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ABSTRACT

Time series foundation models (TSFMs) offer strong zero-shot forecasting via
large-scale pre-training, yet fine-tuning remains critical for boosting performance
in domains with limited public data. With the growing number of TSFMs, effi-
ciently identifying the best model for downstream fine-tuning becomes increas-
ingly challenging. In this work, we introduce TIMETIC, a transferability estima-
tion framework that recasts model selection as an in-context-learning problem:
given observations on known (source) datasets, it predicts how a TSFM will per-
form after fine-tuning on a downstream (target) dataset. TIMETIC flexibly orga-
nizes observed model–data relationships as contextual information, allowing it to
adapt seamlessly to diverse test-time scenarios. Leveraging the natural tabular
structure formed by dataset meta-features, model characteristics, and fine-tuned
performance, we employ tabular foundation models to serve as in-context learn-
ers. We further introduce a novel model characterization based on entropy evo-
lution across model layers, capturing embedding-space distinctions and enabling
TIMETIC to generalize across arbitrary model sets. We establish a comprehen-
sive benchmark for transferability estimation including 10 datasets, 10 founda-
tion models, and 3 forecasting tasks. On this benchmark, TIMETIC’s estimation
demonstrates strong alignment with actual fine-tuned performance for previously
unseen datasets, achieving a mean rank correlation of approximately 0.6 and a
30% improvement compared to using zero-shot performance as the transferability
score. Source code is available at https://anonymous.4open.science/
r/ICLR2026-TimeTic-3975.

1 INTRODUCTION

The emergence of time series foundation models (TSFMs) is reshaping the paradigm of time series
forecasting (Liang et al., 2025) through their strong zero-shot capabilities. Although efficient and
cost-effective, zero-shot inference often underperforms in out-of-distribution scenarios, particularly
in domains with limited public data, such as healthcare (Gupta et al., 2024) and finance (Fu et al.,
2024). Fine-tuning helps bridge the gap by transferring generalized knowledge from large-scale
pre-training to specific, resource-limited downstream tasks (Li & Zhu, 2025). However, due to
the inherent diversity of time series data, no single model consistently outperforms others in all
scenarios (Brigato et al., 2025). Selecting the most appropriate model from all available models
becomes a critical consideration that directly impacts the performance of downstream tasks (Ding
et al., 2024). A straightforward approach would be to enumerate all available TSFMs and evaluate
their fine-tuned performance, but this is impractical due to the significant computational cost and
extensive training time required, as shown in Figure 1 (a). Therefore, a crucial question arises: how
can we efficiently identify the best candidate time series model to fine-tune for a given test-time
scenario with limited data?

Existing efficient model selection techniques generally fall into two categories: (1) statistical met-
rics (You et al., 2021; Nguyen et al., 2023) and (2) meta-learning strategies (Öztürk et al., 2022;
Abdallah et al., 2022b). Most statistical metrics are designed for image classification and depend
on strong assumptions about the class structure (Li et al., 2021; Gholami et al., 2023). Although
computationally efficient, they are predefined and uniformly applied across scenarios, limiting their
adaptability to diverse time series forecasting tasks and models. Meta-learning methods instead train
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Figure 1: Model selection paradigms. (a) Enumeration paradigm: Each TSFM is fine-tuned on the
target data, and their performances Pm are evaluated to select the best model. (b) In-context learning
paradigm: Observed model transfers are organized into a context table (Xcontext, ycontext) composed
of characteristic–performance pairs. This table provides exemplars for a tabular foundation model,
which then predicts the transferred performance Sm of a target model on new data, given its target
table Xtarget. (c) Performance overview: The transferability scores estimated by TIMETIC show a
strong alignment with actual fine-tuned performance, achieving more than a 30% higher Spearman
rank correlation compared to ranking models based on their zero-shot performance.

a meta-estimator on task-performance pairs to predict fine-tuned performance. However, the estima-
tor is tied to its (fixed) training corpus and a predefined model set, restricting its ability to generalize
to new tasks or models. In general, existing approaches lack the adaptability needed for transfer-
ability estimation in practical settings with TSFMs, where test-time scenarios are open-ended and
constantly evolving.

In this study, we present TIMETIC, a framework for estimating the transferability of TSFMs by
casting performance prediction as an in-context learning task: given a model’s transferred perfor-
mance on known datasets, predict its finetuned performance on a new target dataset. As illustrated
in Figure 1(b), this paradigm allows flexible organization of historical data to make informed pre-
dictions. To this end, we integrate past observations into a tabular representation, consolidating
models, datasets, and transferred performance within a structured table. This format not only facil-
itates scalability with growing observational data but also clearly captures interrelationships among
entities. Recent advances in tabular foundation models have demonstrated strong in-context learning
capabilities for structured data (Robertson et al., 2025; Hollmann et al., 2025). Building on this, we
employ a tabular foundation model as the in-context learner, enabling efficient prediction of target
model performance from past transfer observations. To scale across a growing variety of TSFMs,
we further introduce a novel model characterization strategy based on entropy evolution across lay-
ers. This architecture-agnostic approach allows TIMETIC to generalize effectively to various types
of models. Extensive experiments on 10 datasets, 10 TSFMs, and 3 forecast settings demonstrate
that TIMETIC consistently outperforms existing methods, achieving an average Spearman rank cor-
relation of approximately 0.6 and delivering a 30% improvement over rankings based on zero-shot
performance, as shown in Figure 1(c).

The main contributions of this paper are summarized as follows:

• We propose TIMETIC, the first in-context transferability estimation framework for TSFMs, lever-
aging tabular foundation models to predict fine-tuned performance from an arbitrary number of
past transfer observations. This offers a more practical and efficient alternative to current methods.

• We introduce a model-agnostic characterization of TSFMs based on the entropy profile, the tra-
jectory of token sequence entropy across model layers. This enables TIMETIC to estimate trans-
ferability on unseen model classes, without being restricted to a fixed candidate set.

• We construct a comprehensive transferability benchmark that spans 10 widely used datasets, 10
time series foundation models, and 3 forecasting tasks, and demonstrate that TIMETIC outper-
forms existing approaches by more than 30% in model transferability estimation.
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2 RELATED WORK

Time series foundation model Time series forecasting is critical to decision making, driving ad-
vances in both statistical and domain-specific deep learning approaches (Liang et al., 2024). Re-
cently, the focus has shifted to TSFMs because of their strong generalization. Transformer has
become the dominant architecture in TSFMs, which fall into three categories: (1) Encoder-only
models, such as Moirai (Woo et al., 2024) and Moment (Goswami et al., 2024), using mask predic-
tion for forecasting. (2) Encoder-decoder models, exemplified by the Chronos family (Ansari et al.,
2024), which adapts T5 (Raffel et al., 2019) with quantization-based tokenization for time series
forecasting. (3) Decoder-only models, including TimesFM (Das et al., 2023), Lag-Llama (Rasul
et al., 2023), Timer (Liu et al., 2024) and Time-MoE (Shi et al., 2025), employing autoregressive
generation for future prediction.

Transferability metric Assessing the transferability of pretrained models is essential for model se-
lection (Okanovic et al., 2024; Lin et al., 2024). Transferability metrics generally aim to quantify
the statistical relationship between feature embeddings and sample labels. Most metrics such as
H-Score (Bao et al., 2019a), NCE (Tran et al., 2019) and LEEP (Nguyen et al., 2020) are primarily
designed for classification tasks, relying on the assumption that model outputs follow a categorical
distribution. However, in most TSFMs, the final output is continuous, making these metrics nonsen-
sical without discretization. Only a few metrics such as LFC (Deshpande et al., 2021), LogME (You
et al., 2021), and RegScore (Nguyen et al., 2023) are applicable in broader tasks by estimating
transferability through similarity of the characteristic of the label, marginal likelihood and linear
regression error, respectively.

Learning to select Early work (Lemke & Gabrys, 2010) explored meta-learning strategies that
leverage time series characteristics to predict the performance of forecasting models, demonstrating
that model accuracy often correlates with data properties. Along this line, FFORMPP (Talagala
et al., 2019) and AutoForecast (Abdallah et al., 2022a) train meta-estimators - Bayesian and mixed
architecture, respectively - on feature-performance pairs to identify the best model from a predefined
pool. Instead of feature-based regression, SeqFusion (Huang et al., 2025) embeds both time series
and candidate models into a shared representation space, allowing selection via similarity search.
However, its effectiveness heavily depends on encoder quality (Zhang et al., 2023; Meng et al.,
2023), which is difficult to guarantee for unseen models or data. More recently, Wei et al. (2025)
have probed LLMs for model selection by encoding the model and data information in prompts and
relying on LLM reasoning. Although promising, such approaches remain unreliable due to their
opacity. In general, despite progress, generalizable model selection, scalable to unseen models and
datasets, remains an open challenge. In particular, with the rapid proliferation of TSFMs, model
selection method for TSFMs is still unexplored.

3 METHODOLOGY

Problem setup In model selection, we consider a set of M candidate models {ϕi}Mi=1, and a target
dataset D. Each model has a ground truth transferred performance Pi, obtained by fine-tuning ϕi

on the dataset D, and evaluating it with a metric, e.g., mean absolute scaled error (MASE), a scale-
independent measure (Talagala et al., 2019). A transferability estimation method aims to produce a
score Si for each model ϕi without fine-tuning on dataset D. The scores {Si}Mi=1 should correlate
well with true performance {Pi}Mi=1, enabling the selection of the best models based on the scores.

