
GACL: Exemplar-Free Generalized Analytic
Continual Learning

Huiping Zhuang1∗ Yizhu Chen1∗ Di Fang1 Run He1 Kai Tong1

Hongxin Wei2 Ziqian Zeng1† Cen Chen1,3,4†
1South China University of Technology, China

2Southern University of Science and Technology, China
3Shenzhen Institute, Hunan University, China

4Pazhou Lab, China

Abstract

Class incremental learning (CIL) trains a network on sequential tasks with sepa-
rated categories in each task but suffers from catastrophic forgetting, where models
quickly lose previously learned knowledge when acquiring new tasks. The general-
ized CIL (GCIL) aims to address the CIL problem in a more real-world scenario,
where incoming data have mixed data categories and unknown sample size distri-
bution. Existing attempts for the GCIL either have poor performance or invade
data privacy by saving exemplars. In this paper, we propose a new exemplar-
free GCIL technique named generalized analytic continual learning (GACL). The
GACL adopts analytic learning (a gradient-free training technique) and delivers an
analytical (i.e., closed-form) solution to the GCIL scenario. This solution is derived
via decomposing the incoming data into exposed and unexposed classes, thereby
attaining a weight-invariant property, a rare yet valuable property supporting an
equivalence between incremental learning and its joint training. Such an equiv-
alence is crucial in GCIL settings as data distributions among different tasks no
longer pose challenges to adopting our GACL. Theoretically, this equivalence prop-
erty is validated through matrix analysis tools. Empirically, we conduct extensive
experiments where, compared with existing GCIL methods, our GACL exhibits a
consistently leading performance across various datasets and GCIL settings. Source
code is available at https://github.com/CHEN-YIZHU/GACL.

1 Introduction

Class incremental learning (CIL) [1], an important form of continual learning, aims to effectively
tune an off-the-shelf network on incoming new datasets, with data excluding various categories from
its previous states. The CIL has gained significant traction due to its ability to refine learned models
for new and unfamiliar data classes, eliminating the need to start the training process from scratch.
This elimination of retraining saves valuable computational resources, which is especially important
in the era of pre-trained models that have absorbed a massive amount of data.

One significant challenge in CIL is catastrophic forgetting [2, 3], which causes trained models
to lose existing knowledge when gaining new information quickly. This can be attributed to the
fundamental property of gradient-based iterative algorithms that impose a task-recency bias, i.e.,
predictions favor recently updated categories [4]. To the authors’ knowledge, no solutions exist for
these gradient-trained CIL models to fully tackle catastrophic forgetting.

∗These authors contribute equally.
†Corresponding authors: Ziqian Zeng (zqzeng@scut.edu.cn) and Cen Chen (chencen@scut.edu.cn).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/CHEN-YIZHU/GACL
mailto:zqzeng@scut.edu.cn
mailto:chencen@scut.edu.cn

On the other hand, traditional CIL assumes that the number of samples in each task is fixed and that
new tasks are entirely disjoint from previous ones. This paradigm does not align with real-world
scenarios, where training data may include both new and previously encountered categories, and the
number of data points often exhibits arbitrariness in each task. This extended CIL setting is referred
to as generalized CIL (GCIL) [5, 6]. Such an uneven task-wise distribution of training samples and
data categories further complicates the forgetting issue. For instance, GCIL may lead to the neglect
of minority samples within a batch, thereby undermining representation during the training process.

To mitigate catastrophic forgetting, a simple but effective approach is to replay historical samples.
Replay-based CIL [1, 4] mitigates forgetting by storing a small number of samples from historical
categories for the model to review while learning new information. However, this replay mechanism
poses risks to data privacy. Thus, the exemplar-free CIL (EFCIL) without saving old exemplars gains
prominence due to the increasing concern for privacy. However, many EFCIL methods perform
poorly due to the task-recency bias caused by the nature of gradient-based algorithms [4]. Recently,
this dilemma has been alleviated by the analytic continual learning (ACL) [7, 8], an emerging EFCIL
branch that first achieves comparable or even more competitive performance over the replay-based
CIL. This improvement occurs because, for the first time, ACL achieves a near “complete non-
forgetting” by allowing an equivalence between the incremental learning and its joint training (i.e.,
the weight-invariant property).

The ACL provides a powerful toolbox for traditional EFCIL scenarios where data categories among
training tasks are mutually exclusive. However, an apparent gap exists between the existing ACL
techniques and the more desired and real-world GCIL scenario. Exploring the possibility of incor-
porating the weight-invariant property into the GCIL framework is both a significant and natural
motivation, as it has the potential to enhance overall performance. To achieve this, we propose a
generalized analytic continual learning (GACL), a new and compensated ACL member, offering a
weight-invariant property solution to the GCIL. The key contributions are summarized as follows.

• We present the GACL, an exemplar-free technique that achieves the equivalence between the GCIL
(with split incoming data) and its joint training (with data centralized in a single task).

• We theoretically establish the GACL’s weight-invariant property. It is achieved and proved
by separating the incoming data into exposed and unexposed components and aligning them
structurally with matrix decomposition techniques.

• We isolate the distinctive component of the GACL, namely the exposed class label gain (ECLG),
from the existing ACL. This module explains the feasibility of achieving GCIL’s analytic learning,
offering a high interpretability in the GCIL realm.

• Experiments on various benchmark datasets are presented, showing that the GACL outperforms
the existing EFCIL by a large margin. It also exceeds most state-of-the-art replay-based methods.

2 Related Works

This section reviews existing methods for CIL and its more real-world counterpart, i.e., GCIL.

2.1 CIL Techniques

Existing CIL methods can be roughly divided into three categories: replay-based methods,
regularization-based methods, and prototype-based methods.

The replay-based CIL methods such as iCaRL [1], LUCIR [4], PODNet [9], AANets [10], FOSTER
[11], and OHO [12], retain past training samples as exemplars and utilize them during the learning of
new ones. However, storing original training samples presents a significant challenge, particularly in
scenarios with strict data privacy requirements.

