

000 001 002 003 004 005 006 007 008 009 010 ESTIMATING TIME SERIES FOUNDATION MODEL 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 TRANSFERABILITY VIA IN-CONTEXT LEARNING 031 032 033

034 **Anonymous authors**

035 Paper under double-blind review

036 ABSTRACT

037 Time series foundation models (TSFMs) offer strong zero-shot forecasting via
038 large-scale pre-training, yet fine-tuning remains critical for boosting performance
039 in domains with limited public data. With the growing number of TSFMs, effi-
040 ciently identifying the best model for downstream fine-tuning becomes increas-
041 ingly challenging. In this work, we introduce TIMETIC, a transferability estima-
042 tion framework that recasts model selection as an in-context-learning problem:
043 given observations on known (source) datasets, it predicts how a TSFM will per-
044 form after fine-tuning on a downstream (target) dataset. TIMETIC flexibly orga-
045 nizes observed model–data relationships as contextual information, allowing it to
046 adapt seamlessly to diverse test-time scenarios. Leveraging the natural tabular
047 structure formed by dataset meta-features, model characteristics, and fine-tuned
048 performance, we employ tabular foundation models to serve as in-context learn-
049 ers. We further introduce a novel model characterization based on entropy evo-
050 lution across model layers, capturing embedding-space distinctions and enabling
051 TIMETIC to generalize across arbitrary model sets. We establish a comprehen-
052 sive benchmark for transferability estimation including 10 datasets, 10 founda-
053 tion models, and 3 forecasting tasks. On this benchmark, TIMETIC’s estimation
054 demonstrates strong alignment with actual fine-tuned performance for previously
055 unseen datasets, achieving a mean rank correlation of approximately 0.6 and a
056 30% improvement compared to using zero-shot performance as the transferability
057 score. Source code is available at <https://anonymous.4open.science/r/ICLR2026-TimeTic-3975>.

058 1 INTRODUCTION

059 The emergence of time series foundation models (TSFMs) is reshaping the paradigm of time series
060 forecasting (Liang et al., 2025) through their strong zero-shot capabilities. Although efficient and
061 cost-effective, zero-shot inference often underperforms in out-of-distribution scenarios, particularly
062 in domains with limited public data, such as healthcare (Gupta et al., 2024) and finance (Fu et al.,
063 2024). Fine-tuning helps bridge the gap by transferring generalized knowledge from large-scale
064 pre-training to specific, resource-limited downstream tasks (Li & Zhu, 2025). However, due to
065 the inherent diversity of time series data, no single model consistently outperforms others in all
066 scenarios (Brigato et al., 2025). Selecting the most appropriate model from all available models
067 becomes a critical consideration that directly impacts the performance of downstream tasks (Ding
068 et al., 2024). A straightforward approach would be to enumerate all available TSFMs and evaluate
069 their fine-tuned performance, but this is impractical due to the significant computational cost and
070 extensive training time required, as shown in Figure 1 (a). Therefore, a crucial question arises: *how*
071 *can we efficiently identify the best candidate time series model to fine-tune for a given test-time*
072 *scenario with limited data?*

073 Existing efficient model selection techniques generally fall into two categories: (1) statistical met-
074 ics (You et al., 2021; Nguyen et al., 2023) and (2) meta-learning strategies (Öztürk et al., 2022;
075 Abdallah et al., 2022b). Most statistical metrics are designed for image classification and depend
076 on strong assumptions about the class structure (Li et al., 2021; Gholami et al., 2023). Although
077 computationally efficient, they are predefined and uniformly applied across scenarios, limiting their
078 adaptability to diverse time series forecasting tasks and models. Meta-learning methods instead train

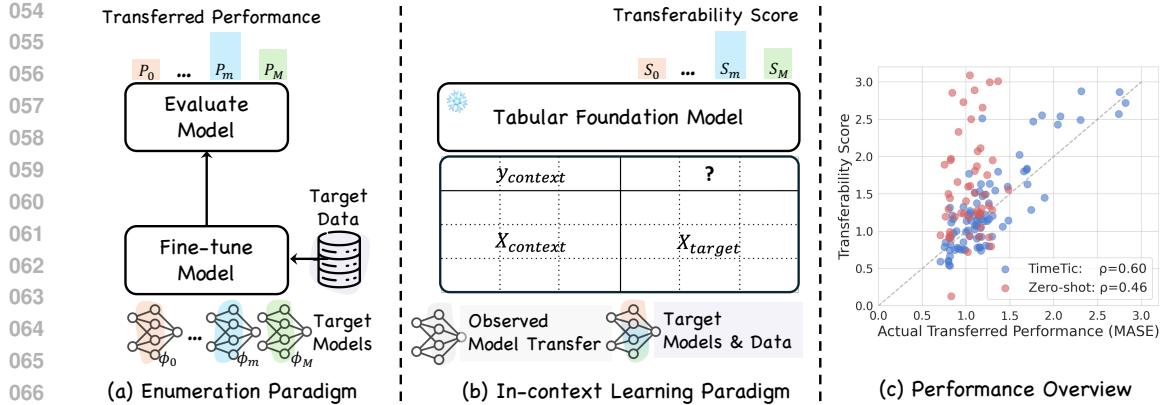


Figure 1: Model selection paradigms. **(a)** Enumeration paradigm: Each TSFM is fine-tuned on the target data, and their performances P_m are evaluated to select the best model. **(b)** In-context learning paradigm: Observed model transfers are organized into a context table (X_{context} , y_{context}) composed of characteristic–performance pairs. This table provides exemplars for a tabular foundation model, which then predicts the transferred performance S_m of a target model on new data, given its target table X_{target} . **(c)** Performance overview: The transferability scores estimated by TIMETIC show a strong alignment with actual fine-tuned performance, achieving more than a 30% higher Spearman rank correlation compared to ranking models based on their zero-shot performance.

a meta-estimator on task-performance pairs to predict fine-tuned performance. However, the estimator is tied to its (fixed) training corpus and a predefined model set, restricting its ability to generalize to new tasks or models. In general, existing approaches lack the adaptability needed for transferability estimation in practical settings with TSFMs, where test-time scenarios are open-ended and constantly evolving.

In this study, we present TIMETIC, a framework for estimating the transferability of TSFMs by casting performance prediction as an in-context learning task: given a model’s transferred performance on known datasets, predict its finetuned performance on a new target dataset. As illustrated in Figure 1(b), this paradigm allows flexible organization of historical data to make informed predictions. To this end, we integrate past observations into a tabular representation, consolidating models, datasets, and transferred performance within a structured table. This format not only facilitates scalability with growing observational data but also clearly captures interrelationships among entities. Recent advances in tabular foundation models have demonstrated strong in-context learning capabilities for structured data (Robertson et al., 2025; Hollmann et al., 2025). Building on this, we employ a tabular foundation model as the in-context learner, enabling efficient prediction of target model performance from past transfer observations. To scale across a growing variety of TSFMs, we further introduce a novel model characterization strategy based on entropy evolution across layers. This architecture-agnostic approach allows TIMETIC to generalize effectively to various types of models. Extensive experiments on 10 datasets, 10 TSFMs, and 3 forecast settings demonstrate that TIMETIC consistently outperforms existing methods, achieving an average Spearman rank correlation of approximately 0.6 and delivering a 30% improvement over rankings based on zero-shot performance, as shown in Figure 1(c).

The main contributions of this paper are summarized as follows:

- We propose TIMETIC, the first in-context transferability estimation framework for TSFMs, **leveraging tabular foundation models to predict fine-tuned performance from an arbitrary number of past transfer observations**. This offers a more practical and efficient alternative to current methods.
- We introduce a model-agnostic characterization of TSFMs based on the entropy profile, the trajectory of token sequence entropy across model layers. **This enables TIMETIC to estimate transferability on unseen model classes, without being restricted to a fixed candidate set**.
- We construct a comprehensive transferability benchmark that spans 10 widely used datasets, 10 time series foundation models, and 3 forecasting tasks, and demonstrate that TIMETIC outperforms existing approaches by more than 30% in model transferability estimation.

108 **2 RELATED WORK**

110 **Time series foundation model** Time series forecasting is critical to decision making, driving advances in both statistical and domain-specific deep learning approaches (Liang et al., 2024). Recently, the focus has shifted to TSFMs because of their strong generalization. Transformer has become the dominant architecture in TSFMs, which fall into three categories: (1) *Encoder-only models*, such as Moirai (Woo et al., 2024) and Moment (Goswami et al., 2024), using mask prediction for forecasting. (2) *Encoder-decoder models*, exemplified by the Chronos family (Ansari et al., 2024), which adapts T5 (Raffel et al., 2019) with quantization-based tokenization for time series forecasting. (3) *Decoder-only models*, including TimesFM (Das et al., 2023), Lag-Llama (Rasul et al., 2023), Timer (Liu et al., 2024) and Time-MoE (Shi et al., 2025), employing autoregressive generation for future prediction.

120 **Transferability metric** Assessing the transferability of pretrained models is essential for model selection (Okanovic et al., 2024; Lin et al., 2024). Transferability metrics generally aim to quantify the statistical relationship between feature embeddings and sample labels. Most metrics such as H-Score (Bao et al., 2019a), NCE (Tran et al., 2019) and LEEP (Nguyen et al., 2020) are primarily designed for classification tasks, relying on the assumption that model outputs follow a categorical distribution. **However, in most TSFMs, the final output is continuous, making these metrics nonsensical without discretization.** Only a few metrics such as LFC (Deshpande et al., 2021), LogME (You et al., 2021), and RegScore (Nguyen et al., 2023) are applicable in broader tasks by estimating transferability through similarity of the characteristic of the label, marginal likelihood and linear regression error, respectively.

130 **Learning to select** Early work (Lemke & Gabrys, 2010) explored meta-learning strategies that leverage time series characteristics to predict the performance of forecasting models, demonstrating that model accuracy often correlates with data properties. Along this line, FFORMPP (Talagala et al., 2019) and AutoForecast (Abdallah et al., 2022a) train meta-estimators - Bayesian and mixed architecture, respectively - on feature-performance pairs to identify the best model from a predefined pool. Instead of feature-based regression, SeqFusion (Huang et al., 2025) embeds both time series and candidate models into a shared representation space, allowing selection via similarity search. However, its effectiveness heavily depends on encoder quality (Zhang et al., 2023; Meng et al., 2023), which is difficult to guarantee for unseen models or data. More recently, Wei et al. (2025) have probed LLMs for model selection by encoding the model and data information in prompts and relying on LLM reasoning. Although promising, such approaches remain unreliable due to their opacity. In general, despite progress, generalizable model selection, scalable to unseen models and datasets, remains an open challenge. In particular, with the rapid proliferation of TSFMs, model selection method for TSFMs is still unexplored.

144 **3 METHODOLOGY**

146 **Problem setup** In model selection, we consider a set of M candidate models $\{\phi_i\}_{i=1}^M$, and a target dataset D . Each model has a ground truth transferred performance P_i , obtained by fine-tuning ϕ_i on the dataset D , and evaluating it with a metric, e.g., mean absolute scaled error (MASE), a scale-independent measure (Talagala et al., 2019). A transferability estimation method aims to produce a score S_i for each model ϕ_i **without fine-tuning** on dataset D . The scores $\{S_i\}_{i=1}^M$ should correlate well with true performance $\{P_i\}_{i=1}^M$, enabling the selection of the best models based on the scores.

152 As shown in Figure 2, TIMETIC casts transferability estimation as an in-context characteristics-to-performance prediction task. At its core, TIMETIC builds a unified tabular representation that integrates both the data characteristics and the model characteristics. Specifically, time series characterization encodes datasets into a data characteristic table through feature engineering, while model characterization represents TSFMs as a model characteristic table using entropy profiles (detailed in Sections 3.1 and 3.2). Based on these representations, in-context transferability estimation (Section 3.3) proceeds in two stages. In the offline stage, pairs of ground-truth 'characteristics \rightarrow performance' are collected by fine-tuning to construct an in-context table. In the online stage, this table serves as a context for prompting a tabular foundation model (TabPFN Hollmann et al. (2025) in our case) to learn the mapping between characteristics and performance, allowing accurate estimation of the fine-tuned performance of a target model on a new dataset.

