algorithm
for refining poses, which can be challenging to optimize and



result in extended inference times. To address this, [5, 29]
use differentiable physics. While this is a promising ap-
proach, differentiable simulators either require specific for-
mulations for each problem or are often simplistic, lacking
the features of non-differentiable simulators. Finally, hu-
man motion capture methods from sparse IMUs turn to uti-
lizing physical simulators [15, 38] or apply soft physical
constraints [8, 46]. All these approaches focus on a single
person, whereas our method handles multiple people.
RL approaches. Works that use Reinforcement Learning
(RL) to reconstruct human motion include [18, 19, 25, 43,
44]. Typically, these approaches involve learning a control
policy in a simulation environment to govern a humanoid
agent. Subsequently, another policy is often learned to gen-
erate reference motion, operating in conjunction with the
first policy. These methods often leverage fully-featured
simulators and utilize more realistic humanoid models com-
pared to other works. Our work builds upon [19], originally
designed for a single person.
Multi-person human mesh recovery. Several approaches
address multi-person mesh recovery, each targeting specific
challenges within this problem, such as occlusion [12, 31],
depth ambiguity [35], or accurate spatial placement [9, 33].
A limited number of methods have concentrated on model-
ing contacts and addressing penetration issues [2, 3, 9, 22].
While these existing works focus on recovering human
mesh solely from static images, our proposed method takes
a step further by estimating multiple humans from videos
while focusing on addressing the ground and inter-person
penetration, as well as foot skating issues. There exist other
methods that use multi-view cameras for capturing multi-
person motion [45], which is out of the scope of this work.

3. Method
In the following, we describe the steps we take to correct an
initial kinematic motion estimate to be physically plausible.
We first introduce the necessary background on SLAHMR
in Sec. 3.1. We then formalize our problem in Sec. 3.2.
Next, we present an overview of our pipeline in Sec. 3.3.
Finally in Sec. 3.4, we describe in detail the core part of our
method, which is the physics-aware correction.

3.1. Background on SLAHMR [39]

SLAHMR [39] offers the state-of-the-art solution for
multi-person motion estimation in a global coordinate
frame. SLAHMR proposes a multi-stage optimization-
based pipeline, where it optimizes a number of objectives
as soft constraints. These include reprojection, motion
smoothness, foot skating, ground contacts, pose and mo-
tion priors. This method is relatively robust to occlusion,
thanks to the pose [23] and motion [26] priors it leverages.
However, since it does not explicitly model physics, the
estimated motion often manifests severe inter-person and

ground penetration, as well as foot skating. In this work,
we take the motion estimate from SLAHMR as the initial-
ization and correct it to be physically plausible via our pro-
posed method.

3.2. Problem Formulation

Given a monocular video I1:T consisting of T frames that
have N interacting people, our goal is to recover the mo-
tion in world coordinates in a physically plausible man-
ner, denoted as Qi “ tqi

0,q
i
1, . . . ,q

i
T u, for all people

i “ 1 . . . N . Each pose is parameterized following the
SMPL-H [27] body model, which consists of the global
orientation Φi

t P R3, body pose Θi
t P R22ˆ3, body shape

βi P R16, and root translation Γi
t P R3. That is:

qi
t “ tΦi

t,Θ
i
t, β

i,Γi
tu (1)

Throughout our experiments, N “ 2, but note that our
method does not have a fundamental limit on N and can in
theory work with an arbitrary number of interacting people.

3.3. Method Overview

An overview of our method is presented in Fig. 2. We use a
set of poses estimated by SLAHMR [39], denoted by rqi

t, as
the initial estimates, which are later corrected to be physi-
cally plausible using a physics simulator. We denote these
corrected poses as qi

t. Here each pose is for the i-th person
at timestep t.

The motion estimated from SLAHMR rqi
t is also repre-

sented with the SMPL-H model:

rqi
t “ trΦi

t,
rΘi
t, β

i, rΓi
tu (2)

Note that the body shape β is the same for all timesteps and
we directly keep it from the SLAHMR estimates.

To enforce the physical constraints missing from
SLAHMR, we leverage a full-featured physics simulator
(Mujoco [34]). Inside the simulation, we represent each
person as a humanoid agent consisting of different body
parts and joints with actuators over those joints. We cre-
ate one humanoid for each person. The creation process
follows SimPoE [44].