The regularization-based CIL aims to design a loss function that prevents the change of activations or
important weights. Methods such as the Less-forgetting learning [13] and the LwF [14] introduce
knowledge distillation [15] into their loss function to prevent the forgetting caused by activation drift.
EWC [16], EWC++, RWalk [17], and Rotate your Networks [18], introduce regularization that slows
down learning on the weights important for old tasks by calculating the Fisher information matrix.

The prototype-based CIL maintains distinct prototypes for each category, which prevents overlapping
representations of new and old categories. For example, the PASS [19] distinguishes prior categories

2

by augmenting feature prototypes. The SSRE technique [20] enhances the dissimilarity between
old and new categories via selecting prototypes to incorporate with new samples into a distillation
process. The FeTrIL [21] uses new representations to generate pseudo-features of old categories.

2.2 Analytic Continual Learning

The ACL is a recently developed EFCIL branch inspired by the analytic learning [22, 23, 24] where
the training of neural networks yields a closed-form solution using least squares. The ACIL [7]
first converts a continual learning problem to a batch recursive least-squares problem, eliminating
the need to store samples by preserving the correlation matrix, and the RanPAC [25] applies this
trick to pre-trained models. The GKEAL [8] focuses on the few-shot CIL scenarios by leveraging a
Gaussian kernel projection. The DS-AL [26] introduces an additional linear classifier to learn the
residue of the ACIL to enhance the plasticity, while the REAL [27] introduces the representation
enhancing distillation to improve the backbone’s generalization capabilities. The AFL [28] extends
the ACL to federated learning, transitioning from temporal increment to spatial increment, and similar
techniques are applied to the reinforcement learning [29]. The ACL is an emerging competitive CIL
branch with a closed-form solution that leads to a valuable weight-invariant property, securing the
equivalence between CIL and its joint learning. However, existing ACL methods are designed for the
CIL scenario in which the categories of samples in each task must be entirely distinct. This restricts
their applicability in real-world scenarios.

2.3 The Generalized Class Incremental Learning

The GCIL simulates real-world incremental learning, as distributions of data category and size could
be unknown in one task. The GCIL arouses problems such as intra- and inter-task forgettings and
the class imbalance problem [30]. The key GCIL properties can be summarized as follows: (i) the
number of classes across different tasks is not fixed; (ii) classes shown in prior tasks could reappear
in later tasks; (iii) training samples are imbalanced across different classes in each task [6] (See
Appendix B).

There are several GCIL settings. In the BlurryM setting [5], a% of the classes are disjoint between
tasks, while the remaining classes appear in every task. The i-Blurry-N-M [31] setting has blurry task
boundaries and requires the model to perform anytime inference. However, the i-Blurry scenario has
a fixed number of classes in each task with the same proportion of new and old classes. The Si-Blurry
[30] is the most complex and realistic GCIL setting satisfying all three GCIL properties since it
has an ever-changing number of classes and is capable of effectively simulating newly emerging or
disappearing data, highlighting the problem of uneven distribution in real-world scenarios.

To address the issue of the GCIL, gradient-based sample selection methods such as the GSS-IQP and
the GSS-Greedy are proposed by [5]. The RM [32] proposes a memory management strategy based
on per-sample classification uncertainty and data augmentation, while the management in the CLIB
[31] eliminates samples based on a per-sample importance score. The DualPrompt [33], as an EFCIL
method, introduces the prompt-based learning to the CIL problem, and the MVP [30] proposes an
instance-wise logit masking and contrastive visual prompt tuning loss.

3 The Proposed Method

In this section, we deliver details of the proposed GACL. We first define the learning problem. Then,
we derive the GACL by employing matrix decomposition techniques. A corresponding theoretical
analysis follows to indicate the interpretability of our work. An overview is depicted in Figure 1.

3.1 Problem Definition

We denote the complete set of available data as D. When D is partitioned into a sequence of GCIL
tasks, we assume that Dtrain

k ∼ {X train
k ,Y train

k } is the set of training samples that are present in task k.
The training dataset Dtrain

k consists of labeled samples, where X train
k ∈ RNk×c×w×h represents Nk

input image samples with a shape of c× w × h. Y train
k ∈ RNk×dyk represents Nk-stacked one-hot

encoded label tensors with dyk
classes that have been seen from task 1 to task k. Dtest

k ∼ {X test
k ,Y test

k }

3

Split into ��−�

(a) Exposed-unexposed Class Split (c) Generalized Analytic Class Incremental Learning

� ×
Frozen Pre-trained Vit

��

��−�

Task #k

Finished Task #k-1

update

update

…

GCIL Dataset
Task #k

(b) Buffered Embedding Extraction

NormNorm

Multi-head
Attention MLP

Labels

Exposed
Classes

Unexposed
Classes

Buffer Layer

��

…
…

…
…

0

�����
Exposed

Class
Output

Exposed
Class

Output
Unexposed

Class
Output

����������

…
…

Figure 1: An overview of our proposed GACL. (a) Labels of the exposed class and the unexposed
class are extracted in each GCIL task (see definition in Section 3.2), respectively. (b) A frozen
pre-trained ViT and a buffer layer are utilized to extract features from the inputs. (c) The key to the
recursively updated formulation of the GACL contains two components. The Ŵ

(k)
unexposed takes in

the contribution of unexposed class data (see (11)). The other is contributed by the ECLG module
Ŵ

(k)
ECLG (e.g., see (12)), which reflects the gain of exposed class data on the seen categories. The

recursive formulation flows aided by the autocorrelation memory matrix R throughout the GCIL.

is the test dataset in task k. The goal of GCIL in task k is to train networks using Dtrain
k and evaluate

their performance on the test dataset Dtest
1:k. Here, D1:k denotes the joint dataset spanning tasks 1 to k.

3.2 Exposed-unexposed Class Split

In each GCIL task, classes may not appear exclusively. Hence, in any GCIL task k, we refer to classes
that have appeared in previous tasks 1 to k − 1 as the exposed classes of task k, while classes making
their initial appearance are the unexposed classes of task k as shown in Figure 1 (a). This distinction
helps to characterize the evolving nature of class occurrences throughout different GCIL tasks.