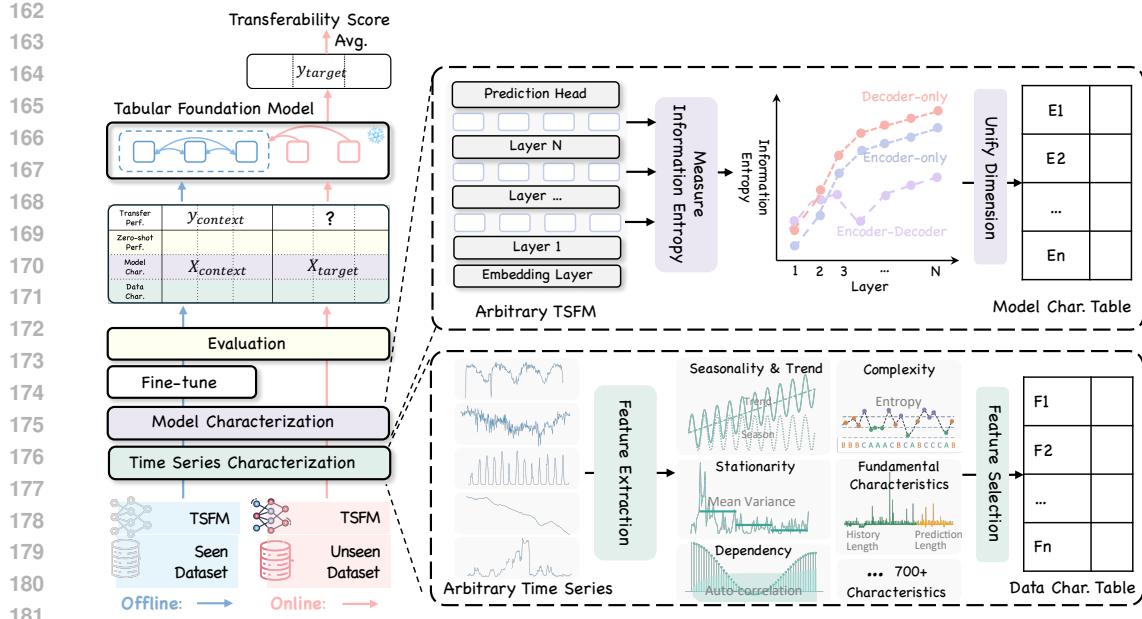


Figure 2: TIMETIC formulates transferability estimation as an in-context characteristics-to-performance prediction task. Dataset characteristics are encoded as a data characteristic table through feature extraction and selection, while models are represented as a model characteristic table using entropy profiles. TIMETIC then operates in two stages: in the offline stage, an in-context table ($X_{context}, y_{context}$) is constructed from characteristic–performance pairs obtained via fine-tuning; in the online stage, this table prompts a tabular foundation model to learn the mapping between characteristics and performance, enabling estimation of a target model’s fine-tuned performance y_{target} given a model-data-characteristics table X_{target} in a target dataset. The final transferability score is obtained by averaging the estimated performance across samples.

3.1 TIME SERIES CHARACTERIZATION

Feature extraction Time series exhibit diverse statistical characteristics that capture their temporal dynamics. For a given dataset D , we begin by sampling n time windows $\{\omega_i\}_{i=1}^n$ according to the historical and prediction lengths specified by the forecasting task. For each time window, we extract statistical features as Fulcher (2017); Talagala et al. (2019), using two standard libraries: `tsfresh` (Christ et al., 2018) and `tsfeatures` (Henderson & Fulcher, 2022). The tools can efficiently generate over 700 features that capture diverse properties of time series, including seasonality, stationarity, dependency, complexity, etc. However, these features are highly redundant, which can lead to the curse of dimensionality (Altman & Krzywinski, 2018) and adversely affect characteristic-to-performance regression.

Feature selection We perform feature selection guided by the principles of information richness and non-redundancy. To ensure information richness, we select features that minimize the *epistemic uncertainty*, that is, the uncertainty arising from the insufficient observation of the full state of the system. Given some characteristics-performance pairs $\mathcal{T} = (x_i, y_i)_{i>0}$, where x denotes the time series features and y the corresponding transferred model performance, we estimate epistemic uncertainty using `TotalVariance` (\mathcal{T}) as a proxy:

$$\text{TotalVariance}_\phi(\mathcal{T}) = \frac{1}{K} \sum_{k=1}^K \text{Var}(y|x \in \mathcal{X}_k) \quad (1)$$

where $\mathcal{X}_1, \dots, \mathcal{X}_K$ denote the equivalence classes partitioning, i.e., $x, x' \in \mathcal{X}_k$ if and only if $x = x'$ (Akhauri et al., 2025). The variance is then empirically computed over the set of all y -values corresponding to inputs within \mathcal{X}_k . Intuitively, `TotalVariance` reflects the distinguishability of features: a smaller value indicates that the feature x provides greater discriminative power to predict y . Thus,

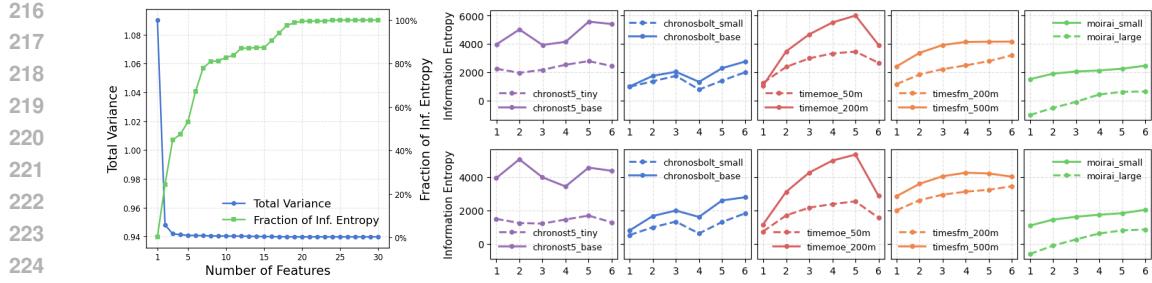


Figure 3: **Left:** TotalVariance significantly declines as the number of features increases, whereas the information content, quantified as the ratio between the joint entropy of a feature subset and that of the full 30-feature set, approaches sufficiency; **Right:** The upper and lower panels show entropy profiles of various TSFMs on the Kdd_cup and Solar datasets. Differences in profile patterns can distinguish model architecture and size: encoder-decoder models (ChronosT5, ChronosBolt) display a two-peak pattern; decoder-only models (TimeMoE, TimesFM) exhibit higher magnitudes than encoder-only models (Moirai); larger hidden dimensionality is associated with higher entropy.

features with lower TotalVariance are more informative for regression. (See Appendix D for a detailed analysis and derivation). In practice, we begin with an empty feature set and iteratively apply a greedy search strategy, adding the feature that minimizes TotalVariance to the set at each step, until the reduction in TotalVariance falls below 0.001. To avoid redundancy, we evaluate the feature set and retain a compact subset that maintains the richness of the information. As shown in Figure 3 (left), the information content of 20 features is comparable to that of the entire 30-feature set. Consequently, we adopt these 20 features with minimal TotalVariance as the final representation for each time series. For a given dataset D , this yields a data characteristic table $X_{data} \in \mathbb{R}^{n \times 20}$, where n denotes the number of windows sampled and each row corresponds to the 20-dimensional feature representation of a time window.

3.2 MODEL CHARACTERIZATION

Existing approaches to characterize model, such as assigning classification labels (Talagala et al., 2019) or learning model-specific embeddings (Zhang et al., 2023), often struggle to generalize to unseen models, thereby limiting their utility for practical transferability estimation. Inspired by interpretability studies showing that forecast performance correlates with internal representational dimensionality (Kaufman & Azencot, 2024) and that the entropy dynamics across layers reflects key architectural choices (Gabrié et al., 2018; Voita et al., 2019; Ali et al., 2025), we introduce a characterization method based on the trajectory of evolution of the entropy, termed the *entropy profile*. The central premise is that activation functions, operators, parameterization, and hidden dimensions jointly shape value distributions, which in turn determine the magnitude of information entropy. Moreover, entropy can be computed across models without architectural constraints and relies solely on inference statistics, thus entropy profile offers a simple and effective foundation for distinguishing diverse models, without exhaustively accounting for all potential influencing factors.

Entropy profile More formally, given a time series represented by T tokens, let $\mathbf{t}^i = \{t_1^i, \dots, t_T^i\}$ denote the token embeddings after model layer i . The entropy profile is defined as follows:

$$\mathbf{h} = \bigoplus_{i=1}^N \mathcal{H}(\mathbf{t}^i), \quad (2)$$

where N is the total number of model layers, \mathcal{H} is the **Kozachenko-Leonenko (KL)** entropy estimator (Kozachenko, 1987), and \bigoplus denotes concatenation, resulting in $\mathbf{h} \in \mathbb{R}^N$. The KL entropy estimator has a critical hyperparameter—the nearest-neighbor count k . We adopt a balanced choice of $k = 6$, which mitigates high-variance estimates and reduces instability when computing entropy on high-dimensional feature vectors. For a given dataset D with n sampled time windows $\{\omega_i\}_{i=1}^n$, entropy profiles are computed across windows using at most 10,000 tokens per layer to compute the information entropy while mitigating computational overhead. To allow comparison between models with different depths, each entropy trajectory is standardized to a fixed length of six—the

270 minimum depth in our model zoo. Models with more than six layers are compressed by pooling averages in six equal segments, while shallower models are padded by repeating the entropy value of the final layer. Consequently, each model is encoded into a model characteristic table $X_{model} \in \mathbb{R}^{n \times 6}$.
 271
 272
 273

274 **Entropy profile of TSFMs** Figure 3 (right) presents entropy profiles of TSFMs on the Kdd_cup and Solar datasets. Each model family exhibits a unique profile, with similarities and differences that distinguish models. Within a family, profiles remain consistent across datasets and model sizes, while larger hidden dimensionality is generally associated with higher entropy. Across different families, encoder-decoder architectures (ChronosT5 and ChronosBolt Ansari et al. (2024)) display a distinct entropy drop at the encoder-decoder interface, yielding a two-peak pattern. In contrast, encoder-only models (Moirai Woo et al. (2024)) exhibit lower entropy levels and slower growth across layers compared to decoder-only models (TimeMoE Shi et al. (2025) and TimesFM Das et al. (2023)), a phenomenon attributable to bidirectional attention producing smoother representations.
 275
 276
 277
 278
 279
 280
 281
 282

283 3.3 IN-CONTEXT TRANSFERABILITY ESTIMATION 284

285 We reformulate transferability estimation as an in-context characteristics-to-performance prediction
 286 task. Specifically, given the observed fine-tuning processes of a TSFM ϕ_i on a collection of source
 287 datasets D_{src} , the goal is to predict the finetuned performance of the model on a downstream target
 288 dataset D_{tgt} . To this end, TIMETIC performs in-context transferability estimation in two stages:
 289 Offline Context Table Construction and Online Target Table Inference, which are detailed as follows:
 290

291 **Offline context table construction** For each observed finetuning process involving a TSFM ϕ
 292 and source datasets D_{src} , we construct a representation encoding both data and model characteristics,
 293 following the procedures described in Section 3.1 and Section 3.2. This yields a data–model
 294 characteristic table $X_{context} \in \mathbb{R}^{n \times 26}$, where n denotes the number of time windows sampled
 295 from the source datasets, and 26 corresponds to the concatenation of the data characteristics 20
 296 and the characteristics of the model 6. In addition, both the zero-shot and the fine-tuned perfor-
 297 mance in each time window are appended to the table. The resulting context table is given by
 298 $(X_{context}, y_{context}) \in \mathbb{R}^{n \times 28}$, where $y_{context} \in \mathbb{R}^{n \times 1}$ denotes fine-tuned performance. For the
 299 cold-start scenario, that is, when no fine-tuned models are available, we can perform fine-tuning on
 300 a small number of datasets and encode the results into the context table. This table then serves as a
 301 persistent reference to support performance prediction on previously unseen datasets. Importantly,
 302 context construction requires only limited offline finetuning on a few datasets, thereby decoupling
 303 the one-time finetuning cost from the potentially unbounded number of future target scenarios.
 304

305 **Online target table inference** Given a target dataset D_{tgt} and a TSFM ϕ_i whose transferability
 306 is to be estimated, we sample m time windows and construct the target data–model characteristic
 307 table $X_{target} \in \mathbb{R}^{m \times 26}$. In the offline stage, a context table $(X_{context}, y_{context})$ is constructed
 308 to serve as a structured memory, encoding the mapping between data–model characteristics, zero-
 309 shot performance, and fine-tuned performance. By providing both the context table and the target
 310 table to a tabular foundation model Φ , predictions of transferred performance on the target dataset
 311 can be conditioned on the patterns learned from the context, without requiring gradient updates or
 312 retraining. Formally, the estimated transferred performance $y_{target} \in \mathbb{R}^{m \times 1}$ is obtained as
 313

$$y_{target} = \Phi(X_{target} \mid (X_{context}, y_{context})). \quad (3)$$

314 The final transferability score S_i of model ϕ_i in dataset D_{tgt} is given by the mean of y_{target} in the
 315 sampled time windows.
 316

317 **Tabular foundation model** In TIMETIC, we employ TabPFN (Hollmann et al., 2025) as the tabular
 318 foundation model owing to its strong in-context learning capabilities. TabPFN is a Transformer
 319 encoder pre-trained on a large collection of diverse tabular datasets, which enables it to generalize
 320 to unseen regression tasks without finetuning. Similar to how large language models leverage in-
 321 context examples to perform new tasks, TabPFN can infer task-specific patterns by conditioning on
 322 a small number of examples from the target regression problem, and subsequently provide accurate
 323 predictions on unseen samples of the same task. This property makes TabPFN particularly well-
 324 suited for in-context transferability estimation, as it obviates the need for model retraining and allows
 325 flexible organization of context to adapt to diverse transferability estimation scenarios.
 326

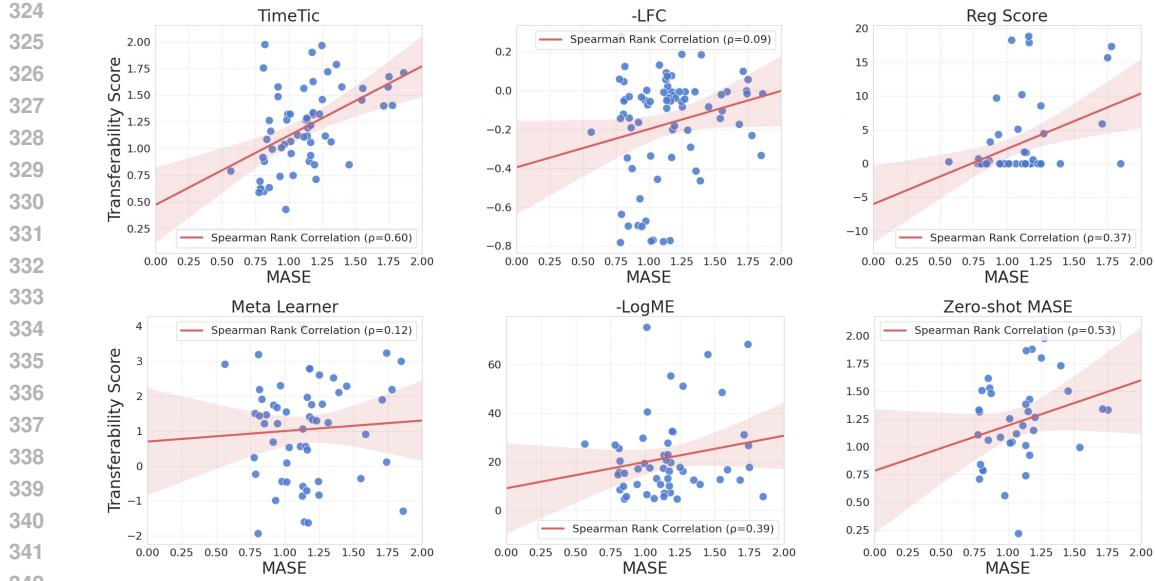


Figure 4: Transferability scores versus actual transferred performance. Each point is a target model’s transferability score against its actual transferred performance. More accurate transferability estimation methods show stronger linear and Spearman rank correlations with fine-tuned performance.

