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Abstract

We propose a framework for causal inference with panel data in the presence of1

network interference and unobserved confounding. Key to our approach is a novel2

latent factor model that takes into account network interference and generalizes the3

factor models typically used in panel data settings. We propose an estimator–the4

Network Synthetic Interventions estimator—and show that it consistently estimates5

the counterfactual outcomes for a unit under an arbitrary set of treatments, if certain6

observation patterns hold in the data. We corroborate our theoretical findings7

with simulations. In doing so, our framework extends the Synthetic Control and8

Synthetic Interventions methods to incorporate network interference.9

1 Introduction10

There is growing interest in the identification and estimation of causal effects in the context of11

networks, in which the outcomes of a unit (e.g., an individual, customer cohort, or region) are affected12

by the treatments (e.g., recommendations, discounts, or legislation) assigned to other units, known as13

the unit’s “neighbors”. For example, whether an individual (i.e., the unit) gets COVID-19 (i.e., the14

outcome) is a function of not only the individual’s vaccination status (i.e., the treatment), but also the15

vaccination status of that individual’s social network. That is, there is network interference.16

The majority of works on causal inference under network interference consider the setting of a single17

measurement or dataset, whether collected from a randomized experiment or observational study. It18

is known that estimating any desired causal estimand under arbitrary interference is impossible, as the19

model is not identifiable [26, 4, 8, 21]. As a result, prior works impose additional structure through20

assumptions on exposure functions [26, 4, 39, 6, 23], interference neighborhoods [36, 7, 32, 10],21

parametric structure [35, 9, 12, 19, 17], or a combination of these, each leading to a different solution22

concept. In this work, we focus on network interference that is additive across the neighbors, referred23

to in the literature as the joint assumptions of neighborhood interference, additivity of main effects,24

and additivity of interference effects [32, 40, 14, 15].25

Distinct to our work is that we consider a panel data setting in which there are multiple measurements26

for each unit, as arises when units are observed across time. Additionally, we allow for estimation27

of counterfactuals under multiple treatments, whereas the existing literature has largely focused on28

binary treatments. Key to our approach is a novel latent factor model that takes into account network29

interference and is a generalization of the factor models typically used in panel data settings. Although30

adding time to our analysis might appear to introduce complexity, we show that being able to measure31

potential outcomes across time actually enables the inference of unit-specific causal effects as long as32

the dataset is “sufficiently rich” (specifically, as long as there is sufficient diversity in the observed33

treatments). Estimating unit-specific causal effects is typically not feasible in the single measurement34

setup unless one imposes strong parametric model assumptions on the potential outcomes function.35

As a result, previous work has focused on causal estimands that capture population-wide effects,36
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such as the average direct treatment effect (the average difference in outcomes if only one unit and37

none of its neighbours get treated [9, 20, 31, 32, 22, 25]) and the average total treatment effect (the38

average difference in outcomes if all units get treated versus if they do not [36, 17, 13, 40, 14, 15]).39

Further, building on recent works in panel data [2], we allow for unobserved confounding in treatment40

assignment as long as there is selection on latent factors.41

2 Problem Statement42

Setup. Consider a setting with N ≥ 1 units, D ≥ 1 treatments, and T ≥ 1 measurements of interest.43

Unless otherwise stated, we index units with n ∈ [N ], measurements with t ∈ [T ], and treatments44

with a ∈ [D]0.1 Let G = ([N ], E) ∈ G denote a graph over the N units, where E ⊂ [N ] × [N ]45

denotes the edges of the graph. Throughout, we shall assume G to be fixed and observed. Let N (n)46

denote the neighbors of unit n ∈ [N ] with respect to G such that j ∈ N (n) ⇐⇒ (j, n) ∈ E .2 Under47

network interference, the potential outcome for a given unit n and measurement t is a real-valued48

random variable denoted by Y
(a)
tn , where a ∈ [D]N0 denotes the treatments over all N units. We49

impose the following additional structure on the potential outcomes.50

Assumption 1 (Network SUTVA). The potential outcome of measurement t ∈ [T ] for unit n ∈ [N ]51

under treatments a ∈ [D]N0 is given by52

Y
(a)
tn = Y

(aN(n))
tn ,

where aN (n) ∈ [D]
|N (n)|
0 denotes the treatments assigned to the units in n’s neighborhood N (n) for53

measurement t. That is, the potential outcome of unit n depends on its neighbors’ treatments but does54

not depend the treatment of any other unit j ∈ [N ] \ N (n).55

Several prior works on network interference also assume Network SUTVA, e.g., as the Neighborhood56

Interference Assumption (NIA) [33].57

Observation pattern. In this work, let the measurement index t denote time. Let the T measurements58

be partitioned into two sets. Let Ttr ⊂ [T ] denote the training period and Tpr ⊂ [T ] denote the59

prediction period, where Ttr ∩ Tpr = ∅, Ttr = |Ttr|, and Tpr = |Tpr|. Without loss of generality, let60