In a task-wise GCIL scenario, we can involve all class labels in a set S. In task k, the set of the
exposed class labels is denoted as Sexposed, k ⊆ S , while the set of unexposed class labels is marked by
Sunexposed, k ⊆ S , where Sexposed, k ∩ Sunexposed, k = ∅. Note that Sexposed, k and Sunexposed, k may evolve
from task k − 1 to task k, that is

Sexposed, k = Sunexposed, k-1 ∪ Sexposed, k-1 = Sunexposed, k-1 ∪ Sunexposed, k-2 . . . ∪ Sunexposed, 1.

From the scope of exposed-unexposed classes, the dyk
can be represented as dyk

= |Sexposed, k| +
|Sunexposed, k| = dyk−1

+ |Sunexposed, k|, where |·| denotes the cardinality of a set.

In task k, given training dataset Dtrain
k ∼ {X train

k ,Y train
k }, class labels Y train

k can be partitioned due to
the exposed-unexposed split as follows:

Y train
k =

[
Ȳ train
k Ỹ train

k

]
, (1)

where Ȳ train
k ∈ RNk×dyk−1 is the exposed class label matrix and Ỹ train

k ∈ RNk×(dyk
−dyk−1

) is the
unexposed class label matrix. They correspond to segments displaying the appearance of exposed
classes and unexposed classes.

3.3 Buffered Embedding Extraction

The power of pre-trained models allows the GACL to adopt a frozen backbone from structures such
as ViT [34] to extract the features of images shown in Figure 1 (b). Let

X(E) = fbackbone(X,Θbackbone) (2)

4

be the features extracted by the backbone, where Θbackbone indicates the backbone weight. Then, we
use a buffer layer to project features, i.e.,

X (B)
i = fbuffer(X

(E)), (3)

where fbuffer indicates the operation of the buffer layer. Several options for the buffer layer exist,
including a randomly initialized linear mapping in the ACIL [7] or a kernel embedding projection in
the GKEAL [8]. The selection of the buffer layer is not our focus. For convenience, we follow the
ACIL, taking the random linear projection followed by a non-linear activation function as the buffer
layer, i.e. fbuffer(X

(E)) = ReLU(X(E)WB), where the elements of the buffer layer weight WB are
randomly sampled from a normal distribution.

3.4 Generalized Analytic Class Incremental Learning

Here, we derive the GACL by partitioning training samples into unexposed and exposed categories,
as shown in Figure 1 (c). Let X total

1:k and Y total
1:k be the accumulated feature and label matrices in task k,

which can be extended from the accumulated matrices X total
1:k−1 and Y total

1:k−1 in task k − 1 as follows.

X total
1:k =

[
X total

1:k−1

X (B)
k

]
, Y total

1:k =

[
Y total
1:k−1 0

Ȳ train
k Ỹ train

k

]
.

Subsequently, one could formulate the learning problem in task k by a fully connected network (FCN)
as the classifier

argmin
W

(k)
FCN

∥∥∥Y total
1:k −X total

1:k W
(k)
FCN

∥∥∥2
F
+ γ

∥∥∥W (k)
FCN

∥∥∥2
F
, (4)

where ∥·∥F is Frobenius-norm, γ ≥ 0 is the regularization term and W
(k)
FCN indicates the FCN layer

weight. The optimal solution to (4) is

Ŵ
(k)
FCN = (X total⊤

1:k X total
1:k + γI)−1X total⊤

1:k Y total
1:k . (5)

The goal of the GACL is then to obtain Ŵ
(k)
FCN recursively from Ŵ

(k−1)
FCN without directly involving

historical samples (e.g., X total
1:k−1 and Y total

1:k−1). That is to solve

argmin
W

(k)
FCN

∥∥∥∥[Y total
1:k−1 0

Ȳ train
k Ỹ train

k

]
−

[
X total

1:k−1

X (B)
k

]
W

(k)
FCN

∥∥∥∥2
F
+ γ

∥∥∥W (k)
FCN

∥∥∥2
F

(6)

by recursively updating the previous-task weight Ŵ (k)
FCN. To achieve this, we define an autocorrelation

memory matrix as follows.

Rk = (X total⊤
1:k X total

1:k + γI)−1. (7)

Accordingly, we summarize the recursive formulation of the proposed GACL in Theorem 3.1.

Theorem 3.1. Let Ŵ (k)
FCN be the optimal estimation of (6) with all the training data from task 1 to

task k. Then Ŵ
(k)
FCN is equivalent to its recursive form

Ŵ
(k)
FCN =

[
Ŵ

(k−1)
FCN −RkX

(B)⊤
k X (B)

k Ŵ
(k−1)
FCN +RkX

(B)⊤
k Ȳ train

k RkX
(B)⊤
k Ỹ train

k

]
, (8)

where

Rk = Rk−1 −Rk−1X
(B)⊤
k (I +X (B)

k Rk−1X
(B)⊤
k)−1X (B)

k Rk−1. (9)

Proof. See Appendix A.

As indicated in Theorem 3.1, the weight Ŵ (k)
FCN in task k recursively obtained using the previous-task

weight Ŵ (k−1)
FCN is identical to its joint-learning counterpart formulated in (6). That is, the GACL

maintains the same weight-invariant property in the GCIL scenario as other ACL methods.

5

Algorithm 1 The pseudo-code of GACL.

Input: GCIL tasks Dtrain
1 , . . . ,Dtrain

K with Dtrain
k ∼ {X train

k ,Y train
k }, the pre-trained backbone with

frozen weight Θbackbone

Initialization: R0 ← γI , W (0)
FCN ← 0

for task k = 1 to K do
X(E)
k ← fbackbone(X

train
k ,Θbackbone) (2)

X(B)
k ← fbuffer(X

(E)
k) (3)

Decompose Y train
k into exposed and unexposed class components Ȳ train

k and Ỹ train
k

Rk ← Rk−1 −Rk−1X
(B)⊤
k (I +X (B)

k Rk−1X
(B)⊤
k)−1XkRk−1 (9)

W
(k)
unexposed ←

[
W

(k−1)
FCN −RkX

(B)⊤
k X (B)

k Ŵ
(k−1)
FCN RkX

(B)⊤
k Ỹ train

k

]
(11)

W
(k)
ECLG ←

[
RkX

(B)⊤
k Ȳ train

k 0
]

(12)

W
(k)
FCN ←W

(k)
unexposed +W

(k)
ECLG

end for

The pseudo-code of the GACL is listed in Algorithm 1.