4 EXPERIMENTS

In Section 4.1, we introduce a benchmark for transferability estimation in TSFMs. Section 4.2 demonstrates the superiority of TIMETIC over existing methods, while Section 4.3 evaluates its generalization in two challenging scenarios: estimating unknown models in seen data, and unknown models on unseen data. Finally, Section 4.4 presents an ablation study on time series characterization, model characterization, and context table size to assess their impact.

4.1 TRANSFERABILITY ESTIMATION BENCHMARK

To evaluate transferability estimation methods, we construct a benchmark based on the following five aspects (see Appendix B for details on its construction).

Target datasets We use 10 datasets from 4 domains (Nature, Energy, Web and Transport), spanning 5 sampling frequencies (seconds to hours) and 5 key characteristics (trend, seasonality, transition, stationarity and shifting), to ensure the datasets cover diverse temporal patterns.

Model zoo 10 models from 5 TSFM families (Chronos, Chronos-Bolt, TimesFM, Moirai, Time-MoE), spanning 10M to 500M parameters, are included to cover various architectures and sizes.

Ground truth All TSFMs are fine-tuned on each dataset using unified hyperparameters to establish ground-truth rankings. For each dataset, the last 10% is reserved for testing; the remaining 90% is used for fine-tuning and validation. The rankings are derived through MASE on the test set.

Transferability estimation baselines We compare three categories: (i) *Metric-based*: LogME (You et al., 2021), LFC (Tran et al., 2019), and RegScore (Nguyen et al., 2023); (ii) *Meta-learning-based*: a linear meta-estimator adapted from AutoForecast (Abdallah et al., 2022b); (iii) *Zero-shot performance*: using the model’s zero-shot performance as the most straightforward proxy.

Evaluation protocol Methods are evaluated across short-, medium-, and long-term forecasting tasks under standard and few-shot sampling regimes. The effectiveness is primarily quantified using weighted Kendall’s τ_w between estimated scores $\{S_i\}_{i=1}^M$ and actual finetuned performance $\{P_i\}_{i=1}^M$, with a higher τ_w indicating more reliable estimate (You et al., 2021; Kazemi et al., 2025).

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 Table 1: Effectiveness of transferability estimation methods across short-, medium-, and long-
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867

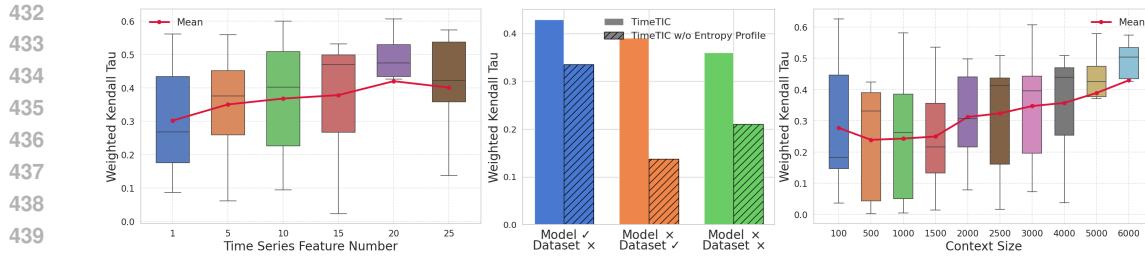


Figure 6: **Left:** Effect of the number of time series features on transferability estimation; **Middle:** Effect of entropy profile on transferability estimation across three scenarios: (i) known target models on unseen datasets, (ii) unknown target models on seen datasets, and (iii) unknown target models on unseen datasets. **Right:** Effect of context table size on transferability estimation.

generalizability of TIMETIC, as it requires only a limited number of observed examples as context to estimate the performance of the unknown model on unseen datasets.

4.4 ABLATION STUDY

Time series feature number We examine how the number of statistical features impacts TIMETIC. As shown in Figure 6 (left), we incrementally select the first k features that minimize TotalVariance. The results show a consistent improvement as more features are added, since richer representations enhance the discriminative power of the feature space and reduce epistemic uncertainty. However, beyond 20 features, the performance drops slightly, suggesting that additional features introduce redundancy and noise. This observation is consistent with Figure 3 (left), which shows that the information captured by 20 features is nearly equivalent to that of 30 features.

Model characterization method Figure 6 (middle) evaluates the contribution of the entropy profile to transferability estimation by comparing TIMETIC with and without it in three scenarios. When the target model is known but the dataset is unseen, the entropy profile yields about 0.1 improvement, indicating that entropy patterns provide useful signals for predicting fine-tuned performance. In more challenging cases, where models are not seen, or both models and datasets are not seen, the entropy profile plays a more critical role, increasing the generalization of TIMETIC by approximately 0.2 and 0.15, respectively. This improvement comes from its ability to capture similarities between models of different architectures or scales, enabling TIMETIC to infer the transferability of unseen models from the transfer processes of known ones.

Context table size Another key factor influencing TIMETIC’s performance is the size of the context table. Since TIMETIC frames transferability estimation as an in-context characteristic-to-performance prediction task, the size of the context table determines how much prior knowledge can be used for the target prediction. To examine this, we vary the number of time windows most related to the target dataset when constructing the context table and evaluate the impact. As shown in Figure 6 (right), increasing the size of the context from 1,000 to 6,000 substantially improves performance, indicating that richer context information improves TIMETIC. And TIMETIC remains robust even with only 100 time windows. This exhibits TIMETIC’s scalability with more known transfer processes and its reliable performance under a limited context.

5 CONCLUSION

In this paper, we propose TIMETIC, a novel framework for estimating the transferability of time series foundation models via in-context learning. By encoding model characteristics and data properties into a structured context table, TIMETIC effectively leverages the in-context learning capability of tabular foundation models to provide flexible and accurate performance estimation on unseen datasets. Furthermore, the proposed entropy-profile-based model characterization enhances scalability and generalization, allowing the framework to adapt across diverse transferability estimation scenarios. Comprehensive empirical evaluations demonstrate that TIMETIC consistently surpasses existing methods in model ranking, yielding substantial improvements in correlation with fine-tuned performance. These results establish TIMETIC as a robust and versatile tool for navigating the rapidly expanding landscape of time series foundation models.

486 **Ethics Statement**
487488 Our research is dedicated exclusively to addressing scientific challenges and does not involve human
489 participants, animals, or materials that pose environmental concerns. We anticipate no ethical risks
490 or conflicts of interest.491 **Reproducibility Statement**
492493 We provide the implementation details in Appendices A and B, including method implementa-
494 tions and benchmark construction. The source code and related source of this work are avail-
495 able at <https://anonymous.4open.science/r/ICLR2026-TimeTic-3975> for re-
496 reproducibility.497 **REFERENCES**
498499 Mustafa Abdallah, Ryan A. Rossi, Kanak Mahadik, Sungchul Kim, Handong Zhao, and Saurabh
500 Bagchi. Autoforecast: Automatic time-series forecasting model selection. *Proceedings of the*
501 *31st ACM International Conference on Information & Knowledge Management*, 2022a. URL
502 <https://api.semanticscholar.org/CorpusID:252587492>.
503504 Mustafa Abdallah, Ryan A. Rossi, Kanak Mahadik, Sungchul Kim, Handong Zhao, and Saurabh
505 Bagchi. Autoforecast: Automatic time-series forecasting model selection. In Mohammad Al
506 Hasan and Li Xiong (eds.), *Proceedings of the 31st ACM International Conference on Information*
507 *& Knowledge Management, Atlanta, GA, USA, October 17-21, 2022*, pp. 5–14. ACM, 2022b. doi:
508 [10.1145/3511808.3557241](https://doi.org/10.1145/3511808.3557241). URL <https://doi.org/10.1145/3511808.3557241>.509 Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Char-
510 less C. Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-learning.
511 *2019 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 6429–6438, 2019.
512 URL <https://api.semanticscholar.org/CorpusID:60440365>.
513514 Yash Akhauri, Bryan Lewandowski, Cheng-Hsi Lin, Adrian N. Reyes, Grant C. Forbes, Arissa
515 Wongpanich, Bangding Yang, Mohamed S. Abdelfattah, Sagi Perel, and Xingyou Song. Per-
516 formance prediction for large systems via text-to-text regression. *ArXiv*, abs/2506.21718, 2025.
517 URL <https://api.semanticscholar.org/CorpusID:280012288>.
518519 Taha Aksu, Gerald Woo, Juncheng Liu, Xu Liu, Chenghao Liu, Silvio Savarese, Caiming Xiong,
520 and Doyen Sahoo. Gift-eval: A benchmark for general time series forecasting model evaluation.
521 *CoRR*, abs/2410.10393, 2024. doi: 10.48550/ARXIV.2410.10393. URL <https://doi.org/10.48550/arXiv.2410.10393>.
522523 Riccardo Ali, Francesco Caso, Christopher Irwin, and Pietro Lio. Entropy-lens: The information
524 signature of transformer computations. *ArXiv*, abs/2502.16570, 2025. URL <https://api.semanticscholar.org/CorpusID:276575108>.
525526 Naomi Altman and Martin Krzywinski. The curse(s) of dimensionality. *Nature Methods*, 15:399 –
527 400, 2018. URL <https://api.semanticscholar.org/CorpusID:44115671>.
528529 Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
530 Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor,
531 Jasper Zschiegner, Danielle C. Maddix, Michael W. Mahoney, Kari Torkkola, Andrew Gordon
532 Wilson, Michael Bohlke-Schneider, and Yuyang Wang. Chronos: Learning the language of
533 time series. *ArXiv*, abs/2403.07815, 2024. URL <https://api.semanticscholar.org/CorpusID:268363551>.
535536 Yajie Bao, Yang Li, Shao-Lun Huang, Lin Zhang, Lihong Zheng, Amir Zamir, and Leonidas J.
537 Guibas. An information-theoretic approach to transferability in task transfer learning. In *2019*
538 *IEEE International Conference on Image Processing, ICIP 2019, Taipei, Taiwan, September 22–*
539 *25, 2019*, pp. 2309–2313. IEEE, 2019a. doi: 10.1109/ICIP.2019.8803726. URL <https://doi.org/10.1109/ICIP.2019.8803726>.

540 Yajie Bao, Yongni Li, Shao-Lun Huang, Lin Zhang, Lizhong Zheng, Amir Zamir, and Leonidas J.
 541 Guibas. An information-theoretic approach to transferability in task transfer learning. *2019 IEEE*
 542 *International Conference on Image Processing (ICIP)*, pp. 2309–2313, 2019b. URL <https://api.semanticscholar.org/CorpusID:202782600>.

543

544 Lorenzo Brigato, Rafael Morand, Knut Strømmen, Maria Panagiotou, Markus Schmidt, and
 545 Stavroula Mougiakakou. Position: There are no champions in long-term time series forecast-
 546 ing, 2025. URL <https://arxiv.org/abs/2502.14045>.

547

548 Maximilian Christ, Nils Braun, Julius Neuffer, and A. Kempa-Liehr. Time series feature extraction
 549 on basis of scalable hypothesis tests (tsfresh - a python package). *Neurocomputing*, 307:72–77,
 550 2018. URL <https://api.semanticscholar.org/CorpusID:49343335>.

551

552 Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation
 553 model for time-series forecasting. *ArXiv*, abs/2310.10688, 2023. URL <https://api.semanticscholar.org/CorpusID:264172792>.

554

555 Aditya Deshpande, Alessandro Achille, Avinash Ravichandran, Hao Li, Luca Zancato, Charless C.
 556 Fowlkes, Rahul Bhotika, Stefano Soatto, and Pietro Perona. A linearized framework and a new
 557 benchmark for model selection for fine-tuning. *ArXiv*, abs/2102.00084, 2021. URL <https://api.semanticscholar.org/CorpusID:231740997>.

558

559 Yuhe Ding, Bo Jiang, Aijing Yu, Aihua Zheng, and Jian Liang. Which model to transfer? a
 560 survey on transferability estimation. *ArXiv*, abs/2402.15231, 2024. URL <https://api.semanticscholar.org/CorpusID:267897613>.

561

562

563 Xinghong Fu, Masanori Hirano, and Kentaro Imajo. Financial fine-tuning a large time series model,
 564 2024. URL <https://arxiv.org/abs/2412.09880>.

