
Eliciting Textual Descriptions from Representations of Continuous Prompts

Anonymous ACL submission

Abstract

Continuous prompts, or “soft prompts”, are a001
widely-adopted parameter-efficient tuning strat-002
egy for large language models, but are often003
less favorable due to their opaque nature. Prior004
attempts to interpret continuous prompts relied005
on projecting individual prompt tokens onto the006
vocabulary space. However, this approach is007
problematic as performant prompts can yield008
arbitrary or contradictory text, and it individu-009
ally interprets each prompt token. In this work,010
we propose a new approach to interpret contin-011
uous prompts that elicits textual descriptions012
from their representations during model infer-013
ence. Using a Patchscopes variant (Ghandehari-014
oun et al., 2024) called InSPEcT over various015
tasks, we show our method often yields accu-016
rate task descriptions which become more faith-017
ful as task performance increases. Moreover,018
an elaborated version of InSPEcT reveals bi-019
ased features in continuous prompts, whose020
presence correlates with biased model predic-021
tions. Providing an effective interpretability022
solution, InSPEcT can be leveraged to debug023
unwanted properties in continuous prompts and024
inform developers on ways to mitigate them.025

1 Introduction026

Continuous prompts, or “soft prompts”, are an effi-027

cient and widely-adopted solution for priming pre-028

trained large language models (LLMs) to solve var-029

ious tasks (Li and Liang, 2021; Lester et al., 2021).030

However, they are often less favorable compared031

to alternative parameter-efficient tuning methods,032

such as discrete prompt tuning, due to their opaque033

nature (Liu et al., 2023; Choi et al., 2024).034

How should continuous prompts be inter-035

preted? Prior work explored discretizing contin-036

uous prompts through projection to the model’s037

vocabulary space (Khashabi et al., 2022; Ju et al.,038

2023). However, such approaches are problematic039

because it is possible to find performant continuous040

prompts that map to arbitrary or contradictory text041
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Figure 1: InSPEcT interprets a continuous prompt
by patching the prompt representations (top) into an
inference pass that generates a task description (bottom).

(Khashabi et al., 2022). Moreover, they assume that 042

each prompt token has an individual interpretable 043

meaning, which does not necessarily hold.1 044

In this work, we introduce a new approach for 045

interpreting continuous prompts that overcomes 046

these limitations. We propose to elicit textual de- 047

scriptions of the prompt from its representations, 048

constructed by the model during inference. This is 049

done by using the Patchscopes framework (Ghan- 050

deharioun et al., 2024); the prompt representations 051

are extracted during inference and “patched” into 052

a separate inference pass that steers the model to 053

generate a textual description of the task (see il- 054

lustration in Figure 1). Concretely, we define a 055

task-description Patchscopes, called InSPEcT (In- 056

specting Soft Prompts by Eliciting Task descrip- 057

tions), that relies on a few-shot target prompt for 058

decoding task descriptions from patched continu- 059

ous prompt tokens. Unlike vocabulary projections 060

that produce a discrete replacement for the prompt, 061

InSPEcT yields natural and easy-to-understand 062

interpretations not bounded by its length. 063

We use InSPEcT to obtain descriptions of con- 064

tinuous prompts trained for 5 tasks, and find that 065

it often yields accurate descriptions of the rele- 066

vant target task (see examples in Table 1). Gener- 067

1For additional related work, please see §A.
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ally, the higher the performance of a prompt, the068