Exemplar-free. The recursive formulation is aided by Rk as indicated in (9). Note that this
autocorrelation memory matrix records the inverse of inner products among the historical embedding
matrices as shown in (7). Hence, the embeddings (e.g., X (B)

k) are not reversible. Saving Rk instead of
used samples is a safe alternative to preserve past knowledge. That is, our GACL is an exemplar-free
technique without the need to keep any historical samples.

To more properly explain our GACL, as indicated in Figure 1 (c), the recursive solution in (8) can
be rewritten as the sum of the unexposed-class contributed weight Ŵ (k)

unexposed and the ECLG weight

Ŵ
(k)
ECLG, i.e.,

Ŵ
(k)
FCN = Ŵ

(k)
unexposed + Ŵ

(k)
ECLG, (10)

where

Ŵ
(k)
unexposed =

[
Ŵ

(k−1)
FCN −RkX

(B)⊤
k X (B)

k Ŵ
(k−1)
FCN RkX

(B)⊤
k Ỹ train

k

]
, (11)

Ŵ
(k)
ECLG =

[
RkX

(B)⊤
k Ȳ train

k 0
]
. (12)

Unexposed-class Contributed Weight. The unexposed-class contributed weight Ŵ (k)
unexposed is

recursively updated by the data of the unexposed class only. Note that the unexposed class label
Ỹ train
k is applied on the concatenated weight along with new data X (B)⊤

k , which is reasonable
as historical information should not intervene with the weight update of unseen classes. On the
other hand, new data X (B)⊤

k could also affect historical knowledge. This is marked by the gain of
−RkX

(B)⊤
k X (B)

k Ŵ
(k−1)
FCN to the original weight Ŵ (k−1)

FCN as indicated in (11).

Exposed-class Label Gain Weight. The ECLG module indicated in (12) captures knowledge
from exposed-class labels. The supervision of this weight component marked by RkX

(B)⊤
k Ȳ train

k is
mainly contributed by the exposed-class labels (i.e., Ȳ train

k). It is important to note that when Ȳ train
k is

empty (i.e., no classes reappear in task k), this component does not contribute to the update of Ŵ (k)
FCN.

This module is also isolated to distinguish GACL’s difference from the existing ACL methods in a
mathematical analysis manner (indicated as follows).

Difference from Existing ACL Methods. Overall, the GACL can be treated as a nontrivial gener-
alization of ACIL [7], GKEAL [8], and various other ACL methods. For instance, in conventional
CIL where no classes reappear in new tasks (i.e., ∀k, Ȳ train

k ∈ R∗×0), the classifier of the GACL
Ŵ

(k)
FCN = Ŵ

(k)
unexposed, which is equivalent to the recursive classifier of the ACIL. That is, the ACIL is

a special case of our proposed GACL. The major difference lies in the ECLG module, corresponding
to the exposed-class gain. This pattern makes sense as there must be compensation on top of ACIL
updates (specifically designed for traditional CIL) when exposed data (out of setting) participate.

6

Table 1: Comparison of AAUC, AAvg, and ALast among the GACL and other methods under the
Si-Blurry setting. Data in bold represent the best EFCIL results, and data underlined are the best
among all settings. We run all experiments 5 times and show “mean±standard error”.

Mem
Method EFCIL

CIFAR-100 (%) ImageNet-R (%) Tiny-ImageNet (%)

Size AAUC AAvg ALast AAUC AAvg ALast AAUC AAvg ALast

2000

EWC++ [16] ✕ 53.31±1.70 50.95±1.50 52.55±0.71 36.31±0.72 39.87±1.35 29.52±0.43 52.43±0.52 54.61±1.54 37.67±0.77

ER [35] ✕ 56.17±1.84 53.80±1.46 55.60±0.69 39.31±0.70 43.03±1.19 32.09±0.44 55.69±0.47 57.87±1.42 41.10±0.57

RM [32] ✕ 53.22±1.82 52.99±1.69 55.25±0.61 32.34±1.88 36.46±2.23 25.26±1.08 49.28±0.43 57.74±1.57 41.79±0.34

MVP-R [30] ✕ 60.62±1.03 57.58±0.56 64.30±0.29 47.16±1.00 50.36±0.90 42.05±0.15 61.15±0.86 62.41±0.50 51.12±0.67

500

EWC++ [16] ✕ 48.31±1.81 44.56±0.96 40.52±0.83 32.81±0.76 35.54±1.69 23.43±0.61 45.30±0.61 46.34±2.05 27.05±1.35

ER [35] ✕ 51.59±1.94 48.03±0.80 44.09±0.80 35.96±0.72 39.01±1.54 26.14±0.44 48.95±0.58 50.44±1.71 29.97±0.75

RM [32] ✕ 41.07±1.30 38.10±0.59 32.66±0.34 22.45±0.62 22.08±1.78 9.61±0.13 36.66±0.40 38.83±2.33 18.23±0.22

MVP-R [30] ✕ 56.20±1.47 53.61±0.04 55.35±0.43 43.28±1.41 45.74±0.97 35.60±1.18 55.28±1.42 55.45±1.02 40.12±0.40

0

LwF [14] ✓ 40.71±2.13 38.49±0.56 27.03±2.92 29.41±0.83 31.95±1.86 19.67±1.27 39.88±0.90 41.35±2.59 24.93±2.01

L2P [36] ✓ 42.68±2.70 39.89±0.45 28.59±3.34 30.21±0.91 32.21±1.73 18.01±3.07 41.67±1.17 42.53±2.52 24.78±2.31

DualPrompt [33] ✓ 41.34±2.59 38.59±0.68 22.74±3.40 30.44±0.88 32.54±1.84 16.07±3.20 39.16±1.13 39.81±3.03 20.42±3.37

