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ABSTRACT

We study the multi-agent safe control problem where agents should avoid colli-
sions to static obstacles and collisions with each other while reaching their goals.
Our core idea is to learn the multi-agent control policy jointly with learning the
control barrier functions as safety certificates. We propose a new joint-learning
framework that can be implemented in a decentralized fashion, which can adapt
to an arbitrarily large number of agents. Building upon this framework, we fur-
ther improve the scalability by incorporating neural network architectures that
are invariant to the quantity and permutation of neighboring agents. In addition,
we propose a new spontaneous policy refinement method to further enforce the
certificate condition during testing. We provide extensive experiments to demon-
strate that our method significantly outperforms other leading multi-agent control
approaches in terms of maintaining safety and completing original tasks. Our ap-
proach also shows substantial generalization capability in that the control policy
can be trained with 8 agents in one scenario, while being used on other scenar-
ios with up to 1024 agents in complex multi-agent environments and dynamics.
Videos and source code can be found on the website1.

1 INTRODUCTION

Machine learning (ML) has created unprecedented opportunities for achieving full autonomy. How-
ever, learning-based methods in autonomous systems (AS) can and do fail due to the lack of formal
guarantees and limited generalization capability, which poses significant challenges for developing
safety-critical AS, especially large-scale multi-agent AS, that are provably dependable.

On the other side, safety certificates (Chang et al. (2019); Jin et al. (2020); Choi et al. (2020)), which
widely exist in control theory and formal methods, serve as proofs for the satisfaction of the desired
properties of a system, under certain control policies. For example, once found, a Control Barrier
Function (CBF) ensures that the closed-loop system always stays inside some safe set (Wieland &
Allgöwer, 2007; Ames et al., 2014) with a CBF Quadratic Programming (QP) supervisory controller.
However, it is extremely difficult to synthesize CBF by hand for complex dynamic systems, which
stems a growing interest in learning-based CBF (Saveriano & Lee, 2020; Srinivasan et al., 2020; Jin
et al., 2020; Boffi et al., 2020; Taylor et al., 2020; Robey et al., 2020). However, all of these studies
only concern single-agent systems. How to develop learning-based approaches for safe multi-agent
control that are both provably dependable and scalable remains open.

In multi-agent control, there is a constant dilemma: centralized control strategies can hardly scale
to a large number of agents, while decentralized control without coordination often misses safety
and performance guarantees. In this work, we propose a novel learning framework that jointly de-
signs multi-agent control policies and safety certificate from data, which can be implemented in
a decentralized fashion and scalable to an arbitrary number of agents. Specifically, we first intro-
duce the notion of decentralized CBF as safety certificates, then propose the framework of learning
decentralized CBF, with generalization error guarantees. The decentralized CBF can be seen as a

1https://realm.mit.edu/blog/learning-safe-multi-agent-control-decentralized-neural-barrier-certificates
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contract among agents, which allows agents to learn a mutual agreement with each other on how
to avoid collisions. Once such a controller is achieved through the joint-learning framework, it can
be applied on an arbitrarily number of agents and in scenarios that are different from the training
scenarios, which resolves the fundamental scalability issue in multi-agent control. We also propose
several effective techniques in Section 4 to make such a learning process even more scalable and
practical, which are then validated extensively in Section 5.

Experimental results are indeed promising. We study both 2D and 3D safe multi-agent control
problems, each with several distinct environments and complex nonholonomic dynamics. Our joint-
learning framework performs exceptionally well: our control policies trained on scenarios with 8
agents can be used on up to 1024 agents while maintaining low collision rates, which has notably
pushed the boundary of learning-based safe multi-agent control. Speaking of which, 1024 is not the
limit of our approach but rather due to the limited computational capability of our laptop used for the
experiments. We also compare our approach with both leading learning-based methods (Lowe et al.,
2017; Zhang & Bastani, 2019; Liu et al., 2020) and traditional planning methods (Ma et al., 2019;
Fan et al., 2020). Our approach outperforms all the other approaches in terms of both completing
the tasks and maintaining safety.

Contributions. Our main contributions are three-fold: 1) We propose the first framework to jointly
learning safe multi-agent control policies and CBF certificates, in a decentralized fashion. 2) We
present several techniques that make the learning framework more effective and scalable for practi-
cal multi-agent systems, including the use of quantity-permutation invariant neural network architec-
tures in learning to handle the permutation of neighbouring agents. 3) We demonstrate via extensive
experiments that our method significantly outperforms other leading methods, and has exceptional
generalization capability to unseen scenarios and an arbitrary number of agents, even in quite com-
plex multi-agent environments such as ground robots and drones. The video that demonstrates the
outstanding performance of our method can be found in the supplementary material.

Related Work. Learning-Based Safe Control via CBF. Barrier certificates (Prajna et al., 2007)
and CBF (Wieland & Allgöwer, 2007) is a well-known effective tool for guaranteeing the safety
of nonlinear dynamic systems. However, the existing methods for constructing CBFs either rely on
specific problem structures (Chen et al., 2017b) or do not scale well (Mitchell et al., 2005). Recently,
there has been an increasing interest in learning-based and data-driven safe control via CBFs, which
primarily consist of two categories: learning CBFs from data (Saveriano & Lee, 2020; Srinivasan
et al., 2020; Jin et al., 2020; Boffi et al., 2020), and CBF-based approach for controlling unknown
systems (Wang et al., 2017; 2018; Cheng et al., 2019; Taylor et al., 2020). Our work is more pertinent
to the former and is complementary to the latter, which usually assumes that the CBF is provided.
None of these learning-enabled approaches, however, has addressed the multi-agent setting.