more accurate the descriptions elicited from its069

representations. Next, we demonstrate the utility070

of the elicited descriptions for debugging contin-071

uous prompts. We show that a more detailed ver-072

sion of InSPEcT reveals biased features captured073

by prompts trained on the SNLI dataset (Bowman074

et al., 2015). Moreover, when these features are075

present in the elicited descriptions the model ex-076

hibits biased predictions.077

In summary, our work introduces a novel and078

practical approach for interpreting continuous079

prompts by eliciting natural descriptions from their080

representations. We release our code at https:081

//anonymous.082

2 Eliciting Textual Descriptions of083

Continuous Prompts084

We detail our approach for interpreting continuous085

prompts, which are learnable tensors concatenated086

with an input and optimized for a specific task on087

top of a frozen model (Lester et al., 2021). Let088

M be a pre-trained, auto-regressive transformer-089

based LLM (Vaswani et al., 2017) with L layers,090

and Pcont := ⟨p1, ...,pn⟩ a continuous prompt op-091

timized for classification task T .092

Our method elicits comprehensible descriptions093

of continuous prompts from M ’s hidden represen-094

tations, unlike prior work that maps these represen-095

tations directly to discrete prompts. We build on096

the Patchscopes framework (Ghandeharioun et al.,097

2024), which decodes information from a source098

prompt by “patching” its hidden representations099

into the inference pass of a carefully designed tar-100

get prompt. By conditioning M ’s generation on101

source representations through patching, these tar-102

get prompts guide M to generate human-readable103

text reflecting the information encoded in them.104

We introduce InSPEcT, a Patchscopes variant105

for deciphering continuous prompts, which are106

learned disjointedly from the model’s representa-107

tion space. This is different from existing Patch-108

scopes (e.g., Belrose et al., 2023; Pal et al., 2023),109

which interpret standard token representations.110

InSPEcT We treat Pcont as the source prompt111

we interpret, and design a few-shot task-description112

target prompt Ptarget:113

“desc(1) : class(1)
1 , . . . ,class(1)

m1
| . . . |114

desc(k) : class(k)
1 , . . . ,class(k)

mk
| x x . . .x”115

n Example elicited descriptions

SS
T-

2

14 Identify the sentiment of a text: positive or negative
14 Categorize the tone of a text as positive, negative,

or neutral
7 Identify the author’s intention in this text: positive,

negative or neutral

Su
bj

56 “subjective opinion or objective fact?
28 subjective, objective, or both?
56 “subjective, objective, or neutral? It is a subjective,

objective, or neutral text?

A
G

N
ew

s 28 Identify the topic of this article: technology, busi-
ness, sports, world

56 Sports? Technology? Business? World?
28 World, Technology, Business, Sports, and Politics

Table 1: Accurate descriptions elicited from continu-
ous prompts with n tokens using InSPEcT for SST-2
(Socher et al., 2013), Subj (Pang and Lee, 2004), and
AGNews (Zhang et al., 2015) on LLaMA2-7B-Chat.

where desc(i) is a textual description of some task 116

Ti ̸= T , class(i)j is the j-th class label of Ti, mi 117

is the number of classes in Ti, and k is the number 118

of demonstrations. The list of demonstrations is 119

followed by a sequence of placeholder patching 120

tokens (the x’s) of the same length as Pcont. §B.1 121

lists examples of target prompts. 122

Denote by pℓ
i the hidden representation of pi at 123

layer ℓ when running M on Pcont. Similarly, let xℓ
i 124

be the hidden representation of the i-th placeholder 125

token in the inference pass of M on Ptarget. To 126

elicit a textual description of Pcont, we patch the 127

representations pℓ
1 . . .p

ℓ
n at some layer ℓ into the 128

corresponding placeholder token representations 129

xℓ∗
1 . . .xℓ∗

n at some layer ℓ∗ and let M generate a 130

sequence of tokens. If M processes Pcont as a task 131

description, we expect it will follow the structure 132

of Ptarget and decode Pcont into a human-readable 133

description and set of classes for T . 134

3 Experiments 135

We study the relationship between the interpretabil- 136

ity and performance of continuous prompts, show- 137

ing that prompts become interpretable as their per- 138

formance increases. 139

3.1 Experimental setting 140

Tasks and models We follow Khashabi et al. 141

(2022) and base our analysis on 5 diverse classifica- 142

tion tasks of: SST-2 (Socher et al., 2013) and SST-5 143

(Socher et al., 2013) for sentiment analysis, AG- 144

News (Zhang et al., 2015) for news classification, 145

Subj (Pang and Lee, 2004) for text subjectivity, and 146

TREC (Voorhees and Tice, 2000) for answer type 147
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classification. As we observed low prompt accu-148

