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ABSTRACT

Current neural decoding methods typically aim at explaining behavior based on
neural activity via supervised learning. However, since generally there is a strong
connection between learning of subjects and their expectations on long-term re-
wards, we propose NeuRL, an inverse reinforcement learning approach that (1)
extracts an intrinsic reward function from collected trajectories of a subject in
closed form, (2) maps neural signals to this intrinsic reward to account for long-
term dependencies in the behavior and (3) predicts the simulated behavior for
unseen neural signals by extracting Q-values and the corresponding Boltzmann
policy based on the intrinsic reward values for these unseen neural signals. We
show that NeuRL leads to better generalization and improved decoding perfor-
mance compared to supervised approaches. We study the behavior of rats in a
response-preparation task and evaluate the performance of NeuRL within simu-
lated inhibition and per-trial behavior prediction. By assigning clear functional
roles to defined neuronal populations our approach offers a new interpretation
tool for complex neuronal data with testable predictions. In per-trial behavior pre-
diction, our approach furthermore improves accuracy by up to 15% compared to
traditional methods.

1 INTRODUCTION

Neural decoding methods use neural spiking activity from the brain to infer predictions about be-
havior, like explaining or predicting movements based on activity in the motor cortex (Peixoto et al.,
2021; Melbaum et al., 2021; Sani et al., 2021) or decisions based on activity located in prefrontal
and parietal cortices (Baeg et al., 2003; Ibos & Freedman, 2017). Decoding can be used to control
brain machine interfaces (Schirrmeister et al., 2017; Kuhner et al., 2019; Hübner et al., 2020) or to
extract general working principles of the brain. Recently, deep learning has shown great potential
in a number of domains and is outperforming classical approaches in the field of neural decoding
(Glaser et al., 2020; 2019). Nevertheless, decoding methods are usually trained supervised for pre-
diction (Xu et al., 2019; Iqbal et al., 2019), mapping greedily from neural signals directly to actions
without reasoning about the long-term consequences of the actions. In the reinforcement learn-
ing (RL) paradigm, on the other hand, this is accounted for explicitly by learning a policy which
maximizes long-term rewards in expectation. Prior work also showed that learning in the brain is
driven by changes in the expectations about rewards and punishments (Schultz et al., 1997) which
naturally aligns with the RL framework. Importantly, the immediate reward function in RL can be
seen as the most succinct, robust, and transferable definition of behavior to be learned (Abbeel &
Ng, 2004). Consequently, in this work, we propose the use of inverse reinforcement learning (IRL)
methods to infer an intrinsic reward function explaining observed animal behavior, allowing us to
draw conclusions about neural activity and its relation to the recorded behavior, as well as improving
generalization and decoding performance.

We use Inverse Action-value Iteration (IAVI) (authors, 2020) to calculate the immediate reward
function analytically in closed-form assuming that a demonstrator is following a Boltzmann distri-
bution over its unknown optimal action-values which in turn represent the expected long-term return
for observed actions. This common assumption has already been applied to model the behavior of
humans and animals in a plethora of prior work (Bitterman, 1965; Baker et al., 2007; Feher da Silva
et al., 2017). The learned reward function formalized in IAVI encodes the local probabilities of the
demonstrated actions while enforcing the local probabilities of the maximizing actions in the future
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Figure 1: Response-preparation task in a reinforcement learning setting. A rat acts in a behavioral
chamber with a lever and a sugar port. Our proposed framework first infers an intrinsic scalar reward
function of the rat’s behavior via closed-form inverse reinforcement learning. Then, a parameterized
function ρ is learned which maps neural signals to the intrinsic reward. Finally, we generalize to new
situations by applying ρ to other neural signals and calculating the Q-values and Boltzmann policy
to study the corresponding simulated behavior for these neural signals.

under Q-learning. In contrast, common supervised learning methods only consider the action taken
in the current time step. In this work we propose to instead estimate a mapping of recorded neural
signals to the immediate reward function learned on observed rat trajectories via IRL as an interme-
diate step to find coherences between neural spikings and taken actions. The learned mapping can
then be used to calculate the intrinsic reward for unseen neural signals and simulate a rat’s behavior
based on the new reward, an approach we call NeuRL. The scheme of the algorithm is shown in
Figure 1. This decoding mechanism can be used to predict behavior in real-time from neural spiking
or it can simulate the influence of specific neurons on the behavior of the rat. Our proposed decoding
tool can help to interpret complex neural data and can serve as a hypothesis generator which then
can be evaluated in vivo.