To prevent the simulated character from losing track of
the input motion, we re-purpose the Universal Humanoid
Controller (UHC) [19], whose goal was to imitate a set of
target poses while producing signals to drive the simulated
character. In the original paper, the target poses input to the
UHC are parameterized by the proposed Multi-step Projec-
tion Gradients (MPG), which link the 2D observations to
3D simulated body poses via gradients of the 2D reprojec-
tion loss. In our case, we re-purpose the UHC to take the
SLAHMR-estimated poses rqi

t as input. Note that the UHC
also receives as input the body shape, thus different bodies
can be controlled. This is especially important when work-
ing with multiple interacting people.



Figure 2. MultiPhys Pipeline. Given an input video with multiple people (left), we first obtain initial kinematic estimates of the camera
poses and 3D human motion using SLAHMR [39]. Using these initial motion estimates, our proposed framework corrects them and makes
them physically plausible (right).

Figure 3. Physics-aware Correction Module. We use the pol-
icy π to control the humanoid agents with the initial kinematic
poses. We simulate all agents simultaneously in order to apply
physics-based constraints to the reconstructed motion. The pol-
icy computes features from both the current state of the simulation
and the target pose to later generate the action signal a that con-
trols the agents. We place our loop-N component between target
poses rqi

t`1 that correspond to each video frame.

3.4. Physics-Aware Correction

A detailed diagram of our physics-aware correction is pre-
sented in Fig. 3. For this stage, our formulation is the fol-
lowing. Inside the simulation, we define the 3D human pose
as qi

t. At each timestep, we have access to each agent’s state
sit “

∆
pqi

t, 9qi
tq which is the combination of the 3D pose and

velocity.
In order to drive the humanoid agents inside the simula-

tion to mimic the kinematic poses and thus correct them to
be physically plausible, we use an imitation policy similar
to [19]. This policy is modeled as a Markov Decision Pro-
cess (MDP) following the standard formulation in physics-
based character control. This process is defined as a tuple
M “ xS,A, T ,R, γy of states, actions, transition dynam-
ics, reward function, and discount factor. The state s P S,
reward r P R, and the transition dynamics T are deter-
mined by the physics simulator, while the action a P A
is given by the control policy πpait|s

i
t, rqi

t`1, β
iq. We em-

ploy Proximal Policy Optimization [28] (PPO) to find the
the optimal control policy π that maximizes the expected
discounted reward Er

řT
t“1 γ

t´1rts.
The connection between the kinematic estimates and the

simulation is through the policy π, as shown in Fig. 3. We

drive the simulation with the kinematic poses rqi
t by in-

putting them into the policy. In this way, the agent in the
simulation will follow these poses as the reference. We use
the same policy for each agent in the scene. Each agent is
controlled independently, mimicking what happens in real-
ity (i.e. each person can move independently in the world),
but they all reside in the same simulation. By having differ-
ent agents sharing the simulation simultaneously, we can di-
rectly impose physical restrictions between them, e.g. they
cannot penetrate each other. This results in physically com-
pliant estimates. This formulation also has practical impli-
cations that we do not need to train the policy on multi-
person datasets. Instead, it is trained only on the large-scale
single-person MoCap dataset, AMASS [20].

For motion sequences where the persons are moving a
lot and especially when they undergo extreme poses (e.g. in
the ExPI [37] dataset), we observe that it is more difficult
for the policy to imitate the reference poses. This happens
because the policy was trained with a specific set of actions
and poses. For any action that has different dynamics and
overall different distribution from the training data, the pol-
icy is not able to completely match the target pose. Given
that the policy’s formulation follows the form of an auto-
regressive system, this error tends to accumulate quickly,
leading to noticeable final errors. To remediate this, we de-
vise an iterative strategy for the agent to slowly get closer to
the reference pose. Throughout the paper, we dub this strat-
egy loop-N . As stated before, the policy samples an action
ait for each agent i at timestep t given the current simula-
tion state of each agent (sit) and reference pose (rqi

t`1). In
normal operation, the updated 3D pose taken from the sim-
ulation output once the action is applied is defined by:

qi
t`1 “ T pqi

t,a
i
tq. (3)

To help qi
t`1 match the reference pose, we iteratively

update the simulation state for Nl iterations while keeping
the reference pose fixed until it gets close enough to the
it. Let k be the current iteration while keeping the reference
pose fixed, where k “ t1, 2, ..., Nlu. For every iteration, we
sample a new action πpkait|

ksit, rqi
t`1, β

iq that will drive the
current pose closer to the reference pose. For the updates
inside ”loop-N ”, we redefine Eq. 3 in terms of k:

k`1qi
t “ T pkqi

t,
kaitq. (4)



After Nl iterations, we keep only the last update, which
should be closer to the reference pose. Specifically, we
make qi

t`1 “ Nlqi
t. We repeat this process for every

timestep in the sequence. Once we project all the sequences
into a physically plausible space, it is trivial to convert these
poses back to the SMPL representation.