565

566 Ben D. Fulcher. Feature-based time-series analysis. *ArXiv*, abs/1709.08055, 2017. URL <https://api.semanticscholar.org/CorpusID:13178131>.

567

568 Marylou Gabrié, Andre Manoel, Clément Luneau, Jean Barbier, Nicolas Macris, Florent Krza-
 569 kala, and Lenka Zdeborová. Entropy and mutual information in models of deep neural net-
 570 works. *Journal of Statistical Mechanics: Theory and Experiment*, 2019, 2018. URL <https://api.semanticscholar.org/CorpusID:43925762>.

571

572 Mohsen Gholami, Mohammad Akbari, Xinglu Wang, Behnam Kamranian, and Yong Zhang. Etran:
 573 Energy-based transferability estimation. In *IEEE/CVF International Conference on Computer*
 574 *Vision, ICCV 2023, Paris, France, October 1-6, 2023*, pp. 18567–18576. IEEE, 2023. doi: 10.
 575 1109/ICCV51070.2023.01706. URL <https://doi.org/10.1109/ICCV51070.2023.01706>.

576

577

578 Rakshitha Godahewa, C. Bergmeir, Geoffrey I. Webb, Rob J Hyndman, and Pablo Montero-Manso.
 579 Monash time series forecasting archive. *ArXiv*, abs/2105.06643, 2021. URL <https://api.semanticscholar.org/CorpusID:234681550>.

580

581 Yu. V. Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
 582 models for tabular data. In *Neural Information Processing Systems*, 2021. URL <https://api.semanticscholar.org/CorpusID:235593213>.

583

584

585 Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
 586 Moment: A family of open time-series foundation models. *ArXiv*, abs/2402.03885, 2024. URL
 587 <https://api.semanticscholar.org/CorpusID:267500205>.

588

589 L'eo Grinsztajn, Klemens Floge, Oscar Key, Felix Birkel, Philipp Jund, Brendan Roof, Benjamin
 590 Jager, Dominik Safaric, Simone Alessi, Adrian Hayler, Mihir Manium, Rosen Yu, Felix Jablonski,
 591 Shi Bin Hoo, Anurag Garg, Jake Robertson, Magnus Buhler, Vladyslav Moroshan, Lennart Pu-
 592 rucker, Clara Cornu, Lilly Charlotte Wehrhahn, Alessandro Bonetto, Bernhard Scholkopf, Sauraj
 593 Gambhir, Noah Hollmann, and Frank Hutter. TabPfn-2.5: Advancing the state of the art in tabu-
 594 lar foundation models. 2025. URL <https://api.semanticscholar.org/CorpusID:282939803>.

594 Divij Gupta, Anubhav Bhatti, and Surajsingh Parmar. Beyond lora: Exploring efficient fine-tuning
 595 techniques for time series foundational models, 2024. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2409.11302)
 596 2409.11302.

597 Trent Henderson and Ben D. Fulcher. Feature-based time-series analysis in r using the theft
 598 package. *ArXiv*, abs/2208.06146, 2022. URL <https://api.semanticscholar.org/CorpusID:251554656>.

601 Noah Hollmann, Samuel G. Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin
 602 Hoo, Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data
 603 with a tabular foundation model. *Nature*, 637:319 – 326, 2025. URL <https://api.semanticscholar.org/CorpusID:275420209>.

606 Ting-Ji Huang, Xu-Yang Chen, and Han-Jia Ye. Seqfusion: Sequential fusion of pre-trained models
 607 for zero-shot time-series forecasting. *ArXiv*, abs/2503.02836, 2025. URL <https://api.semanticscholar.org/CorpusID:276775468>.

609 Ilya Kaufman and Omri Azencot. Analyzing deep transformer models for time series forecasting via
 610 manifold learning. *Trans. Mach. Learn. Res.*, 2024, 2024. URL <https://api.semanticscholar.org/CorpusID:273403876>.

613 Alireza Kazemi, Helia Rezvani, and Mahsa Baktash. Benchmarking transferability: A frame-
 614 work for fair and robust evaluation. *ArXiv*, abs/2504.20121, 2025. URL <https://api.semanticscholar.org/CorpusID:278171171>.

617 Leonenko Kozachenko. Sample estimate of the entropy of a random vector. *Probl. Pered. Inform.*,
 618 23:9, 1987.

619 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-
 620 term temporal patterns with deep neural networks. *The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval*, 2017. URL <https://api.semanticscholar.org/CorpusID:4922476>.

624 Christiane Lemke and Bogdan Gabrys. Meta-learning for time series forecasting and forecast com-
 625 bination. *Neurocomputing*, 73:2006–2016, 2010. URL <https://api.semanticscholar.org/CorpusID:43923341>.

628 Yandong Li, Xuhui Jia, Ruoxin Sang, Yukun Zhu, Bradley Green, Liqiang Wang, and
 629 Boqing Gong. Ranking neural checkpoints. In *IEEE Conference on Computer Vi-
 630 sion and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021*, pp. 2663–
 631 2673. Computer Vision Foundation / IEEE, 2021. doi: 10.1109/CVPR46437.2021.
 632 00269. URL https://openaccess.thecvf.com/content/CVPR2021/html/Li_Ranking_Neural_Checkpoints_CVPR_2021_paper.html.

634 Yuze Li and Wei Zhu. Trace: Time series parameter efficient fine-tuning, 2025. URL <https://arxiv.org/abs/2503.16991>.

636 Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan, and
 637 Qingsong Wen. Foundation models for time series analysis: A tutorial and survey. *Proceedings
 638 of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2024. URL
 639 <https://api.semanticscholar.org/CorpusID:268667522>.

641 Yuxuan Liang, Haomin Wen, Yutong Xia, Ming Jin, Bin Yang, Flora Salim, Qingsong Wen, Shirui
 642 Pan, and Gao Cong. Foundation models for spatio-temporal data science: A tutorial and survey,
 643 2025. URL <https://arxiv.org/abs/2503.13502>.

645 Huawei Lin, Baizhou Huang, Haotian Ye, Qinyu Chen, Zihao Wang, Sujian Li, Jianzhu Ma, Xiaojun
 646 Wan, James Zou, and Yitao Liang. Selecting large language model to fine-tune via rectified
 647 scaling law. *ArXiv*, abs/2402.02314, 2024. URL <https://api.semanticscholar.org/CorpusID:267411718>.

648 Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.
 649 Timer: Generative pre-trained transformers are large time series models. In *International*
 650 *Conference on Machine Learning*, 2024. URL <https://api.semanticscholar.org/CorpusID:267412273>.

652 Fanqing Meng, Wenqi Shao, Zhanglin Peng, Chong Jiang, Kaipeng Zhang, Y. Qiao, and Ping Luo.
 653 Foundation model is efficient multimodal multitask model selector. *ArXiv*, abs/2308.06262, 2023.
 654 URL <https://api.semanticscholar.org/CorpusID:260866006>.

656 Cuong N. Nguyen, Phong Tran, Lam Si Tung Ho, Vu C. Dinh, Anh T. Tran, Tal Hassner, and
 657 Cuong V. Nguyen. Simple transferability estimation for regression tasks. In Robin J. Evans and
 658 Ilya Shpitser (eds.), *Uncertainty in Artificial Intelligence, UAI 2023, July 31 - 4 August 2023,*
 659 *Pittsburgh, PA, USA*, volume 216 of *Proceedings of Machine Learning Research*, pp. 1510–1521.
 660 PMLR, 2023. URL <https://proceedings.mlr.press/v216/nguyen23a.html>.

661 Cuong V. Nguyen, Tal Hassner, Matthias W. Seeger, and Cédric Archambeau. LEEP: A new
 662 measure to evaluate transferability of learned representations. In *Proceedings of the 37th International*
 663 *Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event*, volume 119 of *Proceedings of Machine Learning Research*, pp. 7294–7305. PMLR, 2020. URL
 664 <http://proceedings.mlr.press/v119/nguyen20b.html>.

666 Patrik Orlinovic, Andreas Kirsch, Jannes Kasper, Torsten Hoefer, Andreas Krause, and Nez-
 667 ihe Merve Gurel. All models are wrong, some are useful: Model selection with limited
 668 labels. *ArXiv*, abs/2410.13609, 2024. URL <https://api.semanticscholar.org/CorpusID:273403569>.

670 Ekrem Öztürk, Fabio Ferreira, Hadi S. Jomaa, Lars Schmidt-Thieme, Josif Grabocka, and Frank
 671 Hutter. Zero-shot automl with pretrained models. In Kamalika Chaudhuri, Stefanie Jegelka,
 672 Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), *International Conference on*
 673 *Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*, volume 162 of
 674 *Proceedings of Machine Learning Research*, pp. 17138–17155. PMLR, 2022. URL <https://proceedings.mlr.press/v162/ozturk22a.html>.

677 Santosh Palaskar, Vijay Ekambaram, Arindam Jati, Neelamdhav Gantayat, Avirup Saha, Seema
 678 Nagar, Nam H. Nguyen, Pankaj Dayama, Renuka Sindhwatta, Prateeti Mohapatra, Harshit Kumar,
 679 Jayant Kalagnanam, Nandyala Hemachandra, and Narayan Rangaraj. Automixer for improved
 680 multivariate time-series forecasting on business and it observability data. In *AAAI Conference on*
 681 *Artificial Intelligence*, 2023. URL <https://api.semanticscholar.org/CorpusID:264815784>.

683 Huiyan Qi, Lechao Cheng, Jingjing Chen, Yue Yu, Zunlei Feng, and Yu-Gang Jiang. Transferability
 684 estimation based on principal gradient expectation. *ArXiv*, abs/2211.16299, 2022. URL <https://api.semanticscholar.org/CorpusID:254070017>.

686 Colin Raffel, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
 687 Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
 688 text-to-text transformer. *J. Mach. Learn. Res.*, 21:140:1–140:67, 2019. URL <https://api.semanticscholar.org/CorpusID:204838007>.

690 Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopoulos,
 691 Rishika Bhagwatkar, Marin Bilos, Hena Ghonia, Nadhir Vincent Hassen, Anderson Schneider,
 692 Sahil Garg, Alexandre Drouin, Nicolas Chapados, Yuriy Nevmyvaka, and Irina Rish. Lag-llama:
 693 Towards foundation models for time series forecasting. *ArXiv*, abs/2310.08278, 2023. URL
 694 <https://api.semanticscholar.org/CorpusID:269766909>.

695 Jake Robertson, Arik Reuter, Siyuan Guo, Noah Hollmann, Frank Hutter, and Bernhard Schölkopf.
 696 Do-pfn: In-context learning for causal effect estimation. *ArXiv*, abs/2506.06039, 2025. URL
 697 <https://api.semanticscholar.org/CorpusID:279243613>.

699 Siqi Shen, Vincent van Beek, and Alexandru Iosup. Statistical characterization of business-
 700 critical workloads hosted in cloud datacenters. *2015 15th IEEE/ACM International Symposium on*
 701 *Cluster, Cloud and Grid Computing*, pp. 465–474, 2015. URL <https://api.semanticscholar.org/CorpusID:14256760>.

702 Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-moe:
 703 Billion-scale time series foundation models with mixture of experts. In *International Conference*
 704 *on Learning Representations*, 2025.

705 Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C. Bayan Bruss, and Tom Gold-
 706 stein. Saint: Improved neural networks for tabular data via row attention and contrastive pre-
 707 training. *ArXiv*, abs/2106.01342, 2021. URL <https://api.semanticscholar.org/CorpusID:235293989>.

708 710 Thiyanga S. Talagala, Feng Li, and Yanfei Kang. Fformpp: Feature-based forecast model per-
 711 formance prediction. *International Journal of Forecasting*, 2019. URL <https://api.semanticscholar.org/CorpusID:201698109>.

712 713 Anh Tuan Tran, Cuong V. Nguyen, and Tal Hassner. Transferability and hardness of supervised
 714 classification tasks. In *2019 IEEE/CVF International Conference on Computer Vision, ICCV*
 715 *2019, Seoul, Korea (South), October 27 - November 2, 2019*, pp. 1395–1405. IEEE, 2019. doi:
 716 10.1109/ICCV.2019.00148. URL <https://doi.org/10.1109/ICCV.2019.00148>.

717 718 Artur Trindade. ElectricityLoadDiagrams20112014. UCI Machine Learning Repository, 2015. DOI:
 719 <https://doi.org/10.24432/C58C86>.

720 721 Elena Voita, Rico Sennrich, and Ivan Titov. The bottom-up evolution of representations in the
 722 transformer: A study with machine translation and language modeling objectives. *ArXiv*,
 723 abs/1909.01380, 2019. URL <https://api.semanticscholar.org/CorpusID:202541078>.

724 725 Jingyuan Wang, Jiawei Jiang, Wenjun Jiang, Chengkai Han, and Wayne Xin Zhao. Towards effi-
 726 cient and comprehensive urban spatial-temporal prediction: A unified library and performance
 727 benchmark. *ArXiv*, abs/2304.14343, 2023. URL <https://api.semanticscholar.org/CorpusID:263881845>.

728 729 Wang Wei, Tiankai Yang, Hongjie Chen, Ryan A. Rossi, Yue Zhao, Franck Dernoncourt, and Hoda
 730 Eldardiry. Efficient model selection for time series forecasting via llms. *ArXiv*, abs/2504.02119,
 731 2025. URL <https://api.semanticscholar.org/CorpusID:277510486>.

732 733 Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
 734 Unified training of universal time series forecasting transformers. *ArXiv*, abs/2402.02592, 2024.
 735 URL <https://api.semanticscholar.org/CorpusID:267411817>.