racy and interpretability for TREC, consistently149

with previous work (Min et al., 2022a; Khashabi150

et al., 2022; Ju et al., 2023), we omit it from the re-151

sults. For additional details about the tasks, see §C.152

We conduct our experiments on LLaMA2-7B-Chat153

(Touvron et al., 2023) with 32 layers, and LLaMA3-154

8B-Instruct and LLaMA-3.1-70B-Instruct (Dubey155

et al., 2024) with 32 and 80 layers, respectively.156

Prompt training For each task, we train 12157

continuous prompts using standard prompt tun-158

ing (Lester et al., 2021): for every prompt length159

n ∈ {7, 14, 28, 56}, we train 3 prompts with dif-160

ferent random initializations. During training, we161

save intermediate check-points of the trainable pa-162

rameters every 1K-6K examples (depending on163

the task and dataset size), so we can analyze the164

progression of task accuracy and description inter-165

pretability. For more details, see §C.2.166

InSPEcT demonstrations In order to use167

InSPEcT, we crafted a set of 8 descriptions168

of classifications tasks with varying numbers of169

classes, that are not featured in our evaluations.170

Given the sensitivity of LLMs to prompt varia-171

tions (Min et al., 2022b; Mizrahi et al., 2024), we172

interpret each continuous prompt using three tar-173

get prompts with different demonstrations sampled174

from these task descriptions. The set of descrip-175

tions and example target prompts are listed in §B.176

Evaluation To assess the quality of a description177

D, we compute two metrics:178

• Class Rate: The portion of class labels present179

in D. For example, in binary sentiment clas-180

sification over the SST-2 dataset, if the label181

positive is present and the label negative182

is omitted in D, then the class rate is 0.5.183

• ROUGE-1: The maximal ROUGE-1 score (Lin,184

2004) of D against a set of 8-10 reference task185

descriptions, denoted by DT . Scores were com-186

puted after removing stopwords from both D and187

the reference. To construct DT , we manually188

wrote a textual description of T and then gener-189

ated several paraphrased versions using ChatGPT190

(OpenAI, 2023). In §D we provide the references191

and more details, and justify this metric by show-192

ing that it correlates with user judgment.193

The interpretability of a continuous prompt is mea-194

sured by the average Class Rate and ROUGE-1195

scores over the descriptions elicited from three tar-196

Figure 2: Prompt interpretability as a function of task ac-
curacy for LLaMA2. The Class Rate/ROUGE-1 scores
are averaged over all the prompts within the accuracy
bin. For each task and token length, the scores in-
crease with the performance of the prompt. Results
for LLaMA3 show similar trends (see §F).

get prompts.2 The prompt performance is mea- 197

sured by the task accuracy of the model when the 198

continuous prompt is prepended to the input exam- 199

ple (explained in §C.2). We evaluate on the SST-2 200

and SST-5 validation sets and the AGNews and 201

Subj test sets, as validation sets are not available. 202

3.2 Results 203

First, we observe that InSPEcT often elicits accu- 204

rate task descriptions, reaching ROUGE-1 = 0.8- 205

0.9 and covering all the task class labels (Class 206

Rate = 1.0). Examples are in Table 1 and §G. 207

Next, Figure 2 shows that the interpretability of 208

a prompt increases with its task accuracy. Since 209

elicited descriptions can be viewed as the model’s 210

interpretation of the continuous prompts, more 211

effective continuous prompts yield more under- 212

standable and suitable descriptions. Moreover, 213

interpretability improves as continuous prompts 214

lengthen. We hypothesize that this trend arises be- 215

cause longer prompts allow the model to compress 216

fewer task features per token (Elhage et al., 2022). 217

2We discuss the faithfulness of elicited descriptions in §E.
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Figure 3: Differences in counts of each word group
in generated outputs during training with respect to
randomly-initialized prompts (epoch 0). The distribu-
tions are aggregated over 10 continuous prompts trained
on SNLI (Bowman et al., 2015).

4 Debugging Continuous Prompts218

We demonstrate the utility of InSPEcT for debug-219

ging continuous prompts trained over the SNLI220

dataset (Bowman et al., 2015). Another analysis221

addressing the low task accuracy on SST-5 is in-222

cluded in §H.223

Eliciting spurious correlations using InSPEcT224

The SNLI dataset is known to have multiple biases225

(Gururangan et al., 2018; Mersinias and Valvis,226

2022) which allow models to learn shortcuts, such227

as the correlation of negation and vagueness with228

certain classes. We use SNLI to train 10 differ-229

ent 14-token continuous prompts, check-pointed230

over 8 epochs, which vary in random initialization.231

InSPEcT is applied to each check-point using a232

target prompt that elicits the learned features:233

“Respond with a short sentence. What234

features are used for classifying each235

label in the following task: x x . . .x”236

Next, we count the appearances of distinct word237

groups in the generated outputs: (a) biased words:238

words with top-5 highest spurious correlations per239

class, as reported in Wu et al. (2022) Table 12, (b)240

common words (baseline): top-10 most frequent241

words across all generated outputs, omitting stop-242

words, digits and words in the target prompt, and243

(c) random words (baseline): 10 words randomly244

sampled from all generated outputs. For each gener-245

ated output and group, we measure the word count246

difference with respect to the output of a randomly247

initialized prompt (epoch 0).248

Figure 3 shows that biased words emerge early in249

training, reflecting the existence of these features250

in SNLI continuous prompts. This contrasts the251

decreasing presence of baseline word groups.252

Figure 4: Histograms of the counts of generated biased
words across different prompt bias levels. Outputs with
biased words (> 0) show positive predictive bias, while
those without (= 0) are unbiased on average. The x-
axis is cut to [−10, 20] for brevity, omitting outliers.