Ttr := {1, 2, . . . , Ttr} and Tpr := {T − Tpr + 1, . . . , T}. Let at ∈ [D]N0 denote the treatment vector61

assigned at time t ∈ [T ]. Let62

Atr =
[
a1,a2, . . . ,aTtr

]
∈ [D]N×Ttr

0 ,

Apr =
[
aT−Tpr+1,aT−Tpr+2, . . . ,aT

]
∈ [D]

N×Tpr
0 ,

denote the training and prediction treatment sequences, respectively. We assume that we observe63

every unit at all t ∈ Ttr ∪ Tpr under treatments sequences Atr and Apr.64

We denote the observation for unit n at time t as Ytn = Y
(at

N(n))

tn for all t ∈ Ttr ∪ Tpr.65

Target causal parameter. Our goal is to estimate counterfactuals for a given unit during Tpr.66

Specifically, for unit n ∈ [N ], let67

Ãpr
n =

[
ã
T−Tpr+1

N (n) , ã
T−Tpr+2

N (n) , . . . , ãTN (n)

]
∈ [D]

|N (n)|×Tpr
0 ,

denote the sequence of counterfactual treatments of interest for unit n. We are interested in estimating68

the following causal parameter:69

θ
(Ãpr

n)
n =

1

Tpr

∑
t∈Tpr

E
[
Y

(at
N(n))

tn

]
. (1)

That is, we seek to estimate the expected potential outcome of unit n, averaged over Tpr, if unit n’s70

neighborhood N (n) undergo the treatment sequence Ãpr
N (n).71

1Let [X]0 = {0, 1, . . . , X − 1} and [X] = {1, . . . , X} for any positive integer X .
2For simplicity of notation, we include self-edges: (n, n) ∈ N (n) for all n ∈ [N ].
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Figure 1: Visualization of the NSI estimator (Section 3). Consider a ring graph with 12 units and
binary treatments. Suppose that at = apr for all t ∈ Tpr and, similarly, the counterfactual treatments
of interest ãtN (n) = (0, 0, 0) for all t ∈ Tpr. Then, if n is given by the top unit (in green with the
dotted black outline), the donor set is given by the blue, orange, and red units (see Definition 1). As
illustrated on the right-hand side, the NSI estimator first runs principal component regression over
the donors to obtain α̂. As the second step, the NSI estimator linearly combines the observations of
each donor using the coefficients α̂ to produce estimates of n’s potential outcomes.

3 The Network Synthetic Interventions (NSI) Estimator72

We describe a simple estimator, which we term the Network Synthetic Intervention (NSI) estimator.73

It is a natural extension of the Synthetic Interventions estimator [2] in the presence of network74

interference. Below, we describe the estimator formally, with a caricature example in Figure 1.75

NSI Estimator. Consider the causal parameter θ(Ã
pr
n)

n of interest, as given in (1). Let76

Atr
n =

[
a1N (n), a

2
N (n), . . . , a

Ttr
N (n)

]
∈ [D]

|N (n)|×Ttr
0 ,

ztr,n = [Ynt : t ∈ Ttr] ∈ RTtr .

Before presenting the estimation procedure, we define the useful notion of a “donor set”.77

Definition 1 (Donor set). For any N ′ ≤ N , consider sequence of training treatments C tr =78

[c1, c2, . . . , cTtr ] ∈ [D]N
′×Ttr

0 and prediction treatments Cpr = [cT−Tpr+1, cT−Tpr+2, . . . , cT ] ∈79

[D]
N ′×Tpr
0 . Let I(C tr,Cpr,N ′) ⊂ [N ] denote a set of “donor units” such that for all j ∈ I(C tr,Cpr,N ′),80

1. |N (j)| = N ′, and81

2. there exists a way πj to permute N (j) such that: atπj(N (j)) = ct for all t ∈ Ttr ∪ Tpr.82

To estimate θ(Ã
pr
n)

n , the relevant donor set is turns out to be I(Atr
n,Ã

pr
n,|N (n)|) ⊂ [N ]. For simplicity, we83

use the shorthand In := I(Atr
n,Ã

pr
n,|N (n)|). Let the donors’ training observations be given by84

Ztr,In = [Yjt : t ∈ Ttr , j ∈ In] ∈ RTtr×|In|. (2)

Then, estimation proceeds in a two-step procedure with a parameter κ.385

Step 1: Principal component regression. Perform a singular value decomposition (SVD) of Ztr,In to86

obtain Ztr,In =
∑qtr
ℓ=1 ŝℓµ̂ℓν̂

⊤
ℓ . Using parameter κ ≤ qtr, compute87

α̂ =

κ∑
ℓ=1

ŝ−1
ℓ ν̂ℓµ̂

⊤
ℓ ztr,n ∈ R|In|.