736 737 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
 738 formers with auto-correlation for long-term series forecasting. In *Neural Information Processing
 Systems*, 2021. URL <https://api.semanticscholar.org/CorpusID:235623791>.

739 740 Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. Logme: Practical assessment of
 741 pre-trained models for transfer learning. In Marina Meila and Tong Zhang (eds.), *Proceedings of
 742 the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
 743 Event*, volume 139 of *Proceedings of Machine Learning Research*, pp. 12133–12143. PMLR,
 744 2021. URL <http://proceedings.mlr.press/v139/you21b.html>.

745 746 Yi-Kai Zhang, Ting Huang, Yao-Xiang Ding, De chuan Zhan, and Han-Jia Ye. Model spider:
 747 Learning to rank pre-trained models efficiently. *ArXiv*, abs/2306.03900, 2023. URL <https://api.semanticscholar.org/CorpusID:259088702>.

748 749 Guanhua Zheng, Jitao Sang, and Changsheng Xu. Understanding deep learning general-
 750 ization by maximum entropy. *ArXiv*, abs/1711.07758, 2017. URL <https://api.semanticscholar.org/CorpusID:1693294>.

751 752 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wan
 753 Zhang. Informer: Beyond efficient transformer for long sequence time-series forecast-
 754 ing. *ArXiv*, abs/2012.07436, 2020. URL <https://api.semanticscholar.org/CorpusID:229156802>.

755

756 TABLE OF CONTENTS

759	A Implementations Details	15
760	A.1 Feature Selection	15
761	A.2 TabPFN	15
762	B Benchmark Construction	16
763	B.1 Target Datasets	17
764	B.2 Model Zoo	17
765	B.3 Ground Truth	19
766	B.4 Baselines	20
767	B.5 Evaluation Metrics	20
768		
769	C Additional Experimental Results	21
770	C.1 Performance Evaluation using Weighted Kendall Tau	21
771	C.2 Performance Evaluation using Spearman Correlation	21
772	C.3 Discussions on Entropy Profile	21
773	C.4 Discussions on Tabular Foundation Model	25
774	C.5 Discussions on Model Selection Efficiency	26
775		
776	D Uncertainty Analysis	26
777		
778	E Use of Large Language Models	26

781 A IMPLEMENTATIONS DETAILS

783 A.1 FEATURE SELECTION

785 In this section, we introduce two specific implementations for partitioning equivalence classes in
786 equation 1, along with a greedy search strategy for feature selection, as a supplement to Section 3.1.

787 **Partitioning of equivalence classes** Given characteristic–performance pairs $\mathcal{T} = (x_i, y_i)_{i>0}$, di-
788 rectly partitioning equivalence classes \mathcal{X}_k based on high-dimensional features x is intractable, as
789 fine-grained clustering becomes unstable in such spaces. To address this, we adopt an approxima-
790 tion procedure combining dimensionality reduction and clustering. Specifically, we first standardize
791 x to zero mean and unit variance, then apply Principal Component Analysis (PCA) and retain the
792 first two components to obtain a reduced feature space. In this space, we cluster the samples into K
793 groups ($K = 100$ in our experiments), with each cluster index serving as a proxy for the equivalence
794 class \mathcal{X}_k . Finally, TotalVariance is computed as the average variance across all non-empty clusters,
795 following Equation 1.

796 **Greedy search strategy** We describe the greedy feature selection algorithm in more detail in Al-
797 gorithm 1. The algorithm incrementally constructs the feature set by minimizing TotalVariance at
798 each step. This procedure guarantees that each iteration adds the feature that most reduces epistemic
799 uncertainty, until the marginal improvement becomes negligible.

801 A.2 TABPFN

803 In TIMETIC, we adopt TabPFN (Hollmann et al., 2025), a tabular foundation model pretrained on a
804 large collection of regression tasks, as the in-context learner. Both its checkpoint and source code
805 are publicly available. In this section, we provide additional details on TabPFN to help us understand
806 its role within our framework.

807 **Model architecture** TabPFN treats each cell in a table as a separate position within a sequence.
808 Given a context table and a target table for prediction, all cell values are first normalized using
809 the column-wise mean and standard deviation computed from the context table. These normal-
ized values are then transformed into embeddings through linear projection layers. As illustrated in

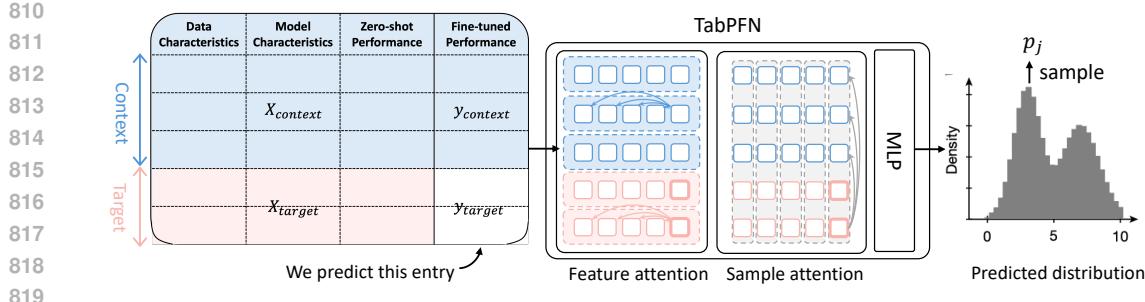


Figure A: The TabPFN-based instance of TIMETIC. We encode observed model behaviors into a context table (shown in blue) and represents new data and models in a target table (shown in red). Then we leverage the in-context learning capabilities of TabPFN to predict the fine-tuned performance on target tasks (denoted as blank cell). TabPFN is an adaptation of the standard Transformer encoder, designed for tabular data using two types of attention mechanisms: one across features and another across samples.

Algorithm 1: Greedy Feature Selection

Input: Feature matrix $X \in \mathbb{R}^{n \times d}$, target vector $y \in \mathbb{R}^n$, threshold ϵ
Output: Selected feature set \mathcal{F}_{sel}

```

 $\mathcal{F}_{sel} \leftarrow \emptyset;$ 
 $TV_{curr} \leftarrow \text{inf};$ 
repeat
   $best\_TV \leftarrow TV_{curr}, f^* \leftarrow \text{None};$ 
  foreach  $f \notin \mathcal{F}_{sel}$  do
     $X_{sel} = \mathcal{F}_{sel}(X) \cup f^*(X);$ 
     $TV_f \leftarrow \text{TotalVariance}(X_{sel}, y);$ 
    if  $TV_f < best\_TV$  then
       $best\_TV \leftarrow TV_f, f^* \leftarrow f;$ 
    if  $f^* \neq \text{None}$  and  $TV_{curr} - best\_TV \geq \epsilon$  then
       $\mathcal{F}_{sel} \leftarrow \mathcal{F}_{sel} \cup \{f^*\};$ 
       $TV_{curr} \leftarrow best\_TV;$ 
  until  $no\ improvement \geq \epsilon;$ 

```

Figure A, the backbone of TabPFN employs two types of attention mechanisms within each Transformer block: attention across features (columns) and attention across samples (rows), each operating independently along its respective dimension. Finally, TabPFN addresses tabular regression by predicting a probability distribution over possible target values rather than a single point estimate.

Inference cost TabPFN is computationally efficient and can be executed on consumer-grade hardware in most scenarios. As reported by Hollmann et al. (2025), for a table with 10,000 rows and 10 columns, TabPFN completes the inference in approximately 0.2 seconds. The computational complexity of the architecture scales quadratically with both the number of samples (n) and the number of features (m), i.e. $\mathcal{O}(n^2 + m^2)$, while the memory footprint scales linearly with the size of the table, $\mathcal{O}(n + m)$.

B BENCHMARK CONSTRUCTION

In this section, we describe the construction of our benchmark, which provides a critical foundation for our experimental analysis. As illustrated in Figure B, the construction pipeline encompasses five key aspects: collection of target datasets and models, unified fine-tuning, selection of baselines, and evaluation protocol. Each of these aspects is elaborated in the following subsections.

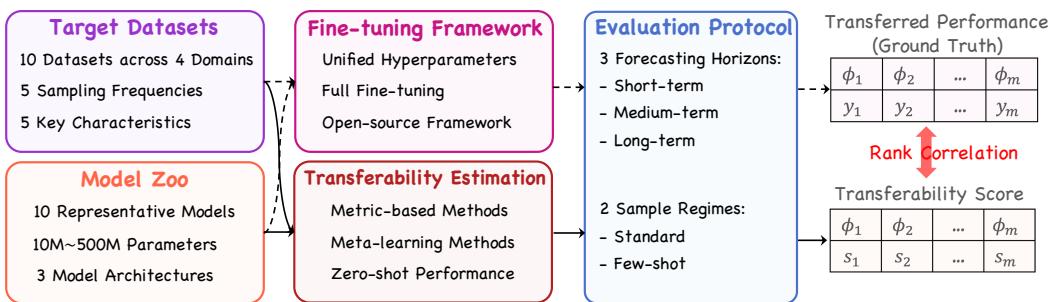


Table A: Benchmark dataset statistics and forecasting horizons.

Dataset	Domain	Freq.	#Series	Avg Len	Min Len	Max Len	#Obs	Variates	Short-term		Med-term		Long-term	
									Len	Win	Len	Win	Len	Win
KDD Cup 2018 (Godahewa et al., 2021)	Nature	H	270	10,898	9,504	10,920	2,94M	1	64	20	256	2	512	2
Jena Weather (Wu et al., 2021)	Nature	10T	1	52,704	52,704	52,704	21	64	20	256	11	512	8	
ETT2 (Zhou et al., 2020)	Energy	H	1	17,420	17,420	17,420	17,420	7	64	20	256	4	512	3
Electricity (Trindade, 2015)	Energy	H	370	35,064	35,064	35,064	12.97M	1	64	20	256	8	512	5
Solar (Lai et al., 2017)	Energy	H	137	8760	8760	8760	1,200,120	1	64	19	256	2	512	8
BizITOb - L2C (Palaskar et al., 2023)	Web/CloudOps	ST	1	31,968	31,968	31,968	31,968	7	64	20	256	7	512	5
Bitbrains - rnd (Shen et al., 2015)	Web/CloudOps	ST	500	8,640	8,640	8,640	4,32M	2	64	18	256	2	512	2
BizITOb - App (Palaskar et al., 2023)	Web/CloudOps	10S	1	8,834	8,834	8,834	8,834	2	64	15	256	2	512	1
SZ-Taxi (Wang et al., 2023)	Transport	15T	156	2,976	2,976	2,976	464,256	1	64	7	256	1	512	1
Loop Seattle (Wang et al., 2023)	Transport	ST	323	105,120	105,120	105,120	33.9M	1	64	20	256	20	512	15

B.1 TARGET DATASETS

As shown in Table A, our benchmark comprises 10 datasets from four distinct domains, spanning 5 sampling frequencies. These datasets exhibit 5 typical time series characteristics—trend, seasonality, transition, stationarity, and shifting—with example cases illustrated in Figure C. Their diversity simulates real-world TSFM transfer scenarios, providing a solid foundation for evaluating transferability estimation methods.

Following the gift benchmark (Aksu et al., 2024), we define short-, medium- and long-term forecasting tasks to evaluate the transfer performance of TSFM, reflecting the varied forecasting requirements in transfer scenarios. The forecast horizons are set to 64, 256, and 512 time steps, with corresponding context lengths of 256, 1024, and 2048. For each dataset, 90% of the data is used for training and the remaining 10% for testing. During testing, time series are segmented into nonoverlapping windows of length equal to the sum of the context length and forecasting horizon. These settings, along with the number of test windows, are also summarized in Table A.