Multi-Agent Safety Certificates and Collision Avoidance. Restricted to holonomic systems, guar-
anteeing safety in multi-agent systems has been approached by limiting the velocities of the agents
(Van den Berg et al., 2008; Alonso-Mora et al., 2013). Later, Borrmann et al. (2015) Wang et al.
(2017) have proposed the framework of multi-agent CBF to generate collision-free controllers, with
either perfectly known system dynamics (Borrmann et al., 2015), or with worst-case uncertainty
bounds (Wang et al., 2017). Recently, Chen et al. (2020) has proposed a decentralized controller
synthesized approach under this CBF framework, which is scalable to an arbitrary number of agents.
However, in Chen et al. (2020) the CBF controller relies on online integration of the dynamics under
the backup strategy, which can be computationally challenging for complex systems. Due to space
limit, we omit other non-learning multi-agent control methods but acknowledge their importance.

Safe Multi-Agent (Reinforcement) Learning (MARL). Safety concerns have drawn increasing
attention in MARL, especially with the applications to safety-critical multi-agent systems (Zhang &
Bastani, 2019; Qie et al., 2019; Shalev-Shwartz et al., 2016). Under the CBF framework, Cheng et al.
(2020) considered the setting with unknown system dynamics, and proposed to design robust multi-
agent CBFs based on the learned dynamics. This mirrors the second category mentioned above in
single-agent learning-based safe control, which is perpendicular to our focus. RL approaches have
also been applied for multi-agent collision avoidance (Chen et al., 2017a; Lowe et al., 2017; Everett
et al., 2018; Zhang et al., 2018). Nonetheless, no formal guarantees of safety were established
in these works. One exception is Zhang & Bastani (2019), which proposed a multi-agent model
predictive shielding algorithm that provably guarantees safety for any policy learned from MARL,
which differs from our multi-agent CBF-based approach. More importantly, none of these MARL-
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based approaches scale to a massive number of, e.g., thousands of agents, as our approach does.
The most scalable MARL platform, to the best of our knowledge, is Zheng et al. (2017), which may
handle a comparable scale of agents as ours, but with discrete state-action spaces. This is in contrast
to our continuous-space models that can model practical control systems such as robots and drones.

2 PRELIMINARIES

2.1 CONTROL BARRIER FUNCTIONS AS SAFETY CERTIFICATES

One common approach for (single-agent) safety certificate is via control barrier functions (Ames
et al., 2014), which can enforce the states of dynamic systems to stay in the safe set. Specifically, let
S ⊂ Rn be the state space, Sd ⊂ S is the dangerous set, Ss = S\Sd is the safe set, which contains
the set of initial conditions S0 ⊂ Ss. Also define the space of control actions as U ⊂ Rm. For a
dynamic system ṡ(t) = f(s(t), u(t)), a control barrier function h : Rn 7→ R satisfies:

(∀s ∈ S0, h(s) ≥ 0)
∧

(∀s ∈ Sd, h(s) < 0)
∧

(∀ s ∈ {s | h(s) ≥ 0} ,∇sh · f(s, u) + α (h) ≥ 0) , (1)

where α(·) is a class-K function, i.e., α(·) is strictly increasing and satisfies α(0) = 0. For a control
policy π : S → U and CBF h, it is proved in Ames et al. (2014) that if s(0) ∈ {s | h(s) ≥ 0} and
the three conditions in (1) are satisfied with u = π(x), then s(t) ∈ {s | h(s) ≥ 0} for ∀t ∈ [0,∞),
which means the state would never enter the dangerous set Sd under π.

2.2 SAFETY OF MULTI-AGENT DYNAMIC SYSTEMS

Consider a multi-agent system with N agents, the joint state of which at time t is denoted by s(t) =
{s1(t), s2(t), · · · , sN (t)} where si(t) ∈ Si ⊂ Rn denotes the state of agent i at time t. The
dynamics of agent i is ṡi(t) = fi(si(t), ui(t)) where ui(t) ∈ Ui ⊂ Rm is the control action of agent
i. The overall state space and input space are denoted as S .

=
N
⊗
i=1
Si, U .

=
N
⊗
i=1
Ui. For each agent i,

we define Ni(t) as the set of its neighborhood agents at time t. Let oi(t) ∈ Rn×|Ni(t)| be the local
observation of agent i, which is the states of |Ni(t)| neighborhood agents. Notice that the dimension
of oi(t) is not fixed and depends on the quantity of neighboring agents. We assume that the safety
of agent i is jointly determined by si and oi. Let Oi be the set of all possible observations and
Xi := Si ×Oi be the state-observation space that contains the safe set Xi,s, dangerous set Xi,d and
initial conditions Xi,0 ⊂ Xi,s. Let d : Xi → R describe the minimum distance from agent i to other
agents that it observes, d(si, oi) < κs implies collision. Then Xi,s = {(si, oi)|d(si, oi) ≥ κs} and
Xi,d = {(si, oi)|d(si, oi) < κs}. Let d̄i : S → R be the lifting of d from Xi to S, which is well-
defined since there is a surjection from S to Xi. Then define Ss

.
= {s ∈ S|∀i = 1, ..., N, d̄i(s) ≥

κs}. The safety of a multi-agent system can be formally defined as follows:
Definition 1 (Safety of Multi-Agent Systems). If the state-observation satisfies d(si, oi) ≥ κs for
agent i and time t, then agent i is safe at time t. If for ∀i, agent i is safe at time t, then the multi-agent
system is safe at time t, and s ∈ Ss.

A main objective of this paper is to learn the control policy πi(si(t), oi(t)) for ∀i such that the
multi-agent system is safe. The control policy is decentralized (i.e., each agent has its own control
policy and there does not exist a central controller to coordinate all the agents). In this way, our
decentralized approach has the hope to scale to very a large number of agents.