We study the behavior of rats in a response-preparation task where rats ought to hold a lever until a
cue (vibration to the paw) indicates that the animal should release. Figure 2 shows a rat performing
this task in a behavioral chamber. If the rats release within an allowed response window, they
receive sugar water as reward. The data is recorded with electrodes spanning all cortical layers. All
recorded neurons are from the Rostral Forelimb Area (RFA), which strongly contributes to planning
and preparing for movements, with some having a direct connection to the Caudal Forelimb Area
(CFA), responsible for motor execution.

Our contributions are threefold. First, we formalize NeuRL, a neural decoding method based on
inverse action-value iteration. Second, we evaluate NeuRL in per-trial behavior prediction showing
state-of-the-art performance. Third, we analyze the influence of neurons projecting from RFA to
CFA by simulated inhibition within the NeuRL framework and real inhibition via viral manipula-
tion. Our finding of similar response in real and simulated inhibition confirm that the intermediate
representation of neural signals as immediate rewards offer a very promising direction for neural
decoding methods.

2 BACKGROUND

2.1 (INVERSE) REINFORCEMENT LEARNING

We model the task of neural decoding in the RL framework, where an agent (here a rat) acts in
an environment as shown in Figure 1.1. Following policy π by applying action at ∼ π from n-
dimensional action-spaceA in state st, it reaches some state st+1 ∼M according to stochastic tran-
sition modelM and receives scalar reward rt in each discrete time step t. The agent has to adjust its
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Figure 2: Successful trial of the response-preparation task in a behavioral chamber. The rat presses
a lever until the vibration cue occurs, releases within 0.6 s and gets to the reward port.

policy π to maximize the expectation of long-term returnR(st) =
∑
t′>=t γ

t′−trt′ , where γ ∈ [0, 1]
is a discount factor. The action-value function then represents the expected long-term value of an
action when following policy π thereupon, i.e. Qπ(st, at) = Eat′>t∼π,st′>t∼M[R(st)|at]. From
the optimal action-value function Q∗ one can easily derive a corresponding optimal policy π∗ by
maximization.

IRL recovers a reward function from observed trajectories from expert policy πR under the assump-
tion that the agent was (softly) maximizing the induced expected long-term return. Previous work
solved this problem based on different approaches, such as Max Entropy IRL (Ziebart et al., 2008).

2.2 ACTION-VALUE ITERATION

We focus on the case of finding the optimal policy via model-based Action-value Iteration. The Q-
function, represented by a table with entries for every state and action, gets updated in every iteration
k based on the Bellman optimality equation with a given transition modelM:

Qk(st, at)← rt + γmax
a

Est+1∼M[Qk−1(st+1, a))].

3 METHOD

In this section, we describe how to infer the scalar underlying reward function of a rat’s behavior,
the supervised approximation of this scalar reward as a weighted combination of neural signals and
the neural decoding mechanism using the intrinsic reward function.

3.1 ESTIMATION OF INTRINSIC REWARD

We assume the rodent to softly maximize its measure of optimality which we define to be the ex-
pected cumulative sum of an unknown immediate reward function, i.e. the actions taken by the
animal are samples from a Boltzmann distribution over its optimal action-values Q∗(s, ·):

eQ
∗(s,a)∑

A∈A e
Q∗(s,A)

:= πR(a|s), (1)

for all actions a ∈ A, and concomitantly:

eQ
∗(s,a) = πR(a|s)

∑
A∈A

eQ
∗(s,A) =

πR(a|s)
πR(b|s) e

Q∗(s,b), (2)

for all actions b ∈ Aā where Aā = A \ {a}. Following the derivations as proposed by authors
(2020):

Q∗(s, a) = Q∗(s, b) + log(πR(a|s))− log(πR(b|s)). (3)

Using the Bellman optimality equation in Equation (3), the immediate reward of action a in state
s can be expressed by the immediate reward of some other action b ∈ Aā, the respective log-
probabilities and future action-values:

r(s, a) = log(πR(a|s))− γmax
a′

Es′∼M(s,a,s′)[Q
∗(s′, a′)]

+ r(s, b)− (log(πR(b|s))− γmax
b′

Es′′∼M(s,b,s′′)[Q
∗(s′′, b′)]).