As shown in Figure 2, TIMETIC casts transferability estimation as an in-context characteristics-
to-performance prediction task. At its core, TIMETIC builds a unified tabular representation that
integrates both the data characteristics and the model characteristics. Specifically, time series charac-
terization encodes datasets into a data characteristic table through feature engineering, while model
characterization represents TSFMs as a model characteristic table using entropy profiles (detailed
in Sections 3.1 and 3.2). Based on these representations, in-context transferability estimation (Sec-
tion 3.3) proceeds in two stages. In the offline stage, pairs of ground-truth ’characteristics → per-
formance’ are collected by fine-tuning to construct an in-context table. In the online stage, this table
serves as a context for prompting a tabular foundation model (TabPFN Hollmann et al. (2025) in our
case) to learn the mapping between characteristics and performance, allowing accurate estimation
of the fine-tuned performance of a target model on a new dataset.
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Figure 2: TIMETIC formulates transferability estimation as an in-context characteristics-to-
performance prediction task. Dataset characteristics are encoded as a data characteristic table
through feature extraction and selection, while models are represented as a model characteristic table
using entropy profiles. TIMETIC then operates in two stages: in the offline stage, an in-context table
(Xcontext, ycontext) is constructed from characteristic–performance pairs obtained via fine-tuning;
in the online stage, this table prompts a tabular foundation model to learn the mapping between char-
acteristics and performance, enabling estimation of a target model’s fine-tuned performance ytarget
given a model-data-characteristics table Xtarget in a target dataset. The final transferability score is
obtained by averaging the estimated performance across samples.

3.1 TIME SERIES CHARACTERIZATION

Feature extraction Time series exhibit diverse statistical characteristics that capture their temporal
dynamics. For a given dataset D, we begin by sampling n time windows {ωi}ni=1 according to
the historical and prediction lengths specified by the forecasting task. For each time window, we
extract statistical features as Fulcher (2017); Talagala et al. (2019), using two standard libraries:
tsfresh (Christ et al., 2018) and tsfeatures (Henderson & Fulcher, 2022). The tools can
efficiently generate over 700 features that capture diverse properties of time series, including sea-
sonality, stationarity, dependency, complexity, etc. However, these features are highly redundant,
which can lead to the curse of dimensionality (Altman & Krzywinski, 2018) and adversely affect
characteristic-to-performance regression.

Feature selection We perform feature selection guided by the principles of information richness
and non-redundancy. To ensure information richness, we select features that minimize the epis-
temic uncertainty, that is, the uncertainty arising from the insufficient observation of the full state
of the system. Given some characteristics-performance pairs T = (xi, yi)i>0, where x denotes the
time series features and y the corresponding transferred model performance, we estimate epistemic
uncertainty using TotalVariance (T ) as a proxy:

TotalVarianceϕ(T ) =
1

K

K∑
k=1

Var(y|x ∈ Xk) (1)

where X1, . . . ,XK denote the equivalence classes partitioning, i.e., x, x′ ∈ Xk if and only if x = x′

(Akhauri et al., 2025). The variance is then empirically computed over the set of all y-values corre-
sponding to inputs within Xk. Intuitively, TotalVariance reflects the distinguishability of features: a
smaller value indicates that the feature x provides greater discriminative power to predict y. Thus,
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Figure 3: Left: TotalVariance significantly declines as the number of features increases, whereas
the information content, quantified as the ratio between the joint entropy of a feature subset and
that of the full 30-feature set, approaches sufficiency; Right: The upper and lower panels show
entropy profiles of various TSFMs on the Kdd cup and Solar datasets. Differences in profile patterns
can distinguish model architecture and size: encoder–decoder models (ChronosT5, ChronosBolt)
display a two-peak pattern; decoder-only models (TimeMoE, TimesFM) exhibit higher magnitudes
than encoder-only models (Moirai); larger hidden dimensionality is associated with higher entropy.

features with lower TotalVariance are more informative for regression. (See Appendix D for a de-
tailed analysis and derivation). In practice, we begin with an empty feature set and iteratively apply
a greedy search strategy, adding the feature that minimizes TotalVariance to the set at each step,
until the reduction in TotalVariance falls below 0.001. To avoid redundancy, we evaluate the feature
set and retain a compact subset that maintains the richness of the information. As shown in Fig-
ure 3 (left), the information content of 20 features is comparable to that of the entire 30-feature set.
Consequently, we adopt these 20 features with minimal TotalVariance as the final representation for
each time series. For a given dataset D, this yields a data characteristic table Xdata ∈ Rn×20, where
n denotes the number of windows sampled and each row corresponds to the 20-dimensional feature
representation of a time window.

3.2 MODEL CHARACTERIZATION

Existing approaches to characterize model, such as assigning classification labels (Talagala et al.,
2019) or learning model-specific embeddings (Zhang et al., 2023), often struggle to generalize to
unseen models, thereby limiting their utility for practical transferability estimation. Inspired by
interpretability studies showing that forecast performance correlates with internal representational
dimensionality (Kaufman & Azencot, 2024) and that the entropy dynamics across layers reflects
key architectural choices (Gabrié et al., 2018; Voita et al., 2019; Ali et al., 2025), we introduce
a characterization method based on the trajectory of evolution of the entropy, termed the entropy
profile. The central premise is that activation functions, operators, parameterization, and hidden
dimensions jointly shape value distributions, which in turn determine the magnitude of information
entropy. Moreover, entropy can be computed across models without architectural constraints and
relies solely on inference statistics, thus entropy profile offers a simple and effective foundation for
distinguishing diverse models, without exhaustively accounting for all potential influencing factors.

Entropy profile More formally, given a time series represented by T tokens, let ti = {ti1, ..., tiT }
denote the token embeddings after model layer i. The entropy profile is defined as follows:

h =

N⊕
i=1

H(ti), (2)

where N is the total number of model layers, H is the Kozachenko-Leonenko (KL) entropy esti-
mator (Kozachenko, 1987) , and

⊕
denotes concatenation, resulting in h ∈ RN . The KL entropy

estimator has a critical hyperparameter—the nearest-neighbor count k. We adopt a balanced choice
of k = 6, which mitigates high-variance estimates and reduces instability when computing entropy
on high-dimensional feature vectors. For a given dataset D with n sampled time windows {ωi}ni=1,
entropy profiles are computed across windows using at most 10, 000 tokens per layer to compute
the information entropy while mitigating computational overhead. To allow comparison between
models with different depths, each entropy trajectory is standardized to a fixed length of six—the
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minimum depth in our model zoo. Models with more than six layers are compressed by pooling aver-
ages in six equal segments, while shallower models are padded by repeating the entropy value of the
final layer. Consequently, each model is encoded into a model characteristic table Xmodel ∈ Rn×6.

Entropy profile of TSFMs Figure 3 (right) presents entropy profiles of TSFMs on the Kdd cup
and Solar datasets. Each model family exhibits a unique profile, with similarities and differences
that distinguish models. Within a family, profiles remain consistent across datasets and model sizes,
while larger hidden dimensionality is generally associated with higher entropy. Across different
families, encoder–decoder architectures (ChronosT5 and ChronosBolt Ansari et al. (2024)) display
a distinct entropy drop at the encoder–decoder interface, yielding a two-peak pattern. In contrast,
encoder-only models (Moirai Woo et al. (2024)) exhibit lower entropy levels and slower growth
across layers compared to decoder-only models (TimeMoE Shi et al. (2025) and TimesFM Das et al.
(2023)), a phenomenon attributable to bidirectional attention producing smoother representations.

3.3 IN-CONTEXT TRANSFERABILITY ESTIMATION

We reformulate transferability estimation as an in-context characteristics-to-performance prediction
task. Specifically, given the observed fine-tuning processes of a TSFM ϕi on a collection of source
datasets Dsrc, the goal is to predict the finetuned performance of the model on a downstream target
dataset Dtgt. To this end, TIMETIC performs in-context transferability estimation in two stages:
Offline Context Table Construction and Online Target Table Inference, which are detailed as follows:

Offline context table construction For each observed finetuning process involving a TSFM ϕ
and source datasets Dsrc, we construct a representation encoding both data and model character-
istics, following the procedures described in Section 3.1 and Section 3.2. This yields a data–model
characteristic table Xcontext ∈ Rn×26, where n denotes the number of time windows sampled
from the source datasets, and 26 corresponds to the concatenation of the data characteristics 20
and the characteristics of the model 6. In addition, both the zero-shot and the fine-tuned perfor-
mance in each time window are appended to the table. The resulting context table is given by
(Xcontext, ycontext) ∈ Rn×28, where ycontext ∈ Rn×1 denotes fine-tuned performance. For the
cold-start scenario, that is, when no fine-tuned models are available, we can perform fine-tuning on
a small number of datasets and encode the results into the context table. This table then serves as a
persistent reference to support performance prediction on previously unseen datasets. Importantly,
context construction requires only limited offline finetuning on a few datasets, thereby decoupling
the one-time finetuning cost from the potentially unbounded number of future target scenarios.

Online target table inference Given a target dataset Dtgt and a TSFM ϕi whose transferability
is to be estimated, we sample m time windows and construct the target data–model characteristic
table Xtarget ∈ Rm×26. In the offline stage, a context table (Xcontext, ycontext) is constructed
to serve as a structured memory, encoding the mapping between data-model characteristics, zero-
shot performance, and fine-tuned performance. By providing both the context table and the target
table to a tabular foundation model Φ, predictions of transferred performance on the target dataset
can be conditioned on the patterns learned from the context, without requiring gradient updates or
retraining. Formally, the estimated transferred performance ytarget ∈ Rm×1 is obtained as

ytarget = Φ
(
Xtarget

∣∣ (Xcontext, ycontext)
)
. (3)

The final transferability score Si of model ϕi in dataset Dtgt is given by the mean of ytarget in the
m sampled time windows.

Tabular foundation model In TIMETIC, we employ TabPFN (Hollmann et al., 2025) as the tabular
foundation model owing to its strong in-context learning capabilities. TabPFN is a Transformer
encoder pre-trained on a large collection of diverse tabular datasets, which enables it to generalize
to unseen regression tasks without finetuning. Similar to how large language models leverage in-
context examples to perform new tasks, TabPFN can infer task-specific patterns by conditioning on
a small number of examples from the target regression problem, and subsequently provide accurate
predictions on unseen samples of the same task. This property makes TabPFN particularly well-
suited for in-context transferability estimation, as it obviates the need for model retraining and allows
flexible organization of context to adapt to diverse transferability estimation scenarios.
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Figure 4: Transferability scores versus actual transferred performance. Each point is a target model’s
transferability score against its actual transferred performance. More accurate transferability esti-
mation methods show stronger linear and Spearman rank correlations with fine-tuned performance.