3 LEARNING FRAMEWORK FOR MULTI-AGENT DECENTRALIZED CBF

3.1 DECENTRALIZED CONTROL BARRIER FUNCTIONS

For a multi-agent dynamic system, the most naı̈ve CBF would be a centralized function taking into
account the cross production of all agents’ states, which leads to an exponential blow-up in the state
space and difficulties in modeling systems with an arbitrary number of agents. Instead, we consider
a decentralized control barrier function hi : Xi 7→ R:

(∀ (si, oi) ∈ Xi,0, hi(si, oi) ≥ 0)
∧

(∀ (si, oi) ∈ Xi,d, hi(si, oi) < 0)
∧

(∀ (si, oi) ∈ {(si, oi) | hi(si, oi) ≥ 0} ,∇sihi · fi(si, ui) +∇oihi · ȯi(t) + α (hi) ≥ 0)
(2)
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where ȯi(t) is the time derivative of the observation, which depends on the behavior of other agents.
Although there is no explicit expression of this term, it can be evaluated and incorporated in the
learning process. Note that the CBF hi(si, oi) is local in the sense that it only depends on the local
state si and observation oi. We refer to the three conditions in (2) as decentralized CBF conditions.
The following proposition shows that satisfying (2) guarantees the safety of the multi-agent system.
Proposition 1 (Multi-Agent Safety Certificates with Decentralized CBF). If for ∀i, the initial state-
observation (si(0), oi(0)) ∈ {(si, oi) | hi(si, oi) ≥ 0} and the decentralized CBF conditions in (2)
are satisfied, then ∀i and ∀t, (si(t), oi(t)) ∈ {(si, oi) | hi(si, oi) ≥ 0}, which implies the state
would never enter Xi,d for any agent i. Thus, by Definition 1, the multi-agent system is safe.

The proof of Proposition 1 is provided in the supplementary material. The key insight of Propo-
sition 1 is that for the whole multi-agent system, the CBFs can be applied in a decentralized fash-
ion for each agent. Since hi(si, oi) ≥ 0 is invariant, by definition of hi, hi(si, oi) > 0 =⇒
d̄i(s) ≥ κs, which means agent i never gets closer than κs to all its neighborhood agents. There-
fore, ∀i, hi(si, oi) ≥ 0 implies that ∀i, d̄i(s) ≥ κs, which by definition also means s ∈ Ss, and the
multi-agent system is safe as defined in Definition 1.

Notice that an agent only needs to care about its local information, and if all agents respect the same
form of contract (i.e., the decentralized CBF conditions), the whole multi-agent system will be safe.
The fact that global safety can be guaranteed by decentralized CBF is of great importance since it
reveals that a centralized controller that coordinates all agents is not necessary to achieve safety. A
centralized control policy has to deal with the dimension explosion when the number of agents grow,
while a decentralized design can significantly improve the scalability to a large number of agents.

3.2 LEARNING FRAMEWORK

From Proposition 1, we know that if we can jointly learn the control policy πi(si, oi) and control bar-
rier function hi(si, oi) such that the decentralized CBF conditions in (2) are satisfied, then the multi-
agent system is guaranteed to be safe. Next we formulate the optimization objective for the joint
learning of πi(si, oi) and hi(si, oi). Let T ⊂ R+ be the time interval and τi = {si(t), oi(t)}t∈T be
a trajectory of state and observation of agent i. Let Ti be the set of all possible trajectories of agent
i. LetHi and Vi be the function classes of hi and πi. Define the function yi : Ti×Hi×Vi 7→ R as:

yi(τi, hi, πi) := min
{

inf
Xi,0∩τi

hi(si, oi), inf
Xi,d∩τi

−hi(si, oi), inf
Xi,h∩τi

(ḣi + α (hi))
}
. (3)

The setXi,h := {(si, oi) | hi(si, oi) ≥ 0}. Notice that the third item on the right side of Equation (3)
depends on both the control policy and CBF, since ḣi = ∇sihi · fi(si, ui) + ∇oihi · ȯi(t), ui =
πi(si, oi). It is clear that if we can find hi and πi(si, oi) such that yi(τi, hi, πi) > 0 for ∀τi ∈ Ti
and ∀i, then the conditions in (2) are satisfied. For each agent i, assume that we are given zi i.i.d
trajectories {τ1i , τ2i , · · · , τ

zi
i } drawn from distribution Di during training. We solve the objective:

For all i, find hi ∈ Hi and πi ∈ Vi, s.t. yi(τ
j
i , hi, πi) ≥ γ, ∀j = 1, 2, · · · zi, (4)

where γ > 0 is a margin for the satisfaction of the CBF condition in (2). Following standard
results from statistical learning theory, it is possible to establish the generalization guarantees of the
solution to (4) to unseen data drawn from Di. See a detailed statement of the results in Appendix B.
The bound depends on the richness of the function classes, the margin γ, as well as the number of
samples used in (4). However, we note that such a generalization bound is only with respect to the
open-loop data drawn fromDi, the training data distribution, not to the closed-loop data in the testing
when the learned controller is deployed. It is known to be challenging to handle the distribution shift
between the training and testing due to the closed-loop effect. See, e.g., a recent result along this
line in the context of imitation learning (Tu et al., 2021). We leave a systematic treatment of this
closed-loop generalization guarantee for learning CBF in our future work. Finally, we note that in
our experiments, we solve (4) and update the controller in an iterative fashion: run the closed-loop
system with a certain controller to sample training data online and formulate (4), then update the
controller by the solution of (4). We run the system using the updated controller and re-generate new
samples to solve for a new controller. At the steady stage of this iterative process, the training and
testing distribution shift becomes negligible, which validates the use of the generalization bounds
given in Proposition 3. See more details of this implementation in Section 4.1, and more discussion
on this point in the Remark in Appendix B.
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Neural Net Controller Neural Net CBF

