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ABSTRACT

The problem of physical dynamics, which involves predicting the 3D trajectories
of particles, is a fundamental task with wide-ranging applications across science
and engineering. However, accurately forecasting long-horizon trajectories from
initial states remains challenging, due to complex particle interactions and entan-
gled multiscale dynamics involving both low- and high-frequency components. To
address this, we propose a novel knowledge-distillation-based framework, SGDD
(Spectral-Guided Dynamics Distillation), which integrates a spectral-guided en-
hancement to adaptively prioritize key frequency components within a unified
spatio-temporal representation. Through knowledge distillation, SGDD leverages
future trajectories as privileged information during training, guiding a teacher en-
coder to generate comprehensive dynamics representations while a student en-
coder approximates them using only the initial state. This enables the student can
generate effective dynamics representations at inference, even without privileged
information, thereby enabling accurate long-horizon trajectory prediction. Exper-
imental results on molecule, protein, and human motion datasets demonstrate that
our method achieves more accurate and stable long-term predictions than previous
physical dynamics models, successfully capturing the complex spatio-temporal
structures of real-world systems.

1 INTRODUCTION

Figure 1: Low-Frequency-Dominated
Dynamics. Left: Baseline, Right: Ours.

Physical dynamics refers to the problem of predicting
and simulating the 3D trajectories of particles across sys-
tems at various scales, such as molecules, proteins, and
human joints. This problem is fundamental in a wide
range of scientific and engineering applications, including
drug design (Reddy et al., 2007), protein engineering (Al-
Lazikani et al., 2001), and robotics (Spong et al., 2006).
In recent years, it has attracted substantial attention, with
numerous studies proposing equivariant neural architec-
tures to better capture the underlying symmetries of phys-
ical systems (Satorras et al., 2021; Wu et al., 2023a; Du
et al., 2022; Xu et al., 2024; Fuchs et al., 2020; Sun et al.,
2024).

Despite recent progress, accurately forecasting long-
horizon trajectories from initial states remains highly challenging (Lippe et al., 2023). This is be-
cause long-horizon prediction amplifies the entanglement of global low-frequency trends and lo-
calized high-frequency oscillations. Such entanglement poses significant difficulties for long-term
forecasting due to two major contributors: (1) the low- and high-frequency components interplay
in complex ways across space and time, and (2) the importance of these components varies across
different systems.

Considering the first factor, while recent studies often incorporate frequency-aware techniques (Xu
et al., 2024) (Sun et al., 2024), they model temporal and spatial structures separately. That is, they
rely on spectral representations derived from either temporal or spatial domains in isolation, with
limited consideration of their integrated interaction. Consequently, frequency modeling based on a
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single dimension often struggles to fully capture the underlying physical processes that emerge from
the interdependent dynamics of space and time.

For the second contributor, not all frequency components are equally important in long-term pre-
diction. Specifically, low-frequency components capture stable, global patterns, whereas high-
frequency components may contribute to instability and noise. Therefore, accurate prediction re-
quires prioritizing low-frequency modes to ensure stability and long-term coherence, while comple-
mentarily incorporating high-frequency details to enhance short-term precision.

These challenges are exemplified by Figure 1, where the baseline method struggles to track low-
frequency dominant patterns. This underscores the need for frequency-aware spatio-temporal mod-
eling that jointly derives spectral representations from a unified spatio-temporal domain and adap-
tively emphasizes task-relevant frequency components. To effectively capture the spatio-temporal
patterns and key frequency components embedded within entangled dynamics, leveraging trajec-
tory data as privileged information through a knowledge distillation approach can provide direct and
efficient guidance.

Building on these, we introduce SGDD (Spectral-Guided Dynamics Distillation), a novel
knowledge-distillation-based dynamics representation learning framework. SGDD leverages future
trajectories, which are used only during training as privileged information, to guide the learning of
frequency-aware, spatio-temporal dynamics representation. In SGDD, a teacher encoder processes
trajectories and a student encoder relies only on the initial state, with both producing a spatio-
temporal dynamics representation. These representations are then refined through a spectral-guided
enhancement module that adaptively emphasizes frequency components most relevant to the target
trajectory via learnable weights. Through distillation, the student’s enhanced dynamics representa-
tion is aligned with the teacher’s. This distilled representation serves as an inductive bias for the
decoder, enabling accurate long-horizon predictions at inference time, even in the absence of privi-
leged information.

Our main contributions are summarized as follows:

• We propose SGDD (Spectral-Guided Dynamics Distillation), a novel knowledge distillation
framework that extracts rich dynamics representations from privileged future trajectories in the
spatio-temporal and spectral domains, and learns to approximate them using only the initial state.

• We introduce a spectral-guided enhancement module that refines the dynamics representations
by emphasizing key frequency components through learnable weights, thereby providing the de-
coder with optimized inputs for accurate trajectory prediction.

• We show the effectiveness of SGDD on diverse multi-scale particle datasets (MD17, protein, and
human motion), where it consistently outperforms strong baselines in trajectory prediction.

2 RELATED WORKS

Physical Dynamics. Equivariant neural architectures have become essential tools for modeling
physical dynamics. EGNN (Satorras et al., 2021) introduced an efficient E(n)-equivariant message
passing scheme that jointly updates node features and coordinates. ClofNet (Du et al., 2022) ex-
tended this approach by constructing complete local frames to better capture higher-order geometric
relations. Attention-based SE(3)-Transformer (Fuchs et al., 2020) ensured SE(3)-equivariance in
point clouds and graphs, while Radial Field (Köhler et al., 2019) developed equivariant normalizing
flows to enable Boltzmann Generators for symmetry-preserving sampling.

Recent efforts extend beyond spatial equivariance to explicitly address temporal evolution. ESTAG
(Wu et al., 2023a) employed an Equivariant DFT together with spatio-temporal modules to cap-
ture periodic and non-Markovian behaviors. EGNO (Xu et al., 2024) formulated an Equivariant
Graph Neural Operator that directly models trajectories via Fourier-based temporal convolutions.
GF-NODE (Sun et al., 2024) integrated Graph Fourier decomposition with Neural ODEs to couple
local high-frequency and global low-frequency dynamics.

In contrast to prior studies that emphasize either spatial equivariance or temporal modeling, our
work advances them by directly modeling dynamics in the spatio-temporal domain and learning
frequency-aware representations that capture long-range structures through privileged supervision.
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Knowledge Distillation using Privileged Knowledge. Knowledge distillation (KD) was initially
introduced for model compression (Hinton et al., 2015), where a teacher network guides a smaller
student through soft targets and intermediate features (Tung & Mori, 2019; Shen et al., 2019; Cho
& Hariharan, 2019; Yang et al., 2019). Privileged Knowledge (PK), following the Learning Using
Privileged Information paradigm (Vapnik & Vashist, 2009), refers to auxiliary signals available only
during training, but inaccessible at test time.

Recent studies have extended KD with PK. In human motion prediction, Sun et al. (2022) distilled
future poses as PK through a two-step network, enabling the student to exploit privileged supervision
while relying solely on observed sequences. In learning-to-rank, Yang et al. (2022) formalized priv-
ileged feature distillation, where a teacher model trained with both regular and privileged features
transfers knowledge to a student restricted to regular features. Empirical and theoretical analyses
demonstrate that KD with PK not only compresses models and improves generalization but also
reveals the non-monotonic impact of highly predictive privileged features.

Graph Knowledge Distillation. Beyond PK, KD has also been actively studied in graph domains.
Although graph neural networks (GNNs) excelled in representation learning, their message passing
nature introduced scalability and latency challenges. Graph Knowledge Distillation (Graph KD)
addressed this by distilling knowledge from large GNNs to smaller GNNs or lightweight MLPs.