4 EXPERIMENTS

In Section 4.1, we introduce a benchmark for transferability estimation in TSFMs. Section 4.2
demonstrates the superiority of TIMETIC over existing methods, while Section 4.3 evaluates its
generalization in two challenging scenarios: estimating unknown models in seen data, and unknown
models on unseen data. Finally, Section 4.4 presents an ablation study on time series characteriza-
tion, model characterization, and context table size to assess their impact.

4.1 TRANSFERABILITY ESTIMATION BENCHMARK

To evaluate transferability estimation methods, we construct a benchmark based on the following
five aspects (see Appendix B for details on its construction).

Target datasets We use 10 datasets from 4 domains (Nature, Energy, Web and Transport), spanning
5 sampling frequencies (seconds to hours) and 5 key characteristics (trend, seasonality, transition,
stationarity and shifting), to ensure the datasets cover diverse temporal patterns.

Model zoo 10 models from 5 TSFM families (Chronos, Chronos-Bolt, TimesFM, Moirai, Time-
MoE), spanning 10M to 500M parameters, are included to cover various architectures and sizes.

Ground truth All TSFMs are fine-tuned on each dataset using unified hyperparameters to establish
ground-truth rankings. For each dataset, the last 10% is reserved for testing; the remaining 90% is
used for fine-tuning and validation. The rankings are derived through MASE on the test set.

Transferability estimation baselines We compare three categories: (i) Metric-based: LogME (You
et al., 2021), LFC (Tran et al., 2019), and RegScore (Nguyen et al., 2023); (ii) Meta-learning-
based: a linear meta-estimator adapted from AutoForecast (Abdallah et al., 2022b); (iii) Zero-shot
performance: using the model’s zero-shot performance as the most straightforward proxy.

Evaluation protocol Methods are evaluated across short-, medium-, and long-term forecasting
tasks under standard and few-shot sampling regimes. The effectiveness is primarily quantified us-
ing weighted Kendall’s τw between estimated scores {Si}Mi=1 and actual finetuned performance
{Pi}Mi=1, with a higher τw indicating more reliable estimate (You et al., 2021; Kazemi et al., 2025).

7
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Table 1: Effectiveness of transferability estimation methods across short-, medium-, and long-
horizon forecasting tasks under both standard and few-shot sampling regimes. Reported values
are Weighted Kendall’s τw ↑, averaged across 10 datasets.

Standard Few-shot
Method short medium long short medium long

LFC −0.114 −0.106 0.101 0.136 0.060 0.102
LogME −0.053 −0.138 −0.138 −0.160 −0.119 −0.176
RegScore −0.272 −0.034 0.018 0.024 0.204 0.187
Meta learner 0.053 0.042 −0.089 0.064 0.040 −0.045
Zero-shot 0.157 0.329 0.279 0.131 0.262 0.320
TIMETIC 0.305 0.429 0.319 0.320 0.383 0.323

4.2 PERFORMANCE EVALUATION

Standard evaluation We evaluate transferability estimation methods on three forecasting tasks us-
ing all time windows from the training set of target datasets. For each model’s transferability es-
timation on a target dataset, TIMETIC leverages a context table that encodes the model’s transfer
processes on other datasets. As shown in Table 1 (left), TIMETIC consistently outperforms all
baselines with higher rank correlations. Although zero-shot performance occasionally aligns with
fine-tuned results, it is generally unreliable due to shifts between pretraining and fine-tuning. We
also observe that the gap between zero-shot and TIMETIC narrows in long-horizon forecasting, indi-
cating greater challenges in transferability estimation for long-horizon forecasting. Metrics such as
RegScore, LogME, and LFC underperform because their assumptions neglect autoregressive error
accumulation, while meta-learner–based methods suffer from overfitting and poor generalization.
Figure 4 illustrates the transferability scores versus the fine-tuned performance under the medium-
horizon task and provides the Spearman rank correlation. Compared to Kendall’s τw, Spearman’s
rank correlation emphasizes monotonic consistency; here, TIMETIC achieves the strongest linear
alignment with fine-tuned performance and the highest Spearman coefficient of 0.6. In Appendix C,
we provide per dataset results and Spearman correlation analyzes.

Few-shot evaluation. Few-shot evaluation poses a greater challenge, as only 100 time windows
from the training set of the target datasets are used to estimate transferability. With such limited
windows, it becomes difficult to fully capture the underlying distribution of a dataset. As shown in
Table 1 (right), TIMETIC maintains strong performance with only minor fluctuations in Kendall’s
τw, consistently outperforming all baselines and demonstrating robustness under few-shot settings.

4.3 GENERALIZATION EVALUATION

Figure 5: Weighted Kendall’s τw
of TIMETIC across 10 datasets for
different transferability estimation
scenarios: (i) known target models
on unseen datasets, (ii) unknown
target models on seen datasets, and
(iii) unknown target models on un-
seen datasets.

TIMETIC is applicable to a wide range of practical model se-
lection scenarios. It can estimate not only the performance of a
known model on a new dataset, but also that of a new model on
datasets where other models have already been evaluated. In
addition, it can handle the more challenging case of predicting
the performance of a new model on entirely unseen datasets.

To simulate these three scenarios, we adopt different construc-
tions of the context table: (i) known target models on unseen
datasets - the transfer processes of the target model on the
known datasets are encoded in the context table; (ii) unknown
target models on seen datasets - other models in the model
zoo for the dataset are encoded in the context table; (iii) un-
known target models on unseen datasets - other model transfer
processes in other datasets are encoded in the context table.
As shown in Figure 5, TIMETIC achieves consistently higher
rank correlations than relying solely on zero-shot performance
in all scenarios. These results highlight the practicality and
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Figure 6: Left: Effect of the number of time series features on transferability estimation; Middle:
Effect of entropy profile on transferability estimation across three scenarios: (i) known target models
on unseen datasets, (ii) unknown target models on seen datasets, and (iii) unknown target models on
unseen datasets. Right: Effect of context table size on transferability estimation.

generalizability of TIMETIC, as it requires only a limited number of observed examples as context
to estimate the performance of the unknown model on unseen datasets.

4.4 ABLATION STUDY

Time series feature number We examine how the number of statistical features impacts TIMETIC.
As shown in Figure 6 (left), we incrementally select the first k features that minimize TotalVariance.
The results show a consistent improvement as more features are added, since richer representations
enhance the discriminative power of the feature space and reduce epistemic uncertainty. However,
beyond 20 features, the performance drops slightly, suggesting that additional features introduce
redundancy and noise. This observation is consistent with Figure 3 (left), which shows that the
information captured by 20 features is nearly equivalent to that of 30 features.

Model characterization method Figure 6 (middle) evaluates the contribution of the entropy profile
to transferability estimation by comparing TIMETIC with and without it in three scenarios. When
the target model is known but the dataset is unseen, the entropy profile yields about 0.1 improve-
ment, indicating that entropy patterns provide useful signals for predicting fine-tuned performance.
In more challenging cases, where models are not seen, or both models and datasets are not seen,
the entropy profile plays a more critical role, increasing the generalization of TIMETIC by approx-
imately 0.2 and 0.15, respectively. This improvement comes from its ability to capture similarities
between models of different architectures or scales, enabling TIMETIC to infer the transferability of
unseen models from the transfer processes of known ones.

Context table size Another key factor influencing TIMETIC’s performance is the size of the con-
text table. Since TIMETIC frames transferability estimation as an in-context characteristic-to-
performance prediction task, the size of the context table determines how much prior knowledge
can be used for the target prediction. To examine this, we vary the number of time windows most
related to the target dataset when constructing the context table and evaluate the impact. As shown
in Figure 6 (right), increasing the size of the context from 1,000 to 6,000 substantially improves
performance, indicating that richer context information improves TIMETIC. And TIMETIC remains
robust even with only 100 time windows. This exhibits TIMETIC’s scalability with more known
transfer processes and its reliable performance under a limited context.

5 CONCLUSION

In this paper, we propose TIMETIC, a novel framework for estimating the transferability of time
series foundation models via in-context learning. By encoding model characteristics and data prop-
erties into a structured context table, TIMETIC effectively leverages the in-context learning capabil-
ity of tabular foundation models to provide flexible and accurate performance estimation on unseen
datasets. Furthermore, the proposed entropy-profile-based model characterization enhances scala-
bility and generalization, allowing the framework to adapt across diverse transferability estimation
scenarios. Comprehensive empirical evaluations demonstrate that TIMETIC consistently surpasses
existing methods in model ranking, yielding substantial improvements in correlation with fine-tuned
performance. These results establish TIMETIC as a robust and versatile tool for navigating the
rapidly expanding landscape of time series foundation models.
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kala, and Lenka Zdeborová. Entropy and mutual information in models of deep neural net-
works. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2018. URL https:
//api.semanticscholar.org/CorpusID:43925762.

Mohsen Gholami, Mohammad Akbari, Xinglu Wang, Behnam Kamranian, and Yong Zhang. Etran:
Energy-based transferability estimation. In IEEE/CVF International Conference on Computer
Vision, ICCV 2023, Paris, France, October 1-6, 2023, pp. 18567–18576. IEEE, 2023. doi: 10.
1109/ICCV51070.2023.01706. URL https://doi.org/10.1109/ICCV51070.2023.
01706.

Rakshitha Godahewa, C. Bergmeir, Geoffrey I. Webb, Rob J Hyndman, and Pablo Montero-Manso.
Monash time series forecasting archive. ArXiv, abs/2105.06643, 2021. URL https://api.
semanticscholar.org/CorpusID:234681550.

Yu. V. Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. In Neural Information Processing Systems, 2021. URL https://api.
semanticscholar.org/CorpusID:235593213.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
Moment: A family of open time-series foundation models. ArXiv, abs/2402.03885, 2024. URL
https://api.semanticscholar.org/CorpusID:267500205.