Control input 𝑢𝑖 ሶ𝑠𝑖 = 𝑓𝑖(𝑠𝑖 , 𝑢𝑖 )

ℎ𝑖(𝑠𝑖 , 𝑜𝑖 ) ∇𝑠ℎ𝑖(𝑠𝑖 , 𝑜𝑖 )

∇𝑠ℎ𝑖 ∙ 𝑓𝑖 Loss ℒ𝑐

State and observation (𝑠𝑖 , 𝑜𝑖)

Figure 1: The computational graph of the control-certificate jointly learning framework in multi-agent systems.
Only the graph for agent i is shown because agents have the same graph and the computation is decentralized.

Besides the generalization guarantee, there also exists several other gaps between the formulation in
(4) and the practical implementation. First, (4) does not provide a concrete way of designing loss
functions to realize the optimization objectives. Second, there are still N pairs of functions (hi, πi)
to be learned. Unfortunately, the dimension of the input oi of the functions hi, πi are different for
each agent i, and will even change over time in practice, as the proximity of other agents is time-
varying, leading to time-varying local observations. To scale to an arbitrary number of agents, hi
and πi should be invariant to the quantity and permutation of neighbourhood agents. Third, (4) does
not provide ways to deal with scenarios where the decentralized CBF conditions are not (strictly)
satisfied, i.e., where problem (4) is not even feasible, which may very likely occur when the system
becomes too complex or the function classes are not rich enough. To this end, we propose effective
approaches to solving these issues, facilitating the scalable learning of safe multi-agent control in
practice, as to be introduced next.

4 SCALABLE LEARNING OF DECENTRALIZED CBF IN PRACTICE

Following the theory in Section 3, we consider the practical learning of safe multi-agent control with
neural barrier certificates, i.e., using neural networks for H and V . We will present the formulation
of loss functions in Section 4.1, which corresponds to the objective in (4). Section 4.2 presents the
neural network architecture of hi and πi, which are invariant to the quantity and permutation of
neighboring agents. Section 4.3 demonstrates a spontaneous policy refinement method that enables
the control policy to satisfy the decentralized CBF conditions as possible as it could during testing.

4.1 LOSS FUNCTIONS OF JOINTLY LEARNING CONTROLLERS AND BARRIER CERTIFICATES

Based on Section 3.2. the main idea is to jointly learn the control policies and control barrier func-
tions in multi-agent systems. During training, the CBFs regulate the control policies to satisfy the
decentralized CBF conditions (2) so that the learned policies are safe. All agents are put into a single
environment to generate experiences, which are combined to minimize the empirical loss function
Lc = ΣiLci , where Lci is the loss function for agent i formulated as:

Lci (θi, ωi) =
∑

si∈Xi,0

max
(
0, γ − hθii (si, oi)

)
+

∑
si∈Xi,d

max
(
0, γ + hθii (si, oi)

)
+

∑
si∈Xi,h

max
(
0, γ −∇sih

θi
i · fi (si, π

ωi
i (si, oi))−∇oih

θi
i · ȯi − α(h

θi
i )
)
,

(7)

where γ is the margin defined in Section 3.2. We choose γ = 10−2 in implementation. θi and
ωi are neural network parameters. On the right side of Equation (7), the three items enforce the
three CBF conditions respectively. Directly computing the third term could be challenging since
we need to evaluate ȯi, which is the time derivative of the observation. Instead, we approximate
ḣ(si, oi) = ∇sih

θi
i ·fi (si, π

ωi
i (si, oi))+∇oih

θi
i ·ȯi numerically by ḣ(si, oi) = [h(si(t+∆t), oi(t+

∆t)) − h(si(t), oi(t))]/∆t. For the class-K function α(·), we simply choose a linear function
α(h) = λh. Note that Lc mainly considers safety instead of goal reaching. To train a safe control
policy πi(si, oi) that can drive the agent to the goal state, we also minimize the distance between ui
and ugi , where ugi is the reference control input computed by classical approaches (e.g., LQR and
PID controllers) to reach the goal. The goal reaching loss Lg = ΣiLgi , where Lgi is formulated as
Lgi (ωi) =

∑
si∈X ||π

ωi
i (si, oi) − ugi (si)||2. The final loss function L = Lc + ηLg , where η is a

balance weight that is set to 0.1 in our experiments. We present the computational graph in Figure 1
to help understand the information flow.

In training, all agents are put into the specific environment, which is not necessarily the same as
the testing environment, to collect state-observation pairs (si, oi) under their current policies with
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Figure 2: Neural network architecture of the control policy. The blue part indicates the quantity-permutation
invariant observation encoder, which maps oi(t) ∈ Rn×|Ni(t)| with time-varying dimension to a fixed length
vector. The network takes the state si and local observation oi as input to compute a control action ui. The
neural network of the decentralized CBF hi has a similar architecture except that the output is a scalar.

probability 1− ι and random policies with probability ι, where ι is set to be 0.05 in our experiment.
The collected (si, oi) are stored as a temporary dataset and in every step of policy update, 128
(si, oi) are randomly sampled from the temporary dataset to calculate the total loss L. We minimize
L by applying stochastic gradient descent with learning rate 10−3 and weight decay 10−6 to θi and
ωi, which are the parameters of the CBF and control policies. Note that the gradients are computed
by back-propagation rather than policy gradients because L is differentiable w.r.t. θi and ωi.