MVP [30] ✓ 45.07±2.43 44.93±0.54 39.94±0.47 35.77±2.55 35.58±1.20 22.06±5.01 46.43±3.07 45.41±1.09 28.21±2.89

SLDA [37] ✓ 53.00±3.85 50.09±2.77 61.79±3.81 33.11±3.17 33.78±1.76 39.02±1.30 49.17±4.41 47.93±4.43 53.13±2.29

GACL (ours) ✓ 57.99±2.46 56.24±3.12 70.31±0.06 41.68±0.78 47.30±0.84 42.22±0.10 63.14±0.66 69.32±0.87 62.68±0.08

4 Experiments

4.1 Experimental Setup

In the section, we conduct experiments on various benchmark datasets and compare the GACL with
both EFCIL and replay-based state-of-the-art methods, including LwF [14], L2P [36], DualPrompt
[33], ER [35], EWC++ [16], SLDA [37], RM [32], MVP [30], and MVP-R (MVP with exemplars).3

Datasets. We conduct experiments on three datasets: CIFAR-100 [38], ImageNet-R [39], and
Tiny-ImageNet [40]. We evaluate each method under the Si-Blurry setting [30] (the most complex
GCIL setting) with 5 independent seeds. For the Si-Blurry setting, we set the disjoint class ratio rD to
50% and the blurry sample ratio rB to 10%. More details about Si-Blurry are listed in Appendix C.

Implementation Details. We utilize the DeiT-S/16 [41] as our backbone. Following [42, 43], we
pre-train the backbone on 611 ImageNet classes after excluding 389 classes that overlap with CIFAR
and Tiny-ImageNet to prevent data leakage. To ensure a fair comparison, all methods utilize a frozen
backbone. All methods under comparison are implemented as specified in [30]. The memory sizes of
compared relay-based methods are set to 500 and 2000.

There are two hyperparameters in the GACL, the regularization term γ and the size of the buffer layer.
Here, we adopt γ = 100, which is determined by the grid search of {0, 10, 100, 500, 1000, 10000} on
CIFAR-100 (by a 90%-10% train-val split). As the regularization term γ is not sensitive in a proper
range [7], we adopt this value for all datasets for convenience. We relocate its analysis to Appendix
E. The size for the buffer layer WB is set to 5000 for both the GACL and ACIL for convenience.

Evaluation Protocol. Three metrics are adopted to evaluate GCIL tasks. The real-time performance
is evaluated by the area under the curve of accuracy AAUC [31], i.e., AAUC =

∑k
i=1 f(i · △n) · △n,

where△n is the number of samples observed between evaluation and f(·) is the curve in the accuracy-
to-{number of training samples} plot, measuring anytime inference performance during training. A
higher AAUC corresponds to a method consistently maintaining high accuracy throughout the training.
The overall performance is evaluated by the average incremental accuracy (or average accuracy)
AAvg = 1

K+1

∑K
k=1Ak, where the task-wise accuracy Ak indicates the average test accuracy in task

3The results for MVP and MVP-R are based on their official implementation, committed on October 26,
2024 (commit ID: ad8d1426a497545ba634521c00008c34ceece799).

7

k by testing the network on Dtest
1:k. A higher AAvg score is preferred when evaluating algorithms. The

last evaluation metric is the last-task accuracy ALast evaluating the network’s last-task performance
after completing all tasks.

4.2 Comparison with State-of-the-arts

As shown in Figure 2, we comprehensively compare the GACL with both EFCIL and replay-based
methods.

10

20

30

40

50

60

70

80

(a
) E

FC
IL

 M
et

ho
ds

CIFAR-100 ImageNet-R Tiny-ImageNet

1 2 3 4 5
Task #

10

20

30

40

50

60

70

80

(b
) R

ep
la

y-
ba

se
d

M
et

ho
ds

1 2 3 4 5
Task #

1 2 3 4 5
Task #

LwF
MVP

L2P
SLDA

DualPrompt
GACL (ours)

EWC++ (2000)
EWC++ (500)

ER (2000)
ER (500)

RM (2000)
RM (500)

MVP-R (2000)
MVP-R (500)

Figure 2: The task-wise accuracy Ak of the GACL with EFCIL methods (top) and replay-based
methods (bottom) on benchmark datasets with the K = 5.

Compare with EFCIL Methods. EFCIL methods address privacy concerns and mitigate catas-
trophic forgetting without exemplars. Among EFCIL methods, our GACL consistently exhibits
superior performance across all three datasets, as illustrated in the lower panel of Table 1.

For instance, on CIFAR-100, our method surpasses the second-best method SLDA, by 4.99%,
6.15%, and 8.52% for AAUC, AAvg, and ALast, respectively. On Tiny-ImageNet, the GACL achieves
impressive results with AAUC, AAvg, and ALast reaching 63.14%, 69.32%, and 62.68%, respectively,
surpassing the previous best EFCIL by 13.97%, 21.39%, and 9.55%. Similar patterns are evident in
the results of ImageNet-R, further confirming that the GACL is an exceptional tool for GCIL.

Owing to the weight-invariant property, the GACL exhibits more accurate and stable evolutions as
k increases as observed in Figure 2 (a). All compared EFCIL methods exhibit sharp declines in
accuracy, while the GACL delivers nearly non-declining curves. In particular, on CIFAR-100, the
GACL shows an unnatural improvement of task-wise accuracy throughout the learning tasks, with
the GACL initially lagging behind other EFCIL methods. This is because the Si-Blurry samples more
than 70% of the CIFAR-100 categories in the first two tasks (see Appendix F), constructing a scenario
where gradient-based algorithms could largely avoid the forgetting issue. Moreover, our method
produces more stable predictions across diverse scenarios, as indicated by much smaller standard
errors (colored shades in Figure 2 (a)). In summary, the experimental results demonstrate that our
proposed GACL is exceedingly accurate and robust, exhibiting exceptional generalization ability.