Early GNN-to-GNN distillation methods (Zhang et al., 2020; Yan et al., 2020) reduced parameters
but remained constrained by neighborhood-fetching overhead. In contrast, GNN-to-MLP distillation
removed explicit message passing, with Zhang et al. (2021) transferring node-level outputs to vanilla
MLPs and Wu et al. (2023c) introducing structure-awareness without explicit edges. More recently,
Wu et al. (2023b) decomposed teacher knowledge into low- and high-frequency components and in-
jected both into the student MLP, mitigating information-drowning problem and producing distilled
MLPs that are both efficient and competitive with GNN teachers.

Together, these two lines of research—KD with privileged knowledge and Graph KD—highlight the
versatility of distillation in leveraging auxiliary supervision or structural priors. Building on these
insights, we develop a physics-inspired framework that adapts graph-based distillation principles to
effectively capture physical dynamics.

3 PROPOSED METHOD

3.1 TASK DEFINITION AND FRAMEWORK OVERVIEW

Problem Setting. We consider the task of multi-step trajectory prediction, which involves forecast-
ing the 3D positions of particles over future time steps. At each time step t, the system state is rep-
resented as a graph Gt = (V,E,Zt, h), where V denotes the set of N particles (nodes), E represents
physical connections between particles, Zt is a tensor containing the 3D position xt and velocity
vt, and h encodes node features describing intrinsic physical properties. Given only the initial state
G0 = (V,E,Z0, h), the objective is to predict the sequence of future 3D positions {x1, x2, . . . , xT }.
Our framework performs this prediction by employing a physical dynamics model as the decoder:

{x1, x2, . . . , xT } = Decoder(G0, z), z = Encoder(G0). (1)

Here, z denotes a node-level dynamics representation, produced by the encoder from the initial
state G0, summarizing the anticipated evolution of physical dynamics. The encoder and decoder
are trained jointly in an end-to-end manner, ensuring that the learned representation captures the
spatio-temporal patterns essential for accurate trajectory prediction.

Overview of Proposed Framework. The core idea of our framework is to construct dynamics
representations that assist the decoder in accurately predicting future trajectories. As illustrated in
Figure 2, two encoders are employed: the dynamics encoder Edyn, which extracts represen-
tations zdyn from the privileged future state sequence G1:T and initial state G0, and the initial
encoderEinit, which generates zinit soley from G0. Both representations are further refined through
a spectral-guided enhancement module that leverages a spatio-temporal graph basis to decompose
them in the spectral domain and adaptively reweight components most relevant to prediction. The re-
sulting spectral-guided representation (zsginit or zsgdyn) is combined with the initial graph G0 and passed
to the physical dynamics decoder to forecast future trajectories. During training, knowledge distil-
lation is employed so that zsginit learns to mimic zsgdyn, thereby capturing rich dynamics representations
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Figure 2: Overall Framework of SGDD.

derived from privileged information. At inference, the decoder effectively predict future trajectories
guided by zsginit. The entire framework is trained end-to-end with a staged learning strategy, which
ensures stable optimization and effective knowledge distillation.

3.2 DYNAMICS REPRESENTATION EXTRACTION

To obtain informative dynamics representations, we construct a spatio-temporal graph from the state
sequence, which serves as the structural basis for both the dynamics encoder (Edyn), used only
during training, and the initial encoder (Einit), used at inference. Both encoders operate on
this graph to produce spatio-temporal representations of particle dynamics.

Spatio-temporal Graph. To effectively encode the spatio-temporal information of the state se-
quence {G1, . . . ,GT }, we construct a spatio-temporal graph Gst. Each state graph Gt = (V,E,Zt, h)
shares the same node set and edge set, enabling the formation of a unified graph by linking states
along the temporal axis. The resulting Gst combines two independent graphs: a spatial graph Gspatio,
capturing physical connectivity among particles, and a temporal graph Gtemp, encoding sequential
dependencies across time steps. This spatio-temporal graph Gst serves as the foundation for repre-
senting and manipulating dynamics in the spectral domain. For additional details on the construction
of the spatio-temporal graph, please refer to Appendix A.2

Dynamics Encoder (Edyn). The dynamics encoder Edyn operates on the spatio-temporal
graph Gst, taking as input the ground-truth state sequence {G1, . . . ,GT } as well as G0. It pro-
cesses the spatio-temporal signals to extract a dynamics representation zdyn that captures both low-
frequency components encoding long-term trends and high-frequency components reflecting instan-
taneous variations:

zdyn = Edyn({G1, . . . ,GT },G0), zdyn ∈ RN×T×dz , (2)

where N denotes the number of nodes, T the number of time steps, and dz the dimension of the
dynamic representation, respectively.

Initial Encoder (Einit). The initial encoder Einit derives a dynamics representation zinit
from the initial state G0, which contains only spatial edges. To embed zinit in the same spatio-
temporal space where zdyn is defined, we construct an artificial spatio-temporal input by project-
ing the initial node features through a fully connected layer and expanding them from RN×d

to RN×T×d. This enables the initial encoder to produce representations aligned with the spatio-
temporal structure of the dynamics encoder’s output. The detailed formulation of the initial encoder
is provided in Appendix C.3.2

zinit = Einit(G0), zinit ∈ RN×T×dz . (3)

3.3 SPATIO-TEMPORAL JOINT BASIS

We define a spatio-temporal joint basis to transform representations into the spectral domain. Let
Us ∈ RN×N and Ut ∈ RT×T be the eigenvector matrices of the normalized Laplacians Ls and Lt

for the spatial and temporal graphs, respectively. Specifically, Ls = UsΛsU
T
s and Lt = UtΛtU

T
t ,

where Λs = diag(λs,1, λs,2, . . . , λs,N ) and Λt = diag(λt,1, λt,2, . . . , λt,T ) are diagonal matrices
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containing the eigenvalues of the respective Laplacians, ordered in ascending order. These eigen-
values represent the frequencies in the spectral domain, with smaller values corresponding to low-
frequency (smooth) components and larger values to high-frequency (oscillatory) components. The
spatio-temporal joint basis is then constructed via the Kronecker product:

B = Ut ⊗ Us, B ∈ RNT×NT . (4)

The resulting basis enables projection of spatio-temporal representations into the spectral domain,
disentangling complex spatial and temporal frequency components along orthogonal dimensions.
Since using a full set of NT basis vectors is computationally expensive, we reduce complexity by
selecting the top K modes to form a truncated basis BK ∈ RNT×K . This is achieved by retaining
only the columns of B corresponding to the K smallest eigenvalues, defined as:

BK = [b1, b2, ..., bK ], bi ∈ RNT , (5)

where {bi} are the basis vectors associated with the lowest K eigenvalues. This truncation sup-
presses high-variance, high-frequency content by excluding basis vectors tied to larger eigenvalues.
The truncated basis BK is then employed to project dynamics representations into the spectral do-
main and reconstruct them back into the spatio-temporal domain, serving as an essential foundation
for the spectral-guided enhancement module.

3.4 SPECTRAL-GUIDED ENHANCEMENT

Figure 3: Spectral-Guided Enhancement.

Both the dynamics encoder Edyn and the
initial encoder Einit produce node-level dy-
namics representations zdyn and zinit, which are then
refined by the spectral-guided enhancement mod-
ule to adaptively reweight frequency components as
shown in Figure 3.

Before describing the enhancement process, we first
note how a representation z ∈ RN×T×dz (reshaped
into z ∈ Rdz×(NT )) can be expressed in terms of the
spatio-temporal joint basis BK ∈ RNT×K . Since
BK is orthogonal (Appendix B), the matrix P =
BKB⊤

K is the orthogonal projection onto span(BK).
Thus, any vector z can be decomposed as :

z = Pz + (I − P )z, where P = BKB⊤
K . (6)

Here, Pz denotes the projection within the subspace
spanned by BK , while (I−P )z represents the resid-
ual component that is orthogonal to it (Appendix B).