Step 2: Estimator. Using α̂ = [α̂j : j ∈ In]4, construct the estimate88

Ê
[
Y

(at
N(n))

tn

]
=

∑
j∈In

α̂jYtj , for all t ∈ Tpr, (3)

and, accordingly,89

θ̂
(Ãpr

n)
n =

1

Tpr

∑
t∈Tpr

Ê
[
Y

(at
N(n))

tn

]
. (4)

3κ can be selected in a data-driven manner. Due to limitation of space, it is not discussed here.
4For simplicity, we abuse notation and let α̂j denote the element associated with donor j ∈ In.
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4 Formal Analysis: Model and Results90

In this section, we provide a formal analysis of the NSI estimator. We start by presenting a model for91

network interference. This is followed by formal results for identification and finite sample analysis.92

4.1 Model93

We now introduce the model that we use to develop our formal results. We note that this model, given94

in Assumption 2 below, satisfies Assumption 1.95

Assumption 2. Let the potential outcome of measurement t ∈ [T ] for unit n ∈ [N ] under graph96

G ∈ G if assigned treatments a ∈ [D]N0 be given by:97

Y
(aN(n))
tn =

∑
k∈N (n)

⟨uk,n,wt,ak⟩+ ϵ
(aN(n))
tn , (5)

where u·,· ∈ Rr and w·,· ∈ Rr represent latent (unobserved) factors; ϵ
(aN(n))
tn is an additive,98

zero-mean, independent (or idiosyncratic) noise term; and r is the rank or model complexity.99

Intuitively, the potential outcome of unit n with neighbors N (n) at time t is determined by two factors:100

(a) the effect of the treatment assigned to unit n and (b) the spillover effects from the treatments101

assigned to n’s neighbors. Since n ∈ N (n), both effects are captured in the summation in (5). Note102

that (5) can be written as103

Y
(aN(n))
tn =

〈
ũn,N (n), w̃t,aN(n)

〉
+ ϵ

(aN(n))
tn , (6)

where104

ũn,N (n) = [u⊤
N1(n),n

, u⊤
N2(n),n

, . . . , u⊤
N|N(n)|(n),n

]⊤,

w̃t,aN(n)
= [w⊤

t,aN1(n)
, w⊤

t,aN2(n)
, . . . , w⊤

t,aN|N(n)|(n)
]⊤.

Here, ũn,N (n) ∈ Rr|N (n)| and w̃t,aN(n)
∈ Rr|N (n)| are the network-adjusted latent factors, and105

r|N (n)| ∈ N>0 denotes the network-adjusted “rank”.106

4.2 Formal results107

In this section, we present an identification result for (1) under (6), then establish finite-sample108

consistency of the NSI estimator. We restrict our attention to a specific unit n ∈ [N ] and counterfactual109

treatments Ãpr
n ∈ [D]

|N (n)|
0 of interest. The proofs are relegated to Appendix B.110

We begin with some notation and assumptions. Let O and LF be given by111

O =
{
(j, t,a) : Y

(aN(j))

tj is observed
}
⊂ [N ]× [T ]× [D]N0 ,

LF =
{
uk,j ,wt,a : k, j ∈ [N ], t ∈ [T ], and a ∈ [D]0

}
.

Assumption 3 (Conditional exogeneity). We assume that E
[
ϵ
(aN(j))

tj |LF
]
= 0 and ϵ

(aN(j))

tj ⊥112

O |LF for all j ∈ [N ], t ∈ [T ], and a ∈ [D]N0 .113

Assumption 4 (Linear span inclusion). Given a unit n ∈ [N ] and sequence of counterfactual,114

treatments Ãpr
n ∈ [D]

|N (n)|
0 of interest, consider the donor set In. We assume that In is non-empty115

and that there exists α ∈ R|In| such that116

ũn,N (n) =
∑
j∈In

αjũj,πj(N (j)),

where πj is defined in Definition 1.117

Together, Assumptions 2-3 imply that Y
(aN(n))
tn ⊥ O |LF , which is analogous to requiring “selection118

on network-adjusted latent factors”: that, conditioning on all latent factors, the treatment assignments119

are independent of the potential outcome. This requirement is analogous to “selection on latent120

factors” in [2]. While the treatment assignment is allowed to depend on the latent factors, Assumption121

4 requires that the treatment assignment is “diverse” enough that the target unit’s latent factor lies in122

the linear span of the donor units. We now state the identification result.123
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Theorem 1 (Identification). Consider a unit n ∈ [N ] and sequence of counterfactual treatments124

Ãpr
n ∈ [D]

|N (n)|
0 of interest. Suppose that Assumptions 1-4 hold. Let α denote the coefficients from125

Assumption 4 for the donor set In, where In is defined in Section 3. Then,126

E
[
Y

(at
N(n))

tn

∣∣∣LF]
=

∑
j∈In

αjE[Ytj |LF,O] and θ
(Ãpr

n)
n =

1

Tpr

∑
t∈Tpr

∑
j∈In

αjE[Ytj |LF,O].