L’eo Grinsztajn, Klemens Floge, Oscar Key, Felix Birkel, Philipp Jund, Brendan Roof, Benjamin
Jager, Dominik Safaric, Simone Alessi, Adrian Hayler, Mihir Manium, Rosen Yu, Felix Jablonski,
Shi Bin Hoo, Anurag Garg, Jake Robertson, Magnus Buhler, Vladyslav Moroshan, Lennart Pu-
rucker, Clara Cornu, Lilly Charlotte Wehrhahn, Alessandro Bonetto, Bernhard Scholkopf, Sauraj
Gambhir, Noah Hollmann, and Frank Hutter. Tabpfn-2.5: Advancing the state of the art in tabu-
lar foundation models. 2025. URL https://api.semanticscholar.org/CorpusID:
282939803.

11

https://api.semanticscholar.org/CorpusID:202782600
https://api.semanticscholar.org/CorpusID:202782600
https://arxiv.org/abs/2502.14045
https://api.semanticscholar.org/CorpusID:49343335
https://api.semanticscholar.org/CorpusID:264172792
https://api.semanticscholar.org/CorpusID:264172792
https://api.semanticscholar.org/CorpusID:231740997
https://api.semanticscholar.org/CorpusID:231740997
https://api.semanticscholar.org/CorpusID:267897613
https://api.semanticscholar.org/CorpusID:267897613
https://arxiv.org/abs/2412.09880
https://api.semanticscholar.org/CorpusID:13178131
https://api.semanticscholar.org/CorpusID:13178131
https://api.semanticscholar.org/CorpusID:43925762
https://api.semanticscholar.org/CorpusID:43925762
https://doi.org/10.1109/ICCV51070.2023.01706
https://doi.org/10.1109/ICCV51070.2023.01706
https://api.semanticscholar.org/CorpusID:234681550
https://api.semanticscholar.org/CorpusID:234681550
https://api.semanticscholar.org/CorpusID:235593213
https://api.semanticscholar.org/CorpusID:235593213
https://api.semanticscholar.org/CorpusID:267500205
https://api.semanticscholar.org/CorpusID:282939803
https://api.semanticscholar.org/CorpusID:282939803


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Divij Gupta, Anubhav Bhatti, and Surajsinh Parmar. Beyond lora: Exploring efficient fine-tuning
techniques for time series foundational models, 2024. URL https://arxiv.org/abs/
2409.11302.

Trent Henderson and Ben D. Fulcher. Feature-based time-series analysis in r using the theft
package. ArXiv, abs/2208.06146, 2022. URL https://api.semanticscholar.org/
CorpusID:251554656.

Noah Hollmann, Samuel G. Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin
Hoo, Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data
with a tabular foundation model. Nature, 637:319 – 326, 2025. URL https://api.
semanticscholar.org/CorpusID:275420209.

Ting-Ji Huang, Xu-Yang Chen, and Han-Jia Ye. Seqfusion: Sequential fusion of pre-trained models
for zero-shot time-series forecasting. ArXiv, abs/2503.02836, 2025. URL https://api.
semanticscholar.org/CorpusID:276775468.

Ilya Kaufman and Omri Azencot. Analyzing deep transformer models for time series forecast-
ing via manifold learning. Trans. Mach. Learn. Res., 2024, 2024. URL https://api.
semanticscholar.org/CorpusID:273403876.

Alireza Kazemi, Helia Rezvani, and Mahsa Baktash. Benchmarking transferability: A frame-
work for fair and robust evaluation. ArXiv, abs/2504.20121, 2025. URL https://api.
semanticscholar.org/CorpusID:278171171.

Leonenko Kozachenko. Sample estimate of the entropy of a random vector. Probl. Pered. Inform.,
23:9, 1987.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-
term temporal patterns with deep neural networks. The 41st International ACM SIGIR Con-
ference on Research & Development in Information Retrieval, 2017. URL https://api.
semanticscholar.org/CorpusID:4922476.

Christiane Lemke and Bogdan Gabrys. Meta-learning for time series forecasting and forecast com-
bination. Neurocomputing, 73:2006–2016, 2010. URL https://api.semanticscholar.
org/CorpusID:43923341.

Yandong Li, Xuhui Jia, Ruoxin Sang, Yukun Zhu, Bradley Green, Liqiang Wang, and
Boqing Gong. Ranking neural checkpoints. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021, pp. 2663–
2673. Computer Vision Foundation / IEEE, 2021. doi: 10.1109/CVPR46437.2021.
00269. URL https://openaccess.thecvf.com/content/CVPR2021/html/Li_
Ranking_Neural_Checkpoints_CVPR_2021_paper.html.

Yuze Li and Wei Zhu. Trace: Time series parameter efficient fine-tuning, 2025. URL https:
//arxiv.org/abs/2503.16991.

Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan, and
Qingsong Wen. Foundation models for time series analysis: A tutorial and survey. Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2024. URL
https://api.semanticscholar.org/CorpusID:268667522.

Yuxuan Liang, Haomin Wen, Yutong Xia, Ming Jin, Bin Yang, Flora Salim, Qingsong Wen, Shirui
Pan, and Gao Cong. Foundation models for spatio-temporal data science: A tutorial and survey,
2025. URL https://arxiv.org/abs/2503.13502.

Haowei Lin, Baizhou Huang, Haotian Ye, Qinyu Chen, Zihao Wang, Sujian Li, Jianzhu Ma, Xiaojun
Wan, James Zou, and Yitao Liang. Selecting large language model to fine-tune via rectified
scaling law. ArXiv, abs/2402.02314, 2024. URL https://api.semanticscholar.org/
CorpusID:267411718.

12

https://arxiv.org/abs/2409.11302
https://arxiv.org/abs/2409.11302
https://api.semanticscholar.org/CorpusID:251554656
https://api.semanticscholar.org/CorpusID:251554656
https://api.semanticscholar.org/CorpusID:275420209
https://api.semanticscholar.org/CorpusID:275420209
https://api.semanticscholar.org/CorpusID:276775468
https://api.semanticscholar.org/CorpusID:276775468
https://api.semanticscholar.org/CorpusID:273403876
https://api.semanticscholar.org/CorpusID:273403876
https://api.semanticscholar.org/CorpusID:278171171
https://api.semanticscholar.org/CorpusID:278171171
https://api.semanticscholar.org/CorpusID:4922476
https://api.semanticscholar.org/CorpusID:4922476
https://api.semanticscholar.org/CorpusID:43923341
https://api.semanticscholar.org/CorpusID:43923341
https://openaccess.thecvf.com/content/CVPR2021/html/Li_Ranking_Neural_Checkpoints_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Li_Ranking_Neural_Checkpoints_CVPR_2021_paper.html
https://arxiv.org/abs/2503.16991
https://arxiv.org/abs/2503.16991
https://api.semanticscholar.org/CorpusID:268667522
https://arxiv.org/abs/2503.13502
https://api.semanticscholar.org/CorpusID:267411718
https://api.semanticscholar.org/CorpusID:267411718


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.
Timer: Generative pre-trained transformers are large time series models. In International
Conference on Machine Learning, 2024. URL https://api.semanticscholar.org/
CorpusID:267412273.

Fanqing Meng, Wenqi Shao, Zhanglin Peng, Chong Jiang, Kaipeng Zhang, Y. Qiao, and Ping Luo.
Foundation model is efficient multimodal multitask model selector. ArXiv, abs/2308.06262, 2023.
URL https://api.semanticscholar.org/CorpusID:260866006.

Cuong N. Nguyen, Phong Tran, Lam Si Tung Ho, Vu C. Dinh, Anh T. Tran, Tal Hassner, and
Cuong V. Nguyen. Simple transferability estimation for regression tasks. In Robin J. Evans and
Ilya Shpitser (eds.), Uncertainty in Artificial Intelligence, UAI 2023, July 31 - 4 August 2023,
Pittsburgh, PA, USA, volume 216 of Proceedings of Machine Learning Research, pp. 1510–1521.
PMLR, 2023. URL https://proceedings.mlr.press/v216/nguyen23a.html.

Cuong V. Nguyen, Tal Hassner, Matthias W. Seeger, and Cédric Archambeau. LEEP: A new
measure to evaluate transferability of learned representations. In Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, vol-
ume 119 of Proceedings of Machine Learning Research, pp. 7294–7305. PMLR, 2020. URL
http://proceedings.mlr.press/v119/nguyen20b.html.

Patrik Okanovic, Andreas Kirsch, Jannes Kasper, Torsten Hoefler, Andreas Krause, and Nez-
ihe Merve Gurel. All models are wrong, some are useful: Model selection with limited
labels. ArXiv, abs/2410.13609, 2024. URL https://api.semanticscholar.org/
CorpusID:273403569.
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A IMPLEMENTATIONS DETAILS

A.1 FEATURE SELECTION

In this section, we introduce two specific implementations for partitioning equivalence classes in
equation 1, along with a greedy search strategy for feature selection, as a supplement to Section 3.1.

Partitioning of equivalence classes Given characteristic–performance pairs T = (xi, yi)i>0, di-
rectly partitioning equivalence classes Xk based on high-dimensional features x is intractable, as
fine-grained clustering becomes unstable in such spaces. To address this, we adopt an approxima-
tion procedure combining dimensionality reduction and clustering. Specifically, we first standardize
x to zero mean and unit variance, then apply Principal Component Analysis (PCA) and retain the
first two components to obtain a reduced feature space. In this space, we cluster the samples into K
groups (K = 100 in our experiments), with each cluster index serving as a proxy for the equivalence
class Xk. Finally, TotalVariance is computed as the average variance across all non-empty clusters,
following Equation 1.

Greedy search strategy We describe the greedy feature selection algorithm in more detail in Al-
gorithm 1. The algorithm incrementally constructs the feature set by minimizing TotalVariance at
each step. This procedure guarantees that each iteration adds the feature that most reduces epistemic
uncertainty, until the marginal improvement becomes negligible.

A.2 TABPFN

In TIMETIC, we adopt TabPFN (Hollmann et al., 2025), a tabular foundation model pretrained on a
large collection of regression tasks, as the in-context learner. Both its checkpoint and source code
are publicly available. In this section, we provide additional details on TabPFN to help us understand
its role within our framework.

