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ABSTRACT

Linear RNNs with gating recently demonstrated competitive performance com-
pared to Transformers in language modeling. Although their linear compute scaling
in sequence length offers theoretical runtime advantages over Transformers, realiz-
ing these benefits in practice requires optimized custom kernels, as Transformers
rely on the highly efficient FlashAttention kernels (Dao, 2024). Leveraging the
chunkwise-parallel formulation of linear RNNs, FlashLinearAttention (FLA) (Yang
& Zhang, 2024) shows that linear RNN kernels are faster than FlashAttention, by
parallelizing over chunks of the input sequence. However, since the chunk size of
FLA is limited, many intermediate states must be materialized in GPU memory.
This causes high memory consumption and IO cost, especially for long-context
pre-training. In this work, we present Tiled Flash Linear Attention (TFLA), a
novel kernel algorithm for linear RNNs, that enables arbitrary large chunk sizes
by introducing an additional level of sequence parallelization within each chunk.
First, we apply TFLA to the xLSTM with matrix memory, the mLSTM (Beck
et al., 2024). Second, we propose an mLSTM variant with sigmoid input gate and
reduced computation for even faster kernel runtimes at equal language modeling
performance. In our speed benchmarks, we show that our new mLSTM kernels
based on TFLA outperform highly optimized FlashAttention, Linear Attention and
Mamba kernels, setting a new state of the art for efficient long-context sequence
modeling primitives.

1 INTRODUCTION

With the trend of training models of ever increasing size with large datasets on thousands of GPUs, it
becomes increasingly important to optimize the model architecture as well as its low level implemen-
tations for modern hardware. Transformers (Vaswani et al., 2017), which are the core architecture
of nowadays state-of-the-art models are highly optimized, but the computational requirements of
self-attention scale quadratically with sequence length. This creates significant challenges for both
training and inference on long context.

Recently, recurrent alternatives with linear scaling in sequence length (Beck et al., 2024; Sun
et al., 2023; Dao & Gu, 2024; Yang et al., 2024b) promise efficiency gains, especially on long
sequences and during inference while providing competitive performance. The success of these
emerging recurrent architectures is based on two main pillars: (1) a parallel or chunkwise-parallel
formulation, which is used in training mode when the full sequence is available beforehand instead of
the recurrent formulation and (2) kernel implementations that are close to or exceed training speeds
of FlashAttention (Dao, 2024).

Besides the standard recurrent execution, linear RNNs allow for a parallel formulation, which, like
Attention, calculates all outputs in parallel. The parallel formulation leverages the insight from linear
Attention (Katharopoulos et al., 2020), which showed that kernelized dot-product-based attention can
be reinterpreted as a linear RNN with matrix-valued states. Due to the linear nature of the recurrence,
the computation can be split into a recurrent part, which computes intermediate RNN states, and a
parallel part, which fully utilizes the hardware for computing the outputs in between (Sun et al., 2023;
Hua et al., 2022).
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Yang et al. (2024b) show that their custom FlashLinearAttention (FLA) kernels based on the
chunkwise-parallel formulation of linear RNNs provide faster runtimes than FlashAttention.
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Figure 1: Tiled Flash Linear Attention
(TFLA) consists of a recurrent kernel
and a parallel kernel, which process the
input sequence in chunks QKV (k) (1st

level of sequence parallelism). The re-
current kernel materializes the memory
state Ck−1 for each chunk. The parallel
kernel computes the output states H(k)

for all chunks. TFLA uses tiling for the 3
matrix-multiplications in the parallel ker-
nel (2nd level of sequence parallelism) to
fully utilize the hardware and to prevent
materialization of many memory states.

This is achieved by first splitting the sequence into chunks
and materializing the first RNN state of each chunk in GPU
memory. Subsequently, in the parallel part they employ
one level of sequence parallelism and compute the outputs
for each chunk in parallel. For a small chunk size and long
sequences, this leads to a large amount of intermediate
states to be stored and loaded from GPU memory, which
increases memory consumption and memory input/output
(IO) cost. Since modern GPUs see a faster increase in
computation throughput than memory bandwidth, it is
essential to minimize large memory IO. A simple approach
would be to increase the chunk size. However, the chunk
size of FLA is limited by the physical SRAM available on
the GPU.

To solve this problem, we introduce TiledFlashLinearAt-
tention (TFLA) which enables unlimited chunk sizes by in-
troducing a second level of sequence parallelism via tiling
matrix computations within each chunk. This enables
fast kernels and allows us to efficiently balance memory
consumption and IO vs. computation. In this paper, we
implement our TiledFlashLinearAttention algorithm for
the xLSTM with matrix memory – the mLSTM Beck et al.
(2024). The mLSTM is a linear RNN that uses exponential
gating with scalar gates per head, along with an additional
normalizer state for output normalization. This gating mechanism has demonstrated competitive
performance compared to Transformers and Mamba on language modeling tasks at moderate scales.
However, for comparisons at even larger scales, efficient kernels that leverage the chunkwise-parallel
formulation for the mLSTM were still missing. In our speed benchmarks, we show that our new
mLSTM kernels based on TFLA outperform highly optimized Attention, Linear Attention and
Mamba kernels.

After optimizing our kernels for the existing mLSTM computation, we seek ways to reduce kernel
runtime by targeted modifications to the mLSTM. Towards this end, we propose mLSTMsig, an
mLSTM with sigmoid input gate and reduced computation, that enables even faster kernel imple-
mentations at no performance drops on language modeling up to 1.4B parameter scale. Finally,
motivated by the equal performance of both mLSTM variants, we perform an empirical study inspired
by transfer function analysis from control theory (Ogata, 2010) to understand their differences and
characteristics. We find that both mLSTM variants exhibit the same transfer behavior and, moreover,
our analysis suggests that the input gate biases should be initialized at larger negative values. In
extensive experiments on language modeling, we confirm that this initialization improves training
stability as well as the overall performance of mLSTM models.

To summarize, in this work we make the following contributions: (1) We introduce TiledFlashLin-
earAttention, a new chunkwise-parallel kernel algorithm for Linear RNNs with two levels of sequence
parallelism, that enables arbitrary large chunk sizes. (2) We introduce mLSTMsig, a faster mLSTM
variant with sigmoid input gate with no performance losses up to 1.4B parameter scales. (3) We
improve the training stability and performance of the mLSTM through careful gate initialization
guided by our empirical transfer behavior analysis.

2 MLSTM FORMULATIONS

The mLSTM cell is the fully parallelizable part of the xLSTM (Beck et al., 2024). It has a matrix
memory and exponential gating.
2.1 RECURRENT FORMULATION

In its recurrent formulation, the mLSTM cell processes the series of input vectors xt ∈ Rd for time
steps t ∈ {1, . . . , T} mapping a state (ht−1,Ct−1,nt−1,mt−1) to a successor state (ht,Ct,nt,mt)
given an input xt. Here, ht ∈ Rdhv denotes the hidden state, Ct ∈ Rdqk×dhv denotes the cell state
responsible for long-term memory, nt ∈ Rdqk denotes the normalizer state, and mt ∈ R denotes the
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max state. Together normalizer and max state control the magnitude of the exponential input gate and
ensure stability (see Appendix D.1).

The recurrent mLSTM formulation is given by the following state update equations:

mt = max
{
log σ(f̃t) +mt−1, ĩt

}
(1)

Ct = ft Ct−1 + it kt v
⊤
t (2)

nt = ft nt−1 + it kt (3)

h̃t =
C⊤

t

(
qt/
√

dqk
)

max
{∣∣n⊤

t

(
qt/
√

dqk
)∣∣, exp(−mt)

} (4)

ht = ot ⊙ NORM( h̃t ) (5)

The scalar input and forget gate activations are computed as ft = exp(log σ(̃ft) +mt−1 −mt)

and it = exp(̃it −mt) with the pre-activations {̃it, f̃t} = w⊤
{i,f} xt + b{i,f} and the sigmoid

function σ. The vector output gate ot ∈ Rdhv is computed by ot = σ (õt) with the pre-activations
õt = Wo xt + bo. The query, key, and value vectors qt,kt ∈ Rdqk , vt ∈ Rdhv are computed
as {qt,kt,vt} = W{q,k,v} xt + b{q,k,v}. The norm layer NORM in (5) can be either RMS
norm Zhang & Sennrich (2019) or LayerNorm (Ba et al., 2016). Typically, multiple of these cells
operate simultaneously as parallel heads, similar to Transformers (Vaswani et al., 2017).

2.2 CHUNKWISE-PARALLEL FORMULATION

The chunkwise-parallel formulation is a trade-off between the parallel and the fully recurrent formu-
lation. It has a recurrent part and a (quadratic) parallel part, with an overall sub-quadratic scaling in
sequence length. Similar to the fully parallel formulation (see Appendix B.1), we assume that all
inputs are available at once. We then split the sequence of length T into Nc = ⌈T/L⌉ chunks of
length L and use k ∈ {1, . . . , Nc} for the chunk index. We rearrange the input and forget gates, as
well as the queries, keys, and values into chunkwise matrices, where the chunk index becomes the
first dimension. For example, the forget gate pre-activations f̃ ∈ RT are rearranged into a matrix

f̃ = (f̃
(1)

, f̃
(2)

, . . . , f̃
(Nc)

) ∈ RNc×L, where each row f̃
(k)

= (f(k−1)Nc+1, f(k−1)Nc+2, . . . , fkNc
) ∈

RL contains the pre-activations of the chunk k. The input gate pre-activations follow analogously.
Similarly, the queries, keys and values are rearranged into chunkwise tensors Q,K ∈ RNc×L×dqk

and V ∈ RNc×L×dhv . Here, the query matrix Q(k) = (q(k−1)Nc+1, . . . , qkNc
) ∈ RL×dqk contains

the query vectors of chunk k. Keys, and values follow analogously. For notational simplicity we
drop the leading Nc dimension and omit normalization layer and the output gate, i.e. consider h̃t as
hidden state outputs.

Chunkwise Gates. Given the logarithmic forget gates f̄ (k) = log σ(f̃
(k)

) ∈ RL and input gates

ī
(k)

= log exp(̃i
(k)

) ∈ RL, we can compute the chunkwise gates as

gk = sum
(
f̄
(k)
)

∈ R, (6)

bk = cumsum
(
f̄
(k)
)

∈ RL, (7)

ak = rev_cumsum
(
f̄
(k)
)
+ ī

(k) ∈ RL. (8)

We refer to Appendix B.2 for more details on the chunkwise gate computation. The summed forget
gates gk contain the forget gate contribution of all forget gates within a chunk. The cumulative forget
gate vectors bk contain the forget gate contributions from the beginning of the chunk up to the current
time step within the current chunk. The cumulative input gate vectors ak contain the input gates for
every timestep as well as the forget gate contributions from the current time step to the end of the
chunk.
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Inter-chunk Recurrent Contribution. The inter-chunk recurrence is given by

Ck = ḡkCk−1 +
(
ak ⊙K(k)

)⊤
V (k) (9)

nk = ḡknk−1 +
(
ak ⊙K(k)

)⊤
1, (10)

where ḡk and ak are the stabilized chunkwise gates (see Appendix B.2 for details). This recurrent part
resembles the fully recurrent formulation in Section 2.1, but instead of computing the intermediate
states for every timestep t, we compute them directly for every L time steps without materializing the
states in between.