(4)
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Substituting the difference between the log-probability and the discounted action-value of the future
state s′ as:

ηas := log(πR(a|s))− γmax
a′

Es′∼M(s,a,s′)[Q
∗(s′, a′)], (5)

we can put the reward of action a in state s in relation to the reward of all other actions:

r(s, a) = ηas +
1

n− 1

∑
b∈Aā

r(s, b)− ηbs. (6)

The resulting system of linear equations can be solved with least squares. We start by estimating
the immediate reward for all terminal states and then go through the MDP in reverse topological
order based on model M. As can be seen in Section 4.3, the Boltzmann distribution induced by
the optimal action-value function on this learned reward is equivalent to the arbitrary demonstrated
behavior distribution (proof in (authors, 2020)). IAVI thus returns a scalar intrinsic reward function
which precisely encodes the recorded behavior of subject rats as an intermediate result which can
serve as supervised signal to learn a mapping from neural spiking.

3.2 MAPPING OF NEURAL SPIKING TO INTRINSIC REWARD

As second step, we map recorded neural spikes to the found intrinsic reward function in order to draw
conclusions about the recorded behavior based on neural activity. We hence assume the immediate
reward function to be a projection:

r̂(Φ(s), a) = ρ(Φ(s)|θρ), (7)

where ρ is a parameterized function of features with parameters θρ, e.g. a linear combination or a
neural network, and Φ(s) = (Φ1(s), . . . ,Φm(s))> the vector of m features based on the recordings
of m neurons, such as the mean activity over all trials. We can fit parameters θρ according to the
class of function approximator, e.g. either by least squares or gradient descent, on the difference
between reward r(s, a) and prediction r̂(Φ(s), a). The mapping can then be used to predict the
resulting behavior based on neural spiking in new situations.

3.3 NEURAL DECODING FROM INTRINSIC REWARD

The parameters θρ of r̂(Φ(s), a) are fitted to represent immediate reward r(s, a) and hence the un-
derlying behavior of the recorded rat as closely as possible. The found parameters can contribute to
generalization to any arbitrary neural spiking Ψ(s) = (Ψ1(s), . . . ,Ψm(s))> which yields adjusted
reward and action-values in each time step t:

r̂(Ψ(st), at) = ρ(Ψ̂(st)|θρ) and

Q̂∗(Ψ(st), at) = max
π

Eπ

∑
t′≥t

γt
′−tr̂(Ψ(st′), at′)

 . (8)

From the optimal Q-function Q∗(Ψ(s), a) based on features Ψ(s), we infer the respective predicted
action-probabilities by:

π̂(a|Ψ(s)) =
eQ̂
∗(Ψ(s),a)∑

A∈A e
Q̂∗(Ψ(s),A)

. (9)

In order to identify neurons or groups of neurons with particular relevance for a specific type of
response, we can modulate their activity by modifying the respective features Φi(s)|1≤i≤m, keeping
all other features fixed. Put differently, we can excite or inhibit certain neurons within the model
and make predictions about the response. The change in behavior between the ground truth based
on the recorded spiking and the predicted response based on the modulated features provide insight
over the possible individual impact of these neurons on cognitive processes. Furthermore, our model
offers the possibility to learn the intrinsic reward of a rat along with the respective mapping from
neural spiking to rewards based on recorded trials in order to make predictions about behavioral
response ad hoc in active trials.
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4 EXPERIMENTS

In our experiments, we seek to find answers to the questions:

• Is the immediate reward a good intermediate representation for neural decoding?
• How does NeuRL compare to the state of the art in per-trial action prediction?
• Are the responses predicted by NeuRL in line with real-world observations in inhibition

experiments?