Iterative Data Collection and Training. It is important to note that we did not use a fixed set
of state-observation pairs to train the decentralized CBF and controllers. Instead, we adopted an
on-policy training strategy, where the training data are collected by running the current system. The
collected state-observation pairs are stored in temporary dataset that is used to calculate the loss
terms and update the decentralized CBF and controllers via gradient descent. Then the updated
controllers are used to run the system and re-generate new state-observation pairs as training data.
The iterative data collection and training is performed until the loss converges. Such a training
process is crucial for generalizing to testing scenarios. More discussion on this point can be found
in the Remark in Appendix B.

4.2 QUANTITY-PERMUTATION INVARIANT OBSERVATION ENCODER

Recall that in Section 3.1, we define oi as the local observation of agent i. oi contains the states
of neighboring agents and its dimension can change dynamically. In order to scale to an arbitrary
number of agents, there are two pivotal principles of designing the neural network architectures of
hi(si, oi) and πi(si, oi). First, the architecture should be able to dynamically adapt to the changing
quantity of observed agents that affects the dimension of oi. Second, the architecture should be
invariant to the permutation of observed agents, which should not affect the output of hi or πi. All
these challenges arise from encoding the local observation oi. Inspired by PointNet (Qi et al., 2017),
we leverage the max pooling layer to build the quantity-permutation invariant observation encoder.

Let us start with a simple example with input observation oi(t) ∈ Rn×|Ni(t)|, where n is the di-
mension of state and Ni(t) is the set of the neighboring agents at time t. n is fixed while Ni(t) can
change from time to time. The permutation of the columns of oi is also dynamic. Denote the weight
matrix as W ∈ Rp×n and the element-wise ReLU activation function as σ(·). Define the row-wise
max pooling operation as RowMax(·), which takes a matrix as input and outputs the maximum
value of each row. Consider the following mapping ρ : Rn×|Ni(t)| 7→ Rp formulated as

ρ(oi) = RowMax(σ(Woi)), (8)
where ρ maps a matrix oi whose column has dynamic dimension and permutation to a fixed length
feature vector ρ(oi) ∈ Rp. The dimension of ρ(oi) remains the same even if the number of columns
of oi(t), which is |Ni(t)|, change over time. The network architecture of the control policy is shown
in Figure 2, which uses the RowMax(·) operation. The network of the control barrier function is
similar except that the output is a scalar instead of a vector.

4.3 SPONTANEOUS ONLINE POLICY REFINEMENT

We propose a spontaneous online policy refinement approach that produces even safer control poli-
cies in testing than the neural network has actually learned during training. When the model dy-
namics or environment settings are too complex and exceed the capability of the control policy, the
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(c) Nested Rings (b) Predator-Prey (a) Navigation 

Figure 3: Illustrations of the 2D environments used in the experiments. The Navigation and Predator-Prey
environments are adopted from the multi-agent particle environment (Lowe et al., 2017). The Nested-Rings
environment is adopted from Rodrı́guez-Seda et al. (2014).

decentralized CBF conditions can be violated at some points along the trajectories. Thanks to the
control barrier function jointly learned with the control policy, we are able to refine the control input
ui online by minimizing the violation of the decentralized CBF conditions. That is, the learned CBF
can serve as a guidance on generating updated ui in unseen scenarios to guarantee safety. This is
also a standard technique used in (non-learning) CBF control where the CBF h is usually computed
first using optimization methods like Sum-of-Squares, then the control inputs u are computed online
using h by solving quadratic programming problems (Xu et al., 2017; Ames et al., 2017). In the
experiments, we also study the effects of such an online policy refinement step.

Given the state si, local observation oi, and action ui computed by the control policy, consider the
scenario where the third CBF condition is violated, which means ∇sihi · fi(si, ui) +∇oihi · ȯi +
α(hi) < 0 when hi ≥ 0. Let ei ∈ Rm be an increment of the action ui. Define φ(ei) : Rm 7→ R as

φ(ei) = max(0,−∇sihi · fi(si, ui + ei)−∇oihi · ȯi − α(hi)) + µ||ei||22. (9)

If the first term on the right side of Equation (9) is 0, then the third CBF condition is satisfied. We
can enforce the satisfaction in every timestep of testing (after ui is computed by the neural network
controller) by finding an ei that minimizes φ(ei). µ is a regularization factor that punishes large ei.
We set µ = 1 in implementation and observed that in our experiment, a fixed µ is sufficient to make
sure the ||ui + ei|| do not exceed the constraint on control input bound. When evaluating on new
scenarios and the constraints is violated, one can dynamically increase µ to strengthen the penalty.
For every timestep during testing, we initialize ei to zero and check the value of φ(ei). φ(ei) > 0
indicates that the control policy is not good enough to satisfy the decentralized CBF conditions.
Then we iteratively refine ei by ei = ei − ∇eφ(ei) until φ(ei) − µ||ei||22 = 0 or the maximum
allowed iteration is exceeded. The final control input is ui = ui+ ei. Such a refinement can flexibly
refine the control input to satisfy the decentralized CBF conditions as much as possible.

5 EXPERIMENTAL RESULTS

Baseline Approaches. The baseline approaches we compare with include: MAMPS (Zhang &
Bastani, 2019), PIC (Liu et al., 2020) and MADDPG (Lowe et al., 2017). For the drone tasks,
we also compare with model-based planning method S2M2 (Chen et al., 2021). A brief descrip-
tion of each method is as follows. MAMPS leverages the model dynamics to iteratively switch to
safe control policies when the learned policies are unsafe. PIC proposes the permutation-invariant
critic to enhance the performance of multi-agent RL. We incorporate the safety reward to its reward
function and denote this safe version of PIC as PIC-Safe. The safety reward is -1 when the agent
enters the dangerous set. MADDPG is a pioneering work on multi-agent RL, and MADDPG-Safe
is obtained by adding the safety reward to the reward function that is similar to PIC-Safe. S2M2 is
a state-of-the-art model-based multi-agent safe motion planner. When directly planning all agents
fails, S2M2 evenly divides the agent group to smaller partitions for replanning until paths that are
collision-free for each partition are found. The agents then follow the generated paths using PID or
LQR controllers.