B.2 MODEL ZOO

Our benchmark includes a model zoo comprising 10 TSFMs drawn from 5 representative model families, covering a wide spectrum of architectural designs and parameter scales—from 8 million to 500 million parameters. Although all models are based on the Transformer architecture, their performance varies significantly due to differences in encoder-decoder configurations, tokenization schemes, dense versus sparse architectures, and the composition of their pretraining datasets. The

¹<https://huggingface.co/collections/Salesforce/moirai-r-models>

²<https://huggingface.co/google/timesfm-1.0-200m>

³<https://huggingface.co/amazon/chronos-t5-tiny>

⁴<https://huggingface.co/amazon/chronos-bolt-small>

⁵<https://huggingface.co/Maple728/TimeMoE-50M>

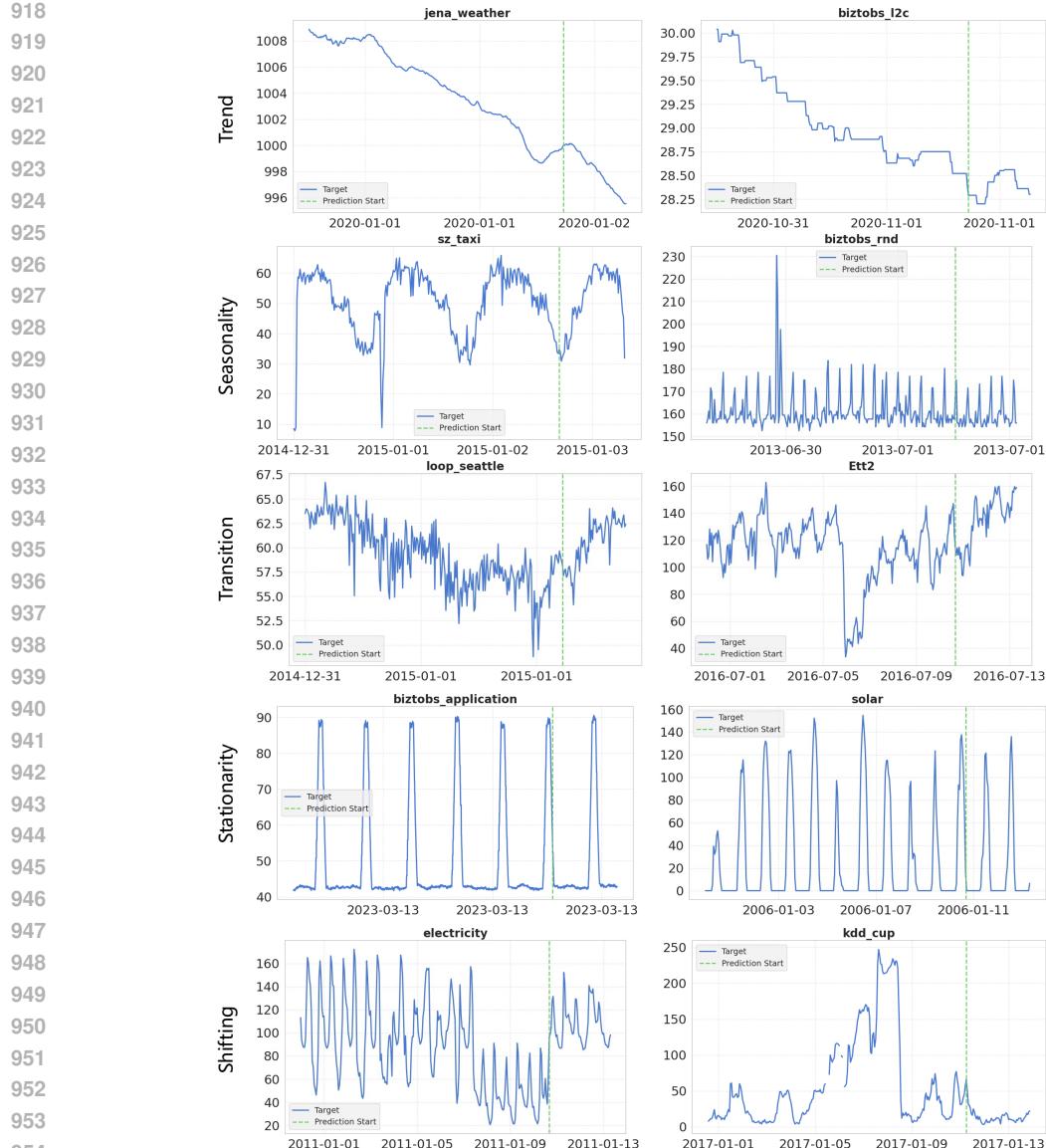


Figure C: 10 datasets illustrating five typical time series characteristics.

Table B: Time series foundation model zoo.

Model	Architecture	Model Size	Dataset Size	Input Token	Output Token
Moirai ¹	Encoder-only	14M	91M	231B	Patch
TimesFM ²	Decoder-only	200M	500M	100B	Patch
Chronos ³	Enc-Dec	8M	20M	84B	Point
Chronos-bolt ⁴	Enc-Dec	48M	205M	84B	Patch
Time-MoE ⁵	Decoder-only	50M	200M	309B	Point

characteristics of the models in our zoo are summarized in Table B, and a brief introduction to each model family is provided below:

Moirai (Woo et al., 2024) is an encoder-only Transformer that uses adaptive patch tokenization to accommodate time series with varying frequencies, along with a flexible attention mechanism to support multivariate inputs. It also features a patch-wise parameterized prediction head for distribu-

Table C: Ground truth finetuned performance of various time series foundation models in short-term, medium-term, and long-term forecasting tasks.

Dataset	Chronos-tiny	Chronos-base	Chronos-bolt-base	Chronos-bolt-small	Moirai-large	Moirai-small	Time-MoE-50M	Time-MoE-200M	TimesFM-200M	TimesFM-500M
Short-term forecasting tasks										
kdd_cup_2018_with_missing:H	1.085	0.997	0.763	0.850	1.025	1.004	0.916	0.993	1.092	0.972
jena_weather:10T	2.314	1.752	1.557	1.515	1.905	1.523	1.422	1.285	1.229	1.158
ett2:H	1.161	1.194	1.036	1.007	1.064	1.090	1.085	1.093	1.134	1.084
electricity:H	1.135	0.945	0.941	0.872	1.062	1.203	0.938	0.947	1.355	1.206
solar:H	1.412	1.322	1.367	1.456	1.447	1.493	1.332	1.419	2.359	1.618
bitzibots_12c:5T	0.571	0.618	0.568	0.564	0.613	0.568	0.598	0.611	0.621	0.564
bitibrains_rnd:5T	2.276	2.155	2.053	2.163	2.392	2.884	2.059	2.008	2.635	2.473
bitzibots_application	2.847	3.176	2.842	2.805	2.734	3.246	2.719	2.681	2.917	3.164
SZ_TAXI:15T	0.884	0.877	0.828	0.819	0.808	0.843	0.807	0.813	0.812	0.818
LOOP_SEATTLE:5T	0.733	0.711	0.689	0.650	0.672	0.660	0.626	0.621	0.873	0.876
Medium-term forecasting tasks										
kdd_cup_2018_with_missing:H	1.483	1.240	0.706	0.812	1.158	1.103	1.164	1.145	1.099	1.034
jena_weather:10T	1.610	1.258	0.977	0.944	1.208	0.998	1.180	1.123	1.123	0.831
ett2:H	1.474	1.219	1.021	1.046	1.043	1.059	1.186	1.096	1.169	1.164
electricity:H	1.303	1.130	1.040	1.020	1.096	1.222	1.297	1.262	1.364	1.285
solar:H	1.270	0.968	1.153	1.262	1.169	1.118	0.767	0.871	1.694	1.227
bitzibots_12c:5T	1.147	1.125	1.222	1.128	0.991	1.003	1.688	1.661	1.331	1.184
bitibrains_rnd:5T	1.895	1.742	1.419	1.702	2.076	2.818	3.501	2.743	2.306	2.107
bitzibots_application	12.494	9.412	1.765	1.867	2.314	8.932	2.750	2.046	6.429	7.151
SZ_TAXI:15T	0.901	0.914	0.816	0.804	0.797	0.817	0.827	0.821	0.843	0.815
LOOP_SEATTLE:5T	1.152	0.857	0.890	0.850	0.798	0.753	1.175	0.970	0.928	0.973
Long-term forecasting tasks										
kdd_cup_2018_with_missing:H	1.778	1.291	0.850	0.942	1.193	1.137	1.395	1.249	1.229	1.134
jena_weather:10T	2.172	1.387	1.202	1.152	1.451	1.163	1.749	1.710	1.271	1.080
ett2:H	2.145	2.043	1.010	1.181	1.112	1.171	2.436	2.062	1.179	1.171
electricity:H	1.552	1.314	1.132	1.132	1.272	1.347	3.696	3.162	1.683	1.540
solar:H	1.355	0.916	1.031	1.161	1.015	1.109	0.843	0.946	1.848	1.182
bitzibots_12c:5T	1.140	1.127	0.783	0.804	0.562	0.966	0.992	0.982	1.246	1.138
bitibrains_rnd:5T	1.861	1.545	1.161	1.181	1.740	2.181	1.590	1.742	2.104	1.836
bitzibots_application	9.969	9.745	2.274	2.712	3.680	9.136	5.120	3.313	8.389	9.672
SZ_TAXI:15T	0.874	0.932	0.810	0.816	0.776	0.787	0.817	0.809	0.834	0.792
LOOP_SEATTLE:5T	1.251	0.919	0.864	0.851	0.977	0.785	1.065	1.012	0.974	0.895

tional forecasting. In our experiments, we include Moirai-small (14M) and Moirai-base (91M) as candidate models.

TimesFM (Das et al., 2023) is a decoder-only Transformer tailored for time series forecasting. It extends the standard decoder-only architecture by adopting patch-based tokenization and detokenization strategies, allowing it to effectively handle time series inputs and generate forecasts. We include TimesFM-200M and TimesFM-500M in our candidate models.

Chronos (Ansari et al., 2024) is an LLM-based TSFM that repurposes the T5 encoder-decoder architecture for time series forecasting. Instead of using T5’s original text-based tokenizer, Chronos applies value quantization and dequantization to convert the regression task into a classification problem. It is pretrained on a large-scale time series corpus comprising 84 billion time points. Chronos-tiny (8M) and Chronos-min (20M) are included in our candidate models.

Chronos-bolt (Ansari et al., 2024) also builds on the T5 architecture but introduces significant differences in tokenization and prediction strategies. It employs patch-based tokenization and replaces autoregressive decoding with single-pass inference, predicting a fixed-length patch in each pass. For longer forecasting horizons, it iteratively encodes the historical context and predicts a future patch. We include Chronos-bolt-small (48M) and Chronos-bolt-base (205M) in our model zoo.

Time-MoE (Shi et al., 2025) is a sparse decoder-only Transformer incorporating a mixture-of-experts (MoE) architecture to enable scalable time series forecasting. By leveraging sparse routing instead of a fully dense structure, Time-MoE scales effectively with minimal computational overhead. It also uses point-wise embeddings and multi-scale patch-based predictions. We select Time-MoE with two different sizes (50M and 200M) for inclusion in our model zoo.

B.3 GROUND TRUTH

To evaluate transferability estimation approaches, we fine-tune all models to obtain their actual fine-tuned performance and ranking. A unified fine-tuning strategy is applied across all models to eliminate variability introduced by the fine-tuning process itself, ensuring a fair comparison of their transferability.

We choose to fine-tune all parameters of each model, which is a simple but general approach. Each model is fine-tuned for 1 epoch using a batch size of 32 and a maximum sequence length of 2560. Optimization is performed with the AdamW optimizer and a constant learning rate of 1e-5. The

1026 final checkpoint after 1 epoch is reserved for final evaluation on the test set to determine the actual
 1027 fine-tuned performance. All fine-tuning experiments are conducted on a single H100 GPU. The
 1028 actual fine-tuned results under the three forecasting tasks are reported in Table C.
 1029

1030 **B.4 BASELINES**
 1031

1032 **LFC** (Tran et al., 2019) adopts a linearized framework to approximate fine-tuning and measures
 1033 the Label-Feature Correlation to estimate transferability. We compute the mean LFC across all
 1034 token embeddings produced by the model backbone within the forecasting horizon, and use it as the
 1035 transferability score for each sample.

1036 **LogME** (You et al., 2021) models transferability through estimating the maximum value of the target
 1037 label evidence given the target features extracted from the pre-trained model. We also compute the
 1038 mean LogME across all token embeddings produced by the model backbone within the forecasting
 1039 horizon, and use this as the transferability score for a given sample.

1040 **RegScore** (Nguyen et al., 2023) assesses transferability by measuring the error of a linear regres-
 1041 sion model trained to predict labels from features. We compute the RegScore between all token
 1042 embeddings produced by the model backbone within the forecasting horizon and their correspond-
 1043 ing labels, and use the mean value as the transferability score for each sample.

1044 **Meta-learner.** The general meta-learner in AutoForecast Abdallah et al. (2022a) is a linear model
 1045 designed to project dataset meta-features to model performance. In our experiments, we adapt this
 1046 meta-learner to predict fine-tuned performance based on data characteristics, model entropy profile,
 1047 and zero-shot performance. The training data is identical to the corpus collected for TIMETIC.

1048 **Zero-shot** performance is the simplest proxy for estimating TSFM’s transferability. We use the
 1049 MASE to measure the zero-shot performance on a sample and use it as the transferability score.

1050 **B.5 EVALUATION METRICS**
 1051

1052 **Weighted Kendall’s tau** (τ_w) is a statistic that measures the ordinal association between two ranked
 1053 lists while assigning different importance to item pairs. It is defined as:

$$\tau_w = 1 - \frac{2 \sum_{(i,j):i < j} w_{ij} \cdot \mathbb{I}[(x_i - x_j)(y_i - y_j) < 0]}{\sum_{(i,j):i < j} w_{ij}}$$

1054 where w_{ij} is a nonnegative weight assigned to the pair (i, j) , and $\mathbb{I}[\cdot]$ is the indicator function that
 1055 equals 1 if the pair is discordant and 0 otherwise. By weighting different item pairs, τ_w allows em-
 1056 phasizing errors at the top of the ranking or other positions of interest. The value of τ_w ranges from
 1057 -1 (inverse ranking) to 1 (perfect agreement), with 0 indicating no ordinal correlation. Compared
 1058 with the standard Kendall’s tau, the weighted version provides greater flexibility in applications
 1059 where certain ranking positions are more critical than others.

1060 **Spearman’s rank correlation** (ρ) is a nonparametric statistic that measures the monotonic associ-
 1061 ation between two ranked lists. It is defined as:

$$\rho = 1 - \frac{6 \sum_{i=1}^n d_i^2}{n(n^2 - 1)}$$

1062 where d_i is the difference between the ranks of the i -th item in the two lists, and n is the total number
 1063 of items being ranked. The value of ρ ranges from -1 (perfect inverse monotonic relationship)
 1064 to 1 (perfect monotonic agreement), with 0 indicating no monotonic correlation. Compared
 1065 with Kendall’s tau, Spearman’s ρ is based on rank differences rather than concordant and discordant
 1066 pairs, making it computationally simpler for large n .