Intra-chunk Parallel Contribution. The recurrent part is followed by the intra-chunk parallel
contribution:

D̃
(k)

=

{
−∞ for i < j

bk − b⊤
k + i

(k)⊤
for i ⩾ j

(11)

S(k) =
1√
dqk

Q(k)K(k)⊤ (12)

S
(k)

= S(k) ⊙D(k), (13)

where D(k) ∈ RL×L is the stabilized gate matrix. Compared to the fully parallel part from Ap-
pendix B.1, the quadratic cost of the matrices D(k),S(k) ∈ RL×L is greatly reduced, since the chunk
size L is typically small compared to the sequence length T .

Output Computation. Finally, the contributions from the intra-chunk parallel part H(k)
intra are

combined with the inter-chunk recurrent part H(k)
inter to obtain the hidden states H(k) ∈ RL×dhv for

each chunk k (see Figure 1):

H
(k)
inter =

(
bk ⊙ Q(k)√

dqk

)
Ck−1 = Q

(k)
Ck−1 (14)

H
(k)
intra = S

(k)
V (k) (15)

H(k) =
(
H

(k)
inter +H

(k)
intra

)
/ h

(k)
denom, (16)

where h
(k)
denom ∈ RL is a normalization factor.

Appendix B.2 and B.3 provide a detailed description of the chunkwise-parallel forward and backward
pass.

3 TILED FLASH LINEAR ATTENTION

FlashLinearAttention (Yang et al., 2024b) introduces a fast kernel algorithm for the chunkwise
formulation for Linear Attention (cf. Section 2.2 without gates) and shows that their implementation
is faster than optimized FlashAttention Dao (2024). This speedup is achieved by single level sequence
parallelism, where the states Ck are first materialized in GPU memory and then the outputs H(k) are
computed in parallel.

However, since FlashLinearAttention is limited in chunk size (typically L = 64), we have to
materialize many states, where the number of states is Nc = ⌈T/L⌉. This leads to high GPU
memory consumption and a high memory IO cost, which poses challenges especially for long-context
pre-training.

To address this issue, we introduce TiledFlashLinearAttention (TFLA), which adds a second level
of sequence parallelism and enables arbitrary large chunk sizes and hence reduces GPU memory
consumption. We review the fundamentals on writing efficient kernels in Appendix C.1. Since we
perform our experiments on NVIDIA GPUs, our review is targeted towards NVIDIA’s terminology,
though the principles also apply to other hardware. For a more extensive overview we refer to (Spector
et al., 2024).
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TiledFlashLinearAttention (TFLA) enables fast kernels and a trade-off between memory consumption
and computational efficiency by introducing two levels of sequence parallelism (see Figure 5).

Figure 2: TFLA Forward Pass Tiling. We loop
over BLkv and Bdqk (indicated by arrows) and par-
allelize over BLhq and Bdhv (indicated by dashed
lines) blocks.

⊕
denotes block-wise accumulation.

The first level is the parallelisation over the
chunks of the sequence, which requires to com-
pute and materialize intermediate states Ck in
GPU HBM. For this we use a recurrent kernel
similar to previous work (Yang et al., 2024b).
The second level is the parallelisation within
each chunk, which is achieved by tiling the intra
chunk attention matrix along the chunk dimen-
sion. This second level of parallelism enables
large chunk sizes and hence reduces the memory
consumption for the intermediate states as we
have to store and load Nc = ⌈T/L⌉ intermedi-
ate states in HBM on each kernel call, where
T is the sequence length and L is the chunk
size. In addition to the two levels of sequence
parallelisation and the naive parallelisation over
the batch and head dimension, TFLA also paral-
lelizes over the embedding dimension, resulting
in a massive parallelisation over five dimensions,
which is crucial for achieving high performance
on modern GPUs.

Forward Pass. We review the matrix multiplication operations of the intra-chunk parallel part of
the mLSTM in order to show how we efficiently parallelize these operations. For simplicity we omit
the the gate computations and normalization, as these do not influence the work partitioning. We also
omit the leading batch, head and chunk dimension, over which we can parallelize naively as they do
not interact with the matrix multiplication (see Table 1).

In simplified form, the intra-chunk parallel forward pass of the mLSTM for a chunk k can be written
as three matrix multiplications, which we fuse into a single kernel:

H(k)

(Lhq×dhv)
=

(
Q(k)

(Lhq×dqk)

K(k)⊤

(dqk×Lkv)

)
V (k)

(Lkv×dhv)︸ ︷︷ ︸
H

(k)
intra

+ Q(k)

(Lhq×dqk)

Ck−1
(dqk×dhv)︸ ︷︷ ︸

H
(k)
inter

(17)

Figure 2 illustrates these matrix multiplications. In order to parallelize the matrix multiplications we
introduce the block sizes BLhq , BLkv , Bdqk and Bdhv for the attention matrix, query, key, value and
hidden state dimensions Lhq , Lkv , dqk and dhv , along which we either parallelize or accumulate over
by using a loop inside the kernel.

For the forward pass H(k) kernel we parallelize over the outer sequence dimension Lhq with NLhq =
Lhq/BLhq programs and the outer embedding dimension dhv with Ndhv = dhv/Bdhv programs.
We loop over the inner dimensions Lkv and dqk, which are tiled by the block sizes BLkv and Bdqk

respectively.

Table 1: TFLA kernel parallelization and loop di-
mensions. Parallelization dimensions are indicated
by P and loop dimensions by L. The last column
shows the first two dimensions of the 3D kernel
launch grid. The last dimension of all kernels is
Nchunk ·Nhead ·Nbatch.

Kernel Lhq Lkv dqk dhv Thread Block Grid

H(k) P L L P
(

dhv

Bdhv
,

Lhq

BLhq
, . . .

)
δQ(k) P L P L

(
dhv

Bdhv
,

Lhq

BLhq
, . . .

)
δK(k) L P P L

(
dhv

Bdhv
,

Lhq

BLhq
, . . .

)
δV (k) L P L P

(
dhv

Bdhv
,

Lhq

BLhq
, . . .

)

Tiled Computation. For the mLSTM we can-
not simply accumulate the results of the matrix
multiplications H(k)

intra along the Lkv dimension
and H

(k)
inter due to the stabilization of the expo-

nential input gate with the max state mt. The
max state tracks the maximum of the forget and
input gates over time and is used to stabilize
the exponential input gate similar to the safe
softmax computation (Milakov & Gimelshein,
2018). Since we compute the hidden state out-
put H(k) in blocks along the chunk size (i.e.
time) dimension Lkv , we need to rescale during
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(a) mLSTMexp (Exponential Input Gate) (b) mLSTMsig (Sigmoid Input Gate)

Figure 3: Transfer behavior of the mLSTM before and after the RMS-norm layer (ϵ =1e-6) for
different input and forget gate values. The color shows the gain of the mLSTM defined in (23). After
the norm layer mLSTMexp and mLSTMsig exhibit the same transfer behavior.

accumulation of the block results for H(k)
intra and the overall results into H(k) in the same way as

FlashAttention (Dao, 2024). We provide details on the rescaling in Section B.2. For the backward
pass there is no rescaling necessary as we store the max states in the forward pass and reuse them in
the backward pass.

The pseudocode for the forward pass of TFLA for the mLSTM is listed in Algorithm 1.

Backward Pass. The parallelization strategy for the backward pass of TFLA is more complex than
the forward pass, since we need to compute three output tensors — the gradients for the queries,
keys and values, of which each has an intra-chunk and inter-chunk part. However, in Section C.4
we show that the individual gradients can be mapped to three matrix multiplications similar to the
forward pass. In TFLA, we then implement a separate kernel for each gradient and use the same work
partitioning as in the forward pass but swap the loop and parallelization dimensions, accordingly.
Table 1 summarizes the work partitioning of our TFLA kernels.

4 FASTER MLSTM WITH SIGMOID INPUT GATE

The mLSTM with exponential gating (i.e. exponential input gate) introduced by Beck et al. (2024)
requires to compute and keep track of two additional states, the normalizer state nt and max state
mt, as we show in Appendix D.1.

Both will increase kernel runtime: The normalizer must be computed through summations, and
tracking the max state throughout the tiled computation in TFLA (see Section 3 and C.2) prevents
efficient fusing of loops within the kernel (see Appendix C.3).

Additionally, our analysis in Section 4.2 suggests to initialize the input gate biases at larger negative
values (e.g. -10), such that the input gate pre-activations can grow slowly during training. We observe
that most of these values stay below 0 during training (see Figure 11 in Appendix E). Therefore, we
seek an alternative activation function which is similar to the exponential function in the negative
range, but bounded in the positive range. This suggests to use the sigmoid function

σ(x) =
1

1 + exp(−x)
=

exp(x)

exp(x) + 1
, (18)

which converges to exp(x) for x → −∞ and 1 for x → ∞.

4.1 MLSTM WITH SIGMOID INPUT GATE

The sigmoid function can be computed in two ways as given in equation 18. Depending on the
sign of x it can be ensured that the argument of exp is always smaller than 0 to avoid numerical
overflow. Therefore, we do not need to control the magnitude of x externally with a max state and
as a consequence also drop the normalizer state (see Appendix D.1). This yields the mLSTM with
sigmoid input gate (henceforth referred to as mLSTMsig) in its recurrent formulation as

Ct = σ(̃ft) Ct−1 + σ(̃it) kt v
⊤
t (19)

h̃t = C⊤
t (qt/

√
dqk) (20)

ht = σ (õt) ⊙ NORM
(
h̃t

)
(21)
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where the query, key, and value vectors qt,kt,vt, and the gate preactivations ĩt, f̃t, õt remain the
same as for the mLSTM with exponential input gate (from now on referred to as mLSTMexp) in
Section 2.1.

In Section 5.2, we confirm that our TFLA mLSTMsig forward kernel is over 30% faster than the
mLSTMexp forward. We also show that mLSTMsig performs equally well compared to mLSTMexp
in our language modeling experiments up to 1.4B parameters (see Section 5.1).

4.2 NORMALIZATION OF MLSTM AND LINEAR RNNS

Motivated by the performance of mLSTMsig, we seek to understand the differences between mL-
STMsig and mLSTMexp empirically. To approach this, we draw inspiration from the concept of
frequency response and transfer function analysis for control systems design, where typically the
amplitude ratio or gain of output and input signals for different frequencies is considered (Ogata,
2010, Ch. 7). In our case, we analyze the transfer behavior of mLSTMsig and mLSTMexp for random
inputs qt,kt and vt and different input gate and forget gate preactivation values ĩt and f̃t.

We will see that the normalization layer y = NORM(x), will play a crucial role in our analysis. The
default norm layer in language modeling, the RMS norm (Zhang & Sennrich, 2019) with input vector
input vector x ∈ Rd and output vector y ∈ Rd is defined as

y =
x

RMS(x)
⊙ γ, where RMS(x) =

√√√√1

d

d∑
i=1

x2
i + ϵ, (22)

with with γ ∈ Rd being a learnable scale parameter. The epsilon parameter ϵ ∈ R is a small constant
typically set to 1e-6 to avoid division by zero.