Theorem 1 implies that estimating (1) comes down to acquiring good estimates of α. Estimating α127

using observational data is precisely what the NSI estimator does. Next, we give conditions under128

which the NSI estimator achieves finite-sample consistency.129

To that end, let M = |In| and Zpost,In = [Ytj : t ∈ Tpr, j ∈ In] ∈ RTpr×M . Recall Ztr,In from (2)130

and let rtr ∈ [r|N (n)|] be the rank of E
[
Ztr,In |LF,O

]
, s1 ≥ . . . ≥ srtr > 0 denote its singular131

values, and Rtr ∈ RM×rtr denote its right singular vectors. Let α⊥ = RtrR
⊤
tr α, where α is defined132

in Assumption 4. Finally, let ∥·∥ψ2
denote the Orlicz norm and Op denote a probabilistic version of133

big-O notation.134

Assumption 5 (Sub-Gaussian noise). Assume that
∥∥ϵ(aN(j))

tj |LF,O
∥∥
ψ2

≤ cσ̄ for some constant135

c > 0 and for all j ∈ [N ], t ∈ [T ], and a ∈ [D]N0 .136

Assumption 6 (Boundedness). E
[
Y

(aN(j))

tj

∣∣LF,O]
∈ [−1, 1] for all j ∈ [N ], t∈ [T ], and a∈ [D]N0 .137

Assumption 7 (Well-balanced spectrum). For universal constants c′, c′′ > 0, assume srtr/s1 ≥ c′138

and
∥∥E[Ztr,In

∣∣LF,O]∥∥2
F
≥ c′′Ttr|In|, where In is defined in Definition 1.139

Assumption 8 (Subspace inclusion). Assume that the row-space of E
[
Zpost,In

∣∣LF,O]
lies within140

the row-space of E
[
Ztr,In

∣∣LF,O]
.141

Theorem 2 (Finite-sample consistency). Let Assumptions 1-8 hold and κ = rtr. Then,142 ∣∣∣θ̂(Ãpr
n)

n − θ
(Ãpr

n)
n

∣∣∣ = OP

√
rtr

T 1/4

tr
+

∥α⊥∥2√
Tpr

+
∥α⊥∥1 r

3/2
tr

√
log (TtrM)

min
(√

Ttr,
√
M

) ∣∣∣∣∣LF,O
 ,

where we assume ∥α⊥∥2 ≥ c′′′ for a universal constant c′′′ > 0.143

4.3 Subspace Inclusion and Implications for Network-Aware Experiment Design144

The key enabling condition for finite-sample consistency of the NSI estimator (Theorem 2) is145

Assumption 8, i.e., the subspace inclusion assumption (SIA). Below, we show that SIA implies that146

the training treatments Atr
n must be diverse enough with respect to the prediction treatments of interest147

Ãpr
n . In terms of experiment design, Propositions 3-4 suggest that the treatments assigned during the148

training period must be carefully designed.149

To this end, consider a scenario where the treatments are binary such that D = 2 and the training150

period is split into L sub-periods, denoted by Ttr,1 through Ttr,L. During each sub-period, let the151

treatments assigned to each unit be constant, i.e., for all ℓ ∈ [L], at = āℓ for all t ∈ Ttr,ℓ. Let152

Wtr,ℓ = [w⊤
t,a : t ∈ Ttr,ℓ , a ∈ {0, 1}] ∈ R|Ttr,ℓ|×2r,

Btr = [1− ā1N (n) , ā
1
N (n) , . . . , 1− āLN (n) , ā

L
N (n)]

⊤ ∈ {0, 1}2L×|N (n)|.

Let Wtr ∈ RTtr×2rL be a block diagonal matrix, with Wtr,1 through Wtr,L along the diagonal.153

Proposition 3. SIA holds for any Ãpr
n if Wtr and Btr have linearly independent columns.154

Proposition 4. Suppose Wtr has linearly independent columns. Then, SIA holds for any {uk,j :155

k, j ∈ [N ]} if ãtN (n) and 1− ãtN (n) are in the rowspace of Btr for all t ∈ Tpr.156

Recall that the latent factors are, by definition, unobserved. As such, Wtr is also unobserved, and157

it is not possible to verify that Wtr has linearly independent columns, as required in Propositions158

3-4. However, as an example that, suppose wt,a are sampled i.i.d. from a multivariate Gaussian and159

|Ttr,ℓ| ≥ 2r for all sub-periods ℓ ∈ [L]. Then, with high probability, Wtr has linearly independent160

columns. As for Btr, consider the following illustrative examples.161
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Figure 2: Simulation results for NSI estimator under ϵ
(aN(n))
tn ∼ N (0, 0.1), D = 2, and r = 2.

Example 1. Suppose L = 1, i.e., at = ā1 for all t ∈ Ttr. Then, Btr = [1− ā1, ā1]⊤. Suppose that162

the treatment assignment during the prediction period is not equal to ā1, but we are interested in163

estimating what would have happened if all units had remained under ā1, i.e., if ãt = ā1 for all164

t ∈ Tpr. Under this setup, ãt, 1− ãt ∈ Btr, as required by Proposition 4. This setup could be viewed165

as Synthetic Control for Panel Data [1] under network interference.166

Example 2. Suppose L = 1 and ā1 = 0N . As such, Btr = [0,1]⊤. Then, unless all units in N (n)167

receive the same treatment as one another under ãt, neither ãt nor 1− ãt are in the rowspace of Btr.168