In the following section, we first describe the response-preparation task and the respective MDP
formulation. Then, we compare the action probabilities as found in the data and predicted by the
controller on basis of the learned reward function by IAVI. Lastly, we employ and compare NeuRL
in per-trial behavior prediction and in the context of real-world inhibition.

4.1 RESPONSE-PREPARATION TASK

A total of six rats (two for the neural recordings used in our experiments and four for the real-world
inhibition experiments) were placed into a behavioral chamber with one lever and a reward port (see
Figure 2). To complete the task and get the reward (sucrose water), the rats had to hold the lever
for 1.6 s until a vibration to the paw occurs as a cue to release. The trial was considered correct
if the rat released within 0.6 s. The rats were only rewarded for correct trials and were trained for
40 sessions over the course of two months. The subset of the data used for training our models
comprises recordings of 30 neurons and 104 trials of rat 1 and 33 neurons and 184 trials of rat 2.

4.2 MDP FORMULATION

We model a simplified version of the response-preparation task as Markov Decision Process
(MDP), where we consider the task after the press of the lever. The MDP is defined as a
four-tuple 〈S,A,M, r〉, where the set of states is defined by S = {0.0 s, 0.2 s, . . . , 1.2 s} ∪
{Before Cue,Cue,After Cue,After Cue1,After Cue2, . . . ,Time to Release,Late Release} ∪ {Suc-
cess,Failure}, discretizing the time into chunks of 0.2 s. In every state, the rat can pick an ac-
tion from action space A = {stay, release}. We define the MDP to have deterministic transitions.
An overview is given in Figure 3. In the following, we consider the reward function r : S ×A 7→ R
to be unknown.

0.0s 0.2s Before
Cue

Cue After
Cue

Time to
Release

Late
Release

Failure Success Failure

stay, r0 stay, rc stay, rc+1 stay, rc+4

release, rF release, rS
(stay, release), rF

stay, rc−1

. . .
stay, rc+3

. . .

Figure 3: Transition graph for the MDP of the described response-preparation task. In the initial
state, the rat presses the lever. If the rat does not release, it ends up in the next time step, where the
time is discretized with 0.2 s steps. If the rat relases after the cue in a time span of 0.6 s, the trial was
a success and it gets rewarded. c denotes the running index over time steps before and after the cue
(in our case c = 8, representing 1.6 s with 0.2 s steps).

4.3 REWARD ESTIMATION VIA IAVI

To verify the correctness of the immediate reward found by IAVI, we first learn the intrinsic reward
functions based on the recorded trajectories of rat 1 and rat 2 and the above defined MDP formula-
tion. As can be seen in Figure 4, the learned and real release distributions are identical, which shows
that the scalar reward functions being found precisely explain the release distribution for each rat.
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Figure 4: Release distribution, learned reward and the resulting Boltzmann distribution after apply-
ing Q-learning on the reward for (top) rat 1 and (bottom) rat 2 over all trials. Dashed lines indicate
the time span in which the rats ought to release.

4.4 PER-TRIAL BEHAVIOR PREDICTION FROM NEURAL SPIKING

To study the performance for predicting actions of rats based on their neural signals in a trial with
NeuRL, we use the neural spikings per time-step and trial as features and a neural network as func-
tion approximator for the reward. Since the resulting features are very sparse, we further append
the time spent since trial initiation to the feature space. The learned intrinsic reward function is
used to compute the corresponding release policy by applying action-value iteration on the reward.
We compare NeuRL to a random controller, logistic regression (LR) and non-linear classification
via neural networks (NNC), which map directly from neural signal features to actions. Whenever a
resulting controller assigns a probability of > ε (here we set ε = 0.6) to the action of release in a
certain time step, we consider it a predicted release. We split the data set introduced in Section 4.1
into different training and test sets using 10-fold cross-validation over all trials of a rat. For NeuRL
and NNC, we optimized the hyperparameters with random search according to the configuration
space in Table 1 with 500 sampled configurations each.

Hyperparameter Configuration Space

#updates [5000, 10000, 20000]
batch size [16, 64, 256]

hidden dim [50, 100, 200]
num layers [2∗,3∗∗, 4]

learning rate [10−3,10−4, 10−5]

(a) Incumbents of NeuRL.