Transfer Behavior of the mLSTM. We analyze the transfer behavior by computing the gain of the
mLSTM cells from random inputs sampled from N (0, 1) to hidden states before and after the norm
layer for varying input and forget gate values. More specifically, we compute the gains Gbefore and
Gafter as

Gbefore =
∥h̃t∥max

∥vt∥max
and Gafter =

∥NORM(h̃t)∥max

∥vt∥max
, (23)

where ∥x∥max := max(|x1|, . . . , |xd|) and we average over the time dimension. For more details
see App. D.2.

In Figure 3 we observe that the transfer behavior of mLSTMsig without normalizer is identical to
mLSTMexp with normalizer and max state. Both exhibit a transition from suppressing (G = 0) to
passing (G = 1) the signal at larger negative input gate preactivation values, which could partly
explain the matching performance in our language modeling experiments.

Relation to other Gated Linear RNNs. Interestingly, almost all other gated linear RNN variants
also place a normalization layer after the RNN cell Dao & Gu (2024); Sun et al. (2023); Qin et al.
(2024b); Yang et al. (2024b). Often this is justified with improved training stability, but a more
thorough discussion is missing (Lieber et al., 2024). Qin et al. (2022) analyze the effect of the norm
layer after a non-gated, kernel-based linear attention (Katharopoulos et al., 2020) layer and show that
this effectively prevents unbounded gradients. We also confirm that the norm layer has a significant
impact on training stability and the gradient norm during training. In Section 5.1 we show that
initializing the input gate bias at larger negative values, as suggested by our transfer behavior analysis
in Figure 3, prevents large gradient norm variance and spikes during training.

Effect of Normalization on Gating in Linear RNNs. We hypothesize that at this point the
normalization layer does not only have a stabilizing effect by controlling the magnitude of the layer
activations through rescaling, but also actively participates in the information routing or gating
mechanism of the linear RNN. For example, if the squared norm of C⊤

t q, which is controlled by
input and forget gates through C⊤

t , is smaller than the epsilon, the denominator in the NORM(x)
layer is dominated by ϵ and the output moves towards zero (indicated by the purple area in Fig. 3).
Hence, by moving through the x-y plane in Fig. 3, the gates could learn to suppress or amplify any
input in the sequence.
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Figure 4: TFLA Kernel Runtime Benchmark for embedding dimension 4096 and 65,536 tokens on
NVIDIA H100 GPUs. Left: Forward pass. Right: Forward and Backward pass. In training our
TFLA kernels are faster than FlashAttention 3 for longer sequence lengths and more than two times
faster than Mamba 2 kernels for all sequence lengths.

In Section D.2 we show additional experiments on the effect of varying the normalization layer
epsilons and different modifications of the normalizers for the mLSTM.

5 EXPERIMENTS

In this section we examine the performance of the two mLSTM variants mLSTMexp (mLSTM with
exponential input gate) and mLSTMsig (mLSTM with sigmoid input gate). We compare two kernel
algorithms: (1) limit_chunk: A kernel that is limited in chunk size L. (2) xl_chunk: Our
TiledFlashLinearAttention (TFLA) kernels with unlimited chunk size. For details see Section 3.

We assess the performance of mLSTMsig compared to mLSTMexp in Section 5.1 and benchmark
the runtime of our kernels against other baselines in Section 5.2. In App. E.1 we verify the numerical
correctness of our kernels.

5.1 LANGUAGE MODELING WITH MLSTM
We train three different model sizes (160M, 400M, 1.4B parameters) with context lengths 4096 and
8192 on the DCLM dataset (Li et al., 2024). We include Llama2 style Transformer models (Touvron
et al., 2023b) as reference in our comparison and describe our experiment setup, model architecture
and training recipe in Appendix E.2.

Table 2: Validation Perplexity at context length 4096.
EXP and SIG denote mLSTMexp and mLSTMsig.
LIMIT and XL correspond to limit_chunk and
xl_chunk kernels.

SIZE TOKENS HEADS LLAMA
EXP

LIMIT
EXP
XL

SIG
XL

160M 19B 6 21.03 21.18 21.03
12 20.89 21.03 21.06 21.05

400M 24B
4 16.66 16.66 16.67
8 16.55 16.80 16.67

16 16.85 16.60 16.61 16.61

1.4B 33B
4 13.31 13.35 13.34
8 13.20 13.22 13.21

16 13.64 13.20 13.87* 13.22

Performance in Language Modeling.
We compare mLSTMsig and mLSTMexp
models on next-token prediction with dif-
ferent number of heads or head dimen-
sions. Table 2 and Table 5 show the results
for context length 4096 and 8192, respec-
tively. We find that our limit_chunk
and xl_chunk kernels yield the same loss
(up to small numerical deviations) for al-
most all head dimensions. For some head
dimensions, we observe gradient norm or
loss spikes for the xl_chunk kernels,
which affect the final loss. As a main result
we find that mLSTMsig performs equally
well compared to mLSTMexp.

Effect of Input Gate Bias Initialization. We analyze the effect of the input gate bias initialization
on training stability and performance of our mLSTM models in Appendix E.2. We observe in
Figure 8 and 9, that initializing the input gate biases to -10 effectively mitigates large gradient norm
spikes and variance during training for both mLSTMexp and mLSTMsig. We therefore conclude that
the additional input gate not only improves performance (see Table 6), but also improves training
stability, if initialized correctly.

Effect of Norm Layer Epsilon. In Appendix E.2 we investigate the effect of the norm layer epsilon
on language modeling performance for mLSTMexp. Our transfer behavior analysis in Figure 3
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suggests, that there exists an interplay between norm layer epsilon and input gate bias initialization.
We confirm this in our grid search in Figure 10 and find that the best performing configuration is the
default epsilon ϵ =1e-6 with input gate biases initialized to -10.

5.2 KERNEL BENCHMARK

Finally, we compare the runtime of our mLSTM limit_chunk and TFLA xl_chunk kernels
with kernel implementations of the state-of-the-art sequence modeling primitives FlashAttention (Dao,
2024; Shah et al., 2024), Mamba (Gu & Dao, 2024; Dao & Gu, 2024) and GLA Yang et al. (2024b).
In Appendix E.3 we compare with other kernels from the FlashLinearAttention library (Yang &
Zhang, 2024). We run our benchmarks on NVIDIA H100 GPUs.

Runtime Benchmark. We use the standard embedding dimension of 4096 for 7B parameter models
and adapt the head dimensions per kernel accordingly. For example for FlashAttention we use 32
heads with head dim 128 and for the mLSTM we use 16 heads with head dim 256. Following the
practice of Shah et al. (2024), we keep the number of tokens constant at 65,536 and vary sequence
length and batch size accordingly. For further details see Appendix E.3.
Figure 4 shows the runtime benchmark results for forward pass only (left) and forward-backward
pass (right). Our mLSTMexp TFLA xl_chunk kernels with two level sequence parallelism is about
25% faster than our limit_chunk kernels. Through targeted modifications of the input gate of
the mLSTM we save computation and enable more efficient kernel implementations for the forward
pass of mLSTMsig (see Sec. 4). This yields another speedup of over 30% for the forward pass of
the mLSTMsig TFLA kernel over the mLSTMexp TFLA kernel. We perform additional runtime
benchmarks for varying head dimensions and a more in-depth comparison to the FLA (Yang et al.,
2024b) and LightningAttention2 (Qin et al., 2024a) kernels in Appendix E.3.
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Figure 5: Memory vs. Runtime Trade-off of TFLA Forward-
Backward Pass. We show the mLSTMsig for embedding
dimension 4096 (8 heads with head dim 512), sequence
length 8192 and batch size 4.

Runtime vs. Memory Trade-off.
The chunk size parameter L bal-
ances the computation between the
two levels of sequence parallelism
(see Sec. 3). Smaller chunk sizes in-
crease memory consumption because
more chunks are materialized in mem-
ory, but they reduce the quadratic
compute FLOPs in the parallel part.
Larger chunk sizes have the opposite
effect. They decrease memory con-
sumption but increase quadratic com-
pute FLOPs. In Figure 5 we mea-
sure this trade-off for our mLSTMsig
TFLA xl_chunk kernels. By vary-
ing the chunk size parameter, our TFLA kernels can effectively balance memory vs. runtime.

6 RELATED WORK

TFLA builds on ideas from FlashAttention (Dao, 2024) and FlashLinearAttention (Yang et al., 2024b)
and is designed for efficient mLSTM kernels (Beck et al., 2024), while being applicable also to
other linear RNNs (Sun et al., 2023; Dao & Gu, 2024). We discuss this and other related works in
Appendix A.

7 CONCLUSION AND FUTURE WORK

With TiledFlashLinearAttention (TFLA) we introduce an algorithm for Linear RNN and mLSTM
kernels with two levels of sequence parallelism. Our TFLA kernels for the mLSTM with exponential
input gate (mLSTMexp) achieve state-of-the art kernel execution speeds, while remaining flexible to
trade off GPU memory consumption and runtime. To further improve kernel runtimes, we propose
mLSTMsig, a mLSTM variant with sigmoid input gate, that reduces computation and increases speed.
Our experiments show that both mLSTM variants perform equally well on language modeling.

Although we enhance training stability through careful gate initialization informed by our empirical
transfer behavior analysis, future work could explore instabilities arising from numerical errors in
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kernel implementations in greater depth. Finally, the programming techniques and hardware features
used to optimize FlashAttention (Shah et al., 2024) could also be leveraged by our TFLA algorithm.
This makes us believe that TFLA has the potential to become a foundational primitive for future
long-context language models.
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A RELATED WORK

A.1 RELATION TO FLASH ATTENTION AND FLASH LINEAR ATTENTION

Tiled Flash Linear Attention (TFLA) combines the idea of tiling one sequence dimension the
attention matrix for better work partitioning (Dao, 2024) with the idea of dividing the sequence into
chunks (Yang et al., 2024b). These two ideas yield the two levels of sequence parallelism for TFLA.

FlashAttention. FlashAttention (Dao et al., 2022) is an IO-aware implementation of softmax
attention introduced by (Vaswani et al., 2017). It uses the idea of tiling to reduce the number of
memory reads/writes between GPU high bandwidth memory (HBM) and GPU on-chip SRAM. In this
way the quadratic attention matrix QK⊤ is never materialized in HBM, which reduces the memory
requirement from quadratic with sequence length to linear, and significantly speeds up the kernel
due to reduced memory IO cost. However, the computation still remains quadratic with sequence
length. FlashAttention 2 (Dao, 2024) improves the work partitioning by parallelizing the attention
computation over the sequence dimension in addition to the naive parallelization over batch and head
dimension. FlashAttention 3 (Shah et al., 2024) leverages new hardware features of recent GPU
generations (e.g. NVIDIA Hopper GPUs) such as FP8 precision or exploiting asynchrony of Tensor
cores and Tensor Memory Accelerators (TMA) to speed up FlashAttention.

TFLA is also IO-aware and parallelizes over one sequence dimension of the intra-chunk QK⊤ matrix
as the second level of sequence parallelism. New hardware features will also speed up future TFLA
implementations.

FlashLinearAttention. FlashLinearAttention (FLA) (Yang et al., 2024b; Yang & Zhang, 2024)
makes use of the fact that linear attention can be interpreted as linear RNN (Katharopoulos et al.,
2020). It then leverages the chunkwise-parallel formulation of linear RNNs (Hua et al., 2022;
Sun et al., 2023) for efficient kernel implementations, that process the sequence in chunks. More
specifically, Yang et al. (2024b) propose two FLA variants: A version that materializes intermediate
states in HBM and a non-materialization version. The materialization version consists of two kernels:
The first is a recurrent kernel that materializes the first intermediate states of every chunk. The
second kernel then processes all chunks in parallel and computes the outputs within the chunks. The
non-materialization version was proposed concurrently by Qin et al. (2024a) and does not employ
parallelism over the sequence dimension, but processes the inputs sequentially in chunks.