Elicited biases correlate with biased predictions 253

If continuous prompts indeed capture the biases 254

elicited from InSPEcT, then we expect them to 255

encourage biased model predictions. To test this, 256

we take each continuous prompt check-point and 257

biased word pair, and quantify the model’s predic- 258

tive bias towards the bias-correlated class. Bias 259

is measured by calculating the percentage differ- 260

ence between predicted and actual cases of a bias- 261

correlated class among dataset examples containing 262

the biased word, with larger differences indicat- 263

ing higher predictive bias. For example, consider- 264

ing the biased word outside and bias-correlated 265

class entailment — if 65% of the relevant ex- 266

amples are true entailment cases and 70% are pre- 267

dicted as such, the bias measure is 5%. 268

Figure 4 shows that predictive bias is generally 269

positive for outputs containing biased words, and 270

centered around 0 for outputs lacking them. A 271

sign test comparing these distributions indicates 272

significantly higher predictive bias when a biased 273

word is present (p-value 2.96e−11). 274

5 Conclusion 275

We tackle one of the major hurdles of continu- 276

ous prompts — their lack of transparency. We 277

show that accurate task descriptions can be elicited 278

with InSPEcT from the model’s internal repre- 279

sentations, and task performance improves as the 280

model’s own interpretation of the prompts becomes 281

more faithful. Additionally, InSPEcT can iden- 282

tify biased features in continuous prompts from 283

the presence of prominent words in the generated 284

outputs. Overall, our work provides an effective 285

interpretability solution that can be leveraged to 286

debug unwanted properties in continuous prompts. 287
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Limitations288

Following previous work on interpretability of con-289

tinuous prompts (Khashabi et al., 2022; Ju et al.,290

2023), our experiments focus on classification tasks291

where evaluation is easier compared to open-ended292

generation tasks. Extending our analyses to other293

tasks is an interesting direction for future work.294

We were often able to elicit meaningful and un-295

derstandable task descriptions, though there were296

some the cases where the descriptions were un-297

clear and did not yield informative content, espe-298

cially early in training. Since InSPEcT can be299

viewed as the model’s interpretation of the contin-300

uous prompts, identifying the precise conditions301

for its success may align with optimizing training302

configurations that enable the model to learn more303

effectively.304

Our work explores the correlation between305

prompt interpretability and task performance by306

finding a meaningful one-way mapping from con-307

tinuous prompts to discrete forms. Conducting308

a causal analysis — where elicited descriptions309

are modified, mapped back to continuous prompts,310

and evaluated for changes in task performance —311

could offer deeper insights into how models use312

and form predictions based on the information en-313

coded within continuous prompts.314

Prior work focused on discretizing continuous315

prompts such that the discrete prompts can be used316

as replacements that yield equivalent task perfor-317

mance and class label prediction distributions. No-318

tably, our method does not produce such discrete319

replacements, but rather elicits information in a320

textual and easy-to-understand format to better un-321

derstand the information encoded in the continuous322

prompt and its potential for debugging. While we323

found the elicited descriptions to be generally infor-324

mative and accurate, they do not necessarily guide325

the model to produce explicit class labels like their326

corresponding continuous prompts.327
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A Related Work 721

Interpreting continuous prompts Interpreting 722

continuous prompts has been attempted by pro- 723

jecting individual prompt tokens to the vocabulary 724

space (Khashabi et al., 2022; Webson and Pavlick, 725

2022) or by optimizing an external objective to 726

map them to their discrete forms (Ju et al., 2023). 727

However, these mappings operate on each token 728

individually, often contain several noisy tokens that 729

are difficult to understand (Ju et al., 2023), and may 730

yield discrete interpretations that are irrelevant or 731

contradictory (Khashabi et al., 2022). 732

Embedding inversion Previous research has in- 733

vestigated reconstructing text from dense represen- 734

tations by learning a function that inverts the text 735

encoder (Morris et al., 2023). Other approaches 736

identify which content activates certain model com- 737

ponents in order to decipher the information en- 738

coded in new inputs (Huang et al., 2024). These 739

methods involve extensive analysis and rely on ex- 740

ternal optimizations. In contrast, our approach sim- 741

ply leverages the model’s intrinsic generation ca- 742

pabilities to form understandable descriptions of 743

continuous prompt embeddings. 744

Bias in continuous prompts Models may rely 745

on spurious correlations between classes and spe- 746

cific words (Wu et al., 2022), and superficial clues 747

(Kavumba et al., 2022), like high lexicographical 748
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overlap between the premise and hypothesis in nat-749