This decomposition allows Pz to capture the selected spectral modes, while (I − P )z preserves
residual information outside the truncated subspace. Having established this decomposition, we now
describe the enhancement procedure. We first compute the spectral coefficients by projecting z onto
the basis:

a := B⊤
Kz ∈ Rdz×K . (7)

These coefficients are then modulated by learnable, frequency-specific weights w ∈ RK and pro-
jected back into the spatio-temporal domain:

ã := w ⊙ a, z̃ := BK ã = BK(w ⊙B⊤
Kz). (8)

Finally, the residual component is added to reconstruct a representation:

zsg := z̃ + (I − P )z. (9)

The resulting zsg integrates the dominant spectral components with residual information, yielding a
richer and frequency-aware representation. This formulation provides direct and flexible control in
the spectral domain, allowing the model to adaptively emphasize task-relevant frequency bands for
improved prediction accuracy.

The outputs of both encoders are processed through this module, producing spectral-guided dynam-
ics representations zsg

dyn, z
sg
init ∈ RN×T×dz . In addition, the corresponding spectral coefficients prior

to reconstruction are denoted as ãdyn, ãinit, which are later used for alignment in the spectral domain.
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3.5 DISTILLATION AND TRAINING STRATEGY

The core objective of our framework is to distill privileged dynamics information zdyn, which is
obtained from the future state sequence {G1, . . . ,GT }. This information is transferred into zinit,
which is derived solely from the initial state G0. This ensures that zinit preserves dynamics-relevant
information similar to zdyn, even during inference.

To this end, we enforce dual-level alignment: in the spatio-temporal domain, between zsg
dyn and zsg

init,
and in the spectral domain, between their corresponding coefficients ãdyn and ãinit. This dual align-
ment encourages the student representation to capture both low-frequency components that encode
stable global trends and high-frequency components that reflect fine-scale variations, thereby im-
proving generalization beyond naive position-level imitation.

The training process adopts a staged learning strategy to ensure stable convergence. In the initial
pretraining phase, the teacher forcing ratio is set to 1.0 so that the decoder exclusively receives zsg

dyn
as input. The total loss is defined as

Ltotal = Lpred(x1:T , x̂1:T ) + λLalign, (10)

with the alignment term given by

Lalign = Lrep

(
zsg

dyn, z
sg
init

)
+ Lspec (ãdyn, ãinit) . (11)

Here, Lpred is the mean squared error (MSE) between the predicted and ground-truth trajectories.
The alignment loss Lalign consists of representation-level MSE (Lrep) and spectral-level MSE (Lspec).
Lalign is weighted by the hyperparameter λ. To prevent the teacher encoder Edyn from being influ-
enced or distorted by the student encoder during alignment, gradients are detached from zsg

dyn and
ãdyn when computing Lalign.

In the joint training phase, the teacher forcing ratio is set to 0.5, alternating the decoder inputs
between zsg

dyn and zsg
init. In this phase, the initial encoder Einit is optimized not only through

alignment loss but also via direct supervision from the trajectory prediction loss. The overall loss
remains the same as in the pretraining stage.

4 EXPERIMENTS

We conducted experiments on molecular dynamics, human motion, and protein datasets to evaluate
our SGDD framework. The results show that our method can effectively predict trajectories across
diverse systems with different particle scales. In addition, ablation studies confirm that the proposed
framework is well-aligned and that individual components make complementary contributions.

Evaluation Metrics. Following (Xu et al., 2024), we evaluated performance using two metrics.
State-to-State (S2S) evaluates only the final state at the last time step. The mean squared error (MSE)
loss is computed as MSES2S = ∥x̂(tT ) − x(tT )∥2, where x̂(tT ) denotes the predicted state and
x(tT ) is the ground-truth state at the final timestep tT . State-to-Trajectory (S2T) evaluates the entire
trajectory by averaging the errors over all T discrete time steps. The loss is defined as MSES2T =
1
T

∑T
k=1 ∥x̂(tk)− x(tk)∥2.

Baseline. For the state-to-state (S2S) evaluation, we used the following baselines: SE(3)-
Transformer (Fuchs et al., 2020), Tensor Field Networks (Thomas et al., 2018), Message Passing
Neural Network (MPNN) (Gilmer et al., 2017), Radial Field (RF) (Köhler et al., 2019), EGNN
(Satorras et al., 2021), EGNO (Xu et al., 2024), and GFNode (Sun et al., 2024).Our proposed SGDD
framework was instantiated with different decoder modules, specifically EGNO and GFNode, result-
ing in two variants: SGDD-EGNO and SGDD-GFNode. For the state-to-trajectory (S2T) evaluation,
we compared against EGNN, EGNO, GFNode, as well as additional temporal models including
NDCN (Zang & Wang, 2020), ITO (Diez et al., 2024), and LG-ODE (Huang et al., 2020).

Implementation Details Our framework is implemented in PyTorch, and all experiments are con-
ducted on an NVIDIA A6000 GPU with CUDA 11.6. As the dynamics encoder, we employ
STSGNN (Chen et al., 2025), which takes the spatio-temporal graph as input, while the initial
encoder is implemented using GAT (Veličković et al., 2017), which takes the initial state graph

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: MSE (×10−2) on MD17 dataset. Upper part: State-to-State (S2S). Lower part: State-to-
Trajectory (S2T). The best performance is highlighted in bold, the second best is underlined, and
performance gains (%) over baselines are shown beneath our SGDD variants.

S2S Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

RF 10.94±0.01 103.72±1.29 4.64±0.01 13.93±0.03 0.50±0.01 1.23±0.01 10.93±0.04 0.64±0.01
TFN 12.37±0.18 58.48±1.98 4.81±0.04 13.62±0.08 0.49±0.01 1.03±0.02 10.89±0.04 0.84±0.02
SE(3)-Tr. 11.12±0.06 68.11±0.67 4.74±0.13 13.89±0.02 0.52±0.01 1.13±0.02 10.88±0.06 0.79±0.02
EGNN 14.41±0.15 62.40±0.53 4.64±0.01 13.64±0.01 0.47±0.02 1.02±0.02 11.78±0.07 0.64±0.01
EGNN-R 14.51±0.19 62.61±0.75 4.94±0.21 17.25±0.05 0.82±0.02 1.35±0.02 11.59±0.04 1.11±0.02
EGNN-S 9.50±0.10 66.45±0.89 4.63±0.01 12.88±0.01 0.45±0.01 1.00±0.02 10.78±0.05 0.60±0.01
EGNO 9.18±0.06 48.85±0.55 4.62±0.01 12.80±0.02 0.37±0.01 0.86±0.02 10.21±0.05 0.52±0.02
GFNODE 7.93±0.00 4.82±0.00 3.92±0.00 12.87±0.00 0.37±0.00 0.80±0.00 4.82±0.00 0.54±0.00

SGDD-EGNO 7.84±0.00 12.97±0.00 4.04±0.00 12.98±0.00 0.36±0.00 0.85±0.00 9.45±0.01 0.53±0.00
(+14.5%) (+73.4%) (+12.5%) (-1.4%) (+2.7%) (+1.1%) (+7.4%) (-1.9%)

SGDD-GFNODE 7.29±0.00 2.74±0.00 3.64±0.00 12.72±0.00 0.33±0.00 0.79±0.00 5.16±0.00 0.53±0.00
(+8.1%) (+43.2%) (+7.1%) (+1.2%) (+10.8%) (+1.3%) (-7.1%) (+1.9%)