TFLA uses the idea of chunking of the sequence for the first level of sequence parallelism.

A.2 OTHER RELATED WORK

Other Hardware-Aware Optimizations. Optimized, hardware-aware implementations enable the
exploration of new primitives or new model architectures. FlashRNN Pöppel et al. (2025) introduces
a framework of IO-aware optimized CUDA kernels in order to simplify research on traditional,
non-parallelizable RNNs. Mamba (Gu & Dao, 2024) enables large scale language modeling
experiments (Waleffe et al., 2024) with an efficient parallel scan algorithm in their optimized CUDA
kernels. FlashFFTConv (Fu et al., 2024) provides efficient implementations for FFT convolutions for
modern hardware by reducing IO and leveraging specialized matrix multiply units. DeltaNet Yang
et al. (2024c;a) introduces an efficient algorithm for training linear Transformers with the delta rule
(DeltaNet) (Schlag et al., 2021), which enables to scale up DeltaNet to standard language modeling
settings.

Our TFLA kernel algorithm provides an effective method to balance the runtime and memory for
linear RNN kernels based on their chunkwise-parallel formulation, paving the way to even larger
model training setups.

Gating mechanisms for Linear RNNs. Many different gating techniques for linear RNNs have
been explored (Sun et al., 2023; Beck et al., 2024; Yang et al., 2024b; Gu & Dao, 2024; Dao &
Gu, 2024; Qin et al., 2023; 2024b; Orvieto et al., 2023; Katsch, 2023). We propose mLSTMsig, a
mLSTM variant with sigmoid input gate and analyze the transfer behavior, empirically.
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B EXTENDED MLSTM FORMULATIONS

B.1 FULLY PARALLEL FORMULATION

For the parallel formulation it is assumed that all inputs are available at once. Then, the queries,
keys and values qt,kt,vt can be stacked into the matrices Q,K ∈ RT×dqk ,V ∈ RT×dhv in order
to compute all hidden states H ∈ RT×dhv in parallel using the following equations:

D̃ = logF+ Ĩ (24)

m = max
j

D̃ij , (25)

D = exp(D̃−m) (26)

S =
1√
dqk

QK⊤ (27)

S = S⊙D (28)

n = max
(
|S 1|, exp(−m)

)
(29)

H =
(
S⊙

(
n−1

))
V , (30)

where 1 ∈ RT is a vector of ones. The forget gate activation matrix F ∈ RT×T is computed by

Fij =


0 for i < j

1 for i = j∏i
k=j+1 σ

(
f̃k

)
=
∑i

k=j+1 log σ
(
f̃k

)
for i > j

. (31)

Similarly, the input gate pre-activation matrix Ĩ ∈ RT×T is given by

Ĩij =

{
0 for i < j

ĩj for i ⩾ j
. (32)

Note that in contrast to the recurrent formulation, in the parallel formulation the states Ct are not
materialized, i.e. computed explicitly. This comes at the cost of computing the quadratic matrices
D,S ∈ RT×T , with an overall quadratic scaling in sequence length T .

B.2 DETAILED CHUNKWISE-PARALLEL FORMULATION

In this section we provide more detailed formulas for the chunkwise-parallel formulation of the
mLSTM from Section 2.2.

Chunkwise Gates. Given the logarithmic forget gates f̄ (k) = log σ(f̃
(k)

) ∈ RL and input gates

ī
(k)

= log exp(̃i
(k)

) ∈ RL, we can compute the chunkwise gates as

gk = sum
(
f̄
(k)
)
=

L∑
i=1

f̄
(k)
i ∈ R, (33)

bk = cumsum
(
f̄
(k)
)

∈ RL, with bk,j =

j∑
i=1

f̄
(k)
i for j = 1, 2, . . . , L (34)

ak = rev_cumsum
(
f̄
(k)
)
+ ī

(k) ∈ RL, with ak,j =

L∑
i=j+1

f̄
(k)
i + ī

(k)
j for j = 1, 2, . . . , L.

(35)

16



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Inter-chunk Recurrent Contribution. The inter-chunk recurrence is given by

m
(inter)
k = max

{
gk +m

(inter)
k−1 , max ak

}
(36)

Ck = exp
(
gk +m

(inter)
k−1 −m

(inter)
k

)
Ck−1 +

(
exp

(
ak −m

(inter)
k

)
⊙K(k)

)⊤
V (k) (37)

nk = exp
(
gk +m

(inter)
k−1 −m

(inter)
k

)
nk−1 +

(
exp

(
ak −m

(inter)
k

)
⊙K(k)

)⊤
1. (38)

In simplified form we can write the inter-chunk recurrence as

Ck = ḡkCk−1 +
(
ak ⊙K(k)

)⊤
V (k) = ḡkCk−1 +K

(k)⊤
V (k) (39)

nk = ḡknk−1 +
(
ak ⊙K(k)

)⊤
1 = ḡknk−1 +K

(k)⊤
V (k). (40)

with the running max state integrated into the gates.

Intra-chunk Parallel Contribution. The recurrent part is followed by the intra-chunk parallel
contribution given by

D̃
(k)

=

{
−∞ for i < j

bk − b⊤
k + i

(k)⊤
for i ⩾ j

(41)

m
(intra)
k = max

j
D̃

(k)

ij (42)

D(k) = exp(D̃
(k)

−m
(intra)
k ) (43)

S(k) =
1√
dqk

Q(k)K(k)⊤ (44)

S
(k)

= S(k) ⊙D(k). (45)

where exp is acting component-wise.

Output computation. The contributions from the intra-chunk parallel part H(k)
intra are combined

with the inter-chunk recurrent part H(k)
inter to obtain the hidden states H(k) for each chunk k (see

Figure 1):

m
(combine)
k = max

{
bk +m

(inter)
k−1 ,m

(intra)
k

}
(46)

H
(k)
inter =

(
exp

(
bk +m

(inter)
k−1 −m

(combine)
k

)
⊙ Q(k)√

dqk

)
Ck−1 (47)

=

(
bk ⊙ Q(k)√

dqk

)
Ck−1 (48)

= Q
(k)

Ck−1 (49)

H
(k)
intra = S

(k)
V (k) (50)

H(k) =

(
bk ⊙ (Q(k)/

√
dqk)

)
Ck−1 + S

(k)
V (k)

max
{
|
(
bk ⊙ (Q(k)/

√
dqk)

)
nk−1 + S

(k)
1|, exp

(
−m

(combine)
k

)} (51)

=
Q

(k)
Ck−1 + S

(k)
V (k)

max
{
|Q(k)

nk−1 + S
(k)

1|, exp
(
−m

(combine)
k

)} (52)

=
(
Q

(k)
Ck−1 + S

(k)
V (k)

)
/ h

(k)
denom. (53)
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B.3 CHUNKWISE-PARALLEL BACKWARD PASS

In this section we provide a detailed description of the backward pass of the chunkwise-parallel
mLSTM.

Gradients Through Normalizer States. Following Sun et al. (2023), we do not compute the
gradients through the normalizer states n. The gradients cancel out due to the Layer- or RMS-Norm
on the mLSTM cell hidden states H, since the normalizer state is constant over the embedding or
feature dimension, which is the normalization dimension.

Inter-chunk Recurrent Backward Pass. Given the incoming memory cell state gradients from
the next chunk δCk and the hidden state output gradients δH(k) for chunk k, we can compute the
inter-chunk recurrent backward pass. The query, key and value gradients δQ(k)

inter, δK
(k)
inter and δV

(k)
inter

of the inter-chunk recurrent part are computed by:

δH̃
(k)

=
δH(k)

h
(k)
denom

(54)

δV
(k)

inter = K
(k)

δCk (55)

δK
(k)

= V (k) δC⊤
k (56)

δK
(k)
inter = δK

(k) ⊙ ak 1⊤ (57)

δQ
(k)

= δH̃
(k)

C⊤
k−1 (58)

δQ
(k)
inter =

1√
dqk

δQ
(k) ⊙ bk 1⊤ (59)

The memory cell state gradients δCk−1 have incoming contributions from the next timestep δC
(rec)
k−1

and output δC(out)
k−1 . They are given as

δCk−1 = δC
(rec)
k−1 + δC

(out)
k−1 (60)

= g ⊙ δCk +Q
(k)⊤

δH̃
(k)

. (61)

Finally, we can compute the cumulative gate gradients δgk, δak and δbk for chunk k as

δgk = 1⊤(Ck−1 ⊙ δCk) 1 (62)
δgk = δgk ⊙ gk (63)

δak = (δK
(k) ⊙K(k)) 1 (64)

δak = δak ⊙ ak (65)

δbk = (δQ
(k) ⊙ Q(k)√

dqk
) 1 (66)

δbk = δbk ⊙ bk. (67)

Intra-chunk Parallel Backward Pass. Given the mLSTM hidden state output gradients δH(k) the
intra chunk query, key and value gradients δQ(k)

intra, δK
(k)
intra and δV

(k)
intra gradients are computed by
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δH̃
(k)

=
δH(k)

h
(k)
denom

(68)

S(k) =
1√
dqk

Q(k)K(k)⊤ (69)

S
(k)

= S(k) ⊙D(k) (70)

δV
(k)

intra = S
(k)⊤

δH̃
(k)

(71)

δS
(k)

= δH̃
(k)

V (k)⊤ (72)

δS(k) = δS
(k) ⊙D(k) (73)

δQ
(k)
intra =

1√
dqk

δS(k) K(k) (74)

δK
(k)
intra =

1√
dqk

δS(k)⊤ Q(k) (75)

In order to compute the cumulative intra gate gradients, we compute the gradients through the gate
matrix D(k), which is computed from the cumulative forget gates

b
(q)
k = cumsum(f̄

(k)
q ) ∈ RLq (76)

b
(kv)
k = cumsum(f̄

(k)
kv ) ∈ RLkv , (77)

where we use the logarithmic forget gates f̄ = log σ(f̃). We denote the dimensions as Lq and Lkv for
the query and key-value dimensions, respectively. Omitting the masking operation, we compute the
gate matrix as

D(k) = b
(q)
k 1⊤

kv − 1q b
(kv)
k

⊤
+ 1q i

(k)

kv

⊤
, (78)

where 1q ∈ RLq and 1kv ∈ RLkv are vectors of ones used to indicate broadcast operations, and

i
(k)

kv ∈ RLkv are the logarithmic input gates for chunk k.