Compare with Replay-based Methods. Replay-based methods are considerably competitive as
they leverage historical samples. The memory size is a key adjustment, as increasing it typically leads
to performance improvements by allowing more historical knowledge to be reviewed. For instance,
the MVP-R achieves 4.42%, 3.97%, and 8.95% gains for AAUC, AAvg, and ALast (see Table 1) on
CIFAR-100 when increasing the memory size from 500 to 2000.

8

As an exemplar-free technique, our GACL avoids re-using the historical samples. However, as
indicated in Table 1, the GACL still outperforms most existing replay-based results. For instance,
the GACL achieves the best ALast results among all settings. The GACL’s AAUC and AAvg results
are also mostly superior, except that our performance is slightly weaker than that of MVP-R with a
memory size of 2000 on CIFAR-100 and ImageNet-R. Although increasing the number of exemplars
can further improve the results of replay-based methods, this approach could lead to higher training
and memory costs and, more importantly, more severe privacy invasion.

As indicated in Figure 2 (b), replay-based methods experience accuracy declines similar to those
observed in the EFCIL case. This decline is due to an inherent limitation of gradient-based iterative
algorithms, which tend to favor recently trained categories and thus lead to catastrophic forgetting.
The GACL is iterative-free and then not constrained by this forgetting issue, thereby achieving nearly
no performance reduction as K increases.

Why the GACL Gives Leading Performance. The above comparisons show that the proposed
GACL is a powerful GCIL technique. Its competitive performance can be explained as follows. (i)
Weight-invariant property. As shown in Theorem 3.1, the weight obtained recursively is equal to
its joint-learning counterpart, indicating that the GACL is a “completely non-forgetting” technique
(under the condition of a frozen backbone). (ii) Analytical solution. Existing GCIL techniques are
gradient-based iterative algorithms prone to catastrophic forgetting by nature. The GACL is a new
member of the ACL and inherits its non-iterative gradient-free essence with an analytical solution,
thereby avoiding the task-recency bias to address forgetting.

4.3 Ablation Study on the ECLG Module

The ECLG module is a core component that allows the GACL to obtain the weight-invariant property
in the GCIL scenario. Here, we conduct an ablation study to justify the ECLG’s contributions under
various blurry sample ratios rB with rD = 50%. Larger rB indicates more complex data distributions
in the Si-Blurry setting. As shown in Table 2, the GACL without ECLG exhibits poor performance
with a visible gap forAAUC,AAvg, andALast. For instance, on CIFAR-100 with rB = 10%, the ECLG
contributes a 23.01% ALast gain to the GACL.

Table 2: Ablation study on the ECLG module of our GACL.

rB Dataset
With ECLG Without ECLG

AAUC(%) AAvg(%) ALast(%) AAUC(%) AAvg(%) ALast(%)

10%

CIFAR-100 57.99±2.46 56.24±3.12 70.31±0.06 45.68±7.74 42.04±4.52 47.30±2.61

ImageNet-R 41.68±0.78 47.30±0.84 42.22±0.10 40.29±2.23 46.95±1.15 41.67±0.36

Tiny-ImageNet 63.14±0.66 69.32±0.87 62.68±0.08 60.21±1.86 65.80±1.20 60.13±0.37

30%

CIFAR-100 57.33±1.03 58.74±1.59 69.90±0.01 42.53±1.97 42.26±1.75 45.49±1.17

ImageNet-R 42.19±0.44 47.82±1.11 42.90±0.08 42.01±0.26 46.95±1.15 41.67±0.56

Tiny-ImageNet 60.73±1.15 67.31±1.14 59.73±2.55 60.63±1.86 57.03±1.98 60.13±0.55

50%

CIFAR-100 56.74±1.14 58.29±1.95 70.02±0.05 40.91±3.57 47.25±2.64 58.61±2.62

ImageNet-R 41.33±1.46 46.42±2.30 42.92±0.17 40.44±3.14 42.50±3.43 39.05±1.65

Tiny-ImageNet 60.96±1.83 66.28±2.69 62.24±0.10 60.32±4.20 60.70±4.30 56.97±1.89

As claimed in Theorem 3.1, the classifier without the ECLG module fails to absorb knowledge from
joint classes in each task (i.e., classes that reappear), leading to substantial information loss under the
GCIL setting. The GACL, equipped with the ECLG module, demonstrates competence in handling
overlapping classes in realistic scenarios.

4.4 Robustness Analysis in Si-Blurry Setting

Here, we conduct a robust analysis by varying the disjoint class ratio rD and the blurry sample ratio
rB. The comparison happens among the GACL, the second-best EFCIL method SLDA, and the
top-performing replay-based method MVP-R with a memory size of 500.

9

We evaluate our method under various rD, including extreme cases where each task shares classes
(rD = 0%) and traditional CIL scenarios (rD = 100%). Table 3 illustrates that our GACL consistently
outperforms the compared methods (e.g., leads the SLDA by 2%-10%) and produces near-identical
ALast values with varying rD. This shows the accurate and robust traits of the GACL.

We also evaluate our method using various rB values, as shown in Table 4. Similar patterns observed
here align with those in Table 3, further demonstrating the robustness of the proposed GACL, which
delivers exceptional performance across different GCIL settings.

Table 3: The performance at different rD with
rB = 10% on CIFAR-100.

rD Method AAUC(%) AAvg(%) ALast(%)

0%

SLDA [37] 55.51±1.93 53.94±0.92 67.45±0.26

MVP-R [30] 53.49±1.40 50.73±0.37 60.54±2.03

GACL (ours) 49.96±0.61 50.56±0.49 69.94±0.09

50%

SLDA [37] 53.00±3.85 50.09±2.77 61.79±3.81

MVP-R [30] 56.20±1.47 53.61±0.04 55.35±0.43

GACL (ours) 57.99±2.46 56.24±3.12 70.31±0.06

100%

SLDA [37] 65.46±4.79 67.29±5.28 63.56±2.68

MVP-R [30] 68.43±0.28 68.04±1.48 53.14±0.72

GACL (ours) 70.72±0.32 77.57±1.02 69.97±0.03

Table 4: The performance at different rB with
rD = 50% on CIFAR-100.

rB Method AAUC(%) AAvg(%) ALast(%)