4. Experiments
We start by describing the datasets and the metrics we eval-
uate our method on. We then compare to baseline meth-
ods in Sec. 4.1. Next, we ablate the loop-N component
in Sec. 4.2. For additional implementation details, we re-
fer the reader to our supplementary material.
Datasets. We carefully choose the evaluation datasets to be
those that have significant inter-person interaction, where
purely kinematics-based approaches tend to fail. To this
end, we evaluate our method on three datasets with increas-
ing levels of interaction. CHI3D [2] contains mild interac-
tions, while more intense interactions in Hi4D [40], and sig-
nificant interaction and occlusion in ExPI [37]. ExPI also
features extreme poses and highly dynamic motion. There
are other datasets containing multiple interacting people,
such as MuPoTS-3D [21], ShakeFive2 [36], and MultiHu-
man [45]. However, they do not contain close interactions
in the same amount as the three above.

CHI3D contains 127 motion sequences for each of the 5
pairs of subjects (3 train, 2 test) interacting in everyday ac-
tions such as posing (for a photograph), pushing, hugging,
etc. CHI3D is captured with cameras from four different
views. Each motion sequence is annotated with the action
label together with ground truth 3D poses in a world coor-
dinate system in the SMPL format.

The Hi4D dataset is captured with up to 8 cameras at
different locations. It contains 100 short motion sequences
with close interaction and high contact ratio between the
subjects performing diverse actions, such as hugging, pos-
ing, dancing, and playing sports. It includes 20 unique pairs
of participants.

ExPI is the most challenging dataset that contains sub-
jects performing 16 complicated two-person dance routines
and, thus, presents highly dynamic sequences with a high
amount of contact. Each of the aerials is repeated five times
and in total, it contains 115 motion sequences. The data
is collected with 60+ synchronized cameras and a motion
capture system.
Evaluation metrics. We report a variety of metrics in two
categories: (1) pose metrics, which measure both the pose
accuracy and smoothness, and (2) physics metrics, which
measure the physics plausibility of the motion sequence.
For the first category, we follow SLAHMR [39] and report
the World PA First - MPJPE (W-MPJPE), which reports
the MPJPE [7] after aligning the first coordinate frames of
the prediction and the ground truth, as well as PA-MPJPE

(joint), which reports the MPJPE error after jointly align-
ing the predictions of all the people in all frames with
the ground truth poses. We also report the acceleration
error (Acc. Error), which measures the acceleration dif-
ference between the ground truth and the estimated mo-
tion. In practice, it serves as a measure for motion jitter-
ing. For the second category, we report the foot skating
(Skating) and ground penetration (Gnd Pen.) metrics fol-
lowing [19, 26]. We also report the amount of inter-person
penetration (Pen.). Specifically, we compute the signed dis-
tance function (SDF) values for each person and evaluate
each penetrating vertex of one person into the other. We
then report the cumulative values of this, i.e. we report the
sum of SDF values for all penetrating vertices averaged per
person for the entire sequence. We report the results in me-
ters, except the Pen. metric which is in mm. Please see the
Supp. Mat. for more details on the evaluation protocol.

4.1. Comparison with Baselines

To the best of our knowledge, there is no previous approach
that uses a physics simulator to estimate 3D motion for mul-
tiple people. We hence extend EmbPose [19] to take 2D
keypoints as input and operate in the simulation environ-
ment for all people at the same time. Specifically, we ex-
tend their model to have N identical but separate branches
(one per person). Each branch produces an initial estimate
using the kinematics-based policy πKIN , and an action sig-
nal to drive the simulation with the policy π. We also adapt
the simulation to include N humanoid agents with different
poses and body shapes that move independently but simul-
taneously. We refer to the adapted method as EmbPose-MP.
Additionally, we compare to SLAHMR [39] as the state-
of-the-art multi-person motion estimation method, which is
purely kinematics-based.