The gradients are computed as

δD(k) = δS
(k) ⊙ S(k) (79)

δb
(q)
k = δD(k) 1kv (80)

δb
(kv)
k = −δD(k)⊤ 1q (81)

δi
(k)

kv = δD(k)⊤ 1q. (82)

Combined input and gate gradients. The intra and inter chunk gradients are combined by sum-
ming up the contributions. This yields for the query, key and value gradients

δQ(k) = δQ
(k)
inter + δQ

(k)
intra (83)

δK(k) = δV
(k)

inter + δK
(k)
intra (84)

δV (k) = δV
(k)

inter + δV
(k)

intra . (85)

The input and forget gate gradients ī(k) and f̄
(k) can be computed from the cumulative gate gradients

δgk, δbk and δak with the following equalities

δf̄
(k)

= δgk (86)

δf̄
(k)

= rev_cumsum(δbk) (87)

δf̄
(k)

= rev_cumsum(δak) (88)

δī
(k)

= δak (89)
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C EXTENDED TILED FLASH LINEAR ATTENTION

C.1 GPU FUNDAMENTALS

A GPU (Graphics Processing Unit) is a specialized processor designed to efficiently handle large-
scale parallel computation tasks, such as matrix multiplications in neural networks. These tasks are
divided into small programs called kernels, that are executed on GPUs. A kernel loads data from high
bandwidth memory (HBM), performs work on it, and writes the results back to HBM. For writing
efficient kernels, it is important to understand the software hierarchy of the GPU, which closely
follows its physical hardware hierarchy.

GPU Hierarchy. At the lowest level the GPU runs multiple Threads, operating on small but fast
register memory in parallel. On the software side usually multiple (e.g. 32) Threads are grouped
together into Warps. Again, multiple Warps are grouped into Thread blocks which together execute
a kernel on a physical core, called streaming multiprocessor (SM). Warps or Threads within the
same Thread block can communicate data through special on-chip shared memory (SRAM). When
executing a kernel, a grid (with typically 3 dimensions) of Thread blocks that run in parallel is
launched on the GPU. All Thread blocks have access to the large but slow off-chip high-bandwidth
memory (HBM), which has both the largest latency and least bandwidth of all GPU memory. For
efficient kernels it is important to minimize memory read and writes from and to HBM.

Specialized Compute Units. Modern GPUs have specialized compute units – called tensor cores –
that accelerate matrix multiplications on GPUs. Tensor cores have most of the GPU compute and
are accessed at the warp or block level. For efficient kernels it is important to maximize tensor core
utilization.

Triton Language. Triton is a GPU kernel programming language with an associated compiler, that
provides a Python-based environment for GPU programming. The user can load data from HBM
via a tl.load instruction and store data to HBM via tl.store. tl.dot is an instruction, that
leverages tensor cores for matrix multiplications. While this Triton interface of increases productivity
in writing very fast custom kernels, peak performance can be achieved sometimes only with CUDA
kernels. We write our kernels in Triton and leave a CUDA implementation for future work. In contrast
to NVIDIAs programming model CUDA, which provides access to all levels of the GPU hierarchy,
Triton programs operate on the Thread block level and hide register and thread management from
the user. Therefore, we describe TFLA on the more abstract Thread block or program level in the
following section.

C.2 TILED COMPUTATION

For the tiled computation of the intra-chunk hidden state contribution Hintra within a chunk,
we consider blocks of the matrix S =

[
S(1) S(2)

]
and the gate matrix D =

[
D(1) D(2)

]
,

with S(i),D(i) ∈ RBLhq×BLkv . Here, the superscript i denotes the block index along the
Lkv dimension (and not the chunk index). Similarly, we consider blocks of the value matrix
V =

[
V (1)

V (2)

]
, with V (i) ∈ RBkv×Bdhv . We then accumulate the unnormalized hidden state blocks

H
(i)
intra,num ∈ RBLkv×Bdhv and the corresponding normalizer l(i) ∈ BLkv as

m(1) = max
j

D̃
(1)

ij (90)

l(1) = (S(1) ⊙ exp(D̃
(1)

−m(1))) 1 (91)

H
(1)
intra,num = (S(1) ⊙ exp(D̃

(1)
−m(1))) V (1) (92)

m(2) = max

(
m(1), max

j
D̃

(2)

ij

)
(93)

l(2) = exp(m(1) −m(2)) l(1) + (S(2) ⊙ exp(D̃
(2)

−m(2))) 1 (94)

H
(2)
intra,num = exp(m(1) −m(2))H

(1)
intra,num + (S(2) ⊙ exp(D̃

(2)
−m(2))) V (2). (95)
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After computing this intra-chunk part, we need to do one more rescaling step to combine the intra-
chunk and inter-chunk parts of the hidden state output H(k) since H

(k)
intra and H

(k)
inter were computed

with different max states. Therefore, we compute the final hidden state output H(k) as

m
(combine)
k = max

{
bk +m

(inter)
k−1 ,m

(2)
k

}
(96)

H(k) =
Q

(k)
Ck−1 + exp

(
m

(2)
k −m

(combine)
k

)
S
(k)

V (k)

max
{
|Q(k)

nk−1 + exp
(
m

(2)
k −m

(combine)
k

)
l
(2)
k |, exp

(
−m

(combine)
k

)} , (97)

where we assume that m(2)
k is the block maximum and l

(2)
k is the normalizer after the last BLkv

block of the intra-chunk computation for chunk k.

C.3 TFLA FORWARD PASS

For notational simplicity we drop the k index for the query, key and value matrices as Q ∈ RLhq×dqk ,
K ∈ RLkv×dqk and V ∈ RLkv×dv , respectively. We make use of reweighting (as discussed in
Appendix C.2) in order to keep track of the maximum value over the gate matrix tiles, similar to (Dao
et al., 2022).

The forward pass algorithm of TFLA for one thread block is described in Algorithm 1.

Note that the loop in line 27 of Algorithm 1 is the same as the loop in line 6. In both loops we load the
same blocks of the matrix Q. Fusing these loops would avoid loading this data twice. Unfortunately,
fusing these loops efficiently is problematic due to the online computation of the maximum mold

and mnew in the loop in line 4 and the dependence of m(combine)
k and bk on the final mnew (see

Appendix D.1 and C.2).

We address this issue in Section 4 by modifying the input gate of the mLSTM.

C.4 TFLA BACKWARD PASS

For the TFLA backward pass, we need to compute the gradients of the queries, keys and values
δQ(k), δK(k) and δV (k). Omitting the gate computations and normalization, we write a simplified
version of these gradients as

δQ(k)

(Lhq×dqk)

=

(
δH(k)

(Lhq×dhv)
V (k)⊤

(dhv×Lkv)

)
K(k)

(Lkv×dqk)︸ ︷︷ ︸
δQ

(k)
intra

+ δH(k)

(Lhq×dhv)
C⊤

k−1
(dhv×dqk)︸ ︷︷ ︸

δQ
(k)
inter

(98)

δK(k)

(Lkv×dqk)
=

(
V (k)

(Lkv×dhv)
δH(k)⊤

(dhv×Lhq)

)
Q(k)

(Lhq×dqk)︸ ︷︷ ︸
δK

(k)
intra

+ V (k)

(Lkv×dhv)
δC⊤

k
(dhv×dqk)︸ ︷︷ ︸

δK
(k)
inter

(99)

δV (k)

(Lkv×dhv)
=

(
K(k)

(Lkv×dqk)
Q(k)⊤

(dqk×Lhq)

)
δH(k)

(Lhq×dhv)︸ ︷︷ ︸
δV

(k)
intra

+ K(k)

(Lkv×dqk)
δCk

(dqk×dhv)︸ ︷︷ ︸
δV

(k)
inter

. (100)

We see that each of the query, key and value gradients has a similar structure as the forward pass in
equation (17). They can be computed with the same work partitioning scheme, where we parallelize
over the outer chunk size and outer embedding dimension of the matrix multiplications and loop over
the inner dimensions, respectively. For example, for the key gradients δK(k) we parallelize over the
outer chunk size Lkv and the outer embedding dimension dqk and loop over the inner dimensions
Lhq and dhv . Table 1 summarizes the TFLA work partitioning scheme for the forward and backward
pass kernels.
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Algorithm 1 TFLA Intra-Chunk Forward Pass for mLSTMexp (H(k) Kernel)

Require: Matrices Q ∈ RLhq×dqk , K ∈ RLkv×dqk , V ∈ RLkv×dhv .
States Ck−1 ∈ Rdqk×dv , nk−1 ∈ Rdqk .
Input- and cumulative forget gate vectors ik, bk ∈ RLhq .
Block sizes Bdqk, Bdhv , BLhq and BLkv , where BLhq ⩾ BLkv .
Block Q index iLq and Block HV index idhv .

1: Initialize mold, mnew ∈ RLq to −∞ in SRAM.
▷ Compute intra-chunk contribution

2: Initialize accumulators Hintra ∈ RBLhq×Bdv and n(intra) ∈ RBLhq in SRAM.
3: Load b

(q)
k ∈ RBLhq from HBM to SRAM.

4: for i = 1 to
⌊
(iLq+1)·BLhq

BLkv

⌋
do

5: Initialize accumulator S(i) ∈ RBLhq×BLkv in SRAM.
6: for j = 1 to

⌈
dqk

Bdqk

⌉
do

7: Load Q(j) ∈ RBLhq×Bdqk and K(j) ∈ RBLkv×Bdqk from HBM to SRAM.
8: Accumulate S(i) += Q(j)K(j)⊤.
9: end for

10: Load b
(kv)
k ∈ RBLkv and i

(kv)
k ∈ RBLkv from HBM to SRAM.

11: Compute D̃
(i)

= b
(q)
k − b

(kv)
k

⊤
+ i

(kv)
k

⊤
∈ RBLhq×BLkv .

12: if i ·BLkv ⩾ iLq ·BLhq then

13: Apply causal mask to D̃
(i)

.
14: end if
15: Compute mnew = maximum{mold, rowmax D̃

(i)
}.

16: Compute D(i) = exp(D̃
(i)

−mnew).

17: Compute S
(i)

= 1√
dqk

S⊙D(i).

18: Load V (i) ∈ RBLkv×Bdhv for Block idhv from HBM to SRAM.
19: Accumulate Hintra = exp(mold −mnew) ·Hintra + S

(i)
V .

20: Accumulate n(intra) = exp(mold −mnew) · n(intra) + S
(i)

1.
21: Update mold = mnew.
22: end for

▷ Compute inter-chunk contribution
23: Load m

(inter)
k−1 ∈ R from HBM to SRAM.

24: Compute m
(combine)
k = maximum

{
b
(q)
k +m

(inter)
k−1 , mnew

}
.

25: Compute bk = exp
(
b
(q)
k +m

(inter)
k−1 −m

(combine)
k

)
.

26: Initialize accumulators Hinter ∈ RBLhq×Bdhv for Block idhv and n(inter) ∈ RBLhq in SRAM.
▷ Note: This is the same loop as the inner one above. They cannot be merged because of the max
state computation.

27: for j = 1 to
⌈

dqk

Bdqk

⌉
do

28: Load Q(j) ∈ RBLhq×Bdqk and C
(j)
k−1 ∈ RBdqk×Bdhv for Block idhv from HBM to SRAM.

29: Compute Q
(j)

= 1√
dqk

Q(j) ⊙ b
(q)
k .

30: Accumulate Hinter += Q
(j)

C
(j)
k−1.

31: Load n
(j)
k−1 ∈ RBdqk .

32: Accumulate n(inter) += Q
(j)

n
(j)
k−1.

33: end for ▷ Combine inter- and intra-chunk contributions
34: Compute H(comb) = Hintra + exp(mnew −m

(combine)
k )Hinter.

35: Compute n(comb) = n(intra) + exp(mnew −m
(combine)
k )n(inter).