ural language inference, to perform various clas-750

sification tasks. To mitigate this, various dataset751

augmentation schemes have been developed (Zhao752

et al., 2018). Our work uncovers biased features in753

continuous prompts which can inform when it is754

appropriate to employ such tactics.755

B Target Prompts756

Examples of task descriptions and target prompts757

are presented in this section. Discussions regard-758

ing their use and generation are in §2 and §3.1,759

respectively.760

B.1 Example Target Prompts761

The following target prompts were used by762

InSPEcT to elicit task descriptions:763

• Categorize customer feedback into different764

types: bug report, feature request, compliment765

| Identify the emotion expressed in this text:766

joy, sadness, anger, fear | Is the information in767

this sentence correct?: True, False | x x x x x768

x x769

• Determine who is the author of a given text:770

Shakespeare or Marlowe | Categorize cus-771

tomer feedback into different types: bug re-772

port, feature request, compliment | Identify773

the political leaning of a text or author: left or774

right | x x x x x x x x x x x x x x775

• Identify the emotion expressed in this text:776

joy, sadness, anger, fear | Classify this passage777

from a book or movie into its genre: science778

fiction, romance, thriller | Identify which sea-779

son is decsribed in this text: summer, winter,780

autumn or spring | x x x x x x x x x x x x x x781

x x x x x x x x x x x x x x782

B.2 Crafted Classification Tasks Descriptions783

The following task descriptions were used for sam-784

pling and constructing target prompts:785

• Identify the emotion expressed in this text:786

joy, sadness, anger, fear787

• Is the information in this sentence correct?:788

True, False789

• Classify this passage from a book or movie790

into its genre: science fiction, romance,791

thriller792

• Determine who is the author of a given text:793

Shakespeare or Marlowe794

• Identify which season is described in this text:795

summer, winter, autumn or spring796

• Categorize customer feedback into different 797

types: bug report, feature request, compliment 798

• Identify the type of this email: spam or not 799

spam 800

• Identify the political leaning of a text or au- 801

thor: left or right 802

C Additional Experimental Details 803

C.1 Downstream Tasks 804

Dataset Task |C|

AGNews News topic classification 4
SST-2 Sentiment analysis (movie) 2
SST-5 Sentiment analysis (movie) 5
Subj Subjectivity classification 2
TREC Answer type classification 6

Table 2: The set of downstream tasks used in the experi-
ments, where |C| represents the number of classes for
each task.

C.2 Training Details 805

Given a training set D = {(xi, yi)}|D|
i=1, where 806

xi is an input text for classification and yi 807

is a gold class label, Pcont is learned by 808

minimizing the cross-entropy loss between yi 809

and the model’s predicted label for the input 810

“p1 . . .pn Text:[xi], Label:” over D. 811

Dataset Learning Rate Epochs |T |

AGNews 8e−3 8 50,000
SST-2 8e−4 8 50,000
SST-5 6e−3 12 8,500
Subj 8e−3 8 8,000
TREC 8e−4 20 5,400

Table 3: Hyper-parameters used to train prompts on both
LLaMA2 7B chat and LLaMA3 8B Instruct models. |T |
represents the size of the training set used.

C.3 Resources 812

All our experiments were conducted using a single 813

A100 80GB or H100 80GB GPU. 814

C.4 Software Packages 815

We used the PyTorch Python package (Paszke et al., 816

2019) for training the continuous prompts and con- 817

ducting the experiments. For calculating the scores, 818

we used the rouge-score Python package (Google- 819

Research, 2020) for ROUGE-1, and the NLTK 820

Python package (Bird and Loper, 2004) for remov- 821

ing English stopwords, both with default parame- 822

ters. 823
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D ROUGE-1 Calculation and824