S2T
NDCN 31.73±0.40 56.21±0.30 10.74±0.02 46.55±0.28 2.25±0.01 3.58±0.11 13.92±0.02 2.38±0.00
ITO 20.56±0.03 57.25±0.58 8.60±0.27 28.44±0.73 1.82±0.17 2.48±0.34 12.47±0.30 1.33±0.12
LG-ODE 19.36±0.12 53.92±1.32 7.08±0.01 24.41±0.03 1.73±0.02 3.82±0.04 11.18±0.04 2.11±0.02
EGNN 9.24±0.07 57.85±2.70 4.63±0.00 12.81±0.01 0.38±0.01 0.85±0.00 10.41±0.04 0.56±0.02
EGNN-R 12.07±0.11 23.73±0.30 3.44±0.17 13.38±0.03 0.63±0.01 1.15±0.02 5.04±0.02 0.89±0.01
EGNN-S 9.49±0.12 29.99±0.65 3.29±0.01 11.21±0.01 0.43±0.01 1.36±0.02 4.85±0.04 0.68±0.01
EGNO 7.37±0.07 22.41±0.31 3.28±0.02 10.67±0.01 0.32±0.01 0.77±0.01 4.58±0.03 0.47±0.01
GFNODE 6.07±0.09 1.51±0.07 2.74±0.01 9.43±0.02 0.24±0.02 0.63±0.05 1.80±0.03 0.41±0.02

SGDD-EGNO 6.20±0.01 7.79±0.18 2.88±0.01 11.01±0.05 0.33±0.00 0.69±0.00 4.23±0.09 0.50±0.00
(+15.8%) (+65.2%) (+12.1%) (-3.1%) (-3.1%) (+10.3%) (+7.6%) (-6.3%)

SGDD-GFNODE 5.63±0.01 1.36±0.01 2.67±0.01 10.95±0.04 0.26±0.00 0.60±0.00 2.39±0.03 0.44±0.00
(+7.2%) (+9.9%) (+2.5%) (-16.1%) (-8.3%) (+4.7%) (-28.8%) (-4.8%)

as input. The training procedure follows a two-stage strategy: pretraining is performed for approxi-
mately one-third of the total epochs, after which joint training is applied for the remaining epochs.
Teacher forcing ratios are fixed at 1.0 during pretraining and 0.5 during joint training. The align-
ment loss weight λ is set to 1.0 across all experiments. All models are optimized using the Adam
optimizer. Dataset-specific settings (e.g., batch size, learning rate, weight decay, and model config-
urations) and source code are included in Appendix C.3 and C.4.

4.1 MOLECULAR DYNAMICS

Dataset. We used MD17 dataset (Chmiela et al., 2017), which provides molecular dynamics trajec-
tories obtained from density functional theory (DFT) simulations. It contains eight small molecules
of varying size. Following the same setting as in (Xu et al., 2024), we used 500/2000/2000 ran-
dom sub-trajectories from the full trajectory of each molecule for training, validation, and testing,
respectively. The prediction horizon consists of 8 uniformly spaced timesteps, with the final step cor-
responding to 3000 frames. The number of atoms corresponding to nodes varies across molecules,
typically around 10, and detailed statistics are provided in Appendix C.1.

Figure 4: Frequency-wise MSE loss for Benzene.

Result (Table 1 and Figure 4). Our SGDD,
instantiated as SGDD-EGNO and SGDD-
GFNode, achieved state-of-the-art performance
across all molecules in the S2S evaluation,
demonstrating its effectiveness in long-horizon
trajectory prediction. Notably, for Benzene,
SGDD-EGNO shows a 72% performance im-
provement over EGNO, while SGDD-GFNode
exhibits a 54% improvement over GFNode.
This case is significant because both EGNO
and GFNode exhibit high errors concentrated
in the low-frequency range. In contrast, our
SGDD framework learns dynamics representa-

tions that capture low-frequency motion more effectively, thereby providing the decoder with a
strong inductive bias and substantially enhancing prediction accuracy as illustrated in Figure 4.
In the S2T evaluation, SGDD achieves state-of-the-art results on four molecules (Aspirin, Benzene,
Ethanol, Salicylic). For the remaining molecules, the cases where performance falls behind prior
models can be attributed to the fact that our framework employs them as decoders, while we can-
not fully reproduce their reported results. For a direct comparison with our own implementations of
baselines (EGNO, GFNode), please refer to Appendix D.

7
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Figure 5: Motion Capture(Run) Visualization.

4.2 MOTION CAPTURE

Table 2: MSE (×10−2) on motion capture
dataset. Upper part: S2S. Lower part: S2T.

S2S Walk Run

MPNN 36.1±1.5 66.4±2.2
RF 188.0±1.9 521.3±2.3
TFN 32.0±1.8 56.6±1.7
SE(3)-Tr. 31.5±2.1 61.2±2.3
EGNN 28.7±1.6 50.9±0.9
EGNN-R 90.7±2.4 816.7±2.7
EGNN-S 26.4±1.5 54.2±1.9
EGNO 8.1±1.6 33.9±1.7
GFNODE 9.3±0.0 44.9±0.1

SGDD-EGNO 6.7±0.0 28.2±0.0
(+17.3%) (+16.8%)

SGDD-GFNODE 6.5±0.0 31.5±0.1
(+30.1%) (+29.8%)

S2T
EGNN-R 32.0±1.6 277.3±1.8
EGNN-S 14.3±1.2 28.5±1.3
EGNO 3.5±0.5 14.9±0.9
GFNODE 4.5±0.1 23.2±2.2

SGDD-EGNO 3.2±0.0 13.5±0.9
(+8.6%) (+9.4.%)

SGDD-GFNODE 3.4±0.0 17.7±1.0
(+24.4%) (+23.7%)

Dataset. We utilized the CMU Motion Capture dataset
(Carnegie Mellon University, 2003), which consists of
3D skeletal sequences with 31 joints corresponding to
nodes. Following the protocol in (Xu et al., 2024),
we adopted two representative motion types: walk-
ing and running. For the walk and run cases, we con-
structed 200/600/600 and 200/240/240 sub-trajectories
for training, validation, and testing. The prediction
horizon consists of 5 uniformly spaced timesteps, with
the final step corresponding to 30 frames.

Result (Table 2 Figure 5). In the S2S evaluation,
our framework achieved state-of-the-art performance
on both walking and running motions. For these
two cases, SGDD-EGNO improved upon EGNO by
17.3% and 16.8%, respectively, while SGDD-GFNode
achieved nearly 30% gains in both cases. In the S2T
evaluation, our framework also established new state-
of-the-art results across all cases. Specifically, SGDD-
EGNO yields 8.6% and 9.4% improvements over
EGNO for walking and running, respectively, while

SGDD-GFNode improves upon GFNode by 24.4% and 23.7%. The larger improvements in the
S2T setting suggest that our framework enables more reliable long-horizon representations, leading
to stable predictions of human motion dynamics. This is further visually confirmed, where the gap
between our method and baselines becomes increasingly evident as the prediction horizon extends.

4.3 PROTEIN

Table 3: S2S on ADk equilibrium
trajectory dataset.

S2S
Linear 2.89
RF 2.84
MPNN 2.32
EGNN 2.73
EGHN 2.03
EGNO 2.23
EGHNO 1.80

SGDD-EGNO 1.75
(+21.5%)

Dataset. We used the Adk equilibrium trajectory dataset
(Seyler & Beckstein, 2017), which corresponds to the molecu-
lar dynamics trajectory of apo adenylate kinase (Gowers et al.,
2016). Following the standard setting, we divided the entire
trajectory into 2481/827/878 sub-trajectories for training, val-
idation, and testing. The prediction horizon consists of 4 uni-
formly spaced timesteps, with the final step corresponding to
15 frames. The nodes of the graph are defined as the backbone
atoms of the amino acids, resulting in a total of 855 nodes.