Hyperparameter Configuration Space

#updates [5000, 10000, 20000]
batch size [16, 64, 256]

hidden dim [50∗∗, 100, 200∗]
num layers [2,3∗,4∗∗]

learning rate [10−3,10−4∗∗,10−5∗]

(b) Incumbents of NNC.

Table 1: Configuration space of hyperparameters. Incumbent for rat 1 (∗) and rat 2 (∗∗).

Results are shown in Table 2. NeuRL is able to correctly predict the releases in the test set by
36% and 44%, respectively, for the two rats and exceeds the performance of all baselines by a large
margin, also when considering near matches within one or two time steps. An intuition of why the
immediate reward is a good intermediate representation can be gained from the visualization of the
latent representation of the last hidden layers for the classifier (NNC) and NeuRL in Figure 5. As
substitute for a Q-value, we show the normalized cumulative embedding of the immediate reward.
The latent representation of the neural features grounded in the learned immediate reward preserves
the temporal coherence which stands in contrast to the latent embedding of the classifier. This brings
light to the advantages of the proposed representation. The larger increase in correct releases near
two time steps, as shown in Table 3, further strengthens this point since most overlap in the latent
embedding of NeuRL is between similar time steps (cf. Figure 5).
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Rat 1
Exact Match Near 1 Match Near 2 Match

NeuRL 0.36(±0.11) 0.49(±0.13) 0.59(±0.09)
NNC 0.21(±0.09) 0.28(±0.12) 0.37(±0.17)
LR 0.15(±0.07) 0.19(±0.10) 0.29(±0.08)

Random 0.04(±0.07) 0.20(±0.13) 0.29(±0.15)

Rat 2
Exact Match Near 1 Match Near 2 Match

NeuRL 0.44(±0.09) 0.62(±0.06) 0.70(±0.11)
NNC 0.34(±0.10) 0.46(±0.09) 0.52(±0.10)
LR 0.33(±0.09) 0.41(±0.08) 0.47(±0.10)

Random 0.12(±0.06) 0.38(±0.07) 0.46(±0.10)

Table 2: Mean prediction accuracy of release time step for 10-fold cross validation on rat 1 and 2.
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Figure 5: (left) Visualization of latent embeddings for the two actions stay (◦) and release (×)
generated from the last hidden layer of the classifier (NNC). (right) Visualization of the normalized
cumulative latent embeddings generated by the reward-model (as substitute for a Q-value). Our
model preserves the temporal coherence of the task for the two actions stay (◦) and release (×)
much better than the classifier on the left which is necessary for correct release prediction.

Rat 1 Rat 2
NeuRL +23% +26%
NNC +16% +18%

Table 3: Increase in mean prediction accuracy for rat 1 and 2 going from exact to near 2 matches.

4.5 SIMULATION OF NEURAL INHIBITION AND ITS EFFECT ON THE RAT’S BEHAVIOR

We study the influence of neurons projecting from RFA to CFA (cf. Figure 6A) of which we iden-
tified 10 using optogenetic phototagging. The temporal pattern of the firing rate, as depicted in
Figure 6B, is surprisingly diverse even for a specific pathway. While the majority of the neurons
(6/10, 60%) increase the firing rate in the response period (indicated by dashed lines), about one
third of the neurons (3/10, 30%) have a higher firing rate in the hold period. Since most of the
neurons are more active in the response window, we hypothesize that inhibition during this period
has a significant effect on motor execution.

First, we simulate the effect of inhibition of these neurons within NeuRL and use the recordings
of rats without viral manipulation. To simulate varying expected efficacy of viral manipulation, we
sample subsets of the neurons projecting from RFA to CFA and set the respective features in Ψ(s)
within the allowed response window to zero (analogously to real-world inhibition experiments). We
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Figure 6: A Delineation of the Rostral (RFA) and Caudal (CFA) Forelimb Areas in a rat’s brain
according to Neafsey & Sievert (1982) and Rouiller et al. (1993). B Z-score normalized firing rates
of neurons projecting from RFA to CFA.

calculate the feature matrices accumulating the neural spikings by using an incremental mean over
all trials for each rat (to aggregate all available information) and compute the weights θρ via least
squares, assuming a linear combination of the state features as described in Section 3.2. Then, as de-
scribed above, we map the features to intrinsic rewards and compute the Q-values and corresponding
stochastic Boltzmann policies.
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Figure 7: Release distribution of the rats (Control) and the resulting Boltzmann policies after ap-
plying Q-learning on the modified reward for different levels of simulated inhibition of neurons
projecting from RFA to CFA. Dashed lines indicate the time span in which the rats ought to release.