Model architecture TabPFN treats each cell in a table as a separate position within a sequence.
Given a context table and a target table for prediction, all cell values are first normalized using
the column-wise mean and standard deviation computed from the context table. These normal-
ized values are then transformed into embeddings through linear projection layers. As illustrated in
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Figure A: The TabPFN-based instance of TIMETIC. We encode observed model behaviors into a
context table (shown in blue) and represents new data and models in a target table (shown in red).
Then we leverage the in-context learning capabilities of TabPFN to predict the fine-tuned perfor-
mance on target tasks (denoted as blank cell). TabPFN is an adaptation of the standard Transformer
encoder, designed for tabular data using two types of attention mechanisms: one across features and
another across samples.

Algorithm 1: Greedy Feature Selection
Input: Feature matrix X ∈ Rn×d, target vector y ∈ Rn, threshold ϵ
Output: Selected feature set Fsel

Fsel ← ∅;
TVcurr ← inf;
repeat

best TV← TVcurr , f∗ ← None;
foreach f /∈ Fsel do

Xsel = Fsel(X) ∪ f∗(X);
TVf ← TotalVariance(Xsel, y);
if TVf < best TV then

best TV← TVf , f∗ ← f ;

if f∗ ̸= None and TVcurr − best TV ≥ ϵ then
Fsel ← Fsel ∪ {f∗};
TVcurr ← best TV;

until no improvement ≥ ϵ;

Figure A, the backbone of TabPFN employs two types of attention mechanisms within each Trans-
former block: attention across features (columns) and attention across samples (rows), each operat-
ing independently along its respective dimension. Finally, TabPFN addresses tabular regression by
predicting a probability distribution over possible target values rather than a single point estimate.

Inference cost TabPFN is computationally efficient and can be executed on consumer-grade hard-
ware in most scenarios. As reported by Hollmann et al. (2025), for a table with 10,000 rows and 10
columns, TabPFN completes the inference in approximately 0.2 seconds. The computational com-
plexity of the architecture scales quadratically with both the number of samples (n) and the number
of features (m), i.e. O(n2 + m2), while the memory footprint scales linearly with the size of the
table, O(n+m).

B BENCHMARK CONSTRUCTION

In this section, we describe the construction of our benchmark, which provides a critical foundation
for our experimental analysis. As illustrated in Figure B, the construction pipeline encompasses five
key aspects: collection of target datasets and models, unified fine-tuning, selection of baselines, and
evaluation protocol. Each of these aspects is elaborated in the following subsections.
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Target Datasets
10 Datasets across 4 Domains

5 Sampling Frequencies

5 Key Characteristics

Model Zoo
10 Representative Models

3 Model Architectures

10M~500M Parameters

Transferability Estimation

Meta-learning Methods

Metric-based Methods

Zero-shot Performance

Fine-tuning Framework

Full Fine-tuning

Unified Hyperparameters
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Transferred Performance
(Ground Truth)
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- Short-term
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2 Sample Regimes:
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Figure B: Overview of the benchmark construction. To comprehensively evaluate transferability
estimation methods for TSFMs, we construct a pipeline (99K) to derive ground-truth transferred
performance across 10 datasets, 10 models, and 3 forecasting horizons, under a unified fine-tuning
framework. In the evaluation stage (→), we compare TIMETIC against three categories of estimation
methods under both standard and few-shot sample regimes, measuring performance by the rank
correlation between estimated transferability scores and ground truth.

Table A: Benchmark dataset statistics and forecasting horizons.

Dataset Domain Freq. #Series Avg Len Min Len Max Len #Obs Variates Short-term Med-term Long-term

Len Win Len Win Len Win

KDD Cup 2018 (Godahewa et al., 2021) Nature H 270 10,898 9,504 10,920 2.94M 1 64 20 256 2 512 2
Jena Weather (Wu et al., 2021) Nature 10T 1 52,704 52,704 52,704 52,704 21 64 20 256 11 512 8
ETT2 (Zhou et al., 2020) Energy H 1 17,420 17,420 17,420 17,420 7 64 20 256 4 512 3
Electricity (Trindade, 2015) Energy H 370 35,064 35,064 35,064 12.97M 1 64 20 256 8 512 5
Solar (Lai et al., 2017) Energy H 137 8760 8760 8760 1,200,120 1 64 19 256 2 512 8
BizITObs - L2C (Palaskar et al., 2023) Web/CloudOps 5T 1 31,968 31,968 31,968 31,968 7 64 20 256 7 512 5
Bitbrains - rnd (Shen et al., 2015) Web/CloudOps 5T 500 8,640 8,640 8,640 4.32M 2 64 18 256 2 512 2
BizITObs - App (Palaskar et al., 2023) Web/CloudOps 10S 1 8,834 8,834 8,834 8,834 2 64 15 256 2 512 1
SZ-Taxi (Wang et al., 2023) Transport 15T 156 2,976 2,976 2,976 464,256 1 64 7 256 1 512 1
Loop Seattle (Wang et al., 2023) Transport 5T 323 105,120 105,120 105,120 33.9M 1 64 20 256 20 512 15

B.1 TARGET DATASETS

As shown in Table A, our benchmark comprises 10 datasets from four distinct domains, spanning 5
sampling frequencies. These datasets exhibit 5 typical time series characteristics—trend, seasonal-
ity, transition, stationarity, and shifting—with example cases illustrated in Figure C. Their diversity
simulates real-world TSFM transfer scenarios, providing a solid foundation for evaluating transfer-
ability estimation methods.

Following the gift benchmark (Aksu et al., 2024), we define short-, medium- and long-term fore-
casting tasks to evaluate the transfer performance of TSFM, reflecting the varied forecasting re-
quirements in transfer scenarios. The forecast horizons are set to 64, 256, and 512 time steps, with
corresponding context lengths of 256, 1024, and 2048. For each dataset, 90% of the data is used for
training and the remaining 10% for testing. During testing, time series are segmented into nonover-
lapping windows of length equal to the sum of the context length and forecasting horizon. These
settings, along with the number of test windows, are also summarized in Table A.

B.2 MODEL ZOO

Our benchmark includes a model zoo comprising 10 TSFMs drawn from 5 representative model
families, covering a wide spectrum of architectural designs and parameter scales—from 8 million
to 500 million parameters. Although all models are based on the Transformer architecture, their
performance varies significantly due to differences in encoder-decoder configurations, tokenization
schemes, dense versus sparse architectures, and the composition of their pretraining datasets. The

1https://huggingface.co/collections/Salesforce/moirai-r-models
2https://huggingface.co/google/timesfm-1.0-200m
3https://huggingface.co/amazon/chronos-t5-tiny
4https://huggingface.co/amazon/chronos-bolt-small
5https://huggingface.co/Maple728/TimeMoE-50M

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Tr
en
d

Se
as
on
al
ity

Tr
an
si
tio
n

St
at
io
na
rit
y

Sh
ift
in
g

Figure C: 10 datasets illustrating five typical time series characteristics.

Table B: Time series foundation model zoo.

Model Architecture Model Size Dataset Size Input Token Output Token

Moirai1 Encoder-only 14M 91M 231B Patch Patch
TimesFM2 Decoder-only 200M 500M 100B Patch Patch
Chronos3 Enc-Dec 8M 20M 84B Point Point
Chronos-bolt4 Enc-Dec 48M 205M 84B Patch Patch
Time-MoE5 Decoder-only 50M 200M 309B Point Patch

characteristics of the models in our zoo are summarized in Table B, and a brief introduction to each
model family is provided below:

Moirai (Woo et al., 2024) is an encoder-only Transformer that uses adaptive patch tokenization to
accommodate time series with varying frequencies, along with a flexible attention mechanism to
support multivariate inputs. It also features a patch-wise parameterized prediction head for distribu-
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Table C: Ground truth finetuned performance of various time series foundation models in short-term,
medium-term, and long-term forecasting tasks.

Dataset Chronos-
tiny

Chronos-
base

Chronos-bolt-
base

Chronos-bolt-
small

Moirai-
large

Moirai-
small

Time-MoE-
50M

Time-MoE-
200M

TimesFM-
200M

TimesFM-
500M

Short-term forecasting tasks
kdd cup 2018 with missing:H 1.085 0.997 0.763 0.850 1.025 1.004 0.916 0.993 1.092 0.972
jena weather:10T 2.314 1.752 1.557 1.515 1.905 1.523 1.422 1.285 1.229 1.158
ett2:H 1.161 1.194 1.036 1.007 1.064 1.090 1.085 1.093 1.134 1.084
electricity:H 1.135 0.945 0.941 0.872 1.062 1.203 0.938 0.947 1.355 1.206
solar:H 1.412 1.322 1.367 1.456 1.447 1.493 1.332 1.419 2.359 1.618
bizitobs l2c:5T 0.571 0.618 0.568 0.564 0.613 0.568 0.598 0.611 0.621 0.564
bitbrains rnd:5T 2.276 2.155 2.053 2.163 2.392 2.884 2.059 2.008 2.635 2.473
bizitobs application 2.847 3.176 2.842 2.805 2.734 3.246 2.719 2.681 2.917 3.164
SZ TAXI:15T 0.884 0.877 0.828 0.819 0.808 0.843 0.807 0.813 0.812 0.818
LOOP SEATTLE:5T 0.733 0.711 0.689 0.650 0.672 0.660 0.626 0.621 0.873 0.876

Medium-term forecasting tasks
kdd cup 2018 with missing:H 1.483 1.240 0.706 0.812 1.158 1.103 1.164 1.145 1.099 1.034
jena weather:10T 1.610 1.258 0.977 0.944 1.208 0.998 1.180 1.123 1.123 0.831
ett2:H 1.474 1.219 1.021 1.046 1.043 1.059 1.186 1.096 1.169 1.164
electricity:H 1.303 1.130 1.040 1.020 1.096 1.222 1.297 1.262 1.364 1.285
solar:H 1.270 0.968 1.153 1.262 1.169 1.118 0.767 0.871 1.694 1.227
bizitobs l2c:5T 1.147 1.125 1.222 1.128 0.991 1.003 1.688 1.661 1.331 1.184
bitbrains rnd:5T 1.895 1.742 1.419 1.702 2.076 2.818 3.501 2.743 2.306 2.107
bizitobs application 12.494 9.412 1.765 1.867 2.314 8.932 2.750 2.046 6.429 7.151
SZ TAXI:15T 0.901 0.914 0.816 0.804 0.797 0.817 0.827 0.821 0.843 0.815
LOOP SEATTLE:5T 1.152 0.857 0.890 0.850 0.798 0.753 1.175 0.970 0.928 0.973