For each task, the environment model is the same for all the methods. The exact model dynamics
are visible to model-based methods including MAMPS, S2M2 and our methods, and invisible to the

7



Published as a conference paper at ICLR 2021

Figure 4: Safety rate and reward in the 2D tasks. Results are taken after each method converged and are
averaged over 10 independent trials.

Figure 5: Environments and results of 3D tasks. In Maze and Tunnel, the initial and target locations of each
drone are randomly chosen. The drones start from the initial locations and aim to reach the targets without
collision. The results are taken after each method converged and are averaged over 10 independent trials.

model-free MADDPG and PIC. Since the model-free methods do not have access to model dynamics
but instead the simulators, they are more data-demanding. The number of state-observation pairs to
train MADDPG and PIC is 103 times more than that of model-based learning methods to make sure
they converge to their best performance. When training the RL-based methods, the control action
computed by LQR for goal-reaching is also fed to the agent as one of the inputs to the actor network.
So the RL agents can learn to use LQR as a reference for goal-reaching.

Evaluation Criteria. Since the primal focus of this paper is the safety of multi-agent systems,
we use the safety rate as a criteria when evaluating the methods. The safety rate is calculated as
1
NΣNi=1Et∈T [I((si(t), oi(t)) ∈ Xs)] where I(·) is the indicator function that is 1 when its argument
is true or 0 otherwise. The observation oi contains the states of other agents within the observation
radius, which is 10 times the safe distance. The safe distance is set to be the diagonal length of the
bounding box of the agent. In addition to the safety rate, we also calculate the average reward that
considers how good the task is accomplished. The agent is given a +10 reward if it reaches the goal
and a -1 reward if it enters the dangerous set. Note that the agent might enter the dangerous set for
many times before reaching the goal. The upper-bound of the total reward for an agent is +10, which
is attained when the agent successfully reaches the goal and always stays in the safe set.
Ground Robots. We consider three tasks illustrated in Figure 3. In the Navigation task, each
agent starts from a random location and aims to reach a random goal. In the Predator-Prey task, the
preys aim to gather the food while avoid being caught by the predators chasing the preys. We only
consider the safety of preys but not predators. In the Nested-Rings task, the agents aim to follow

8
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Figure 6: Generalization capability of MDBC in the 3D tasks. MDBC can be trained with 8 agent in one
environment and generalize to 1024 agents in another environment in testing.

the reference trajectories while avoid collision. In order for the RL-based agents to follow the rings
trajectory, we also give the agents a negative reward proportional to the distance to the nearest point
on the rings. When adding more agents to an environment, we will also enlarge the area of the
environment to ensure the overall density of agents remains similar.

Figure 4 demonstrates that when the number of agents grows (e.g., 32 agents), our approach
(MDBC) can still maintain a high safety rate and average reward, while other methods have much
worse performance. However, our method still cannot guarantee that the agents are 100% safe. The
failure is mainly because we cannot make sure the decentralized CBF conditions are satisfied for
every state-observation pair in testing even if they are satisfied on all training samples due to the
generalization error. We also show the generalization capability of MDBC with up to 1024 in the
appendix and also visualization results in the supplementary materials.

Figure 7: Illustration of the Maze environment with
1024 drones. Videos can be found in the supplementary
material.

Drones. We experiment with 3D drones
whose dynamics are even more complex. Fig-
ure 5 demonstrates the environments and the re-
sults of each approach. Similar to the results of
ground robots, when there are a large number
of agents (e.g., 32 agents), our method can still
maintain a high reward and safety rate, while
other methods have worse performance. Fig-
ure 6 shows the generalization capability of our
method across different environments and num-
ber of agents. For each experiment, we train 8
agents during training, but test with up to 1024
agents. The extra agents are added by copy-
ing the neural network parameters of the trained
8 agents. Results show that our method has
remarkable generalization capability to diverse
scenarios. Another related work Chen et al. (2020) can also handle the safe multi-drone control
problem via CBF, but their CBF is handcrafted and based on quadratic programming to solve the ui.
Their paper only reported the results on two agents, and for 32 agents it would take more than 70
hours for a single run of evaluation (7000 steps and 36 seconds per step). By contrast, our method
only takes ∼ 200s for a single run of evaluation with 32 agents, showing a significant advantage
in computational efficiency. For both the ground robot and drone experiments, we provide video
demonstrations in the supplementary material.

6 CONCLUSION

This paper presents a novel approach of learning safe multi-agent control via jointly learning the de-
centralized control barrier functions as safety certificates. We provide the theoretical generalization
bound, as well as the effective techniques to realize the learning framework in practice. Experi-
ments show that our method significantly outperforms previous methods by being able to scale to an
arbitrary number of agents, and demonstrates remarkable generalization capabilities to unseen and
complex multi-agent environments.
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A PROOF OF PROPOSITION 1

Since ḣi = ∇sihi · fi(si, ui) +∇oihi · ȯi(t), the satisfaction of (2) implies:

∀ (si, oi) ∈ Xi,0, hi(si, oi) ≥ 0

∀ (si, oi) ∈ Xi,d, hi(si, oi) < 0

∀ (si, oi) ∈ {(si, oi) | hi(si, oi) ≥ 0} , ḣi + α (hi) ≥ 0.