Justification825

Further details regarding the computation of the826

ROUGE-1 scores are discussed below.827

D.1 Stopwords Removal828

To prevent computing misleadingly high ROUGE-1829

scores for discrete prompts that closely resemble830

the format of reference descriptions, but fail to ac-831

curately capture the target task, we removed stop-832

words from both the elicted InSPEcT descriptions833

and the reference descriptions in Table 4. This was834

achieved using the NLTK Python package (Bird835

and Loper, 2004).836

D.2 References Descriptions Creation837

To compute the final ROUGE-1 score for each838

description D elicted by InSPEcT, we used839

ChatGPT to generate 8-10 reference descriptions840

per task. The input format we used to prompt841

ChatGPT was: “Could you rephrase the842

following sentence and provide843

a few options: <SENTENCE>”, where844

<SENTENCE> represents a brief description of the845

target task. Examples of reference descriptions846

generated are presented in Table 4.847

D.3 Human Evaluation848

We conducted a user study to assess the alignment849

between the ROUGE-1 metric and human judg-850

ments of interpretability. A total of 218 elicited de-851

scriptions were uniformly sampled across binned852

ROUGE-1 scores. Four graduate students were853

then tasked with rating the accuracy of each de-854

scription on a scale from 1 to 4, based on its sim-855

ilarity to the reference task descriptions used for856

ROUGE-1 computation. The analysis revealed a857

moderately-strong Spearman correlation of 0.66858

(p-value 1.3e−28) between ROUGE-1 scores and859

human judgments, underscoring the metric’s effec-860

tiveness in automatically evaluating interpretability.861

As shown in Figure 5, ROUGE-1 scores are gen-862

erally faithful to human annotations. The detailed863

instructions provided to annotators are presented in864

Figure 7.865

1.0 2.0 3.0 4.0
Annotation

0.
0-

0.
2

0.
2-

0.
5

0.
5-

0.
8

0.
8-

1.
0

RO
UG

E-
1

48 9 1 0

12 41 9 4

3 37 14 4

0 18 14 4

ROUGE-1 scores vs Human Annotations

0

10

20

30

40

Figure 5: Heatmap comparing binned ROUGE-1 scores
and human annotations of the accuracy of elicted task
descriptions.

Figure 6: Confusion matrix comparing predictions gen-
erated by continuous prompts which captured only three
classes, and the true labels.

10



Example reference descriptions

A
G

N
ew

s Which topic is this article about? World, Sports, Business, Technology
What is the main topic discussed in this article: World, Sports, Business, Technology
What is the most fitting summary for this article? World, Sports, Business, Technology
Among World, Sports, Business, and Technology, which best captures the topic of this article
To which category does this news article’s topic belong: World, Sports, Business, Technology

SS
T-

2

Is the sentiment of this sentence positive or negative?
Would you classify this sentence as having a positive or negative sentiment?
Can you identify whether the sentiment of this sentence is positive or negative?
Would you consider the sentiment of this sentence to be positive or negative?
What is the tone of this sentence: positive or negative?

SS
T-

5

Is the sentiment of this sentence terrible, bad, neutral, good or great?
Do you think this sentence has a terrible, bad, neutral, good or great tone?
How would you rate the sentiment of this sentence: terrible, bad, neutral, good or great?
How would the sentiment of this sentence be described? terrible, bad, neutral, good, great.
Would you classify this sentence as having a terrible, bad, neutral, good or great sentiment?

Su
bj

Is the subjectivity of this text objective or subjective?
In terms of subjectivity, is this sentence objective or subjective?
Classify the sentence based on its expression: objective, subjective
Is this sentence objective or subjective in nature?
Determine if this sentence presents facts or opinions: objective, subjective

T
R

E
C

Is the question asking about an entity, a description, an abbreviation, an expression, a human, a location, or a number?
What type of thing is the question asking about? Description, entity, abbreviation, expression, human, location, number
What type is the answer to this question: entity, description, abbreviation, expression, human, location, or number?
Choose the category that best fits the answer: Description, Entity, Abbreviation, Expression, Human, Location, Number
Does the question pertain to an entity, a description, an abbreviation, an expression, a human, a location, or a number?

Table 4: Example of reference descriptions used to calculate ROUGE-1 scores.
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Figure 7: User study instructions (1/2)
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Figure 7: User study annotation examples (2/2)
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E Faithfulness of Elicited Descriptions866