Result (Table 3). Our SGDD-EGNO achieved a new state-of-
the-art with an MSE loss of 1.75, corresponding to a 21.5%
improvement over EGNO (2.23). Importantly, the protein

dataset contains 855 backbone nodes, forming a relatively large-scale graph. These findings suggest
that our framework is capable of learning spectral-guided dynamics representations that provide
stable guidance to the decoder for accurate trajectory prediction, even when applied to large-scale
spatial systems.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.4 ABLATION STUDIES

Table 4: Ablation study on frequency alignment, feature alignment, and weighting. Results are re-
ported for the SGDD-EGNO model on the MD17 and motion capture (Mocap) datasets. Numbers
correspond to the S2T metric (×10−2). The best performance is highlighted in bold.

Freq Align Feature Align SGE Ethanol Malonaldehyde Toluene Mocap-Walk Mocap-Run
✓ ✓ ✓ 2.84 11.03 3.80 2.95 12.98
✓ ✓ - 2.90 11.04 4.18 4.04 12.61
✓ - ✓ 2.89 11.11 4.86 3.30 13.01
- ✓ ✓ 2.85 11.06 4.65 3.26 14.37

The central goal of our framework is to construct a dynamics representation that provides the decoder
with an effective inductive bias for long-horizon prediction. In a standard encoder–latent representa-
tion–decoder pipeline where both inputs and outputs are full future trajectories, the encoder has ac-
cess to rich dynamical information and can easily produce a informative latent representation. How-
ever, in the setting we target—predicting long-horizon trajectories from only the initial state—this
privileged supervision is no longer available. A natural way to bridge this gap is to let a teacher
encoder observe the future trajectory and let a student encoder learn to approximate the teacher’s
dynamics representation using only the initial state. This leads to a Knowledge-Distillation-style
formulation for learning the dynamics latent representation. Based on this idea, our framework
introduces two key design components: (1) Dual Alignment, which aligns teacher–student repre-
sentations in both the spectral(Freq Align) and spatio-temporal domains(Feature Align), and (2)
Spectral-Guided Enhancement (SGE), which adaptively reweights spectral components to empha-
size the most informative frequency modes. In the following subsections, we present ablation studies
that analyze the contribution and design choices of our framework. Section 4.4.1 evaluates the two
core components, Dual Alignment and Spectral-Guided Enhancement. Section 4.4.2 examines the
truncation parameter K in the Spectral-Guided Enhancement module. Section 4.4.3 investigates the
effect of encoder selection.

4.4.1 ABLATION ON ALIGNMENT AND SPECTRAL GUIDED ENHANCEMENT.

We analyze the contribution of Dual Alignment and the Spectral-Guided Enhancement (SGE) mod-
ule. As shown in Table 4, removing either component consistently degrades performance across both
molecular and human motion datasets. Dual Alignment operates in two complementary domains: (1)
Feature Align, which matches teacher–student representations in the spatio-temporal domain to pre-
serve global structural patterns; and (2) Freq Align, which aligns spectral coefficients to capture
multi-scale frequency behavior essential for long-horizon stability. There is no consistent superior-
ity between the two alignments alone, but using both simultaneously yields the best performance
overall. This suggests that the two alignments operate in a mutually complementary manner, where
spatio-temporal alignment provides a robust inductive bias for overall structure, and spectral align-
ment refines frequency prioritization to mitigate noise and instability. The effect of SGE is observed
by comparing the first and second rows: learnable spectral weights through SGE improve perfor-
mance in nearly all cases by emphasizing informative frequency modes during alignment. Overall,
the configuration that includes both alignments and SGE yields the best results, highlighting their
complementary roles in forming a robust dynamics representation.

4.4.2 ABLATION ON THE TRUNCATION PARAMETER K .

Figure 6: Performance according to truncation pa-
rameter K.

We further investigated the role of the trunca-
tion parameter K in the spatio-temporal joint
basis. As described in Section 3.3, we con-
struct a truncated basis BK by retaining only
the K lowest-frequency modes, while the resid-
ual (I −P )z preserves information outside this
subspace. We conducted experiments on Hu-
man Motion dataset with 31 joints and a pre-
diction horizon of 5 timesteps, resulting in a to-
tal of 31× 5 = 155 frequency components. As
shown in Figure 6, the performance varies with

9
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the choice of the K. When K is too small, the enhancement focuses excessively on only lowest-
frequency modes. Although the residual term still preserves information outside the truncated sub-
space, important frequency bands cannot be adequately emphasized. As K increases, the model can
adaptively weight a richer set of spectral modes. However, the increase in controllable modes does
not always lead to monotonic loss reduction; therefore, it can be needed to select an appropriate K.
Experiments on other datasets and discussions on selecting the best K are detailed in Appendix D.2.

4.4.3 ABLATION ON ENCODERS

Table 5: MSE (×10−2) of SGDD-EGNO across different encoder combinations on MD17. (S2S)
Einit Edyn Aspirin Ethanol Naphthalene Salicylic Uracil

GAT(142K) STSGNN(397K) 7.75 4.00 0.36 0.85 0.52
GAT(142K) STGCN(151K) 7.97 4.08 0.36 0.84 0.52
GINE(336K) STSGNN(397K) 7.85 4.21 0.36 0.86 0.53
GINE(336K) STGCN(151K) 8.02 4.15 0.36 0.86 0.52
Transformer(541K) STSGNN(397K) 8.90 4.12 0.36 0.91 0.53
Transformer(541K) STGCN(151K) 8.69 4.27 0.36 0.94 0.53

We use STSGNN as Edyn and GAT as Einit in our main experiments, and detailed justifications for
these choices are provided in the Appendix C.3. To examine how different encoder choices affect the
SGDD framework, we additionally evaluate STGCN (Yan et al., 2018), a spatio-temporal graph con-
volutional network designed for dynamic skeleton-like structures, as Edyn and replace GATConv in
Einit with either GINEConv(Hu et al., 2019), an edge-enhanced variant of GIN, or Transformer-
Conv(Shi et al., 2020), a transformer-based graph convolution layer, on the MD17 dataset. All
experiments were conducted under identical training settings. Table 5 reports the performance of
different encoder combinations, showing that modifying Einit leads to larger performance variation
than modifying Edyn. Replacing GATConv with GINEConv for Einit yields similar results, whereas
using TransformerConv leads to lower performance on several molecules. We attribute this to the
substantially larger number of learnable parameters in TransformerConv, which leads to overfitting
or underfitting under the same training configuration. Overall, SGDD shows a moderate level of
robustness to reasonable encoder substitutions—such as GATConv ↔ GINEConv or STSGNN ↔
STGCN—while also indicating that heavier encoders may require different optimization settings
or regularization strategies to realize their potential. This suggests that SGDD is broadly applicable
across encoder architectures, although appropriate training configurations remain important depend-
ing on model capacity and dataset scale.

5 CONCLUSION

In this work, we introduced SGDD, a novel framework that leverages privileged supervision to
learn rich dynamics representations. Our approach combines a spectral-guided enhancement mod-
ule with a distillation scheme to disentangle multi-scale spatio-temporal dynamics and guide the
decoder toward accurate long-horizon trajectory prediction, even at inference time when privileged
information is unavailable. Through experiments, we demonstrated that our framework consistently
achieves state-of-the-art performance across particle dynamics at different scales. Our study con-
tributes a generalizable framework that unifies spectral representation learning with knowledge dis-
tillation, paving the way for future research in robust and scalable physical dynamics modeling.
However, our framework also has limitations. Since it relies on existing physical-dynamics models
as decoders, its overall performance can be influenced by the capacity of the chosen decoder. Fu-
ture work could explore decoder-agnostic formulations or tighter integration between representation
learning and prediction modules to further enhance robustness and scalability. In addition, SGDD
has so far been applied only in settings with fixed spatio-temporal graph structures. Extending it to
time-varying graphs—for example, by updating the spatio-temporal basis as the topology evolves
or by updating the spatio-temporal basis in an online or adaptive manner—represents a promising
future direction for handling dynamic physical environments.
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A NOTATIONS

A.1 GENERAL NOTATIONS

We summarize the notations used throughout the paper along with their descriptions.