Long-term forecasting tasks
kdd cup 2018 with missing:H 1.778 1.291 0.850 0.942 1.193 1.137 1.395 1.249 1.229 1.134
jena weather:10T 2.172 1.387 1.202 1.152 1.451 1.163 1.749 1.710 1.271 1.080
ett2:H 2.145 2.043 1.010 1.181 1.112 1.171 2.436 2.062 1.179 1.171
electricity:H 1.552 1.314 1.132 1.132 1.272 1.347 3.696 3.162 1.683 1.540
solar:H 1.355 0.916 1.031 1.161 1.015 1.109 0.843 0.946 1.848 1.182
bizitobs l2c:5T 1.140 1.127 0.783 0.804 0.562 0.966 0.992 0.982 1.246 1.138
bitbrains rnd:5T 1.861 1.545 1.161 1.181 1.740 2.181 1.590 1.742 2.104 1.836
bizitobs application 9.969 9.745 2.274 2.712 3.680 9.136 5.120 3.313 8.389 9.672
SZ TAXI:15T 0.874 0.932 0.810 0.816 0.776 0.787 0.817 0.809 0.834 0.792
LOOP SEATTLE:5T 1.251 0.919 0.864 0.851 0.977 0.785 1.065 1.012 0.974 0.895

tional forecasting. In our experiments, we include Moirai-small (14M) and Moirai-base (91M) as
candidate models.

TimesFM (Das et al., 2023) is a decoder-only Transformer tailored for time series forecasting. It
extends the standard decoder-only architecture by adopting patch-based tokenization and detok-
enization strategies, allowing it to effectively handle time series inputs and generate forecasts. We
include TimesFM-200M and TimesFM-500M in our candidate models.

Chronos (Ansari et al., 2024) is an LLM-based TSFM that repurposes the T5 encoder-decoder
architecture for time series forecasting. Instead of using T5’s original text-based tokenizer, Chronos
applies value quantization and dequantization to convert the regression task into a classification
problem. It is pretrained on a large-scale time series corpus comprising 84 billion time points.
Chronos-tiny (8M) and Chronos-min (20M) are included in our candidate models.

Chronos-bolt (Ansari et al., 2024) also builds on the T5 architecture but introduces significant dif-
ferences in tokenization and prediction strategies. It employs patch-based tokenization and replaces
autoregressive decoding with single-pass inference, predicting a fixed-length patch in each pass. For
longer forecasting horizons, it iteratively encodes the historical context and predicts a future patch.
We include Chronos-bolt-small (48M) and Chronos-bolt-base (205M) in our model zoo.

Time-MoE (Shi et al., 2025) is a sparse decoder-only Transformer incorporating a mixture-of-
experts (MoE) architecture to enable scalable time series forecasting. By leveraging sparse rout-
ing instead of a fully dense structure, Time-MoE scales effectively with minimal computational
overhead. It also uses point-wise embeddings and multi-scale patch-based predictions. We select
Time-MoE with two different sizes (50M and 200M) for inclusion in our model zoo.

B.3 GROUND TRUTH

To evaluate transferability estimation approaches, we fine-tune all models to obtain their actual
fine-tuned performance and ranking. A unified fine-tuning strategy is applied across all models to
eliminate variability introduced by the fine-tuning process itself, ensuring a fair comparison of their
transferability.

We choose to fine-tune all parameters of each model, which is a simple but general approach. Each
model is fine-tuned for 1 epoch using a batch size of 32 and a maximum sequence length of 2560.
Optimization is performed with the AdamW optimizer and a constant learning rate of 1e-5. The
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final checkpoint after 1 epoch is reserved for final evaluation on the test set to determine the actual
fine-tuned performance. All fine-tuning experiments are conducted on a single H100 GPU. The
actual fine-tuned results under the three forecasting tasks are reported in Table C.

B.4 BASELINES

LFC (Tran et al., 2019) adopts a linearized framework to approximate fine-tuning and measures
the Label-Feature Correlation to estimate transferability. We compute the mean LFC across all
token embeddings produced by the model backbone within the forecasting horizon, and use it as the
transferability score for each sample.

LogME (You et al., 2021) models transferability through estimating the maximum value of the target
label evidence given the target features extracted from the pre-trained model. We also compute the
mean LogME across all token embeddings produced by the model backbone within the forecasting
horizon, and use this as the transferability score for a given sample.

RegScore (Nguyen et al., 2023) assesses transferability by measuring the error of a linear regres-
sion model trained to predict labels from features. We compute the RegScore between all token
embeddings produced by the model backbone within the forecasting horizon and their correspond-
ing labels, and use the mean value as the transferability score for each sample.

Meta-learner. The general meta-learner in AutoForecast Abdallah et al. (2022a) is a linear model
designed to project dataset meta-features to model performance. In our experiments, we adapt this
meta-learner to predict fine-tuned performance based on data characteristics, model entropy profile,
and zero-shot performance. The training data is identical to the corpus collected for TIMETIC.

Zero-shot performance is the simplest proxy for estimating TSFM’s transferability. We use the
MASE to measure the zero-shot performance on a sample and use it as the transferability score.

B.5 EVALUATION METRICS

Weighted Kendall’s tau (τw) is a statistic that measures the ordinal association between two ranked
lists while assigning different importance to item pairs. It is defined as:

τw = 1−
2
∑

(i,j):i<j wij · I
[
(xi − xj)(yi − yj) < 0

]∑
(i,j):i<j wij

where wij is a nonnegative weight assigned to the pair (i, j), and I[·] is the indicator function that
equals 1 if the pair is discordant and 0 otherwise. By weighting different item pairs, τw allows em-
phasizing errors at the top of the ranking or other positions of interest. The value of τw ranges from
−1 (inverse ranking) to 1 (perfect agreement), with 0 indicating no ordinal correlation. Compared
with the standard Kendall’s tau, the weighted version provides greater flexibility in applications
where certain ranking positions are more critical than others.

Spearman’s rank correlation (ρ) is a nonparametric statistic that measures the monotonic associ-
ation between two ranked lists. It is defined as:

ρ = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)

where di is the difference between the ranks of the i-th item in the two lists, and n is the total number
of items being ranked. The value of ρ ranges from −1 (perfect inverse monotonic relationship)
to 1 (perfect monotonic agreement), with 0 indicating no monotonic correlation. Compared with
Kendall’s tau, Spearman’s ρ is based on rank differences rather than concordant and discordant
pairs, making it computationally simpler for large n.

Mean Absolute Scaled Error (MASE) evaluates forecast accuracy by comparing it to a naive base-
line. It is defined as:
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MASE =
1
T

∑T
t=1 |yt − ŷt|

1
T−m

∑T
t=m+1 |yt − yt−m|

where yt is the true value, ŷt is the predicted value, T is the length of the forecast period, and m
is the seasonality of the series (with m = 1 for non-seasonal data). The denominator represents
the in-sample mean absolute error of a naive forecasting method (e.g., seasonal naive). MASE is
scale-free and interpretable: a value less than 1 indicates the model outperforms the naive baseline.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 PERFORMANCE EVALUATION USING WEIGHTED KENDALL TAU

Tables D and E report the performance of transferability estimation methods in short-, medium-, and
long-term forecasting tasks in the standard and few-shot regimes. TIMETIC achieves the highest cor-
relations on most datasets, consistently outperforming all baselines. We also observed fluctuations
in transferability estimation performance across different forecast horizons within the same data
set, suggesting that the forecast horizon is an important factor influencing TSFM performance and
ranking. Moreover, dataset characteristics introduce varying challenges: for example, TIMETIC
performs poorly on the sz taxi dataset but consistently achieves strong results on the bitbrains rnd
dataset.

C.2 PERFORMANCE EVALUATION USING SPEARMAN CORRELATION

Tables F and G report the Spearman rank correlations of transferability estimation methods across
short-, medium-, and long-term forecasting tasks under both standard and few-shot regimes. Unlike
weighted Kendall’s τw, which emphasizes pairwise concordance with importance weights, Spear-
man correlation evaluates the global monotonic relationship between two rankings, making it more
sensitive to overall rank consistency. From the results, we observe that zero-shot performance pro-
vides a relatively strong baseline with higher correlation than other metrics. By incorporating richer
time series features and model characterization, TIMETIC achieves about a 30% improvement over
zero-shot performance on average.

C.3 DISCUSSIONS ON ENTROPY PROFILE

Figure D: Pearson correlation between each entropy-profile dimension and both finetuned perfor-
mance (left) and zero-shot performance (right). Overall, the entropy profile shows a positive cor-
relation with both finetuned and zero-shot performance. Zero-shot performance tends to correlate
more strongly with the cross-entropy of deeper-layer features, whereas this layer-dependent pattern
is less evident for finetuned performance.

Correlation between entropy profile and performance. Figure D shows the Pearson correla-
tion between each entropy-profile dimension and both finetuned and zero-shot performance. The
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Table D: Performance comparison of transferability estimation methods for short-term, medium-
term, and long-term forecasting under standard evaluation.