(10)

The initial condition (si(0), oi(0)) ∈ {(si, oi) | hi(si, oi) ≥ 0} means that hi ≥ 0 at time t = 0.
Since ḣi+α (hi) ≥ 0, hi will stay non-negative, which is proved in Section 2 of Ames et al. (2014).
This means that (si(t), oi(t)) /∈ Xi,d for ∀t > 0. Thus for ∀i and ∀t > 0, agent i would not enter
the dangerous set, and the whole multi-agent system is safe by Definition 1.

Remark. Since the input dimension and permutation of hi can change with time, the time derivative
of hi does not exist everywhere but almost everywhere. In fact, in the safety guarantee provided by
Proposition 1, we do not require the time derivative of hi to exist everywhere. The hi can also be
non-smooth. Based on (2) of Glotfelter et al. (2017), we can define ḣi as the generalized gradient
that always exists when hi is non-smooth and the time derivative exists almost everywhere. Then
based on Theorem 2 of Glotfelter et al. (2017), as long as the CBF conditions are satisfied under the
generalized gradient, then hi is a valid CBF and the safety can be guaranteed.

Global CBF from decentralized CBFs. In addition to Proposition 1, another way to prove the
global safety of the multi-agent system under the decentralized CBFs is to construct the global CBF
hg : S 7→ R from individual CBFs by taking the minimum, as is in:

hg(s) := min{h1(s ↓ s1, s ↓ o1), h2(s ↓ s2, s ↓ o2), · · · , hN (s ↓ sN , s ↓ oN )}, (11)

where s ↓ si is the projection of the global state onto the state of agent i and s ↓ oi is the projection
of the global state to the observation of agent i. Then the following proposition guarantees the global
safety of the multi-agent system.
Proposition 2. If (10) is satisfied for every agent i, then the global CBF hg(s) satisfies:

∀ s ∈ S0, hg(s) ≥ 0

∀ s ∈ Sd, hg(s) < 0

∀ s ∈ {s | hg(s) ≥ 0} , ḣg + α (hg) ≥ 0,

(12)

where S0 = {s ∈ S|∀i, (s ↓ si, s ↓ oi) ∈ Xi,0} and Sd = {s ∈ S|∃i, (s ↓ si, s ↓ oi) ∈ Xi,d}. Then
∀t > 0, hg(s(t)) ≥ 0 and s 6∈ Sd, which means the multi-agent system is globally safe.

Proof. Let us first prove that the satisfaction of (10) implies the satisfaction of (12). By definition
of S0, when s ∈ S0, we have ∀i, (s ↓ si, s ↓ oi) ∈ Xi,0, which means ∀i, hi(s ↓ si, s ↓ oi) ≥ 0.
Thus hg(s) = mini{hi(s ↓ si, s ↓ oi)} ≥ 0. When s ∈ Sd, we have ∃i, (s ↓ si, s ↓ oi) ∈ Xi,d,
which means ∃i, hi(s ↓ si, s ↓ oi) < 0. Thus hg(s) = mini{hi(s ↓ si, s ↓ oi)} < 0. When
s ∈ {s | hg(s) ≥ 0}, we have ∀i, (s ↓ si, s ↓ oi) ∈ {(s ↓ si, s ↓ oi) | hi(s ↓ si, s ↓ oi) ≥ 0}. So
∀i, ḣi + α (hi) ≥ 0. Let i∗ = arg mini{hi(s ↓ si, s ↓ oi)}. Then hg(s) = hi∗(s ↓ si∗ , s ↓ oi∗)

and ḣg + α (hg) = ḣi∗ + α (hi∗) ≥ 0. Hence the satisfaction of (10) implies the satisfaction of
(12). Then based on Section 2 of Ames et al. (2014), we have hg(s(t)) ≥ 0,∀t > 0. This means
s(t) 6∈ Sd,∀t > 0, and the multi-agent system is globally safe.

B GENERALIZATION ERROR BOUND OF THE DECENTRALIZED CBF

To answer how well the learned πi(si, oi) and hi(si, oi) can generalize to unseen scenarios, we
will provide a generalization bound with probabilistic guarantees. We denote the solution to (4)
as ĥi and π̂i. Denote the Rademacher complexity of the function class of yi as Rzi(Yi), whose
definition could be found in Appendix B. Also we define εi as the probability that the decentralized
CBF conditions are violated for agent i over randomly sampled trajectories (not necessarily the
samples encountered in training). Under such definition, εi measures the generalization error and
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can be expressed as εi = Pτi∼Di

[
yi(τi, ĥi, ûi) ≤ 0

]
. Then we have Proposition 3 that provides

generalization guarantees for all the learned ĥi and π̂i.
Proposition 3 (Generalization Error Bound of Learning Decentralized CBF). Assume that |y| ≤ b

and (4) is feasible. Let ĥi and ûi be the solutions to (4) and µ be a universal positive constant vector.
Recall that N is the number of agents. Then, for any δ ∈ (0, 1) the following statement holds:

P

[
N⋂
i=1

(
εi ≤ µi

log3 zi
γ2
R2
zi(Yi) + µi

log(N log(4b/γ)/δ)

zi

)]
≥ 1− δ. (6)

Proof. Note that εi = Pτi∼Di

[
yi(τi, ĥi, ûi) ≤ 0

]
= Eτi∼Di

[
I
(
yi(τi, ĥi, ûi) ≤ 0

)]
. Under zero

empirical loss, using the Theorem 5 in Srebro et al. (2010), for any δ
N > 0, the following statement

holds with probability at least 1− δ
N :

εi ≤ µi
log3 zi
γ2
R2
zi(Yi) + µi

log(N log(4b/γ)/δ)

zi
(13)

where µi > 0 is some universal constant. By taking the union bound over allN agents, the following
statement holds with probability at least (1− δ

N )N :

N⋂
i=1

(
εi ≤ µi

log3 zi
γ2
R2
zi(Yi) + µi

log(N log(4b/γ)/δ)

zi

)
. (14)

Since (1− δ
N )N > 1− δ for δ ∈ (0, 1), we have:

P

[
N⋂
i=1

(
εi ≤ µi

log3 zi
γ2
R2
zi(Yi) + µi

log(N log(4b/γ)/δ)

zi

)]
≥ 1− δ, (15)

which completes the proof.