Table A.1: Summary of Notations.
Notation Description
V Set of N particles (nodes).
E Set of edges representing interactions or connections between particles.
xt ∈ RN×3 3D positions of all N particles at time t.
vt ∈ RN×3 3D velocities of all N particles at time t.
Zt = [xt, vt] ∈ RN×6 Node state tensor at time t, concatenating position and velocity.
h ∈ RN×d Time-invariant physical features of each particle.
Gt = (V,E,Zt, h) Graph representation of the system at time step t.
{x1, x2, . . . , xT } ∈ RT×N×3 3D trajectory of N particles over T time steps.
{G1, . . . ,GT } Future state sequence to be predicted given the initial state G0.
zdyn, zinit ∈ RN×T×dz Spatio-temporal dynamics representations generated by the dynamics encoder and

initial encoder, respectively.
adyn, ainit ∈ Rdz×K Spectral coefficients obtained by projecting the dynamics representations onto the

joint basis B ∈ RNT×K .
w ∈ RK Learnable weights for each spectral mode.
ãdyn, ãinit ∈ Rdz×K Frequency-adjusted spectral coefficients after applying the learned weights.
z̃dyn, z̃init ∈ Rdz×NT Reconstructed representations in the spatio-temporal domain obtained from the ad-

justed spectral coefficients.
zsg

dyn, z
sg
init ∈ Rdz×NT Final spectral-guided dynamics representations incorporating residual components:

zsg
dyn = z̃dyn + (I − P )zdyn, z

sg
init = z̃init + (I − P )zinit, where P = BB⊤.

A.2 SPATIO-TEMPORAL GRAPH CONSTRUCTION

In our formulation, the spatio-temporal graph Gst describes both particle interactions and temporal
evolution by linking particles within each time step as well as across adjacent time steps. This
structure can be viewed as the combination of a spatial graph that captures particle connectivity and
a temporal graph that captures sequence order, each admitting its own Laplacian and spectral basis.

Spatial graph. The spatial graph Gspatio = (V,Es) is fixed across time and encodes the physical
connectivity among particles. Its normalized Laplacian Ls yields the spatial eigenbasis Us.

Temporal graph. The temporal graph Gtemp = (Vt, Et) is defined over the sequence of time indices
Vt = {1, . . . , T}. To model temporal continuity, we adopt the standard 1D chain construction in
which each time step is connected to its previous and next steps:

Et = {(i, i+ 1) | 1 ≤ i < T}.
The normalized Laplacian Lt produces the temporal eigenbasis Ut.

B PROOFS

To apply the Orthogonal Projection Theorem in the spectral domain, we first establish that the trun-
cated spatio-temporal joint basis B, constructed from the Laplacian eigenvectors, forms an orthog-
onal set.
Proposition B.1 (Orthogonality of the Joint Basis). Let Us ∈ RN×N and Ut ∈ RT×T be orthogonal
eigenvector matrices of the normalized Laplacians Ls and Lt, respectively. Their Kronecker product

B = Ut ⊗ Us ∈ RNT×NT

is also orthogonal, i.e.,
B⊤B = INT .

Consequently, any truncated basis BK ∈ RNT×K obtained by selecting K columns of B forms a
partial orthogonal basis and satisfies B⊤

KBK = IK .

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof. We use the property of Kronecker products:

(Ut ⊗ Us)
⊤(Ut ⊗ Us) = (U⊤

t Ut)⊗ (U⊤
s Us).

Since Ut and Us are orthogonal, U⊤
t Ut = IT and U⊤

s Us = IN . Therefore,

B⊤B = IT ⊗ IN = INT .

Selecting a subset of K columns from B preserves orthogonality among the chosen columns, yield-
ing B⊤

KBK = IK .

We next show that the decomposition used in our spectral-guided enhancement is indeed orthogonal.

Lemma B.2 (Orthogonal Decomposition). Let BK ∈ RNT×K be a truncated orthogonal basis and
define the projection matrix P = BKB⊤

K . Then, for any z ∈ Rdz×NT , the following orthogonal
decomposition holds:

z = Pz + (I − P )z, with ⟨Pz, (I − P )z⟩ = 0.

Proof. Since P is symmetric and idempotent (P⊤ = P , P 2 = P ), it is an orthogonal projector.
Thus any z can be uniquely decomposed into its projection Pz and residual (I − P )z, which are
orthogonal because

⟨Pz, (I − P )z⟩ = z⊤P⊤(I − P )z = z⊤(P − P 2)z = 0.

C EXPERIMENT DETAILS

C.1 DATASET DETAILS

MD17. We used the MD17 dataset (Chmiela et al., 2017), which contains molecular dynamics tra-
jectories of eight small molecules. In constructing the graphs, hydrogen atoms are conventionally
excluded, and only heavy atoms are retained as nodes, resulting in the number of nodes reported
in Table A.2.Edges are defined by extending the original molecular bonds to include up to 2-hop
neighbors, following prior work. For each edge, the features are constructed by concatenating the
hop type, the atomic types of the connected nodes, and the chemical bond type. Each trajectory is
randomly split into train/validation/test sets with 500/2000/2000 state-trajectory pairs, respectively.

Table A.2: Statistics of MD17 dataset.
Name Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

# nodes 13 6 3 5 10 10 7 8

Motion Capture. We used the CMU Motion Capture dataset (Carnegie Mellon University, 2003)
which contains 3D trajectories of various human motions. Following (Xu et al., 2024), we selected
Walk and Run. The data were split into 200/600/600 trajectories for training/validation/testing in
Walk, and 200/240/240 trajectories in Run. Each human skeleton is represented as a spatio-temporal
graph with 31 joints serving as nodes. Edges are constructed based on the natural skeletal connec-
tivity, i.e., joints directly connected in the human body.

Protein. We used the Adk equilibrium trajectory dataset (Seyler & Beckstein, 2017) provided in
the MDAnalysis toolkit (Gowers et al., 2016), which contains the molecular dynamics trajectory
of apo adenylate kinase. Protein structure is represented as a graph where the nodes correspond to
the backbone atoms (N, Cα, and C of each amino acid), resulting in a total of 855 nodes for apo
adenylate kinase. Edges are constructed using a cutoff strategy, where two atoms are connected if
their Euclidean distance is within 10 Å in the equilibrium structure, which follows the commonly
adopted convention in protein graph construction.
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C.2 BASELINES

We provide an introduction to the two baseline models employed as decoders in our framework.

EGNO (Xu et al., 2024) Equivariant Graph Neural Operator (EGNO) is a method for modeling 3D
dynamics of relational systems, directly modeling entire trajectory dynamics as temporal functions
rather than next-step predictions. It formulates dynamics as a function over time and learns neural
operators to approximate it, developing equivariant temporal convolutions in Fourier space stacked
over equivariant networks to maintain SE(3)-equivariance while capturing temporal correlations. In
terms of frequency-aware approaches in the spectral domain, EGNO performs equivariant temporal
convolutions in Fourier space to decompose and model frequency modes, ensuring equivariance in
3D space and handling multiscale temporal evolution.