1067 **Mean Absolute Scaled Error** (MASE) evaluates forecast accuracy by comparing it to a naive base-
 1068 line. It is defined as:

1080

$$1081 \quad \text{MASE} = \frac{\frac{1}{T} \sum_{t=1}^T |y_t - \hat{y}_t|}{\frac{1}{T-m} \sum_{t=m+1}^T |y_t - y_{t-m}|}$$

$$1082$$

$$1083$$

1084 where y_t is the true value, \hat{y}_t is the predicted value, T is the length of the forecast period, and m
 1085 is the seasonality of the series (with $m = 1$ for non-seasonal data). The denominator represents
 1086 the in-sample mean absolute error of a naive forecasting method (e.g., seasonal naive). MASE is
 1087 scale-free and interpretable: a value less than 1 indicates the model outperforms the naive baseline.
 1088

1089 C ADDITIONAL EXPERIMENTAL RESULTS

1090 C.1 PERFORMANCE EVALUATION USING WEIGHTED KENDALL TAU

1091 Tables D and E report the performance of transferability estimation methods in short-, medium-, and
 1092 long-term forecasting tasks in the standard and few-shot regimes. TIMETIC achieves the highest cor-
 1093 relations on most datasets, consistently outperforming all baselines. We also observed fluctuations
 1094 in transferability estimation performance across different forecast horizons within the same data
 1095 set, suggesting that the forecast horizon is an important factor influencing TSFM performance and
 1096 ranking. Moreover, dataset characteristics introduce varying challenges: for example, TIMETIC
 1097 performs poorly on the sz_taxi dataset but consistently achieves strong results on the bitbrains_rnd
 1098 dataset.
 1099

1100 C.2 PERFORMANCE EVALUATION USING SPEARMAN CORRELATION

1101 Tables F and G report the Spearman rank correlations of transferability estimation methods across
 1102 short-, medium-, and long-term forecasting tasks under both standard and few-shot regimes. Unlike
 1103 weighted Kendall’s τ_w , which emphasizes pairwise concordance with importance weights, Spear-
 1104 man correlation evaluates the global monotonic relationship between two rankings, making it more
 1105 sensitive to overall rank consistency. From the results, we observe that zero-shot performance pro-
 1106 vides a relatively strong baseline with higher correlation than other metrics. By incorporating richer
 1107 time series features and model characterization, TIMETIC achieves about a 30% improvement over
 1108 zero-shot performance on average.
 1109

1110 C.3 DISCUSSIONS ON ENTROPY PROFILE



1111 Figure D: Pearson correlation between each entropy-profile dimension and both finetuned perfor-
 1112 mance (**left**) and zero-shot performance (**right**). Overall, the entropy profile shows a positive cor-
 1113 relation with both finetuned and zero-shot performance. Zero-shot performance tends to correlate
 1114 more strongly with the cross-entropy of deeper-layer features, whereas this layer-dependent pattern
 1115 is less evident for finetuned performance.
 1116

1117 **Correlation between entropy profile and performance.** Figure D shows the Pearson correla-
 1118 tion between each entropy-profile dimension and both finetuned and zero-shot performance. The
 1119

1134

1135 Table D: Performance comparison of transferability estimation methods for short-term, medium-
1136 term, and long-term forecasting under standard evaluation.

1137

Method	Downstream Target Datasets										Mean
	kdd_cup	biztobs_l2c	electricity	solar	sz_taxi	jena_weather	ett2	bitbrains_rnd	biztobs_app	loop_seattle	
Short-term forecasting											
LFC	0.036	-0.038	-0.437	0.618	-0.448	-0.605	-0.471	-0.441	0.007	0.638	-0.114
LogME	0.432	-0.245	0.040	0.519	-0.556	-0.093	-0.528	0.016	0.162	-0.272	-0.053
RegScore	-0.354	-0.178	-0.301	-0.677	0.069	-0.274	-0.510	0.041	-0.294	-0.246	-0.272
Meta learner	-0.281	0.339	0.221	0.266	0.304	-0.120	0.260	-0.473	-0.149	0.159	0.053
Zero-shot	0.406	-0.044	-0.253	0.444	0.038	0.411	-0.157	0.144	0.110	0.471	0.157
TIMETIC	0.463	0.320	0.218	0.159	0.152	0.372	0.190	0.606	0.112	0.456	0.305
Medium-term forecasting											
LFC	-0.130	0.016	-0.301	0.510	-0.289	-0.435	-0.394	-0.296	0.016	0.402	-0.106
LogME	-0.205	0.411	0.119	-0.147	-0.328	-0.169	-0.631	-0.474	0.411	0.001	-0.138
RegScore	0.200	-0.131	-0.296	-0.226	0.491	0.135	0.317	-0.105	0.274	-0.320	0.034
Meta learner	0.680	-0.320	-0.015	0.105	-0.436	0.205	0.260	0.266	-0.504	0.177	0.042
Zero-shot	0.386	-0.053	0.075	0.187	0.632	0.850	0.678	0.002	0.417	0.115	0.329
TIMETIC	0.137	0.522	0.426	0.574	0.061	0.561	0.536	0.530	0.485	0.459	0.429
Long-term forecasting											
LFC	-0.079	0.385	0.005	0.597	-0.499	-0.317	0.234	-0.102	0.330	0.451	0.101
LogME	-0.283	-0.511	-0.052	-0.256	-0.411	0.354	-0.254	-0.321	0.346	0.013	-0.138
RegScore	0.307	-0.146	-0.606	-0.340	0.717	0.264	0.334	-0.295	0.241	-0.300	0.018
Meta learner	0.411	-0.119	0.105	-0.221	-0.437	-0.467	0.008	0.105	0.084	-0.361	-0.089
Zero-shot	0.393	0.518	-0.079	0.099	0.489	0.346	0.251	-0.013	0.547	0.242	0.279
TIMETIC	0.215	0.632	0.197	0.334	0.052	0.037	0.327	0.632	0.445	0.038	0.319

1160

1161

1162

1163 Table E: Performance comparison of transferability estimation methods for short-term, medium-
1164 term, and long-term forecasting under few-shot evaluation.

Method	Downstream Target Datasets										Mean
	kdd_cup	biztobs_l2c	electricity	solar	sz_taxi	jena_weather	ett2	bitbrains_rnd	biztobs_app	loop_seattle	
Short-term forecasting (few-shot)											
LFC	0.316	0.266	0.282	0.628	-0.182	-0.631	0.187	-0.180	0.124	0.551	0.136
LogME	0.080	0.114	-0.033	0.257	-0.559	0.067	-0.626	-0.199	-0.432	-0.268	-0.160
RegScore	-0.215	-0.254	0.001	-0.166	0.175	0.245	0.357	0.383	-0.104	-0.179	0.024
Meta learner	-0.366	0.277	0.221	0.266	0.263	-0.120	0.374	-0.367	-0.184	0.272	0.064
Zero-shot	0.019	-0.144	-0.078	0.445	0.145	0.350	0.157	-0.051	0.119	0.346	0.131
TIMETIC	0.538	0.286	0.285	0.316	0.134	0.293	0.107	0.451	0.442	0.241	0.320
Medium-term forecasting (few-shot)											
LFC	0.110	0.140	-0.186	0.686	-0.133	-0.288	-0.044	-0.039	0.016	0.339	0.060
LogME	-0.143	0.487	-0.255	-0.256	-0.328	-0.198	-0.605	-0.314	0.411	0.007	-0.119
RegScore	0.530	0.436	-0.132	-0.277	0.481	0.326	0.505	0.095	0.274	-0.203	0.204
Meta learner	0.680	-0.184	-0.015	0.105	-0.436	0.455	0.207	-0.081	-0.505	0.177	0.040
Zero-shot	0.508	0.067	0.075	0.186	0.405	0.781	-0.081	0.047	0.417	0.213	0.262
TIMETIC	0.137	0.451	0.338	0.593	0.061	0.527	0.436	0.340	0.485	0.459	0.383
Long-term forecasting (few-shot)											
LFC	0.052	0.324	0.310	0.594	-0.528	-0.280	0.265	-0.433	0.330	0.384	0.102
LogME	-0.283	-0.415	0.019	-0.374	-0.411	0.015	-0.144	-0.429	0.346	-0.083	-0.176
RegScore	0.361	-0.174	-0.546	-0.453	0.612	0.175	0.442	-0.518	0.241	0.046	0.019
Meta learner	0.411	-0.119	0.105	-0.221	-0.437	0.095	-0.040	0.089	0.084	-0.414	-0.045
Zero-shot	0.425	0.536	0.001	0.152	0.508	0.408	0.376	0.071	0.547	0.173	0.320
TIMETIC	0.305	0.672	0.197	0.334	0.088	0.226	0.469	0.458	0.445	0.046	0.323

1188

1189 Table F: Spearman ranking correlation of transferability estimation methods for short-term, medium-
1190 term, and long-term forecasting under standard evaluation.

1191

Method	Downstream Target Datasets										Mean
	kdd_cup	biztobs_l2c	electricity	solar	sz_taxi	jena_weather	ett2	bitbrains_rnd	biztobs_app	loop_seattle	
Short-term forecasting											
LFC	0.261	-0.079	-0.539	0.467	-0.624	-0.576	-0.624	-0.479	0.152	0.612	-0.143
LogME	0.358	-0.042	0.152	0.770	-0.673	-0.273	-0.612	0.394	0.115	-0.527	-0.034
RegScore	-0.491	0.055	-0.479	-0.745	0.285	-0.018	-0.648	0.006	-0.236	-0.345	-0.262
Meta learner	-0.273	0.624	0.309	0.079	0.273	-0.188	0.358	-0.685	-0.139	-0.164	0.019
Zero-shot	0.588	-0.067	-0.212	0.564	-0.006	0.527	0.200	0.188	0.139	0.648	0.257
TIMETIC	0.661	0.291	0.394	0.067	0.176	0.261	0.103	0.503	0.345	0.733	0.353
Medium-term forecasting											
LFC	-0.212	0.103	-0.333	0.442	-0.224	-0.479	-0.503	-0.261	0.273	0.515	-0.068
LogME	-0.358	0.115	0.018	-0.127	-0.394	-0.297	-0.794	-0.491	0.236	0.236	-0.185
RegScore	0.188	-0.224	-0.419	-0.176	0.261	0.236	0.164	0.006	0.370	-0.285	0.012
Meta learner	0.624	-0.164	0.030	-0.176	-0.467	0.176	0.382	0.345	-0.721	-0.091	-0.006
Zero-shot	0.648	0.078	0.212	0.030	0.794	0.903	0.697	0.358	0.515	0.430	0.467
TIMETIC	0.521	0.697	0.682	0.539	0.394	0.582	0.733	0.555	0.697	0.600	0.600
Long-term forecasting											
LFC	-0.103	0.685	-0.030	0.394	-0.467	-0.297	0.042	-0.273	0.697	0.358	0.101
LogME	-0.345	-0.733	-0.067	-0.224	-0.370	0.491	-0.358	-0.333	0.176	-0.018	-0.178
RegScore	0.236	-0.236	-0.657	-0.333	0.612	0.273	0.612	-0.273	0.176	-0.455	-0.004
Meta learner	0.564	-0.152	0.345	-0.261	-0.358	-0.382	0.321	0.006	-0.139	-0.552	-0.061
Zero-shot	0.684	0.455	0.176	-0.055	0.539	0.552	0.527	0.309	0.321	0.297	0.381
TIMETIC	0.527	0.830	0.552	0.078	0.285	0.079	0.539	0.673	0.539	0.079	0.418

1214

1215

1216

1217 Table G: Spearman ranking correlation of transferability estimation methods for short-term,
1218 medium-term, and long-term forecasting under few-shot evaluation.

Method	Downstream Target Datasets										Mean
	kdd_cup	biztobs_l2c	electricity	solar	sz_taxi	jena_weather	ett2	bitbrains_rnd	biztobs_app	loop_seattle	
Short-term forecasting (few-shot)											
LFC	0.467	0.382	0.333	0.479	-0.176	-0.770	0.236	-0.164	-0.224	0.539	0.110
LogME	-0.103	0.333	-0.261	0.430	-0.624	-0.115	-0.721	-0.321	-0.600	-0.588	-0.257
RegScore	-0.006	-0.115	0.103	-0.236	0.091	0.394	0.297	0.543	-0.079	-0.309	0.068
Meta learner	-0.321	0.515	0.309	0.079	0.236	-0.188	0.394	-0.636	-0.164	-0.018	0.021
Zero-shot	0.248	-0.139	0.103	0.612	0.188	0.430	0.297	-0.042	0.297	0.370	0.236
TIMETIC	0.576	0.394	0.394	0.479	0.152	0.370	0.139	0.648	0.552	0.291	0.399
Medium-term forecasting (few-shot)											
LFC	0.224	0.418	-0.212	0.539	-0.103	-0.418	-0.321	-0.055	0.273	0.479	0.082
LogME	-0.248	0.515	-0.333	-0.297	-0.394	-0.321	-0.758	-0.261	0.236	0.212	-0.165
RegScore	0.600	0.612	0.025	-0.115	0.273	0.321	0.442	0.030	0.370	-0.139	0.242
Meta learner	0.624	0.006	0.030	-0.176	-0.467	0.285	0.236	0.018	-0.721	-0.091	-0.025
Zero-shot	0.660	0.042	0.212	0.030	0.648	0.855	0.006	0.248	0.515	0.576	0.379
TIMETIC	0.321	0.624	0.285	0.588	0.394	0.345	0.515	0.321	0.697	0.600	0.469
Long-term forecasting (few-shot)											
LFC	-0.042	0.661	0.127	0.382	-0.394	-0.224	0.091	-0.588	0.697	0.345	0.105
LogME	-0.345	-0.636	-0.079	-0.394	-0.370	0.127	-0.273	-0.539	0.176	-0.091	-0.242
RegScore	0.552	-0.188	-0.644	-0.467	0.430	0.370	0.685	-0.673	0.176	0.200	0.044
Meta learner	0.564	-0.152	0.345	-0.261	-0.358	0.067	0.224	0.006	-0.139	-0.588	-0.029
Zero-shot	0.697	0.455	0.273	0.006	0.564	0.685	0.648	0.248	0.321	0.236	0.413
TIMETIC	0.539	0.842	0.552	0.079	0.273	0.188	0.576	0.539	0.539	0.418	0.451