10%

SLDA [37] 53.00±3.85 50.09±2.77 61.79±3.81

MVP-R [30] 56.20±1.47 53.61±0.04 55.35±0.43

GACL (ours) 57.99±2.46 56.24±3.12 70.31±0.06

30%

SLDA [37] 54.55±4.66 54.06±2.41 63.04±2.56

MVP-R [30] 59.65±2.04 58.31±1.52 58.16±1.38

GACL (ours) 57.33±1.03 58.74±1.59 69.90±0.01

50%

SLDA [37] 53.81±3.43 52.93±2.36 63.45±2.72

MVP-R [30] 59.10±1.98 57.34±1.96 54.81±0.21

GACL (ours) 56.74±1.14 58.29±1.95 70.02±0.05

4.5 Limitation and Future Work

Overall, the GACL exhibits various good characteristics as an exemplar-free GCIL technique. The
major limitation here is the need for a well-trained backbone because the GACL does not update
backbone weights. This could motivate the exploration of adjustable backbones to continuously
improve their feature extraction abilities, thereby further enhancing GACL’s performance.

5 Conclusion

In this paper, we introduce the exemplar-free generalized analytic class incremental learning (GACL)
approach to address the GCIL problem. Building upon analytic learning, the GACL delivers closed-
form solutions to GCIL through the decomposition of GCIL data into exposed and unexposed classes.
The GACL achieves the weight-invariant property that provides identical solutions for GCIL to its
joint learning counterpart. We theoretically validate this property and provide high interpretability
through the matrix analysis tool. Various experiments are conducted under the Si-Blurry setting,
demonstrating that our proposed GACL achieves remarkable performance with high robustness
compared to state-of-the-art EFCIL and replay-based methods.

Acknowledgments and Disclosure of Funding

This research was supported by the National Natural Science Foundation of China (62306117),
the Guangzhou Basic and Applied Basic Research Foundation (2024A04J3681, 2023A04J1687),
the South China University of Technology-TCL Technology Innovation Fund, the Fundamen-
tal Research Funds for the Central Universities (2023ZYGXZR023, 2024ZYGXZR074), the
Guangdong Basic and Applied Basic Research Foundation (2024A1515010220), the CAAI-
MindSpore Open Fund developed on Openl Community, the Shenzhen Fundamental Research
Program (JCYJ20230807091809020), and Shenzhen Science and Technology Plan (Grant No.
JCYJ20210324123802006).

10

References
[1] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert.

iCaRL: Incremental classifier and representation learning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), July 2017.

[2] Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Gordon H. Bower, editor, Psychology of Learning and
Motivation, volume 24, pages 109–165. Academic Press, 1989.

[3] Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks, 2013.

[4] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified
classifier incrementally via rebalancing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[5] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[6] Fei Mi, Lingjing Kong, Tao Lin, Kaicheng Yu, and Boi Faltings. Generalized class incremental
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2020.

[7] Huiping Zhuang, Zhenyu Weng, Hongxin Wei, RENCHUNZI XIE, Kar-Ann Toh, and Zhiping
Lin. ACIL: Analytic class-incremental learning with absolute memorization and privacy
protection. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 11602–11614. Curran
Associates, Inc., 2022.

[8] Huiping Zhuang, Zhenyu Weng, Run He, Zhiping Lin, and Ziqian Zeng. GKEAL: Gaussian
kernel embedded analytic learning for few-shot class incremental task. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 7746–7755,
June 2023.

[9] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. PODNet:
Pooled outputs distillation for small-tasks incremental learning. In Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, pages
86–102, Cham, 2020. Springer International Publishing.

[10] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive aggregation networks for class-
incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2544–2553, June 2021.

[11] Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. FOSTER: Feature boosting
and compression for class-incremental learning. In Shai Avidan, Gabriel Brostow, Moustapha
Cissé, Giovanni Maria Farinella, and Tal Hassner, editors, Computer Vision – ECCV 2022,
pages 398–414, Cham, 2022. Springer Nature Switzerland.

[12] Yaoyao Liu, Yingying Li, Bernt Schiele, and Qianru Sun. Online hyperparameter optimization
for class-incremental learning. Proceedings of the AAAI Conference on Artificial Intelligence,
37(7):8906–8913, Jun. 2023.

[13] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetting learning in deep
neural networks, 2016.

[14] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(12):2935–2947, 2018.

[15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network,
2015.

11

[16] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catas-
trophic forgetting in neural networks. Proceedings of the National Academy of Sciences,
114(13):3521–3526, 2017.

[17] Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Rieman-
nian walk for incremental learning: Understanding forgetting and intransigence. In Proceedings
of the European Conference on Computer Vision (ECCV), September 2018.

[18] Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M. López, and Andrew D.
Bagdanov. Rotate your networks: Better weight consolidation and less catastrophic forgetting.
In 2018 24th International Conference on Pattern Recognition (ICPR), pages 2262–2268, 2018.

[19] Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation
and self-supervision for incremental learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5871–5880, June 2021.

[20] Kai Zhu, Wei Zhai, Yang Cao, Jiebo Luo, and Zheng-Jun Zha. Self-sustaining representation
expansion for non-exemplar class-incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 9296–9305, June 2022.

[21] Grégoire Petit, Adrian Popescu, Hugo Schindler, David Picard, and Bertrand Delezoide.
FeTrIL: Feature translation for exemplar-free class-incremental learning. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages 3911–3920,
January 2023.

[22] Ping Guo and Michael R. Lyu. A pseudoinverse learning algorithm for feedforward neural
networks with stacked generalization applications to software reliability growth data. Neuro-
computing, 56:101–121, 2004.

[23] Huiping Zhuang, Zhiping Lin, and Kar-Ann Toh. Blockwise recursive moore–penrose inverse for
network learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(5):3237–
3250, 2022.

[24] Huiping Zhuang, Zhiping Lin, Yimin Yang, and Kar-Ann Toh. Analytic learning of convolu-
tional neural network for pattern recognition, 2022.

[25] Mark D. McDonnell, Dong Gong, Amin Parvaneh, Ehsan Abbasnejad, and Anton van den
Hengel. RanPAC: Random projections and pre-trained models for continual learning. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural
Information Processing Systems, volume 36, pages 12022–12053. Curran Associates, Inc.,
2023.