We report the results in Tab. 1. On Hi4D and ExPI, our
method outperforms SLAHMR on all physics-based met-
rics, while inferior in terms of acceleration. This is because
SLAHMR directly optimizes for smooth motions, which re-
sults in lower acceleration errors.

On CHI3D, our method outperforms both SLAHMR and
EmbPose-MP in terms of pose metrics. These results are
encouraging as they show that enforcing physics compli-
ance can not only enhance the physical plausibility of the
estimated motion, but can also lead to more accurate poses.
Pose improvement happens especially in cases where peo-
ple have both feet in contact with the ground. In the sim-
ulation, the ground is taken as a hard constraint and thus
when the agent moves, it cannot penetrate it, resulting in
more realistic poses. This effect has also been reported be-
fore [30, 44]. The physics simulation also helps improve the
poses in cases where the two people are in close proximity,
allowing for better spatial placement as body meshes cannot
penetrate. This is reflected mostly in the W-MPJPE metric,
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Figure 4. Effect of loop-N component for different values of Nl. We study the effect of different values of Nl “ t1, ..., 5u on both (a)
physics and (b) pose metrics. We report Inter-Person Penetration (measured in m.), the Ground Penetration (measured in mm), the Floor
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Nl “ 2 for the rest of the experiments as it provides a good balance between physics and pose metrics, see Sec. 4.2. Note that we scale
Pen. metric by a factor of 1/10 to fit the graph. To see the table for these numbers refer to the Supp. Mat.

and happens when people are, e.g., touching or hugging,
as shown in Fig. 5 and Fig. 6. Thus, our method improves
the motion estimation in these cases by correcting the inter-
person penetrations, which often exist in SLAHMR poses.
Results on CHI3D. For CHI3D, we see that our sys-
tem outperforms SLAHMR both in penetration (Pen. and
Gnd Pen.) and pose metrics. However, for this dataset,
SLAHMR has a better skating score, which we hypothesize
is due to the fact that CHI3D contains less dynamic motions
than the others, and most of the time both people keep their
feet on the ground (as opposed to, e.g. in ExPI). This re-
sults in better ground plane estimation making it easier for
SLAHMR to deal with skating.
Results on Hi4D and ExPI. For Hi4D, we see that
EmbPose-MP does better on penetration metrics than our
model, while the pose metrics are worse. This is due to poor
estimation of both global spatial placement and individual
poses. Because EmbPose-MP cannot handle inter-person
occlusion, poses where the people are close together are not
well captured by it and tend to be estimated farther away
from each other, when they should in fact be closer together
or in contact. As a consequence, penetrations are naturally
less likely to occur.

In contrast, our model is able to capture people in close
proximity while not breaking the laws of physics (see Fig. 5
and Fig. 6). This is reflected in better pose while still
achieving good penetration metrics. Note that penetration
reduces drastically in comparison to the purely kinematic
baseline which recovers poses accurately but presents high
penetration. Moreover, skating and ground penetration are
corrected (see Gnd. Pen. and Skating metrics) w.r.t. the
kinematic method. The baseline has better skating scores
than our model due to our loop-N which slightly introduces

skating as explained in Sec. 4.2. For both datasets, we ob-
serve that ground penetration is worse for the baseline as it
presents erratic estimated poses and also jittery motion. For
these datasets, we observe pose metric values close to the
ones obtained with SLAHMR but with slight differences.
This is caused mainly by the type of motion present in each
dataset. Hi4D and ExPI, in contrast to CHI3D, contain
more dynamic motion, which in some cases can be harder
to match for the simulated agent.

4.2. Ablation Study

We perform an ablation to study the effect of the loop-
N component in our system, whose results are reported
in Fig. 4. We ablate on different values of Nl and report
the performance of: (i) the basic version of our approach
(Loop1) where we use kinematic estimates plus the physics
simulator and (ii) our method with loop-N variant for dif-
ferent values of Nl, where Nl ą 1. The measured metrics
are: Gnd Pen., Skating, Pen., W-MPJPE, PA-MPJPE, and
Acc. Error. In Fig. 4, we show plots of the metrics in two
groups: physics in Fig. 4a and pose in Fig. 4b to better an-
alyze the effects and trends on these when Nl is changed.
We choose to perform our ablation study on Hi4D as it is
the most representative among the datasets. It includes both
mild and dynamic motion and at the same time poses where
people are very close spatially.

Our loop-N component, which composes the full system,
helps the simulated poses to better match the kinematic ref-
erence poses especially for highly dynamic motions such as
the ones present in ExPI, see Sec. 3.4. We see that with
a correctly chosen value of Nl, the policy is able to better
match the reference poses.