A key challenge in interpreting continuous prompts867

is ensuring the faithfulness of the generated textual868

descriptions. Unlike previous approaches that seek869

discrete replacements for continuous prompts, our870

method focuses on interpretation rather than exact871

replication. While the model’s outputs are causally872

influenced by the continuous prompt, due to in-873

herent randomness in model generation, no single874

description can be considered fully faithful. There-875

fore, for a given continuous prompt, we aggregate876

outputs across different target prompts to help miti-877

gate this variability. This allows us to uncover con-878

sistent patterns embedded in the continuous prompt879

and capture more robust and meaningful signals.880

For example, the bias analysis in §4 demonstrates881

that aggregating multiple descriptions of the same882

task reveals strong evidence of the model basing883

its predictions on spurious correlations in the data.884

Although our analyses reveal a clear trend —885

task accuracy improves as elicited descriptions be-886

come more accurate — less accurate descriptions887

are occasionally observed, which can be attributed888

to several factors.889

• Sampling noise The use of temperature-based890

sampling introduces variability, occasionally891

generating less probable tokens that steer out-892

puts towards less accurate descriptions.893

• Complexity of learned features Continu-894

ous prompts encode abstract task-relevant fea-895

tures, making eliciting coherent descriptions896

challenging. Nonetheless, even less coher-897

ent descriptions often include correct class898

labels, as encouraged by the target prompts899

which gives a useful signal for what classes900

the model learned.901

• Prompt length Short continuous prompts902

(e.g., 7 tokens) compress task features into903

fewer dimensions, complicating the genera-904

tion of comprehensive descriptions. Examples905

in Tables 5 and 6 illustrate this effect.906

F Additional Results907

The results for LLaMA3-8B-Instruct and LLaMA-908

3.1-70B-Instruct are presented in Figure 8 and Fig-909

ure 9, accordingly. We observe similar trends to910

those of LLaMA2-7B-Chat. First, we observe that911

the interpretability of a prompt improves as its912

task accuracy increases. However, there is a small913

drop in interpretability within the 0.8 to 1 accuracy 914

range, likely due to the trends observed across all 915

tasks when using 7 tokens, affecting both class rate 916

and ROUGE-1 scores. Additionally, interpretabil- 917

ity improves as continuous prompts lengthen, as 918

obsereved in LLaMA2-7B-Chat. 919

Figure 8: Prompt interpretability as a function of
task accuracy for LLaMA3-8B-Instruct. The Class
Rate/ROUGE-1 scores are averaged over all the prompts
within the accuracy bin.
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Figure 9: Prompt interpretability as a function of
task accuracy for LLaMA-3.1-70B-Instruct. The Class
Rate/ROUGE-1 scores are averaged over all the prompts
within the accuracy bin.

G Example Interpretations of Continuous920

Prompts921

Examples of discrete prompts elicited using922

InSPEcT on LLaMA2-7B-Chat and LLaMA3-923

8B-Instruct are presented in Table 5 and Table 6,924

respectively.925

H Debugging Low Task Performance926

In the SST-5 dataset, the trained continuous927

prompts achieved 50% − 60% task accuracy. Ta-928

bles 5 and 6 contain examples of elicited InSPEcT929

descriptions, which often list only a subset of class930

labels: “good”, “bad”, “neutral”. A possi-931

ble explanation for the poor performance is that932

the continuous prompt steers the model to produce933

only a partial set of classes. Figure 6 presents a934

confusion matrix, with values representing dataset935

example counts, between the predictions generated936

by continuous prompts where the elicited descrip-937

tions captured only three classes, and the true la-938

bels. These prompts struggled to capture the nu-939

anced differences between “good” and “great”,940

shown by the similar prediction rates 39.8% and941

55.4% for examples from the “great” class. Sim-942

ilar confusion is demonstrated for examples from 943

the “terrible” class, where prediction rates are 944

43.1% and 50.1% for “terrible” and “bad”, 945

respectively. The omission of the difficult classes 946

in the InSPEcT descriptions could indicate that 947

the continuous prompts may not recognize the full 948

spectrum of sentiment represented in SST-5. 949
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A
G

N
ew

s

number, as well as the latest news and updates from the world of technology
with, Digital Marketing, Business, and Technology topics
Identify the main topic of this text: technology, entertainment, politics, sports
Identify the main theme of the text: technology, business, politics
Club, or Identify the topic of this text: entertainment, politics, sports, or technology
? technology &? business &? entertainment &? sports &? World &? news &? lifestyle &
world, Technology, Business, and Sports
-world, the following categories: Sports, Business, Technology, Entertainment, and Science
– World– Technology– Business– Sports– World
Sports? Technology? Business? World news? We will be happy to help you with any question you have!
Technology World Business Sports
is, World, Sports, Business, Technology

SS
T-

2

xtake a look at the text and identify the tone: positive, negative, or neutral
give feedback on a product: positive, negative, or neutral
Identify the sentiment of a text: positive, negative, or neutral
Categorize the tone of a text as positive, negative, or neutral
ance as a positive or negative response?
and negative sentiment?
Please note that the text is a positive or negative?
U ( positive) and U (negative) are used to indicate the emotions expressed in the text
? a positive or negative review?000000000000000000000000
ES of negativity, but positivity?
Identify the tone of a piece of writing: positive, negative, neutral
rices and negative feelings, but also positive feelings, such as joy, happiness, and contentment