Example 3. Suppose that L = |N (n)|. Suppose that during each sub-period Ttr,ℓ, a single distinct169

unit in N (n) is assigned treatment 1 and all other are assigned 0. Suppose that which unit in N (n)170

is assigned treatment 1 rotates at each subsequent sub-period. Then, Btr has linearly independent171

columns, as required in Proposition 3.172

5 Simulations173

In this section, we present simulation results illustrating the behavior of the NSI estimator and174

compare it to two related estimators. Experimental details can be found in Appendix C.175

In particular, we consider the following setting. Suppose G is a regular graph with degree d, and the176

treatments are binary. For simplicity, suppose that at = apr for all t ∈ Tpr and, similarly, ãt = ãpr for177

all t ∈ Tpr, i.e., the prediction and counterfactual treatments are constant across Tpr. Lastly, suppose178

that the training treatments are assigned as described in Section 4.3 with L = d+ 1. More precisely,179

let the training period be divided into d+ 1 sub-periods. During each of the sub-periods, 1 out of180

every d+1 units receives treatment 1, and all others receive treatment 0. Each subsequent sub-period181

rotates which units are treated such that each unit is only treated during one of the sub-periods.182

Under this setup, Fig. 2(a) shows an example of NSI estimates for the ring graph (d = 2) with183

N = 400. On top, it plots the spectrum {ŝℓ}qtr
ℓ=1 produced in Step 1 of Section 3, where the vertical184

line marks κ. On bottom, it gives the NSI estimates, where the vertical line separates the training and185

prediction periods. The ground-truth values are given as lines, and the predictions are marked with186

∗’s. As shown, the predictions closely match the ground-truth values. Under the same setup, Fig. 2(b)187

plots the histogram of NSI residuals (the difference between the estimated and ground-truth potential188

outcomes) of 200 simulations, verifying that the residuals are consistent. Fig. 2(c) gives the MSE189

across d = 2, 4, 6, and 8. The left (blue) bars are for N = 100 and Ttr = Tpr = 100; the middle (red)190

bars for N = 100 and Ttr = Tpr = 50; and the right (yellow) bars for N = 500 and Ttr = Tpr = 50.191

As expected, the MSE typically increases with degree, fewer nodes, and less training time.192

We also compare the NSI estimator to two others: the SI estimator (which does not account for193

network interference) [2] and a baseline estimator. The baseline estimator finds donor units that194

satisfy Definition 1, then averages the donor units’ observed outcomes. We compare the estimators195

for a ring graph (details given in Appendix C). The MSEs and R-squared values for the NSI estimator,196

SI estimator, and baseline estimators are, respectively, (0.08013, 0.9994), (53.10, 0.9101), and (576.1,197

-1.389). Both the NSI and baseline estimators use donor sets that contained, on average, 16 units. The198

SI estimator used donor sets with, on average, 66 units.199
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A Related Work342

There has been great interest in studying causal inference in the presence of network interference.343

The majority of works consider the setting of a single measurement or dataset, whether collected from344

a randomized experiment or observational study. Under fully arbitrary interference, it has been shown345

that it is impossible to estimate any desired causal estimands as the model is not fully identifiable346

[26, 4, 8, 21]. As a result, there have been many proposed models that impose assumptions on347

exposure functions [26, 4, 39, 6, 23], interference neighborhoods [36, 7, 32, 10], parametric structure348

[35, 9, 12, 19, 17], or a combination of these, each leading to a different solution concept.349

In this work we focus on network interference which is additive across the neighbors, referred to in350

the literature as the joint assumptions of neighborhood interference, additivity of main effects, and351

additivity of interference effects [32, 40, 14, 15]. However, distinct to our work is that we allow for352

multiple treatments, whereas the existing literature has largely focused on binary treatments. More353

importantly we consider a panel data setting in which we are given multiple measurements from each354

unit, as arises if we observe time series data from each unit. The potential outcomes function are thus355

also time dependent.356

Additionally, previous work has focused on specific causal estimands that correspond to population357

wide averages, most notably the average direct treatment effect, which is the average difference in358

outcomes if only a unit and none of its neighbours get treated [9, 20, 31, 32, 22, 25], and the average359

total treatment effect, which is the average difference in outcomes if all units get treated versus if they360

do not [36, 17, 13, 40, 14, 15]. Alternately there has been some literature that focus on hypothesis361

testing for the presence of network interference [3, 11, 5, 29, 30]; these results do not immediately362

extend to estimation as they are based on randomization inference with a fixed network size and study363

testing sharp null hypotheses.364

In contrast, in this work we obtain estimates for unit-specific causal effects. This is typically365

impossible in the single measurement setup unless one imposes strong parametric model assumptions366

on the potential outcomes function.367

While a majority of the literature focuses on randomized experiment, there is growing interest368

as well to develop theory for accounting for network interference when analyzing observational369

studies. A majority of the literature assumes partial interference, where the network consists of many370

disconnected subcommunities [34, 28, 24, 16, 37]. Without this strong clustering condition, other371

works impose strong parametric assumptions on the potential outcomes function, assuming that the372

potential outcomes only depends on a known statistic of the neighborhood treatment, e.g. the number373

or fraction of treated [38, 13, 27]. This reduces estimation to a regression task under requirements of374

sufficient diversity in the treatments. [18] considers a general exposure mapping model alongside375

an inverse propensity weighted estimator, but the estimator has high variance when the exposure376

mapping is complex.377

B Proofs378

The notation Op is a probabilistic version of big-O notation. Formally, for any sequence of random379

vectors Xn, Xn = Op(χn) if, for any ε > 0, there exists constants cε and nε such that P (∥Xn∥2 >380

cεχn) < ε for every n ≥ nε. Equivalently, we say that Xn/χn is “uniformly tight” or “bounded in381

probability”.382

B.1 Proof of Theorem 1383

Proof. Below, the symbol AX= and DX
= imply that the equality follows from Assumption X and384