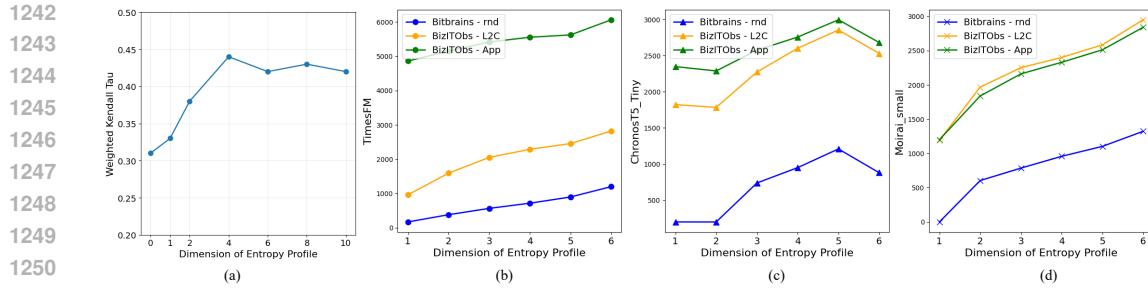


Figure E: (a) Influence of the entropy-profile dimensionality on transferability estimation. (b-d) Entropy profiles of models across three datasets with different characteristics.

entropy of middle-layer features exhibits a positive correlation with both finetuned and zero-shot performance. Zheng et al. (2017) suggested that higher entropy indicates a more informative feature space in the pre-trained model, which is not overly biased toward any single pattern and therefore demonstrates greater transferability.

Dimensionality of the entropy profile. We also evaluate how the dimensionality of the entropy profile affects transferability estimation, as shown in Figure E (a). When a model has fewer layers than the predefined entropy-profile dimensionality, we pad the profile by repeating the final layer’s entropy value. When a model has more layers, we apply average pooling to downsample it to the target length. We observe that removing the entropy profile or using fewer than four dimensions significantly degrades estimation performance. Once the dimensionality reaches four or more, further increases yield no additional gains. Additionally, deeper models typically exhibit smoother entropy evolution across layers; thus, for current TSFMs with up to 32 layers, applying up to a 4 \times downsampling does not distort the overall information-flow representation.

Data influence on the entropy profile. In Figure E (b-d), we compare entropy profiles across three datasets: Bitbrains-rnd (seasonal, 5T sampling), BizITObs-App (seasonal, 10s sampling), and BizITObs-L2c (trend-dominant, 5T sampling). For datasets with the same sampling frequency, L2c exhibits substantially higher information entropy than rnd, suggesting that trend-dominated signals carry more information than purely seasonal ones. When comparing rnd and App, the App dataset shows a higher entropy having a higher sampling frequency, which may indicate that denser temporal sampling captures richer patterns than lower-frequency signals. Although the entropy profile varies with dataset characteristics, the overall entropy-flow pattern—i.e., the shape of the profile—remains similar within a model family. This similarity provides a useful cue for TIMETIC to identify model similarity.

Characteristics	Complexity
Entropy Profile	$O(N \cdot C)$
Fisher Information	$O(N \cdot C + P^2)$
H-score	$O(N \cdot C + N^2 \cdot D)$
Gradient Statistics	$O(N \cdot C + N \cdot B)$

Table H: Computational complexity of model characterization methods

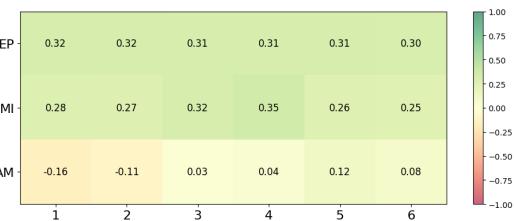


Figure F: Pearson correlation between each dimension of different model (TimesFM_200M) characteristics and finetuned performance.

Comparison of different model characteristics. From the perspective of deep model interpretability, many characteristics have been proposed to quantify a model’s transferability potential. Examples include Fisher Information (Achille et al., 2019), which measures the sensitivity of model parameters to data; the H-score (Bao et al., 2019b), which captures the distance between the source model’s feature or prediction distribution and that of the target task; and Principle Gradient Expectation (Qi et al., 2022), which estimates transferability by comparing gradient differences between the source and target datasets. Although these characteristics may provide effective measures for

1296 transferability, their high computational cost contradicts the core design principle of flexibility in
 1297 TIMETIC. In contrast, the entropy profile requires only a single forward pass followed by entropy
 1298 computation, offering a simple yet effective characteristic for transferability estimation. Table H
 1299 summarizes the computational complexity of these methods, where N is the number of samples for
 1300 transferability estimation, C is the cost of a TSFM forward pass per sample, P is the total number
 1301 of TSFM parameters, D is the dimension of the extracted feature vector, and B is the compute cost
 1302 of a TSFM backward pass.

1303 Under the controlled setting of single-pass inference, we further compare the layer-wise average
 1304 activation magnitude (AM) and the mutual information (MI) between layer features and input time
 1305 series with the entropy profile (EP). Following the setup for the entropy profile, we downsample both
 1306 the average activation magnitude and mutual information sequences to a length of six. As shown
 1307 in Figure F, the entropy profile and mutual information exhibit similar Pearson correlations with
 1308 finetuned performance, since feature information entropy essentially represents the upper bound of
 1309 mutual information. In contrast, the average activation magnitude shows only a weak correlation
 1310 with finetuned performance.

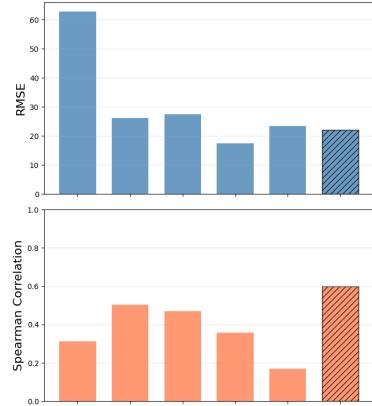
1311 Table I: Performance comparison of different regressors in TIMETIC. Transferability estimation
 1312 results are reported for medium-term forecasting using a context table of 1,000 rows.
 1313

Method	Datasets										Mean
	kdd_cup	biztobs_l2c	electricity	solar	sz_taxi	jena_weather	ett2	bitbrains_rnd	biztobs_app	loop_seattle	
Lasso	0.347	0.024	-0.263	-0.120	0.162	0.692	0.673	-0.101	0.186	0.117	0.172
XGB	0.447	0.234	0.484	-0.090	0.197	0.654	0.583	0.148	0.127	0.459	0.324
CatBoost	0.345	0.204	0.426	-0.029	-0.028	0.598	0.558	0.207	0.132	0.414	0.240
FTFormer	0.227	-0.321	0.092	-0.148	0.058	0.525	0.420	0.005	0.140	-0.448	0.055
SAINT	0.256	-0.024	0.233	0.275	0.183	0.232	0.540	-0.058	0.072	-0.070	0.164
TabPFN	0.137	0.522	0.426	0.574	0.061	0.561	0.536	0.530	0.485	0.459	0.429

C.4 DISCUSSIONS ON TABULAR FOUNDATION MODEL

1325 **Comparison of different regressors.** Table I reports the
 1326 transferability estimation performance of TIMETIC with
 1327 various regressors, including sparse linear models (Lasso), tree-
 1328 based models (XGB and CatBoost), and tabular expert mod-
 1329 els (FTFormer (Gorishniy et al., 2021) and SAINT (Somepalli
 1330 et al., 2021)). For these methods, we train using a 1,000-row
 1331 table, whereas TabPFN uses the table directly as context at
 1332 inference time. TabPFN achieves the best transferability es-
 1333 timation performance, with XGB ranking second. Figure G
 1334 further compares prediction error and Spearman correlation:
 1335 although TabPFN’s prediction error is comparable to that of
 1336 other tabular models, it achieves a higher ranking correlation.
 1337 In contrast, SAINT shows the opposite behavior: despite hav-
 1338 ing a prediction error comparable to other models, it achieves
 1339 the lowest Spearman correlation. This likely stems from over-
 1340 fitting to the training datasets—its predictions collapse toward
 1341 the expected value of the target. Although this yields small
 1342 absolute errors, such predictions fail to preserve ranking infor-
 1343 mation and therefore perform poorly in transferability estima-
 1344 tion.

1345 **Motivation for introducing TabPFN.** (1) *Strong general regression capability*: TabPFN is trained
 1346 on a large collection of tabular datasets, giving it a strong ability to model relationships among
 1347 features. Works (Hollmann et al., 2025; Grinsztajn et al., 2025) have shown that TabPFN achieves
 1348 superior zero-shot regression performance on multiple large open benchmarks (TabArena, AutoML,
 1349 and OpenML-CTR23) compared to classical regressors that require training. (2) *Flexible in-context
 learning capability*: Transferability estimation scenarios naturally produce context tables of varying
 sizes—ranging from only a few fine-tuning results to continuously growing collections over time.



1345 Figure G: Average RMSE (top)
 1346 and Spearman correlation (bottom)
 1347 of predictions from different
 1348 regressors.
 1349

1350 TabPFN relies on in-context learning, requires no training, and supports a wide range of context table
 1351 sizes, allowing the table to be reorganized or expanded freely with no retraining cost. (3) *No hyper-*
 1352 *parameter tuning*: Standard regressors require careful adjustment of training hyper-parameters for
 1353 different context table sizes to ensure convergence and avoid overfitting. As a foundation model,
 1354 TabPFN offers a more robust solution without any hyper-parameter optimization.

1355 C.5 DISCUSSIONS ON MODEL SELECTION EFFICIENCY

1356 **1358 Enumerative finetuning cost.** Using the Electricity dataset with 12M time points as an example,
 1359 TimesFM with 500M parameters takes about 15 hours 30 minutes per epoch on a single A100 GPU.
 1360 And Moirai_small with 14M parameters requires approximately 4 hours 30 minutes to finetune for
 1361 one epoch. The overall finetuning time cost is therefore substantial, especially it will constantly
 1362 increases when evaluating a larger candidate model zoo. Moreover, since not all TSFMs share a
 1363 unified training pipeline, significant human effort is also required to set up training procedures,
 1364 further increasing the overall cost.

1365 **1367 TimeTic finetuning cost.** In TIMETIC, context construction requires only limited offline finetuning
 1368 on a few datasets, decoupling the one-time finetuning cost from the potentially unbounded num-
 1369 ber of future target scenarios. For example, when estimating the model zoo’s performance on the
 1370 Electricity dataset using finetuning results from ETT2—which contains only 1/764 of Electricity’s
 1371 time points—finetuning TimesFM (500M parameters) on ETT2 takes just 12 minutes. Constructing
 1372 a context table that aggregates the entire model zoo’s finetuning experience therefore requires only
 1373 about 1.3% of the time needed for full enumerative finetuning. With TIMETIC, we can estimate the
 1374 model ranking on Electricity dataset with only about 1.3% finetuning time.

1375 D UNCERTAINTY ANALYSIS

1376 We define the performance estimation task as modeling the conditional distribution $p(y|x)$, where y
 1377 denotes a model’s actual fine-tuned performance on the raw time series x . The optimal performance
 1378 of a regressor f_θ is fundamentally limited by the *aleatoric uncertainty*, $\text{Var}(y|x)$, inherent in the
 1379 true distribution $p(y|x)$. Formally, the expected squared error of a pointwise regressor f_θ for each
 1380 input x is lower-bounded by this variance:

$$1381 \mathbb{E}_{y \sim p(y|x)} [(y - f_\theta(x))^2] \geq \text{Var}(y | x).$$

1382 In practice, however, observations are restricted to feature-based representations $\phi(x)$, which only
 1383 partially capture x . As a result, the regressor cannot distinguish between states where $\phi(x) = \phi(x')$
 1384 but $x \neq x'$. This induces additional *epistemic uncertainty*, raising the lower bound of the expected
 1385 error from $\text{Var}(y|x)$ to the larger $\text{Var}(y|\phi(x))$:

$$1386 \mathbb{E}_{y \sim p(y|x)} [(y - f_\theta(x))^2] \geq \text{Var}(y | \phi(x)).$$

1387 Similar bounds also hold for regression-derived metrics such as rank correlations: if multiple y -
 1388 values share identical feature representations $\phi(x)$, their relative rankings cannot be determined.
 1389 Hence, to minimize epistemic uncertainty, it is crucial for the regressor to incorporate as many
 1390 informative features as possible. This insight motivates our use of TotalVariance as a practical
 1391 proxy for epistemic uncertainty and explains why TIMETIC emphasizes rich feature and model
 1392 characterizations to improve transferability estimation. Moreover, TotalVariance can also serve
 1393 as an uncertainty metric to guide context table construction, where minimizing it helps reduce the
 1394 lower bound of estimation error.

1395 E USE OF LARGE LANGUAGE MODELS

1396 In preparing this paper, we used large language models solely to improve the clarity and readability
 1397 of the writing. All substantive research contributions, including conceptualization, model design,
 1398 experimentation, and analysis, were conducted entirely by the authors.