SS
T-

5

leaving feedback on a product or service: good, bad, or neutral
yeah (yes) (great job) (excellent) (good work) (well done) (superb) (amazing)
(A) great (B) good (C) okay (D) poor
yeah (100%), great (80%), okay (60%), meh (40%), bad (20%
anarchy Is this a good or bad thing?
yevaluate the quality of a piece of writing: good, neutral, or bad
by: good, neutral or bad
-ilk to which it is assigned: good, bad or neutral
: This is a good or bad thing: Neutral
by which I would classify it: good or bad
bad? Very bad? Worse than bad? Terrible? Horrible? Abysmal?
bad, my dear, this is a great answer
nough, great, good, bad, or ugly?t is a genre of literature that explores the impact of science and technology on society
testing is okay, but not great, but not terrible, but not good
-based on their answers: good, neutral, or bad
say goodness, the text is neutral
bad and terrible) and 50/50 chance of being a good or bad review
not enough this topic not enough to be considered as a good or bad reviews?

SU
B

J

(Learning Objective 1)
matter of fact, opinion or perspective
coverage of a news article or event: objective, subjective, persuasive
matter of factuality or subjectivity
The above are examples of subjective and objective criteria for evaluating the quality of a text or author
‘s the subjective and objective’
subjective opinion of the matter
subject to the subjective opinion of the observer
The term “subjective” refers to something that is based on personal opinions or preferences, rather than objective facts
The answer to this question depends on how you define “subjective” and “objective” are two different things
subjective, objective, or both?
in this passage, but the subjective and objective,
the objective of this exercise is to assess the subjective value of the answer
in a subjective, subjective, objective, or objective manner
“objective”“subjective”“opinion”“fact”

Table 5: Examples of accurate task descriptions elicited using InSPEcT on LLaMA2-7B-Chat.
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A
G

N
ew

s

World Technology Business
nikaite Technology; or a Business; or Entertainment; or Sports; or Sports; or Technology; or Technology;
279; in Business; Sports; Entertainment; Technology;;
Technology; Business; And World
-including the World of Business or Leisure or Sports or Technology or News or Culture or Healthassistant;
Technology; to classify this passage from: business
Worldwide in a World of Business or Technology or Entertainment or Health or Fashion or Sports or World
and answer: What is the main topic of this article?assistant
Identify the type of the website: Technology, Entertainment, Sports, Business
/oriented to the world of sports, the text is a sports news article
ultiimateley, classify this text into a genre: business, technology, entertainmentassistant

SS
T-

2

The text is a positive or negative:
Identify the positive and negative statements in a text
Identify the positive/negative emotions in a text: positive, negative
Identify the positive or negative sentiment of a text
Identify the positive and negative aspects of a text: The positive aspects of a text: The negative aspects of a text:
Determine the sentiment of a text: positive, negative, or neutral
lettered a positive or negative
The text is a negative review of a movie, which is a negative review
From a book: Identify the author’s tone: positive, negative, formal, informal, sarcastic, or philosophical
://positive-negative-negative
Is this a positive or negative review: positive, negative
Is this sentence a positive or negative statement
Categorize this text into a category: positive, negative, neutral

SS
T-

5

badgered = 2;terrible = 2;good = 2;neutral = 2;bad = 2;terrible = 2;good = 2;neutral = 2;bad = 2;terrible = 2;good = 2;
neutral of the good or bad of the game
Identify the author of this text:terrible, good, neutral
Answer: The text: a neutral good: a good’totalitarian a: a bad: aterrible:terrible:terrible:terrible
onenasty of the text: neutral, good or bad
://good or bad text
terrible, awful, bad, good, excellent, great, wonderful, lovely, beautiful, lovely, lovely
:bad news, neutral, good news, neutral, bad news, good news, bad news
:good or bad
Is the information in this sentence good or bad?
Is it a good news, bad news, or neutral news
idiagnosis, a good or bad, and neutral
I cannot be used, a good, neutral, or bad

SU
B

J

Identify the tone of this text: formal, informal, formal and objective, formal and subjective
Objective Subjective Subjective
objective and subjective language: objective language is used to describe the facts, while subjective language is used to-
express the author’s opinion or feeling
Objective of the learning objectives of the Subjective Subjective
Objective: The text of the subjective
The text is a subjective and/or objective and/or subjective/objective
Objective: To identify the emotion expressed in the text
Identify the subject of a text: objective, subjective
Please note that the classification is subjective and may not be objective
://mannerisms of a text: Identify the tone of a text: objective, subjective, formal, informal, sarcastic
://determine the tone of the text: objective, objective, objective
Subjective: The text is subjective as it is a subjective text

Table 6: Examples of accurate task descriptions elicited using InSPEcT on LLaMA3-8B-Instruct.
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