Definition X , respectively. Recall that In is shorthand for I(Atr
n,Ã

pr
n,|N (n)|). Then, for t ∈ Tpr,385

E
[
Y

(at
N(n))

tn

∣∣∣LF]
A2
= E

[〈
ũn,N (n), w̃t,at

N(n)

〉
+ ϵ

(at
N(n))

tn

∣∣∣LF]
A3
=

〈
ũn,N (n), w̃t,at

N(n)

〉 ∣∣∣LF
=

〈
ũn,N (n), w̃t,at

N(n)

〉 ∣∣ {LF,O} (7)
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A4
=

〈∑
j∈In

αjũj,πj(N (j)), w̃t,at
N(n)

〉 ∣∣∣∣∣ {LF,O}

=
∑
j∈In

αj

〈
ũj,πj(N (j)), w̃t,at

N(n)

〉 ∣∣∣∣∣ {LF,O}

D1
=

∑
j∈In

αj

〈
ũj,πj(N (j)), w̃t,at

πj(N(j))

〉 ∣∣∣∣∣ {LF,O}

=
∑
j∈In

αj

〈
ũj,N (j), w̃t,at

N(j)

〉 ∣∣∣∣∣ {LF,O} (8)

A3
=

∑
j∈In

αjE

[〈
ũj,N (j), w̃t,at

N(j)

〉
+ ϵ

(at
N(j))

tj

∣∣∣∣∣ {LF,O}

]
A2
=

∑
j∈In

αjE
[
Y

(at
N(j))

tj

∣∣∣LF,O]
=

∑
j∈In

αjE
[
Ytj

∣∣∣LF,O]
, (9)

where (7) follows from the fact that, conditioned on LF , the left-hand side is deterministic, which386

implies that event on which it is conditioned can be exchanged for {LF,O}. Therefore,387

ϕ
(Ãpr

n)
n =

1

|Tpr|
∑
t∈Tpr

E
[
Y

(at
N(n))

tn

∣∣∣LF]
(10)

=
1

|Tpr|
∑
t∈Tpr

∑
j∈In

αjE
[
Ytj

∣∣∣LF,O]
, (11)

where the first equality follows from the definition of ϕ(Ãpr
n)

n and the second equality follows from (9).388

Note that Assumption 1 immediately holds from Assumption 2.389

B.2 Proof of Theorem 2390

As indicated in the main text, Theorem 2 is adapted from Theorem 4.2 of [2]. Below, we explain how391

to adapt Theorem 4.2 for this work.392

Model. The model in [2] is given by (in their notation)393

Y
(d)
tn =

〈
u
(d)
t , vn

〉
+ ε

(d)
tn , (12)

where u
(d)
t , vn ∈ Rr are latent factors; ε(d)tn is a zero-mean, independent noise term; and Y

(d)
tn is the394

potential outcome of interest.395

Recall from (6) that our model is given by (in our notation)396

Y
(aN(n))
tn =

〈
ũn,N (n), w̃t,aN(n)

〉
+ ϵ

(aN(n))
tn , (13)

where ũn,N (n), w̃t,aN(n)
∈ Rr|N (n)| are latent factors; ϵ

(aN(n))
tn is a zero-mean, independent noise397

term; and Y
(aN(n))
tn is the potential outcome of interest.398

As such, our setup model is analogous to the model used by [2], with a change of notation. Specifically,399

ũn,N (n) in this work corresponds to u
(d)
t in [2], w̃t,aN(n)

to vn, and ϵ
(aN(n))
tn to ε

(d)
tn .400

Assumptions of Theorem 4.2 in [2]. Given that our model (6) can be mapped to the model in [2], it401

remains to check whether the assumptions in Theorem 4.2 of [2] are satisfied by those in Theorem 2.402

In particular, one of the main differences between our work and [2] is the observation pattern. In this403

work, the observation pattern is more general, allowing for any sequence of treatments during the404
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training and prediction periods (referred to as the “pre-intervention” and “post-intervention” periods405

in [2]). In [2], the treatment must be constant across each period, and it is assumed that all units406

are under treatment 0 during the pre-intervention (i.e., training) period. This difference only affects407

Theorem 2 via the donor set. In other words, once we adjust the choice of donor set (see Definition 1)408

to suit the network interference setting, Theorem 4.2 can be mapped directly to Theorem 2.409

We now go through the assumptions one-by-one. As we saw above, Assumption 2 is equivalent to410