The Rademacher complexityRzi(Yi) is defined as:

Rzi(Yi) := sup
τ1
i ,···τ

zi
i ∼Di

Eξ∼ Unif ({±1}zi ) sup
hi∈Hi,πi∈Vi

1

zi

∣∣∣∣∣
zi∑
j=1

ξjyi(τ
j
i , hi, πi)

∣∣∣∣∣,
where ξ ∈ Rzi is a random vector and ξj denotes its jth element. Rzi(Yi) characterizes the richness
of function class Yi.
The left side of Equation (6) is the probability that the generalization error εi is upper bounded for
all the N agents. Equation (6) claims that the generalization error is bounded for all agents with
high probability 1 − δ. Similar to the discussions in Section 4 in Boffi et al. (2020), for specific
function classes of Hi and Vi, such as Lipschitz parametric function or Reproducing kernel Hilbert
space function classes, the Rademacher complexity of the function classes can be further bounded,
leading to vanishing generalization errors as the number of samples zi increases. Such derivations
are standard, and are thus omitted as they are not the focus of the present paper.

Remark. The generalization guarantee in Proposition 3 requires that the testing and training tra-
jectories are drawn from the same distribution. Since in testing the trajectories come from the
closed-loop (controller-in-the-loop) system, we should ensure that the training trajectories are also
from the closed-loop system. Thus, in our implementation, the training data are not uniformly
sampled from the state-observation space. Instead, the samples are drawn online under the current
control policy, which is a solution to (4) using previously learned controller. We then use the up-
dated controller to sample new data to formulate (4), and solve for an updated controller accordingly.
In the experiments, we iterate this process until it converges. This way, at the steady stage of this
process, the training and testing distribution shift becomes almost negligible, and the generalization
results in Proposition 3 can thus be used. We leave a systematic analysis on the generalization and
convergence of this iterative process in our future work.
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C MODEL DYNAMICS

In the experiment section of our main paper, we use the 2D ground robots and 3D drones. For
ground robots, we use a double integrator model with state si = [xi, yi, vx,i, vy,i] for the navigation
and predator-prey tasks, and the model from Rodrı́guez-Seda et al. (2014) for the nested rings task.
For drones, we use the following dynamics:

si =



xi
yi
zi
vx,i
vy,i
vz,i
θx,i
θy,i


,

dsi
dt

=



vx,i
vy,i
vz,i

g tan(θx,i)
g tan(θy,i)

az,i
ωx,i
ωy,i


, ui =

[
ωx,i
ωy,i
az,i

]
. (16)

D SUPPLEMENTARY EXPERIMENT

For 3D drones we have shown the generalization capability to 1024 agents even when our method
is trained with 8 agents (Figure 6). For 2D ground robots we have similar results that were omitted
in the main paper due to space limitations. We present the results in Figure 8 as below. Our method
demonstrates the exceptional generalization capability to testing scenarios where the number of
agents is significantly greater than that in training. The safety rate and average reward remain high
even when the number of agents grow exponentially.

Figure 8: Generalization capability of our method in the 2D tasks. Our method is trained with 8
agents and tested with up to 1024 agents.

Ablation Study on Online Policy Refinement. In Section 4.3, we introduced a test-time policy
refinement method. Here we study the effect of this method on our performance and present the
results in Table 1. It is shown that even without the OPR, the safety rate is still promising. The
OPR further improved the safety rate. The steps requiring OPR in testing only accounts for a small
proportion (< 17%) of the total steps. The proportion gradually becomes saturated and does not
significantly increase as the number of agents grow.

Table 1: Effect of online policy refinement (OPR). Proportion of OPR stands for the proportion of steps that
OPR is performed in testing.

Environment Config Safety Rate Proportion of OPR

4 Agents 8 Agents 32 Agents 1024 Agents 4 Agents 8 Agents 32 Agents 1024 Agents

Maze w/ OPR 0.9999 0.9999 0.9987 0.9956 0.0149 0.0958 0.1423 0.1655
w/o OPR 0.9999 0.9999 0.9869 0.9741 0 0 0 0

Tunnel w/ OPR 0.9999 0.9998 0.9988 0.9946 0.0117 0.0729 0.1271 0.1493
w/o OPR 0.9999 0.9992 0.9866 0.9727 0 0 0 0
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Figure 9: Visualization of the learned CBF in the Maze environment with 2 agents. The red area is where the
distance between agents is less that the safe threshold.

Visualization of the Learned CBF. To have a better understanding of the learned decentralized
CBF, we provide a visualization in Figure 9. The CBF is learned in the Maze environment with two
agents, in order to simplify the interpretation. The relative distance is defined in the 3D Euclidean
space. The relative velocity is the negative time derivative of the relative distance. When the relative
velocity is positive, the two agents are getting close to each other. From Figure 9, we know that the
learned CBF is negative on the dangerous states (the red area) and the potentially dangerous states
(the top-right area), where the agents are moving towards each other. The CBF is positive only when
the states are sufficiently safe (the bottom-right area).
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