Figure 7 shows the resulting release probabilities for different shares of inhibited neurons
(0.0, 0.6, 0.8 and 1.0) in the response window between 1.6 s and 2.2 s. The inhibition causes late
releases, as the probability of correct releases between 1.6 s and 2.2 s decreases with a higher pro-
portion of inhibited neurons. To evaluate our model, we consider trajectories of rodents solving the
response-preparation task as defined in Section 4.1 after neural inhibition via viral manipulation.
To inhibit neurons in vivo, we expressed the light gated inhibitory opsin enhanced Natronomonas
pharaonis Halorhodopsin (eNpHr3.0 (Gradinaru et al., 2008)) specifically targeting RFA to CFA
projecting neurons in four trained rats. For this we injected a local Adeno Associated Virus (AAV)-
based vector carrying the cre-dependent eNpHr construct into RFA and a retrograde traveling viral
vector (retroAAV (Tervo et al., 2016)) providing cre recombinase into CFA. Thereby the opsin is
only expressed in neurons projecting from RFA to CFA. Experiments were conducted 12 weeks
after injection to allow high levels of opsin expression. In 25% of the trials, continuous light was
delivered to RFA via optical fibers during the vibration cue.

In order to further put the performance of NeuRL in context of the current state of the art (Glaser
et al., 2020), we compare to logistic regression and NNC as described in Section 4.4. We train the
baseline models on the recorded trials without viral manipulation on the basis of single time steps
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Figure 8: A Identification of relevant neurons via optogenetic phototagging. B Processing of
neural recordings and extraction of neural spiking. C Viral manipulation of the pathway projecting
from RFA to CFA. D Mean reaction times and standard error for (left) rat batch 1 without and
with simulated inhibition of 60% of RFA to CFA neurons and (right) rat batch 2 with and without
real inhibition. (top) Within NeuRL (red) and in the real-world experiments (blue), the reaction time
increases with inhibition in the response window. (bottom) There is no significant change in reaction
time with inhibition during the hold period. Baselines are depicted in black for comparison, ( ) for
linear regression and ( ) for NNC.

(analogously to our experiments in Section 4.4, the time spent since trial initiation is added to the
feature space to account for the sparsity of per-time step features) and then use the predicted release
probabilities according to the modified features Ψ(s).

The resulting reaction times (time between cue and release in correct trials) for real and simulated
inhibition with an efficacy of 60% of the neurons projecting from RFA to CFA (corresponding to
the efficacy of viral manipulation in practice) are summarized for all rats in Figure 8. The model
provided by NeuRL captures both the tendency towards higher reaction times found in the real-
world experiments of viral manipulation in the response window, as well as the absence of delay
for inhibition during the hold period consistently for both rats. The difference in absolute numbers
result from different subject rats for neural recording (basis for NeuRL) and real-world inhibition
experiments. In contrast, logistic regression and non-linear classification are not able to reproduce
the findings found in the in vivo experiments.

5 CONCLUSION

We introduced NeuRL, a three-step neural decoding method that first infers the true underlying im-
mediate scalar reward function of a subject and then maps recorded neural spiking to this immediate
reward in order to provide the possibility to decode unseen neural recordings thereafter. In simulated
inhibition, our model was able to recover an effect of higher reaction times for the inhibition of neu-
rons projecting from RFA to CFA shown in real-world experiments. In per-trial behavior prediction,
our model achieved by far the best results, underlining the importance of reward prediction. Thus,
our approach offers a novel and powerful interpretation tool for complex neuronal data, increasing
the quality of behavioral predictions.

9



Under review as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

Data recordings will be made available upon release of a later journal submission. To this point, we
release a working pipeline for application. Hyperparameters are listed in the paper.
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