Assumption 2 in [2], with a change of notation. Furthermore, as discussed in Section 4, Assumption 1411

is automatically satisfied when Assumption 2 holds. Assumptions 3-6 map one-to-one to Assumptions412

3-6 of [2] under the change of notation. Lastly, Assumptions 7-8 also map one-to-one to Assumptions413

7-8 under the new definition of a donor set, as given by Definition 1.414

B.3 Proof of Proposition 3415

Proof. Recall that for unit n ∈ [N ], measurement t ∈ [T ], and treatments a ∈ [A]N0 ,416

Y
(a)
tn =

∑
k∈N (n)

⟨uk,n,wt,ak⟩+ ϵ
(aN(n))
tn , (14)

where n ∈ N (n). Because D = 2, ak ∈ {0, 1} for all k ∈ [N ]. As such,417

Y
(a)
tn − ϵ

(aN(n))
tn =

∑
k∈N (n)

1(ak = 0)u⊤
k,nwt,0 +

∑
k∈N (n)

1(ak = 1)u⊤
k,nwt,1 (15)

=
[∑

k∈N (n) 1(ak = 0)u⊤
k,n

∑
k∈N (n) 1(ak = 1)u⊤

k,n

] [wt,0

wt,1

]
(16)

=
[∑

k∈N (n)(1− ak)u
⊤
k,n

∑
k∈N (n) aku

⊤
k,n

] [wt,0

wt,1

]
(17)

Given a unit n ∈ [N ] and sequence of counterfactual, prediction treatments of interest Ãpr
n ∈418

{0, 1}|N (n)|×Tpr . Recall that we use In as a shorthand for I(Atr
n,Ã

pr
n,|N (n)|). Further, we let Inj refer419

to the j-th donor in the donor set In.420

Recall that:421

Ztr,In =


Y1,In

1
Y1,In

2
. . . Y1,In

|In|

Y2,In
1

Y2,In
2

. . . Y2,In
|In|

...
...

. . .
...

YTtr,In
1

YTtr,In
2

. . . YTtr,In
|In|

 ∈ RTtr×|In|, (18)

denotes the observations across all training periods, and422

Zpr,In =


YTT−Tpr+1,In

1
YTT−Tpr+1,In

2
. . . YTT−Tpr+1,In

|In|

YTT−Tpr+2,In
1

YTT−Tpr+2,In
2

. . . YTT−Tpr+2,In
|In|

...
...

. . .
...

YT,In
1

YT,In
2

. . . YT,In
|In|

 ∈ RTpr×|In|, (19)

denotes the observations during the prediction period.423

Without loss of generality, we assume that the first of the L sub-periods occupies the first Ttr,1 time424

steps of Ttr, the second sub-period occupies the next Ttr,2 time steps of Ttr, and so on.425

The subspace inclusion assumption (SIA) requires that rowspace(Zpr,In) ⊂ rowspace(Ztr,In).426

Let Ñ (j) denote the πj(Ñ (j)), where πj is specified in Definition 1, i.e., Ñ (j) corresponds to the427

already-permuted neighborhood of donor j, where the permutation is fixed under Definition 1.428

UIn =


uÑ1(In

1 ),In
1

. . . uÑ1(In
|In|),In

|In|
...

. . .
...

uπ1(Ñ|Ñ(n)|(In
1 )),In

1
. . . uÑ|Ñ(n)|(In

|In|),In
|In|

 ∈ Rr|Ñ (n)|×|In|
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We now define Wtr and Btr. For ease of exposition, we express them for L = 2. Let Ir denote the429

r × r identity matrix. Using (16),430

E[Ztr,In ] =



w⊤
1,0 w⊤

1,1 0 0

w⊤
2,0 w⊤

2,1 0 0
...

...
...

...
0 0 w⊤

Ttr,1+1,0 w⊤
Ttr,1+1,1

0 0 w⊤
Ttr,1+2,0 w⊤

Ttr,1+2,1

...
...

...
...


︸ ︷︷ ︸

Wtr∈RTtr×2rL




1− ā1N1(n)

1− ā1N2(n)
. . .

ā1N1(n)
ā1N2(n)

. . .

1− ā2N1(n)
1− ā2N2(n)

. . .

ā2N1(n)
ā2N2(n)

. . .


︸ ︷︷ ︸

Btr∈{0,1}2L×|N(n)|

⊗Ir


UIn ,

(20)

and, analogously,431

E[Zpr,In ] = diagt∈Tpr

(
[w⊤

t,0,w
⊤
t,1]

)︸ ︷︷ ︸
Wpr∈RTpr×2rTpr





1− a
T−Tpr+2

N1(n)
1− a

T−Tpr+2

N2(n)
. . .

a
T−Tpr+2

N1(n)
a
T−Tpr+2

N2(n)
. . .

1− a
T−Tpr+2

N1(n)
1− a

T−Tpr+2

N2(n)
. . .

a
T−Tpr+2

N1(n)
a
T−Tpr+2

N2(n)
. . .

...
...

. . .