GFNode (Sun et al., 2024) Graph Fourier Neural ODEs (GF-NODE) is a neural operator-based
model designed to capture spatial-temporal multiscale interactions in molecular dynamics simula-
tions. It addresses the challenge of predicting long-horizon trajectories by decomposing molecular
configurations into spatial frequency modes using the graph Laplacian, evolving these modes in
continuous time via Neural ODEs, and reconstructing the updated molecular geometry through an
inverse graph Fourier transform. In terms of frequency-aware approaches in the spectral domain,
GF-NODE decomposes the spatial structure into frequency components via Graph Fourier Trans-
form, evolves each component temporally via Neural ODEs.

C.3 MODEL DETAILS

We employed fixed architectures for both the dynamics encoder and the initial encoder throughout
all experiments, and in this part, we present a short introduction and implementation details.

C.3.1 DYNAMICS ENCODER

Background We employed STSGNN(Chen et al., 2025) as the backbone for the dynamics encoder.
STSGNN takes spatio-temporal graphs as input and performs filtering in the spatio-temporal joint
spectral domain. Specifically, based on the eigendecomposition of the normalized Laplacian matri-
ces of spatial and temporal graphs, it introduces the 2-D Discrete Graph Fourier Transform (2-D
DGFT) to map input signals into the joint spectral domain. Filtering in this domain is then imple-
mented via bivariate Bernstein polynomial approximation, which leverages learnable coefficients
to construct 2-D filters with specialized spectral properties. This formulation enables STSGNN to
capture spatial and temporal dependencies simultaneously, unlike conventional methods that rely
on separate spatial or temporal spectral representations. Moreover, by exploiting the decoupling
property of Bernstein bases, STSGNN can effectively preserve both low- and high-frequency infor-
mation, while adaptively emphasizing the most task-relevant components. Consequently, it provides
stable spatio-temporal joint representations that mitigate instability from high-frequency compo-
nents while retaining global low-frequency patterns.

Justification for Choice STSGNN is a sophisticated spatio-temporal graph encoder that applies
2-D joint spectral filtering, enabling spatial and temporal dependencies to be captured in a sin-
gle spectral domain while maintaining stable propagation of both low- and high-frequency compo-
nents. Such frequency-aware modeling aligns well with the nature of physical dynamics, where low-
frequency structure governs long-term evolution and high-frequency variations capture short-term
fluctuations. Therefore, we adopt STSGNN as our dynamics encoder, as it provides the frequency-
resolved spatio-temporal representations required for modeling physical dynamics.

Implementation Detail

• Input: Spatio-temporal graph node features: Z0:T ∈ RN×T×6, h ∈ RN×1×d

• Output: Spatio-temporal dynamics representation zdyn ∈ RN×T×dz

• Detail: The spatial Bernstein order and temporal Bernstein order were set to the same
values as in the original paper, namely 10 and 5, respectively. In addition, the model was
configured with 2 layers, an output dimension of 32, a hidden dimension of 32, and a
dropout rate of 0.1. The original model was implemented to take multi-step inputs and
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generate multi-step outputs. In our framework, we retained only the feature extraction part
for multi-step inputs and removed the output module designed for multi-step prediction.

We provide a link to the source code for reproducibility. For specific details, please refer to the
following repository1.

C.3.2 INITIAL ENCODER

Background For the initial encoder, we adopted the Graph Attention Network (GAT)
layer (Veličković et al., 2017). GAT extends the idea of message passing in graph neural networks by
incorporating a self-attention mechanism over graph neighborhoods. Specifically, instead of treating
all neighbors equally or relying on fixed weights, GAT computes attention coefficients that quantify
the relative importance of each neighboring node when aggregating features. This is achieved by
applying a shared linear transformation to node features, followed by a learnable attention kernel
that operates on pairs of nodes. The coefficients are normalized using the softmax function, ensur-
ing that the aggregated representation remains permutation-invariant and adaptive to the underlying
graph structure. This formulation allows GAT to capture both local graph topology and feature rele-
vance in a data-driven manner. Compared to spectral approaches that rely on fixed graph filters, GAT
provides greater flexibility in learning task-specific dependencies while maintaining computational
efficiency.

Justification for Choice GAT is the simplest attention-based graph encoder capable of projecting
an initial state into a higher-dimensional temporal representation through multi-head attention. In
addition, its lightweight architecture and minimal inductive bias help avoid overfitting or underfitting
that may arise with heavier encoders, making GAT a suitable choice for initial encoder within our
SGDD framework.

Implementation Detail

• Input: initial state graph node features: Z0 ∈ RN×6, h ∈ RN×d

• Output: Spatio-temporal dynamics representation zinit ∈ RN×T×dz

• Detail: We set the number of attention heads equal to the temporal dimension T to extend
the model along the time axis. The hidden dimension was fixed at 32, and we employed 3
layers. The computation proceeds as follows.
We begin with the initial node features.

x0 = [Z0, h] ∈ RN×(6+d).

For a GAT layer with T attention heads, the t-th head computes

h
(0)
i,t = W

(0)
t x0,i,

and performs neighborhood aggregation as

h̃
(0)
i,t =

∑
j∈N (i)

α
(0)
ij,t h

(0)
j,t ,

where α
(0)
ij,t denotes the attention coefficient for head t.

Concatenating all head outputs yields

x1,i =
∥∥T
t=1

h̃
(0)
i,t ∈ RTdz .

Thus, the full output of the first layer satisfies

x1 ∈ RN×(Tdz).

For a general l-th layer (l ≥ 0), the update rule is

xℓ+1,i =
∥∥T
t=1

 ∑
j∈N (i)

α
(ℓ)
ij,t W

(ℓ)
t xℓ,j

 ,

1https://anonymous.4open.science/r/SGDD-DCEC
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and therefore
xℓ+1 ∈ RN×(Tdz).

Finally, the output of the last layer,

xL ∈ RN×(Tdz),

is reshaped by interpreting the T heads as temporal channels, yielding

reshape(xL) = zinit ∈ RN×T×dz .

C.4 IMPLEMENTATION DETAILS

Our framework is implemented to follow the training and architectural settings of EGNO as closely
as possible, and we refer readers to the official EGNO implementation for additional details. For the
decoder component, we strictly adopt the architectural configurations of both EGNO and GFNode
without introducing any additional capacity; only training-related hyperparameters are adjusted to
accommodate the SGDD training procedure. This ensures that the observed improvements stem
from our representation-learning framework rather than increased model complexity in the baseline
decoders.

MD17 We set the batch size to 100, the learning rate to 1×10−4, and the weight decay to 1×10−15.
Staged learning was adopted, with a maximum of 5000 epochs and pretraining performed up to
epoch 2000. The truncation parameter K was fixed at 64 by default. However, when the total number
of basis vectors (N × T ) for a given molecule was smaller than 64, we set K = 0.5× (N × T ) for
that molecule, ensuring that K < N × T .

Motion Capture We set the batch size to 12, the learning rate to 5 × 10−4, and the weight decay
to 1 × 10−10. The maximum number of epochs was 2000, with pretraining performed up to epoch
500. For the spatio-temporal joint basis, a total of 31 × 5 = 155 basis vectors were available. The
truncation parameter K was fixed to 64.

Protein We set the batch size to 8, the learning rate to 5× 10−5, and the weight decay to 1× 10−4.
The maximum number of epochs was 15,000, with pretraining performed up to epoch 100. For the
spatio-temporal joint basis, a total of 855×4 basis vectors were available. In this case, the truncation
parameter K was fixed to 128.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section we provide additional experimental results.

D.1 COMPARISON OF OUR FRAMEWORK WITH THE IMPLEMENTED BASELINE

We implemented EGNO and GFNode as baselines and employed them as decoders within our frame-
work. This allows us to compare the performance of the standalone EGNO and GFNode implemen-
tations with their counterparts integrated into our framework, enabling a more direct evaluation. The
comparison table on the MD17 dataset is shown in Table A.3 and the comparison table on the mo-
tion capture dataset is shown in Table A.4. For GFNode, since the original model was designed only
for the MD17 dataset, the results on the motion capture dataset are identical to those reported in
Section 4.2.