Downstream Target Datasets
Method kdd cup bizitobs l2c electricity solar sz taxi jena weather ett2 bitbrains rnd bizitobs app loop seattle Mean

Short-term forecasting

LFC 0.036 -0.038 -0.437 0.618 -0.448 -0.605 -0.471 -0.441 0.007 0.638 -0.114
LogME 0.432 -0.245 0.040 0.519 -0.556 -0.093 -0.528 0.016 0.162 -0.272 -0.053
RegScore -0.354 -0.178 -0.301 -0.677 0.069 -0.274 -0.510 0.041 -0.294 -0.246 -0.272
Meta learner -0.281 0.339 0.221 0.266 0.304 -0.120 0.260 -0.473 -0.149 0.159 0.053
Zero-shot 0.406 -0.044 -0.253 0.444 0.038 0.411 -0.157 0.144 0.110 0.471 0.157

TIMETIC 0.463 0.320 0.218 0.159 0.152 0.372 0.190 0.606 0.112 0.456 0.305

Medium-term forecasting

LFC -0.130 0.016 -0.301 0.510 -0.289 -0.435 -0.394 -0.296 0.016 0.402 -0.106
LogME -0.205 0.411 0.119 -0.147 -0.328 -0.169 -0.631 -0.474 0.411 0.001 -0.138
RegScore 0.200 -0.131 -0.296 -0.226 0.491 0.135 0.317 -0.105 0.274 -0.320 0.034
Meta learner 0.680 -0.320 -0.015 0.105 -0.436 0.205 0.260 0.266 -0.504 0.177 0.042
Zero-shot 0.386 -0.053 0.075 0.187 0.632 0.850 0.678 0.002 0.417 0.115 0.329

TIMETIC 0.137 0.522 0.426 0.574 0.061 0.561 0.536 0.530 0.485 0.459 0.429

Long-term forecasting

LFC -0.079 0.385 0.005 0.597 -0.499 -0.317 0.234 -0.102 0.330 0.451 0.101
LogME -0.283 -0.511 -0.052 -0.256 -0.411 0.354 -0.254 -0.321 0.346 0.013 -0.138
RegScore 0.307 -0.146 -0.606 -0.340 0.717 0.264 0.334 -0.295 0.241 -0.300 0.018
Meta learner 0.411 -0.119 0.105 -0.221 -0.437 -0.467 0.008 0.105 0.084 -0.361 -0.089
Zero-shot 0.393 0.518 -0.079 0.099 0.489 0.346 0.251 -0.013 0.547 0.242 0.279

TIMETIC 0.215 0.632 0.197 0.334 0.052 0.037 0.327 0.632 0.445 0.038 0.319

Table E: Performance comparison of transferability estimation methods for short-term, medium-
term, and long-term forecasting under few-shot evaluation.

Downstream Target Datasets
Method kdd cup bizitobs l2c electricity solar sz taxi jena weather ett2 bitbrains rnd bizitobs app loop seattle Mean

Short-term forecasting (few-shot)

LFC 0.316 0.266 0.282 0.628 -0.182 -0.631 0.187 -0.180 0.124 0.551 0.136
LogME 0.080 0.114 -0.033 0.257 -0.559 0.067 -0.626 -0.199 -0.432 -0.268 -0.160
RegScore -0.215 -0.254 0.001 -0.166 0.175 0.245 0.357 0.383 -0.104 -0.179 0.024
Meta learner -0.366 0.277 0.221 0.266 0.263 -0.120 0.374 -0.367 -0.184 0.272 0.064
Zero-shot 0.019 -0.144 -0.078 0.445 0.145 0.350 0.157 -0.051 0.119 0.346 0.131

TIMETIC 0.538 0.286 0.285 0.316 0.134 0.293 0.107 0.451 0.442 0.241 0.320

Medium-term forecasting (few-shot)

LFC 0.110 0.140 -0.186 0.686 -0.133 -0.288 -0.044 -0.039 0.016 0.339 0.060
LogME -0.143 0.487 -0.255 -0.256 -0.328 -0.198 -0.605 -0.314 0.411 0.007 -0.119
RegScore 0.530 0.436 -0.132 -0.277 0.481 0.326 0.505 0.095 0.274 -0.203 0.204
Meta learner 0.680 -0.184 -0.015 0.105 -0.436 0.455 0.207 -0.081 -0.505 0.177 0.040
Zero-shot 0.508 0.067 0.075 0.186 0.405 0.781 -0.081 0.047 0.417 0.213 0.262

TIMETIC 0.137 0.451 0.338 0.593 0.061 0.527 0.436 0.340 0.485 0.459 0.383

Long-term forecasting (few-shot)

LFC 0.052 0.324 0.310 0.594 -0.528 -0.280 0.265 -0.433 0.330 0.384 0.102
LogME -0.283 -0.415 0.019 -0.374 -0.411 0.015 -0.144 -0.429 0.346 -0.083 -0.176
RegScore 0.361 -0.174 -0.546 -0.453 0.612 0.175 0.442 -0.518 0.241 0.046 0.019
Meta learner 0.411 -0.119 0.105 -0.221 -0.437 0.095 -0.040 0.089 0.084 -0.414 -0.045
Zero-shot 0.425 0.536 0.001 0.152 0.508 0.408 0.376 0.071 0.547 0.173 0.320

TIMETIC 0.305 0.672 0.197 0.334 0.088 0.226 0.469 0.458 0.445 0.046 0.323
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Table F: Spearman ranking correlation of transferability estimation methods for short-term, medium-
term, and long-term forecasting under standard evaluation.

Downstream Target Datasets
Method kdd cup bizitobs l2c electricity solar sz taxi jena weather ett2 bitbrains rnd bizitobs app loop seattle Mean

Short-term forecasting

LFC 0.261 -0.079 -0.539 0.467 -0.624 -0.576 -0.624 -0.479 0.152 0.612 -0.143
LogME 0.358 -0.042 0.152 0.770 -0.673 -0.273 -0.612 0.394 0.115 -0.527 -0.034
RegScore -0.491 0.055 -0.479 -0.745 0.285 -0.018 -0.648 0.006 -0.236 -0.345 -0.262
Meta learner -0.273 0.624 0.309 0.079 0.273 -0.188 0.358 -0.685 -0.139 -0.164 0.019
Zero-shot 0.588 -0.067 -0.212 0.564 -0.006 0.527 0.200 0.188 0.139 0.648 0.257

TIMETIC 0.661 0.291 0.394 0.067 0.176 0.261 0.103 0.503 0.345 0.733 0.353

Medium-term forecasting

LFC -0.212 0.103 -0.333 0.442 -0.224 -0.479 -0.503 -0.261 0.273 0.515 -0.068
LogME -0.358 0.115 0.018 -0.127 -0.394 -0.297 -0.794 -0.491 0.236 0.236 -0.185
RegScore 0.188 -0.224 -0.419 -0.176 0.261 0.236 0.164 0.006 0.370 -0.285 0.012
Meta learner 0.624 -0.164 0.030 -0.176 -0.467 0.176 0.382 0.345 -0.721 -0.091 -0.006
Zero-shot 0.648 0.078 0.212 0.030 0.794 0.903 0.697 0.358 0.515 0.430 0.467

TIMETIC 0.521 0.697 0.682 0.539 0.394 0.582 0.733 0.555 0.697 0.600 0.600

Long-term forecasting

LFC -0.103 0.685 -0.030 0.394 -0.467 -0.297 0.042 -0.273 0.697 0.358 0.101
LogME -0.345 -0.733 -0.067 -0.224 -0.370 0.491 -0.358 -0.333 0.176 -0.018 -0.178
RegScore 0.236 -0.236 -0.657 -0.333 0.612 0.273 0.612 -0.273 0.176 -0.455 -0.004
Meta learner 0.564 -0.152 0.345 -0.261 -0.358 -0.382 0.321 0.006 -0.139 -0.552 -0.061
Zero-shot 0.684 0.455 0.176 -0.055 0.539 0.552 0.527 0.309 0.321 0.297 0.381

TIMETIC 0.527 0.830 0.552 0.078 0.285 0.079 0.539 0.673 0.539 0.079 0.418

Table G: Spearman ranking correlation of transferability estimation methods for short-term,
medium-term, and long-term forecasting under few-shot evaluation.

Downstream Target Datasets
Method kdd cup bizitobs l2c electricity solar sz taxi jena weather ett2 bitbrains rnd bizitobs app loop seattle Mean

Short-term forecasting (few-shot)

LFC 0.467 0.382 0.333 0.479 -0.176 -0.770 0.236 -0.164 -0.224 0.539 0.110
LogME -0.103 0.333 -0.261 0.430 -0.624 -0.115 -0.721 -0.321 -0.600 -0.588 -0.257
RegScore -0.006 -0.115 0.103 -0.236 0.091 0.394 0.297 0.543 -0.079 -0.309 0.068
Meta learner -0.321 0.515 0.309 0.079 0.236 -0.188 0.394 -0.636 -0.164 -0.018 0.021
Zero-shot 0.248 -0.139 0.103 0.612 0.188 0.430 0.297 -0.042 0.297 0.370 0.236

TIMETIC 0.576 0.394 0.394 0.479 0.152 0.370 0.139 0.648 0.552 0.291 0.399

Medium-term forecasting (few-shot)

LFC 0.224 0.418 -0.212 0.539 -0.103 -0.418 -0.321 -0.055 0.273 0.479 0.082
LogME -0.248 0.515 -0.333 -0.297 -0.394 -0.321 -0.758 -0.261 0.236 0.212 -0.165
RegScore 0.600 0.612 0.025 -0.115 0.273 0.321 0.442 0.030 0.370 -0.139 0.242
Meta learner 0.624 0.006 0.030 -0.176 -0.467 0.285 0.236 0.018 -0.721 -0.091 -0.025
Zero-shot 0.660 0.042 0.212 0.030 0.648 0.855 0.006 0.248 0.515 0.576 0.379

TIMETIC 0.321 0.624 0.285 0.588 0.394 0.345 0.515 0.321 0.697 0.600 0.469

Long-term forecasting (few-shot)

LFC -0.042 0.661 0.127 0.382 -0.394 -0.224 0.091 -0.588 0.697 0.345 0.105
LogME -0.345 -0.636 -0.079 -0.394 -0.370 0.127 -0.273 -0.539 0.176 -0.091 -0.242
RegScore 0.552 -0.188 -0.644 -0.467 0.430 0.370 0.685 -0.673 0.176 0.200 0.044
Meta learner 0.564 -0.152 0.345 -0.261 -0.358 0.067 0.224 0.006 -0.139 -0.588 -0.029
Zero-shot 0.697 0.455 0.273 0.006 0.564 0.685 0.648 0.248 0.321 0.236 0.413

TIMETIC 0.539 0.842 0.552 0.079 0.273 0.188 0.576 0.539 0.539 0.418 0.451
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(a) (b) (c) (d)

Figure E: (a) Influence of the entropy-profile dimensionality on transferability estimation. (b–d)
Entropy profiles of models across three datasets with different characteristics.

entropy of middle-layer features exhibits a positive correlation with both finetuned and zero-shot
performance. Zheng et al. (2017) suggested that higher entropy indicates a more informative feature
space in the pre-trained model, which is not overly biased toward any single pattern and therefore
demonstrates greater transferability.