36: Compute H(k) = H(comb)

max
{
|n(comb)|,exp(−m

(combine)
k )

} .

37: Store H(k), n(comb) and m
(combine)
k to HBM.
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D EXTENDED MLSTM WITH SIGMOID INPUT GATE

D.1 STABILIZATION OF THE EXPONENTIAL INPUT GATE

In this section we show how the exponential input gate is stabilized with the max state mt (Beck
et al., 2024). The stabilization is based on the idea of Safe Softmax (Milakov & Gimelshein, 2018).
We will see that the max state stabilization ensures that the argument of the exponential input gate
activation is always smaller than 1. We will also see that the normalizer state guarantees cancellation
of the max state, so that the overall outputs of the mLSTM remain unaffected by the max state.

Without stabilization mLSTM hidden state output is computed as

ht = õt ⊙
C⊤

t qt

max
{∣∣n⊤

t qt
∣∣, 1} , (101)

where we omit the scaling factor
√
dqk for q. To simplify we also omit the lower bound and the

absolute value on the dot product in the denominator. We obtain

ht = σ (õt)⊙
C⊤

t qt
n⊤

t qt
. (102)

Inserting the update formulas for the memory cell state Ct and the normalizer state nt gives

ht = σ (õt)⊙

(
σ(̃ft) Ct−1 + exp(̃it) kt v

⊤
t

)⊤
qt(

σ(̃ft) nt−1 + exp(̃it) kt

)⊤
qt

. (103)

We now show that from this unstabilized version of the mLSTM we can derive the stabilized form in
three steps. At first we use the identity σ(̃i) = exp(log(σ(̃ft))), extend the fraction in equation (103)
by exp(−mt) and select mt = max{log(σ(̃ft)), ĩt} to be the maximum of the two arguments of the
exponential function. This gives

ht = σ (õt)⊙
C⊤

t qt · exp(−mt)

n⊤
t qt · exp(−mt)

= σ (õt)⊙

(
exp(log(σ(f̃t))−mt) Ct−1 + exp(̃it −mt) kt v

⊤
t

)⊤
qt(

exp(log(σ(̃ft))−mt) nt−1 + exp(̃it −mt) kt

)⊤
qt

.

(104)
In this way, we ensure that the arguments of the exponential function are always smaller than 1, such
that numerical overflow due to large values can never occur.

As next step we reparameterize Ct and nt to C̃t and ñt.

C̃t = Ct exp(−mt) → C̃t−1 = Ct−1 exp(−mt−1) ⇔ Ct−1 = C̃t−1 exp(mt−1)

ñt = nt exp(−mt) → ñt−1 = nt−1 exp(−mt−1) ⇔ nt−1 = ñt−1 exp(mt−1)
(105)

Finally, we replace Ct and nt with the stabilized states C̃t and ñt in the recurrence. We arrive at

ht = σ (õt)⊙

(
exp(log(σ(̃ft)) +mt−1 −mt) C̃t−1 + exp(̃it −mt) kt v

⊤
t

)⊤
qt(

exp(log(σ(̃ft)) +mt−1 −mt) ñt−1 + exp(̃it −mt) kt

)⊤
qt

= σ (õt)⊙
C̃⊤

t qt
ñt qt

(106)

Now we choose the max state as mt = max{log(σ(̃ft)) + mt−1, ĩt} and arrive at the stabilized
mLSTM formulas by changing the denominator to max

{∣∣ñ⊤
t qt

∣∣, exp(mt−1)
}

. We have to add
exp(mt−1) also to the right side of the maximum, so that it cancels out.

To summarize, we see that the normalizer is necessary for the max state to cancel out and the
exponential input gate argument bounded through the max state.
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D.2 EMPIRICAL TRANSFER BEHAVIOR ANALYSIS OF THE MLSTM

We provide details on the transfer behavior analysis of mLSTMexp and mLSTMsig in Section 4.2.

Experiment Setup. We analyze the transfer behavior of the mLSTM for a single head and a single
input sequence of length T =512. The inputs are for the queries, keys and values qt, kt and vt are
sampled from the standard normal distribution N (0, 1). We set the head dimensions to dqk =128
and dhv =128. As norm layer NORM(x) we use the RMS-norm. Changing the norm to layernorm
does not alter the results, as for this experiment we set the mean of the inputs to zero. For every plot
we measure the gains Gbefore and Gafter (as defined in (23)) for input and forget gate preactivation
values in the ranges [-12, 8] and [-5, 12], respectively.

Effect of Normalization Layer Epsilon on Transfer Behavior. Based on our analysis on the
normalization layer after the gated linear RNN operation in Section 4.2, we hypothesize that the
normalization layer and especially the norm epsilon ϵ is integral to the gating mechanism. In this
experiment we probe the effect of the epsilon value on the transfer behavior of the mLSTM. Figure 6a
and Figure 7a show the transfer behavior of mLSTMexp and mLSTMsig for ϵ =[1e-2, 1e-6, 1e-8],
respectively.

We observe that the epsilon acts in the same way for mLSTMexp and mLSTMsig. Increasing ϵ causes
an offset of the gain in positive y-direction, increasing ϵ in negative y-direction. We set our default
value ϵ =1e-6, which yields the best performance in our experiments (see Sec. 5.1).

Normalizers of mLSTMexp and mLSTMsig. In this experiment we test the effect of different
normalizers n in Equation 29 for mLSTMexp and mLSTMsig. The parallel formulation in Section B.1
is presented for the mLSTM with exponential input gate, but applies similarly to the mLSTM with
sigmoid input gate. For the default mLSTMsig, we set the normalizer to n = 1 and modify the
calculation of the gate matrix D for sigmoid input gates.

In Figure 6 we show the results of different normalizers for the mLSTM with exponential input gate.
Only the default mLSTMexp with correct normalizer and max state (in Fig. 6a) shows a transfer
behavior that depends on the input gate.

In contrast, in Figure 7a and 7b we observe that incorporating a normalizer similar to mLSTMexp
(excluding the max state) into mLSTMsig does not alter its transfer behavior.

The other two normalizer variants for mLSTMsig in Figure 7c and 7d show a clearly different transfer
behavior and do not train successfully. Similarly, the variants in Figure 6b and 6c also fail to train
successfully.

In summary, we find that if the mLSTM exhibits the characteristic gate dependent transfer behavior it
trains successfully and shows good performance in our language modeling experiments. In order to
achieve this behavior for the mLSTMexp we need to normalize correctly as derived in Section D.1.
Adding a normalizer to the mLSTMsig does not change performance and transfer behavior, if the
normalizer incorporates a lower bound on the dot-product n⊤

t qt. However, our default mLSTMsig
omits the normalizer in order to reduce computational cost and runtime.
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(a) mLSTMexp — n = max
(
|S 1|, exp(−m)

)
(default)

(b) mLSTMexp — n = max
(
|S 1|, 1

)
(wrong m state)

(c) mLSTMexp — n = 1 (no normalizer)

Figure 6: Transfer behavior of the mLSTM with exponential input gate for different normalization
layer epsilons (EPS) and different normalizer variants. Only the default normalization shows the
input gate dependent transfer behavior. Varying the normalization layer epsilon causes a shift of the
gain curve in y-direction.
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(a) mLSTMsig — n = 1 (default)

(b) mLSTMsig — n = max
(
|S 1|, 1

)
(same normalizer as mLSTMexp)

(c) mLSTMsig — n = |S 1| (no max – different colorbar)

(d) mLSTMsig — n = S 1 (no | · | – different colorbar)

Figure 7: Transfer behavior of the mLSTM with sigmoid input gate for different normalization
layer epsilons (EPS) and different normalizer variants. Removing the normalizer from mLSTMsig
(which is our default setting in (a)) has no effect on the transfer behavior. If the normalizer is added,
it should be bounded by 1 (see (b)). Varying the normalization layer epsilon causes a shift of the gain
curve in y-direction.
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E EXTENDED EXPERIMENTS

In this section, we provide additional experiments and details to Section 5.

E.1 NUMERICAL VALIDATION OF TFLA KERNELS

Before we begin our experiments on langauge modeling, we first verify that our kernels yield the
same result as a reference implementation in pure JAX based on the fully parallel formulation (see
Appendix B.1).

Validation Perplexity Match (Table 3). We compare the validation perplexity at the end of training
for 160M parameter mLSTMexp and mLSTMsig models trained on 19B tokens. We use context
length 4096 since the parallel JAX implementation go out-of-memory for longer contexts. Model
architecture and training recipe follows or general setup described in Appendix E.2.

In Table 3 we confirm that our kernels yield the same results as our reference implementation in JAX.

Table 3: Validation Perplexity for 160M parameter models at context length 4096 trained on 19B
tokens.

EXP SIG
HEADS JAX PARALLEL LIMIT CHUNK XL CHUNK JAX PARALLEL XL CHUNK

6 21.02 21.03 21.18 21.01 21.05
12 21.01 21.03 21.07 21.02 21.06

E.2 EXTENDED LANGUAGE MODELING EXPERIMENTS WITH MLSTM

In this section we provide details on our experiment setup, model architecture and training recipe and
add additional performance results on context length 8192 as well as analyze the effect of the epsilon
parameter in the norm layer.

Software and Hardware Setup. We run our language modeling experiments in JAX 0.4.34 (Brad-
bury et al., 2018) and use FLAX 0.9.0 (Heek et al., 2024) to implement our models. We implement
our kernels in Triton 3.1.0 (Tillet et al., 2019; Tillet, 2024) and use JAX-Triton 0.2.0 (Vikram et al.,
2022) to integrate the kernels into JAX. Our kernel benchmark experiments are run in PyTorch
2.5.1 (Paszke et al., 2019), because most kernel baselines are available in PyTorch. All experiments
are run on NVIDIA H100 80GB GPUs.

Model Architecture. The model architecture for mLSTMexp and mLSTMsig follows the design
of most dense Transformer decoder only large language models (Radford et al., 2019; Brown et al.,
2020; Touvron et al., 2023a;b).

An embedding layer, is followed by a stack of blocks and a language model head that produces the
output logits (i.e. the values before softmax), which typically consists of a normalization layer and
a linear (unembedding) layer. We apply logit soft-capping (Team, 2024), such that the value of the
logits stay between −c and c for a specific cap value c. We choose c =30. The logits are capped with
the following function:

softcap(x) = c · tanh(x/c) (107)

We use the GPT-NeoX tokenizer (Black et al., 2022) with vocabulary size 50257 and do not tie the
weights for the embedding layers and and the last (unembedding) layer.

Each block consists of two layers, where each layer has skip a connection and a normalization layer
before the layer input (i.e. we use the pre-norm block architecture). As normalization layer we use
the RMS-norm (Zhang & Sennrich, 2019) with epsilon ϵ =1e-6.

The first layer is a sequence-mix layer, that mixes the tokens along the sequence or time dimension.
For standard Transformers this is the Attention operation (Vaswani et al., 2017). In our case, we
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replace Attention by the mLSTM operation with exponential or sigmoid input gate. Similar to
Attention, mLSTM processes each token in multiple parallel heads. The second layer in the block
is a feedforward linear layer that mixes the tokens per timestep channelwise. We use the SwiGLU
feedforward linear layers (Shazeer, 2020; Touvron et al., 2023a).