The loop-N component gets the simulated poses closer



Method Pen.Ó Gnd Pen.Ó SkatingÓ Acc. ErrorÓ W-MPJPEÓ PA-MPJPE (joint)Ó

CHI3D
SLAHMR [39] 139.3 4.4 1.0 6.5 177.1 83.5
EmbPose-MP [19] 40.2 2.6 2.8 7.7 214.7 96.5
Ours 18.7 3.2 2.7 7.4 174.7 80.4

Hi4D
SLAHMR [39] 367.3 12.2 4.9 6.9 121.6 69.1
EmbPose-MP [19] 39.8 3.8 1.3 12.7 148.8 92.9
Ours 51.1 2.4 3.5 9.6 118.1 71.2

ExPI
SLAHMR [39] 567.3 18.6 5.4 8.2 263.3 159.1
EmbPose-MP [19] 92.1 0.9 1.9 27.7 386.4 207.6
Ours 73.0 0.6 2.3 17.1 250.9 164.3

Table 1. Comparison with the state of the art. We report various metrics on CHI3D [2], Hi4D [40], and ExPI [37] datasets. Pose metrics
are W-MPJPE and PA-MPJPE (joint) in mm. See Sec. 4.1.

SLAHMRInput Frames Ours SLAHMRInput Frames Ours

Figure 5. Qualitative results of the proposed approach. The first three columns (from left to right) are from Hi4D [40] and the other
three are from CHI3D [2]. Each row corresponds to one frame of the same sequence. The columns compare the resulting poses at each
frame using SLAHMR [39] and our method. In these cases of close inter-person interaction, the estimated motion from SLAHMR often
has severe inter-person penetrations, while our method is able to eliminate these penetrations through physics-aware correction.

to the kinematic reference pose, however, the best value for
Nl to ensure a better match, depends on the particular mo-
tion. Nevertheless, we observe that Nl “ 2 works well for
all the datasets, striking a good balance between pose and
physics-based metrics. In the curves in Fig. 4a, we see
that Acc Error., Gnd Pen. and Pen. almost stay constant
with small variations when Nl changes. This is different for
Skating as it increases with Nl. This is due to the fact that

as Nl increases, the pose change between frames is poten-
tially larger, thus for a given value of Gnd Pen., increases
Skating. In Fig. 4b, we see that for Nl “ 2 the pose errors
decrease, however, for values where Nl ą 2 the error starts
to increase. The results shown in Tab. 1 are calculated using
Nl “ 2.
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Figure 6. Effect of the physical constraints on spatial placement. One key advantage of our method is that complying with physical
constraints (e.g., penetration between bodies) helps to improve the spatial placement of the bodies. Here we show results for motion
estimated with both the kinematic approach SLAHMR [39] and our system. See how the bodies from the kinematic poses overlap and
penetrate the ground (red circle in the figure) leading to unrealistic spatial placement. Our method eliminates these penetrations both w.r.t.
the body and the ground.

Figure 7. Additional results on videos with three (left) and four
(right) people.

4.3. Scaling to More People

There is no inherent limitation preventing our model from
scaling to scenes with more people. However, most datasets
that contain close interactions only consider two people
since that is the unit of such interactions. Current datasets
with more people do not capture close interactions. To
showcase our method’s capability, we apply it to videos
with more than two people (see Fig. 7). Note that our model
reliably captures the human’s pose and spatial placement
also in these scenarios.

5. Discussion
We propose a method for recovering physically plausible
3D human motion from a monocular RGB video, and in par-

ticular for two interacting people. Our approach leverages
a fully-featured physics simulator to add constraints to the
motion estimation process and to force it to follow the laws
of physics. This allows us to improve the realism of the esti-
mated motion by both avoiding penetration between human
bodies and with the ground plane, while also improving the
pose in terms of spatial placement. This is corroborated by
our experiments on three challenging datasets.

While our method unlocks many new possibilities for
generating more realistic and physically plausible motions,
some problems remain to be addressed. When 2D key-
point detectors fail, the kinematic-based motion estimation
on which we rely as initialization also fails, leading to a
decline of pose accuracy. Developing more powerful and
robust 2D keypoint detector is hence important in further
improving the performance of our method. Please see sup-
plement for failure cases. Another interesting direction is to
develop a two-person interaction prior to guide the physics-
aware correction process.
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