Dimensionality of the entropy profile. We also evaluate how the dimensionality of the entropy
profile affects transferability estimation, as shown in Figure E (a). When a model has fewer layers
than the predefined entropy-profile dimensionality, we pad the profile by repeating the final layer’s
entropy value. When a model has more layers, we apply average pooling to downsample it to the
target length. We observe that removing the entropy profile or using fewer than four dimensions
significantly degrades estimation performance. Once the dimensionality reaches four or more, fur-
ther increases yield no additional gains. Additionally, deeper models typically exhibit smoother
entropy evolution across layers; thus, for current TSFMs with up to 32 layers, applying up to a 4×
downsampling does not distort the overall information-flow representation.

Data influence on the entropy profile. In Figure E (b-d), we compare entropy profiles across
three datasets: Bitbrains-rnd (seasonal, 5T sampling), BizITObs-App (seasonal, 10s sampling), and
BizITObs-L2c (trend-dominant, 5T sampling). For datasets with the same sampling frequency, L2c
exhibits substantially higher information entropy than rnd, suggesting that trend-dominated signals
carry more information than purely seasonal ones. When comparing rnd and App, the App dataset
shows a higher entropy having a higher sampling frequency, which may indicate that denser temporal
sampling captures richer patterns than lower-frequency signals. Although the entropy profile varies
with dataset characteristics, the overall entropy-flow pattern—i.e., the shape of the profile—remains
similar within a model family. This similarity provides a useful cue for TIMETIC to identify model
similarity.

Characteristics Complexity
Entropy Profile O(N · C)
Fisher Information O(N · C + P 2)
H-score O(N · C +N2 ·D)
Gradient Statistics O(N · C +N ·B)

Table H: Computational complexity of
model characterization methods

Figure F: Pearson correlation between each di-
mension of different model (TimesFM 200M)
characteristics and finetuned performance.

Comparison of different model characteristics. From the perspective of deep model interpretabil-
ity, many characteristics have been proposed to quantify a model’s transferability potential. Ex-
amples include Fisher Information (Achille et al., 2019), which measures the sensitivity of model
parameters to data; the H-score (Bao et al., 2019b), which captures the distance between the source
model’s feature or prediction distribution and that of the target task; and Principle Gradient Expec-
tation (Qi et al., 2022), which estimates transferability by comparing gradient differences between
the source and target datasets. Although these characteristics may provide effective measures for

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

transferability, their high computational cost contradicts the core design principle of flexibility in
TIMETIC. In contrast, the entropy profile requires only a single forward pass followed by entropy
computation, offering a simple yet effective characteristic for transferability estimation. Table H
summarizes the computational complexity of these methods, where N is the number of samples for
transferability estimation, C is the cost of a TSFM forward pass per sample, P is the total number
of TSFM parameters, D is the dimension of the extracted feature vector, and B is the compute cost
of a TSFM backward pass.

Under the controlled setting of single-pass inference, we further compare the layer-wise average
activation magnitude (AM) and the mutual information (MI) between layer features and input time
series with the entropy profile (EP). Following the setup for the entropy profile, we downsample both
the average activation magnitude and mutual information sequences to a length of six. As shown
in Figure F, the entropy profile and mutual information exhibit similar Pearson correlations with
finetuned performance, since feature information entropy essentially represents the upper bound of
mutual information. In contrast, the average activation magnitude shows only a weak correlation
with finetuned performance.

Table I: Performance comparison of different regressors in TIMETIC. Transferability estimation
results are reported for medium-term forecasting using a context table of 1,000 rows.

Datasets
Method kdd cup bizitobs l2c electricity solar sz taxi jena weather ett2 bitbrains rnd bizitobs app loop seattle Mean

Lasso 0.347 0.024 -0.263 -0.120 0.162 0.692 0.673 -0.101 0.186 0.117 0.172
XGB 0.447 0.234 0.484 -0.090 0.197 0.654 0.583 0.148 0.127 0.459 0.324
CatBoost 0.345 0.204 0.426 -0.029 -0.028 0.598 0.558 0.207 0.132 0.414 0.240
FTFormer 0.227 -0.321 0.092 -0.148 0.058 0.525 0.420 0.005 0.140 -0.448 0.055
SAINT 0.256 -0.024 0.233 0.275 0.183 0.232 0.540 -0.058 0.072 -0.070 0.164

TabPFN 0.137 0.522 0.426 0.574 0.061 0.561 0.536 0.530 0.485 0.459 0.429

C.4 DISCUSSIONS ON TABULAR FOUNDATION MODEL

Figure G: Average RMSE (top)
and Spearman correlation (bottom)
of predictions from different re-
gressors.

Comparison of different regressors. Table I reports the
transferability estimation performance of TIMETIC with var-
ious regressors, including sparse linear models (Lasso), tree-
based models (XGB and CatBoost), and tabular expert mod-
els (FTFormer (Gorishniy et al., 2021) and SAINT (Somepalli
et al., 2021)). For these methods, we train using a 1,000-row
table, whereas TabPFN uses the table directly as context at
inference time. TabPFN achieves the best transferability es-
timation performance, with XGB ranking second. Figure G
further compares prediction error and Spearman correlation:
although TabPFN’s prediction error is comparable to that of
other tabular models, it achieves a higher ranking correlation.
In contrast, SAINT shows the opposite behavior: despite hav-
ing a prediction error comparable to other models, it achieves
the lowest Spearman correlation. This likely stems from over-
fitting to the training datasets—its predictions collapse toward
the expected value of the target. Although this yields small
absolute errors, such predictions fail to preserve ranking infor-
mation and therefore perform poorly in transferability estima-
tion.

Motivation for introducing TabPFN. (1) Strong general regression capability: TabPFN is trained
on a large collection of tabular datasets, giving it a strong ability to model relationships among
features. Works (Hollmann et al., 2025; Grinsztajn et al., 2025) have shown that TabPFN achieves
superior zero-shot regression performance on multiple large open benchmarks (TabArena, AutoML,
and OpenML-CTR23) compared to classical regressors that require training. (2) Flexible in-context
learning capability: Transferability estimation scenarios naturally produce context tables of varying
sizes—ranging from only a few fine-tuning results to continuously growing collections over time.
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TabPFN relies on in-context learning, requires no training, and supports a wide range of context table
sizes, allowing the table to be reorganized or expanded freely with no retraining cost. (3) No hyper-
parameter tuning: Standard regressors require careful adjustment of training hyper-parameters for
different context table sizes to ensure convergence and avoid overfitting. As a foundation model,
TabPFN offers a more robust solution without any hyper-parameter optimization.

C.5 DISCUSSIONS ON MODEL SELECTION EFFICIENCY

Enumerative finetuning cost. Using the Electricity dataset with 12M time points as an example,
TimesFM with 500M parameters takes about 15 hours 30 minutes per epoch on a single A100 GPU.
And Moirai small with 14M parameters requires approximately 4 hours 30 minutes to finetune for
one epoch. The overall finetuning time cost is therefore substantial, especially it will constantly
increases when evaluating a larger candidate model zoo. Moreover, since not all TSFMs share a
unified training pipeline, significant human effort is also required to set up training procedures,
further increasing the overall cost.

TimeTic finetuning cost. In TIMETIC, context construction requires only limited offline finetuning
on a few datasets, decoupling the one-time finetuning cost from the potentially unbounded num-
ber of future target scenarios. For example, when estimating the model zoo’s performance on the
Electricity dataset using finetuning results from ETT2—which contains only 1/764 of Electricity’s
time points—finetuning TimesFM (500M parameters) on ETT2 takes just 12 minutes. Constructing
a context table that aggregates the entire model zoo’s finetuning experience therefore requires only
about 1.3% of the time needed for full enumerative finetuning. With TIMETIC, we can estimate the
model ranking on Electricity dataset with only about 1.3% finetuning time.

D UNCERTAINTY ANALYSIS

We define the performance estimation task as modeling the conditional distribution p(y|x), where y
denotes a model’s actual fine-tuned performance on the raw time series x. The optimal performance
of a regressor fθ is fundamentally limited by the aleatoric uncertainty, Var(y|x), inherent in the
true distribution p(y|x). Formally, the expected squared error of a pointwise regressor fθ for each
input x is lower-bounded by this variance:

Ey∼p(y|x)
[
(y − fθ(x))

2
]
≥ Var(y | x).

In practice, however, observations are restricted to feature-based representations ϕ(x), which only
partially capture x. As a result, the regressor cannot distinguish between states where ϕ(x) = ϕ(x′)
but x ̸= x′. This induces additional epistemic uncertainty, raising the lower bound of the expected
error from Var(y|x) to the larger Var(y|ϕ(x)):

Ey∼p(y|x)
[
(y − fθ(x))

2
]
≥ Var(y | ϕ(x)).

Similar bounds also hold for regression-derived metrics such as rank correlations: if multiple y-
values share identical feature representations ϕ(x), their relative rankings cannot be determined.
Hence, to minimize epistemic uncertainty, it is crucial for the regressor to incorporate as many
informative features as possible. This insight motivates our use of TotalVariance as a practical
proxy for epistemic uncertainty and explains why TIMETIC emphasizes rich feature and model
characterizations to improve transferability estimation. Moreover, TotalVariance can also serve
as an uncertainty metric to guide context table construction, where minimizing it helps reduce the
lower bound of estimation error.

E USE OF LARGE LANGUAGE MODELS

In preparing this paper, we used large language models solely to improve the clarity and readability
of the writing. All substantive research contributions, including conceptualization, model design,
experimentation, and analysis, were conducted entirely by the authors.
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