For the mLSTM we set the head dimension for the queries and keys to be half of the values, i.e.
dqk = 0.5 dhv. We use Layernorm (Ba et al., 2016) as NORM(x) operation with epsilon ϵ =1e-6
in our experiments. 1 We apply soft-capping from equation (107) on the input and forget gate
preactivations, as we found that this improves training stability. For the gate preactivations we set
c =15.

We provide the remaining model parameters in Table 4.

Training Recipe. We train our models with the AdamW optimizer (Loshchilov & Hutter, 2019)
with β1 =0.9, β2 =0.95 and ϵ =1e-8. We use learning rates and batch sizes as specified in Table 4.
We apply a weight decay of 0.1 to all linear layers (including the last linear layer or unembedding)
and exclude biases and the token embeddings from weight decay. We clip the gradient norm at 0.5.
We use a cosine learning rate scheduler with a linear warmup for the first 750 steps and decay to
0.1 of the peak learning rate, followed by a linear cooldown to 0 for the last 1000 steps. We list
the number of training steps for every model size in Table 4. During pre-training we ensure that no
information is leaked across document borders by resetting the memory states at the beginning of
each new document. We implement this by manually setting the forget gate preactivations to a large
negative values at the beginning of each new document.

Table 4: Training and Model Architecture Hyperparameters for our model sizes 160M, 400M and
1.4B.

MODEL
SIZE

BLOCKS
EMBEDDING

DIM
HEADS

HEAD
DIM

LR BATCH
SIZE

STEPS
TOKENS
4K CTX

TOKENS
8K CTX

160M 12 768 6 128 3E-3 128 36K 19B 38B12 64

400M 24 1024 8 128 1E-3 128 46K 24B 48B16 64

1.4B 24 2048
4 512

8E-4 256 31K 33B 65B8 256
16 128

Additional Performance Results (Table 5). In Table 5 we show the validation perplexity for
mLSTMexp and mLSTM for context length 8192 (the results for context length 4096 are shown in
Table 2). For some head dimension configurations we observed irrecoverable gradient norm spikes
during training (indicated by -).

Effect of Trainable Input Gate (Table 6). We investigate the effect of the input gate on the
performance. Table 6 shows that having the input gate learnable consistently improves performance
for both mLSTMexp and mLSTMsig.

Effect of Input Gate Bias Initialization (Figure 8 and 9). In our transfer behavior analysis in
Section 4.2 we find that there is a transition from suppressing the signal to passing the signal at
negative input gate values of around -8 (see Figure 3). Since we initialize the weights of the gates
w{i,f} to 0, the biases of the input and forget gates determine the actual position in the x-y plane in
the beginning of training. Initially, with input gate biases initialized to 0, we observe a high gradient
norm variance, which was more pronounced for mLSTMsig (see Figure 8a and 9a).

Therefore, we test to initialize the input gate biases at larger negative values. The forget gate biases
are initialized equally spaced in the range [3,6]. As the weights w{i,f} grow during training, so do

1We confirmed empirically that the type of normalization layer does not affect the performance as well as our
qualitative results on transfer behavior and gradient norm variance. Therefore, we generally prefer RMS-norm
as it faster.
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Table 5: Validation Perplexity at context length 8192. EXP and SIG denote mLSTMexp and
mLSTMsig. LIMIT and XL correspond to limit_chunk and xl_chunk kernels. - indicates
that the run experienced irrecoverable loss spikes during training.

SIZE TOKENS HEADS LLAMA
EXP

LIMIT
EXP
XL

SIG
XL

160M 38B 6 20.29 20.43 20.46
12 19.99 20.31 20.42 20.52

400M 48B 8 15.91 16.01 16.08
16 16.05 15.95 16.01 -

1.4B 65B
4 12.69 12.71 12.91
8 12.62 12.65 12.67

16 12.97 12.59 - 12.75

Table 6: Validation Perplexity for 160M mLSTMs at context length 4096 with learnable and fixed
input gate (bias initialized at -10).

INPUT GATE
EXP

LIMIT
SIG
XL

FIXED 21.23 21.24
LEARNABLE 20.95 21.04

the gate preactivations and the model could learn to gradually move into the dynamical region of
Figure 3, where the input signal is passed.

Indeed, as we observe in Figure 8 and 9 initializing the input gate biases to -10 effectively mitigates
gradient norm spikes and reduces high gradient norm variance during training for both mLSTMexp
and mLSTMsig. We therefore conclude that the additional input gate not only improves performance
(see Table 6), but also improves training stability, if initialized correctly.

We use the limit_chunk kernel for mLSTMexp and our xl_chunk kernel for mLSTMsig and
confirm that we obtain the same behavior with the xl_chunk kernel for mLSTMexp.

Effect of Normalization Layer Epsilon on Performance (Figure 10). In our empirical transfer be-
havior analysis of the mLSTM in Section 4.2 and D.2 we find that the transfer behavior depends on the
input and forget gate preactivations, as well as the normalization layer epsilon (see Figure 6a and 7a).
Therefore, we perform a grid search over different normalization layer epsilons and input gate bias
initializations for the mLSTM with exponential input gate with 160M parameters and 6 heads at
context length 4096. We show the results in Figure 10.

We observe that there is a diagonal region from norm layer epsilon and input gate bias (ϵ, bi)=(1e-6,
-10) to (1e-4, -5) with improved performance. This indicate that if we increase the norm layer epsilon
we can or should also increase the input gate bias initialization, as the shift of the gain curve in positive
y-direction for larger epsilons in Figure 6a suggests. This supports our hypothesis in Section 4.2, that
the norm layer is important for the gating mechanism.

We use (ϵ, bi)=(1e-6, -10) as our default configuration.

Input Gate Activations over Training (Figure 11). We show the maximum input gate pre-
activations (maximum over batch, sequence and head dimension) over training for mLSTMexp and
mLSTMsig with 160M parameters in Figure 11. Both models have the input gate bias initialized to
-10.
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(a) mLSTMexp with Trainable Input Gate (b) mLSTMexp with Fixed Input Gate

Figure 8: Trainable and fixed exponential input gate for bias initializations [0, -2, -5, -10] and norm
epsilon ϵ =1e-6.

(a) mLSTMsig with Trainable Input Gate (b) mLSTMsig with Fixed Input Gate

Figure 9: Trainable and fixed sigmoid input gate for bias initializations [0, -2, -5, -10] and norm
epsilon ϵ =1e-6.
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Figure 10: Validation Perplexity of mLSTMexp with 160M parameters with 6 heads. Grid search over
norm layer epsilon and input gate bias initialization. The diagonal region of improved performance
indicates, that there exists an interplay between the norm layer epsilon and input gate bias initialization.
This supports the hypothesis that the norm layer is important for the gating mechanism.

./../figures/Layer activation 160M_cropped.png

Figure 11: Maximum input gate pre-activation values ĩt over training for mLSTMexp and mLSTMsig
with 160M parameters. Maximum taken over batch, sequence and head dimension. Both models have
the input gate bias initialized to -10. In most cases the input gate pre-activations remain below zero.
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E.3 EXTENDED KERNEL BENCHMARK

In this section, we provide details on our benchmark setup and add additional benchmark results.

Details on GPU Memory Measurement. In Figure 5 and 12 we measure the GPU memory used
by the kernels. For this, we use the PyTorch torch.cuda.max_memory_allocated API to measure the
peak memory allocated during one kernel iteration. We make sure that the memory statistics are reset
after each iteration and that the PyTorch caches are cleared before the start of each benchmark.

Details on the Runtime Benchmark (Figure 4). In our TFLA kernel runtime benchmark in
Section 5.2, Figure 4 we report the median runtime of 30 iterations, after 10 warmup iterations in
milliseconds. We run all kernels in bfloat16 precision.

We use the standard embedding dimension of 4096 for 7B Transformer models for our benchmark.
Since different models and kernels have different default input sizes at this embedding dimension,
we adapt the head dimension, number of heads and remaining input dimensions for each kernel
accordingly. Following the practice of Shah et al. (2024) we keep the number of tokens constant at
65,536 and vary the sequence length (i.e. T = [512, 1024, 2048, 4096, 8192, 16384, 32768, 65536])
and batch size accordingly (i.e. Nbatch = 65536/T ).

We benchmark the following mLSTM kernels:

• mLSTMexp (FLA limit_chunk): Our own baseline kernel for the mLSTM with expo-
nential input gate with limited chunk size based on FLA. Similar to FLA this kernel employs
only single level sequence parallelism across chunks. We report the best performing chunk
size of 64. The chunk size of 128 would still fit in SRAM, but is considerably slower.

• mLSTMexp (TFLA xl_chunk): TFLA kernel for the mLSTM with exponential input
gate with two levels of sequence parallelism. We set the chunk size to the best performing
chunk size of 128.

• mLSTMsig (TFLA xl_chunk): TFLA kernel for the mLSTM with sigmoid input gate.
We set the chunk size to 128, but find chunk size 256 to perform equally well in terms of
runtime (see Fig. 12 and 5).

For all our mLSTM kernels we use 16 heads, which results in head dimension dhv = 4096/16 = 256
for the values. Similar to GLA (Yang et al., 2024b), we set the query and key head dimension to
dqk = dhv/2, i.e. dqk = 128.

We compare our mLSTM kernels with the following baselines:

• Torch FlashAttention: PyTorch 2.5.1 implementation of FlashAttention 2.
Accessed via SDPBackend.FLASH_ATTENTION 2

• cuDNN FlashAttention: NVIDIA cuDNN implementation of FlashAttention 2 integrated
in PyTorch 2.5.1.
Accessed via SDPBackend.CUDNN_ATTENTION.

• FlashAttention 3: FlashAttention 3 implementation3, which has been optimized for
NVIDIA H100 GPUs (Shah et al., 2024).

• GLA (FLA): Gated Linear Attention Triton kernel based on the FlashLinearAttention
algorithm with one level of sequence parallelism (Yang et al., 2024b). Implementation from
the official FLA repository, version 0.14

• Simple GLA (FLA): A simple version of GLA with scalar forget gates per head. This
primitive is not published as a new sequence modeling primitive but serves as a reference
implementation for kernels for RetNet (Sun et al., 2023) or Mamba 2 (Dao & Gu, 2024) in
the FLA library Yang & Zhang (2024). Therefore, we find it interesting to add it as baseline.
Implementation from the official FLA repository, version 0.1

2See torch.nn.attention.SDPBackend
3See https://github.com/Dao-AILab/flash-attention
4See https://github.com/fla-org/flash-linear-attention

32

https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_allocated.html
https://pytorch.org/docs/stable/generated/torch.nn.attention.SDPBackend.html#torch.nn.attention.SDPBackend
https://github.com/Dao-AILab/flash-attention
https://github.com/fla-org/flash-linear-attention


Published at ICLR 2025 Workshop on Foundation Models in the Wild.

• Mamba: Mamba CUDA kernel Gu & Dao (2024). Implementation from the official Mamba
repository, version 2.2.4.

• Mamba 2: Mamba 2 Triton kernels Dao & Gu (2024). Implementation from the official
Mamba repository, version 2.2.4.5

For all FlashAttention baselines we use 32 heads with head dimension 128 for queries, keys and
values. For the FlashLinearAttention (FLA) kernels GLA and Simple GLA, we use the identical head
configuration as for our TFLA mLSTM kernels (i.e. 16 heads, dhv = 256, dqk = 128). For Mamba,
we use our embedding dimension of 4096 and set the state dimension to 16 similar to Gu & Dao
(2024). For Mamba 2, we use their default head dimension of 64 and set the number of heads to
4096/64 = 64. Note that smaller head dimension can yield faster runtimes (see Figure 14).