D.2 ABLATION STUDIES

Ablation on Alignment and Spectral Guided Enhancement. We conducted ablation studies on
both the MD17 datasets using the SGDD-EGNO to examine the effects of different alignment strate-
gies and the presence or absence of learnable weights. The metrics were computed using both S2S
and S2T. The results are summarized in Tables A.5 and A.6.

And for SGDD-GFNode, we conducted only the performance comparison with and without learn-
able weights, and the experimental results on both the MD17 and motion capture datasets are re-
ported in two tables, corresponding to the S2S and S2T metrics Tables A.7 and A.8.
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Table A.3: Comparison on the MD17 dataset with our own implementations. Upper part: S2S. Lower
part: S2T. Best results are highlighted in bold and relative improvements (%) of SGDD variants over
the corresponding baselines are shown below.

S2S Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

EGNO 9.35 58.09 4.60 12.82 0.39 0.87 10.95 0.58
SGDD-EGNO 7.75 13.65 4.00 13.08 0.36 0.85 8.34 0.52

(+17.1%) (+76.5%) (+13.0%) (-2.0%) (+7.6%) (+2.2%) (+23.8%) (+10.3%)

GFNODE 7.64 4.89 3.92 12.86 0.37 0.80 5.00 0.54
SGDD-GFNODE 7.38 2.23 3.64 12.72 0.34 0.79 4.97 0.52

(+3.4%) (+54.3%) (+7.1%) (+1.0%) (+8.1%) (+1.2%) (+0.6%) (+3.7%)

S2T

EGNO 7.03 30.79 3.27 10.83 0.35 0.75 4.86 0.54
SGDD-EGNO 6.20 8.29 2.84 11.03 0.33 0.69 3.80 0.50

(+11.8%) (+73.0%) (+13.1%) (-1.8%) (+5.7%) (+8.0%) (+21.8%) (+7.4%)

GFNODE 6.18 2.26 2.86 11.03 0.32 0.66 2.33 0.43
SGDD-GFNODE 5.66 1.15 2.66 10.91 0.27 0.60 2.32 0.43

(+8.4%) (+49.1%) (+6.9%) (+1.0%) (+15.6%) (+9.0%) (+0.4%) (0.0%)

Table A.4: Comparison on the motion capture dataset with our own implementations. Upper part:
S2S. Lower part: S2T.

S2S Walk Run

EGNO 11.9 37.9
SGDD-EGNO 6.7 28.2

(+43.3%) (+25.5%)

S2T

EGNO 5.5 17.6
SGDD-EGNO 3.2 13.5

(+41.5%) (+23.2%)

Table A.5: Ablation study on frequency alignment, feature alignment, and weighting. Results are
reported for the SGDD-EGNO model on the MD17 datasets. Numbers correspond to the S2T metric
(×10−2).

Freq Align Feature Align Weight Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil
✓ ✓ ✓ 6.20 8.29 2.84 11.03 0.33 0.69 3.80 0.50
✓ ✓ - 6.49 6.27 2.90 11.04 0.34 0.70 4.18 0.50
✓ - ✓ 6.15 10.62 2.89 11.11 0.33 0.68 4.86 0.50
- ✓ ✓ 6.26 10.79 2.85 11.06 0.33 0.69 4.65 0.50

Table A.6: Ablation study on frequency alignment, feature alignment, and weighting. Results are
reported for the SGDD-EGNO model on the MD17 datasets. Numbers correspond to the S2S metric
(×10−2).

Freq Align Feature Align Weight Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil
✓ ✓ ✓ 7.75 13.65 4.00 13.08 0.36 0.85 8.34 0.52
✓ ✓ - 8.17 11.23 4.09 12.92 0.38 0.85 9.31 0.53
✓ - ✓ 7.77 15.82 4.13 13.05 0.35 0.85 10.85 0.52
- ✓ ✓ 7.90 16.55 4.07 12.96 0.36 0.86 10.36 0.52

Table A.7: Ablation study on weighting. Results are reported for the SGDD-GFNODE model on the
MD17 datasets and Motion Capture datasets. Numbers correspond to the S2T metric (×10−2).
Freq Align Feature Align Weight Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil Mocap-Walk Mocap-Run

✓ ✓ ✓ 5.66 1.15 2.66 10.91 0.27 0.60 2.32 0.43 3.03 16.08
✓ ✓ - 7.04 1.70 2.71 10.94 0.25 0.63 2.18 0.43 4.02 19.66

Ablation on Truncation parameter K. (Table A.9) Here, to compare performance with respect
to the truncation parameter K, we trained and evaluated SGDD-EGNO across the MD17, motion
capture, and protein datasets while varying K. Table A.9 reports the results on the motion capture
dataset, Table A.10 presents the results on Aspirin—the molecule with the largest number of atoms
in the MD17 dataset—and Table A.11 shows the results obtained on the protein dataset. Although
performance varies with the choice of K, our goal was not to identify an optimal value but rather to
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Table A.8: Ablation study on weighting. Results are reported for the SGDD-GFNODE model on
the MD17 datasets and Motion Capture datasets. Numbers correspond to the S2S metric (×10−2).
Freq Align Feature Align Weight Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil Mocap-Walk Mocap-Run

✓ ✓ ✓ 7.38 2.23 3.64 12.72 0.34 0.79 4.97 0.52 5.82 34.46
✓ ✓ - 8.46 3.50 3.61 12.73 0.32 0.80 4.70 0.53 7.71 36.77

select a reasonable K based on the total number of available frequency components for each dataset
(maximum 104 for MD17, 155 for Motion, and 3420 for Protein). Accordingly, we used K = 64
for both MD17 and Motion, and K = 128 for Protein. Interestingly, experiments conducted with
different values of K show that values near 64 consistently yield the best performance across all
datasets. This aligns with the fact that long-term behavior in physical dynamics tasks is generally
dominated by low-frequency components. Moreover, this observation provides a practical guideline:
for new datasets or systems, initializing with K ≈ 64 offers a robust starting point without requiring
extensive tuning.

Table A.9: Comparison SGDD-EGNO on the motion capture dataset under different truncation level
K of the basis B. Upper part: S2S. Lower part: S2T.

K Walk Run

16 9.79±0.18 38.82±0.38
32 8.03±0.05 31.88±0.04
64 6.74±0.00 28.21±0.00
128 6.89±0.01 30.45±0.07
full(155) 7.26±0.02 28.18±0.18

16 4.7±0.10 17.99±1.39
32 3.96±0.06 15.37±1.16
64 3.22±0.05 13.52±0.89
128 3.29±0.05 14.39±1.05
full(155) 3.46±0.06 13.39±0.89

Table A.10: Comparison of SGDD-EGNO on MD17 (Aspirin) under different truncation levels K
of the basis B. Upper part: S2S. Lower part: S2T.

K Aspirin

16 6.33
32 6.32
64 6.20
full(104) 6.26

16 8.04
32 8.06
64 7.84
full(104) 7.84

Table A.11: Comparison of SGDD-EGNO on the ADk equilibrium trajectory dataset under different
truncation levels K of the basis B (S2S).

K ADk

64 1.74
128 1.75
256 1.75
512 1.75

E ADDITIONAL VISUALIZATION

In addition, to demonstrate that the proposed SGDD framework achieves superior performance from
a frequency perspective, we define a frequency loss and present the results in a table. The frequency
loss is computed by mapping the predicted and ground-truth trajectories into the spectral domain via
the spatio-temporal joint basis B, and then calculating the loss for each frequency component.

E.1 MD17

Comparison between SGDD-EGNO and EGNO
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E.2 MOTION CAPTURE.

Comparison between SGDD-EGNO and EGNO
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