︸ ︷︷ ︸

Bpr∈{0,1}2Tpr×|N(n)|

⊗Ir


UIn . (21)

Let Ktr = Wtr(Btr ⊗ Ir) and Kpr = Wpr(Bpr ⊗ Ir).432

Note that any matrix that has linear independent columns has full row space. Hence to complete the433

proof, is suffices to show that Ktr has linearly independent columns. Now if Btr and Wtr have linearly434

independent columns, then it immediately implies that Ktr has linearly independent columns.435

B.4 Proof of Proposition 4436

Proof. Below, we use the same notation as in the proof of Proposition 3.437

Subspace inclusion effectively requires that, for every i ∈ [Tpr] there exists some ϕ ∈ RTtr such that438

e⊤i Wpr(Bpr ⊗ Ir)UIn = ϕ⊤Wtr(Btr ⊗ Ir)UIn .

Therefore, subspace inclusion holds for any UIn if there exists some ϕ ∈ RTtr such that439

e⊤i Wpr(Bpr ⊗ Ir) = e⊤i Kpr = ϕ⊤Ktr = ϕ⊤Wtr(Btr ⊗ Ir). (22)

Therefore, by the second equality, subspace inclusion requires that rowspace(Kpr) ⊂ rowspace(Ktr).440

Note . Given that (i) rowspace(Kpr) ⊂ rowspace(Bpr⊗Ir) and (ii) rowspace(Ktr) = rowspace(Btr⊗441

Ir) since Wtr has linearly independent columns, it suffices to show that rowspace(Bpr ⊗ Ir) ⊂442

rowspace(Bpr ⊗ Ir). This is equivalent to showing that rowspace(Bpr) ⊂ rowspace(Btr).443

Since the rows of Bpr are ãtN (n) and 1− ãtN (n) for all t ∈ Tpr, rowspace(Bpr) ⊂ rowspace(Btr) holds444

when ãtN (n), 1− ãtN (n) ∈ rowspace(Btr) for all t ∈ Tpr.445

C Simulations446

Below, we re-present the results given in Section 5, providing additional simulation results.447

All results are given for binary treatments, i.e., D = 2. The latent factors uk,n and w0,a are drawn448

from a standard random normal distribution, and w·,a are a Gaussian random walk. Our experiments449

use a simple donor-finding algorithm. In particular, instead of searching for donors over all possible450
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Figure 3: Simulation results for NSI estimator under ϵ
(aN(n))
tn ∼ N (0, 0.1). (a) Consider a ring graph

with N = 400, Ttr,ℓ = Tpr = 50, r = 2, and L = 3. The top graph plots the spectrum {ŝℓ}qtr
ℓ=1, and

the vertical line marks κ from Section 3. The NSI estimates are plotted below, where the vertical
line separates the training and prediction periods. The ground-truth values are given as lines, and
the predictions are marked with ∗’s. (b) gives the histogram of residuals (the difference between the
estimated and ground-truth potential outcomes) of 200 simulations, averaged over 50 units and all
possible counterfactual treatments. The experimental parameters match those (a). (c) plots the MSE
of the NSI estimator across regular graphs of different degrees. The left (blue) bars are for N = 1000
and Ttr,ℓ = Tpr = 100. The middle (red) bars are for N = 1000, Ttr,ℓ = Tpr = 50. The right (yellow)
bars are for N = 500, Ttr,ℓ = Tpr = 50. All other parameters match those for (a).

permutations πj , as defined in Definition 1, we fix an ordering of units (as described in Section 1)451

and restrict ourselves to the identity permutation πj(i) = i.452

Figure 2 shows results for the NSI estimator over a ring graph, such that the size of each neighborhood453

set is 3. For Fig. 2(a)-(b), we adopt the setup described in Section 4.3, where Ttr is divided into L = 3454

sub-periods, each of length Ttr,ℓ = 50 and ā1 = (1, 0, 0, 1, 0, 0, . . .), ā2 = (0, 1, 0, 0, 1, 0, . . .), and455

ā3 = (0, 0, 1, 0, 0, 1, . . .). For Fig. 2(c), we study the Network Synthetic Control setting described456

in Example 1, where L = 1, ā1 = ãpr = 0N , aT−Tpr+1 is drawn uniformly at random, and at is457

constant across Tpr.458

We also compare the NSI estimator to two others: the SI estimator (which does not account for459

network interference) [2] and a baseline estimator. The baseline estimator finds donor units that460

satisfy Definition 1, then averages the donor units’ observed outcomes. We compare the estimators461

for a ring graph under the same hyper-parameters as those used in Fig. 2(a), averaging across 200462

simulations, 50 units, and all possible counterfactual treatments. The MSEs and R-squared values for463

the NSI estimator, SI estimator, and baseline estimators are, respectively, (0.08013, 0.9994), (53.10,464

0.9101), and (576.1, -1.389). Both the NSI and baseline estimators used donor sets that contained, on465

average, 16 units. The SI estimator used donor sets with, on average, 66 units. These results as well466

as those for Fig. 2(a)-(b) are given for κ ≥ 3r, and the results for Fig. 2(c) are given for κ ≥ r.467

The simulations were simple. They were run on a local machine with a 2.3 GHz processor. The468

simulations were completed in under two hours.469
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