We show the results of this benchmark for varying sequence length and constant number of tokens in
Figure 4. When comparing the forward pass runtime only, we find that Mamba2 and Simple GLA
kernels are slightly faster than our mLSTMsig kernels. However, this difference is within 1 ms. In
training, when forward and backward pass runtime is measured, our TFLA kernels are faster than
FlashAttention 3 for longer sequence lengths and more than two times faster than Mamba 2 kernels
for all sequence lengths. Only Simple GLA (FLA) can keep up in training speed with our TFLA
mLSTM kernels. Therefore, we compare the runtime and memory usage for a larger head dimension
in Figure 12 and find that this comes at the cost of almost 2 times the GPU memory usage compared
to our TFLA mLSTM kernels. These memory savings are achieved by leveraging a larger chunk size,
enabled through the two levels of sequence parallelism outlined in Section 3.

Runtime and Memory Comparison with FLA Kernels (Figure 12). In this experiment we
compare the runtime and memory consumption of our TFLA mLSTM kernels with prominent kernels
from the Flash Linear Attention library. We use a similar setup to our previous benchmark, but
perform this comparison with 8 heads at a larger head dimension of 512 for the values and 256 for
the queries and keys, since both Beck et al. (2024) and Yang et al. (2024b) report better language
modeling performance for larger head dimensions.

In addition to GLA (chunk) and Simple GLA (chunk), we also compare with GLA (fused) which is
the non-materialization version of Gated Linear Attention (GLA) (Yang et al., 2024b).

The non-materialization version of GLA has been also proposed by Qin et al. (2024a) as Lightning
Attention-2 (see also Section A). For the forward pass it fuses the inter- and intra-chunk part of the
chunkwise-parallel Linear Attention formulation (see Section 2.2) and therefore does not materialize
the hidden states in GPU memory.

Interestingly, in our experiments we find that even though the non-materialization version uses the
least GPU memory of all FLA kernels, it is neither faster nor more memory efficient in training than
our TFLA mLSTM kernels (see Figure 12). While Simple GLA is slightly faster (within 3 ms or
15%), it uses almost twice the GPU memory compared to our TFLA mLSTM kernels.

Runtime and Memory Comparison with LightningAttention2 Kernels (Figure 13). Similar to
the previous experiment, we compare the runtime and memory consumption of our TFLA mLSTM
kernels with LightningAttention2 (Qin et al., 2024a). LightningAttention2 is the core of the recent
hybrid large language model MiniMax-01, which combines lightning attention (a linear attention
variant with data independent decay) with softmax attention (MiniMax et al., 2025). MiniMax-01
is proposed as a very efficient long-context language model, which makes the comparison between
LightningAttention2 and our TFLA mLSTM kernels interesting.

LightningAttention2 also uses the chunkwise-parallel formulation for linear RNNs (see Section 2.2).
However, in contrast to Simple GLA and TFLA it does not split the computation in a recurrent and
parallel part, but instead processes all chunks fully recurrent (see Section A for more details).

We find that LightningAttention2 supports only identical head dimensions for queries, keys and
values up to 128. For this reason, we discuss this comparison separately from the other experiments.
We compare our TFLA mLSTM kernels with LightningAttenion2 for 32 and 64 heads, corresponding
to head dimension 128 and 64. We keep the number of tokens fixed to 65536 and vary sequence
length and batch size in the same way as above.

5See https://github.com/state-spaces/mamba
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Figure 12: Runtime and Memory Comparison with FLA Kernels.
Left: Runtime (Forward Backward Pass). Right: GPU Memory Usage.
We use 8 heads and head dimension of 512 for values, and 256 for queries and keys. Simple GLA
(the fastest FLA kernel in our experiments) is slightly faster than our TFLA mLSTMsig kernels but
uses almost twice as much GPU memory.
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Figure 13: Runtime and Memory Comparison with LightningAttention2.
Left: Runtime (Forward Backward). Right: GPU Memory.
We use 32 and 64 heads with head dimension 128 and 64 for queries, keys and values. LightningAt-
tention has the least memory usage of all kernels, but is more than 3 times slower than our TFLA
mLSTM at the larger head dimension of 128.
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Figure 14: Head Dimension Benchmark for FLA and TFLA mLSTM kernels.
Left: Forward Pass. Right: Forward and Backward Pass.
We measure the runtime for sequence length 8192 and batch size 4 for different head dimensions. We
use the same head dimension for queries, keys and values. Our TFLA mLSTM kernels show fast
runtimes even for very large head dimensions.

We show the results in Figure 13. Since LightningAttention does not materialize intermediate states,
it has the least GPU memory usage with 6.2 GB. However, this GPU memory efficiency comes at the
cost of a more than 3 times longer runtime compared to our TFLA mLSTMsig kernel with chunk
size 256, which uses about 7.3 GB of GPU memory. This highlights that there exists a trade-off
between GPU memory usage and runtime for linear RNN kernels based on the chunkwise-parallel
formulation. Our experiments demonstrate that our TFLA kernel algorithm provides an effective
method to balance this trade-off via the chunk size parameter (see Figure 5).

Runtime Benchmark for Varying Head Dimensions (Figure 14). It has been reported in several
other works that larger head dimensions (compared to common Self-Attention head dimensions) lead
to improved language modeling performance for linear RNNs (Sun et al., 2023; Beck et al., 2024;
Yang et al., 2024b). Consequently, it is desirable for linear RNN kernels to be fast and efficient across
a wide range of head dimensions. In this experiment, we evaluate whether our new TFLA kernels
exhibit this property.

We vary the head dimension from 32 to 1024 and adapt the number of heads for a total embedding
dimension of 4096 and measure the runtime for inputs of sequence length 8192 and batch size 4. We
use the same head dimension for queries, keys and values.

For the FLA kernels the head dimensions 32 and 64 did not run, due to Triton compiler errors. As the
FLA library is still being developed at the time of writing this paper, we expect this to be fixed soon.

We observe that for small head dimensions (i.e. 32 and 64) our mLSTM limit chunk kernel is as fast
as our TFLA mLSTM kernels in training.

In summary, our results in Figure 14 confirm that our TFLA kernels achieve fast runtimes across a
wide range of head dimensions.
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F FLOP AND MEMORY OPERATION COUNTS

We count the number of FLOPs in a forward pass (with batch size 1) of the mLSTM with exponential
and sigmoid input gate. We use a factor of 2 to describe the multiply accumulate cost.

We do not count FLOPs that belong to recomputation, that happens within kernels. For example, when
we parallelize across the embedding dimension in the forward kernel H(k), each of the dhv/Bdhv

blocks recomputes the matrix S. Similarly, we do not count the additional memory-loading operations
that are necessary for the recomputations. During training, we typically have fixed context lengths.
Therefore, we do not count loading the initial state and storing the final state.

The mLSTM with sigmoid input gate does not have a normalizer and a max state. Therefore, it has
fewer FLOPs and memory operations compared to mLSTM with exponential input gate.

We use factors denoted as F_X to describe the number of FLOPs for operation X (e.g. F_exp for the
exponential function). By default, we set all of these factors to 1.

We use the factors bytes_X to denote the size of each element in the tensor (e.g. bytes_QKV for the
query, key and value tensors).

F.1 FLOPS FOR THE MLSTM WITH EXPONENTIAL INPUT GATE

• Inter-chunk recurrent:

– Chunkwise gates: num_heads × num_chunks
× ( 0.5×chunk_size × (chunk_size + 1) + 2×chunk_size )

– Gates & max state: num_heads × num_chunks
× ( 3 + F_max + F_exp + chunk_size × (3 + 2 × F_exp))

– Numerator: num_heads × num_chunks
× (2×d_qk × d_v + 4×chunk_size × d_qk × d_v + 3×chunk_size × d_qk)

– Denominator: num_heads × num_chunks × ( 2×d_qk + 4×chunk_size × d_qk )

• Intra-chunk parallel:

– Gate matrix: num_heads × num_chunks
× ( 0.5 × chunk_size × (chunk_size + 1)
+ chunk_size × chunk_size × (3 + F_mask + F_max + F_exp)
+ chunk_size × (1 + F_max) )

– Gated Attn logits: num_heads × num_chunks
× 2×chunk_size × chunk_size × ( 1 + d_qk )

– Numerator: num_heads × num_chunks
× 2×chunk_size × chunk_size × d_v

– Denominator: num_heads × num_chunks × 2 × chunk_size × chunk_size
– Output combination: num_heads × num_chunks
× ( chunk_size × ( 1 + F_max )
+ chunk_size × ( 2 + F_abs + F_exp + F_max + 2×d_v ) )

F.2 MEMORY OPERATIONS FOR THE MLSTM WITH EXPONENTIAL INPUT GATE

• Inter-chunk recurrent:

– Load: num_heads × num_chunks × chunk_size × ( (d_qk + d_v)×bytes_QKV +
2×bytes_If )

– Store: num_heads × num_chunks × ( d_qk×d_v + d_qk + 1 ) ×bytes_Cnm

• Intra-chunk parallel:

– Load: num_heads × num_chunks × chunk_size × ( (2×d_qk + d_v)×bytes_QKV +
2×bytes_If )
+ num_heads × num_chunks × ( d_qk×d_v + d_qk + 1 ) ×bytes_Cnm

– Store: num_heads × num_chunks × chunk_size × ( (d_v×bytes_QKV +
2×bytes_Cnm )

36



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

F.3 FLOPS FOR THE MLSTM WITH SIGMOID INPUT GATE

• Inter-chunk recurrent:
– Chunkwise gates: num_heads × num_chunks
× ( 0.5×chunk_size × (chunk_size + 1) + 2×chunk_size )

– Gates: num_heads × num_chunks
× ( F_exp + ( 2 × chunk_size + 1 ) × F_sig))

– Numerator: num_heads × num_chunks
× (2×d_qk × d_v + 4×chunk_size × d_qk × d_v + 3×chunk_size × d_qk)

• Intra-chunk parallel:
– Gate matrix: num_heads × num_chunks
× ( 0.5 × chunk_size × (chunk_size + 1)
+ chunk_size × chunk_size × (2 + F_mask + F_exp) )

– Gated Attn logits: num_heads × num_chunks × ( 2×chunk_size × chunk_size × ( 1
+ d_qk ) )

– Numerator: num_heads × num_chunks × ( 2×chunk_size × chunk_size × d_v )
– Output combination: num_heads × num_chunks × ( 2 × chunk_size × d_v )

F.4 MEMORY OPERATIONS FOR THE MLSTM WITH SIGMOID INPUT GATE

• Inter-chunk recurrent:
– Load: num_heads × num_chunks × chunk_size × ( (d_qk + d_v)×bytes_QKV +

2×bytes_If )
– Store: num_heads × num_chunks × d_qk×d_v ×bytes_Cnm

• Intra-chunk parallel:
– Load: num_heads × num_chunks × chunk_size × ( (2×d_qk + d_v)×bytes_QKV +

2×bytes_If )
+ num_heads × num_chunks × d_qk×d_v ×bytes_Cnm

– Store: num_heads × num_chunks × chunk_size × d_v×bytes_QKV
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