[26] Huiping Zhuang, Run He, Kai Tong, Ziqian Zeng, Cen Chen, and Zhiping Lin. DS-AL: A
dual-stream analytic learning for exemplar-free class-incremental learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 38(15):17237–17244, Mar. 2024.

[27] Run He, Huiping Zhuang, Di Fang, Yizhu Chen, Kai Tong, and Cen Chen. REAL: Representa-
tion enhanced analytic learning for exemplar-free class-incremental learning, 2024.

[28] Huiping Zhuang, Run He, Kai Tong, Di Fang, Han Sun, Haoran Li, Tianyi Chen, and Ziqian
Zeng. Analytic federated learning, 2024.

[29] Zichen Liu, Chao Du, Wee Sun Lee, and Min Lin. Locality sensitive sparse encoding for learning
world models online. In The Twelfth International Conference on Learning Representations,
2024.

[30] Jun-Yeong Moon, Keon-Hee Park, Jung Uk Kim, and Gyeong-Moon Park. Online class
incremental learning on stochastic blurry task boundary via mask and visual prompt tuning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages
11731–11741, October 2023.

12

[31] Hyunseo Koh, Dahyun Kim, Jung-Woo Ha, and Jonghyun Choi. Online continual learning on
class incremental blurry task configuration with anytime inference. In International Conference
on Learning Representations, 2022.

[32] Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow
memory: Continual learning with a memory of diverse samples. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 8218–8227, June 2021.

[33] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi
Ren, Guolong Su, Vincent Perot, Jennifer Dy, and Tomas Pfister. DualPrompt: Complementary
prompting for rehearsal-free continual learning. In Shai Avidan, Gabriel Brostow, Moustapha
Cissé, Giovanni Maria Farinella, and Tal Hassner, editors, Computer Vision – ECCV 2022,
pages 631–648, Cham, 2022. Springer Nature Switzerland.

[34] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[35] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experi-
ence replay for continual learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[36] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su,
Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 139–149, June 2022.

[37] Tyler L. Hayes and Christopher Kanan. Lifelong machine learning with deep streaming linear
discriminant analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, June 2020.

[38] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning multiple layers of features from
tiny images. Technical report, Toronto, ON, Canada, 2009.

[39] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo,
Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin
Gilmer. The many faces of robustness: A critical analysis of out-of-distribution generalization.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages
8340–8349, October 2021.

[40] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[41] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles,
and Herve Jegou. Training data-efficient image transformers & distillation through attention.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages
10347–10357. PMLR, 18–24 Jul 2021.

[42] Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, and Bing Liu. Learnability and algorithm for
continual learning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages
16877–16896. PMLR, 23–29 Jul 2023.

[43] Gyuhak Kim, Bing Liu, and Zixuan Ke. A multi-head model for continual learning via out-of-
distribution replay. In Sarath Chandar, Razvan Pascanu, and Doina Precup, editors, Proceedings
of The 1st Conference on Lifelong Learning Agents, volume 199 of Proceedings of Machine
Learning Research, pages 548–563. PMLR, 22–24 Aug 2022.

[44] Huiping Zhuang, Zhiping Lin, and Kar-Ann Toh. Correlation projection for analytic learning of
a classification network. Neural Processing Letters, 53(6):3893–3914, dec 2021.

13

A Proof of Theorem 3.1

Proof. in task k − 1, we have

Ŵ
(k−1)
FCN = (X total⊤

1:k−2X
total
1:k−2 +X (B)⊤

k−1 X
(B)
1:k−1 + γI)−1

[
X total⊤

1:k−2Y
total
1:k−2 +X (B)⊤

k−1 Ȳ
train
k−1 X (B)⊤

k−1 Ỹ
train
k

]
.

(13)

Hence, in task k, we have

Ŵ
(k)
FCN = (X total⊤

1:k−1X
total
1:k−1 +X (B)⊤

k X (B)
k + γI)−1

[
X total⊤

1:k−1Y
total
1:k−1 +X (B)⊤

k Ȳ train
k X (B)⊤

k Ỹ train
k

]
.

(14)

We have defined the autocorrelation memory matrix Rk−1 in the paper via

Rk−1 = (X total⊤
1:k−2X

total
1:k−2 +X (B)⊤

k−1 X
(B)
k−1 + γI)−1. (15)

To facilitate subsequent calculations, here we also define a cross-correlation matrix Qk−1, i.e.,

Qk−1 =
[
X total⊤

1:k−2Y
total
1:k−2 +X (B)⊤

k−1 Ȳ
train
k−1 X (B)⊤

k−1 Ỹ
train
k

]
. (16)

Thus we can rewrite (13) as

Ŵ
(k−1)
FCN = Rk−1Qk−1. (17)

Therefore, in task k we have

Ŵ
(k)
FCN = RkQk. (18)

From (15), we can recursively calculate Rk from Rk−1, i.e.,

Rk =
(
R−1

k−1 +X (B)⊤
k X (B)

k

)−1

. (19)

According to the Woodbury matrix identity, we have

(A+UCV)−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

Let A = R−1
k−1, U = X (B)⊤

k , C = I , and V = X (B)
k in (19), we have

Rk = Rk−1 −Rk−1X
(B)⊤
k (I +X (B)

k Rk−1X
(B)⊤
k)−1X (B)

k Rk−1. (20)

Hence, Rk can be recursively updated using its last-task counterpart Rk−1 and data from the current
task (i.e., X (B)

k). This proves the recursive calculation of the autocorrelation memory matrix.

Next, we derive the recursive formulation of Ŵ (k)
FCN. To this end, we also recurse the cross-correlation

matrix Qk in task k, i.e.,

Qk =
[
X total⊤

1:k−1Y
total
1:k−1 +X (B)⊤

k Ȳ train
k X (B)⊤

k Ỹ train
k

]
= Q′

k−1 +
[
X (B)⊤

k Ȳ train
k X (B)⊤

k Ỹ train
k

]
,

(21)

where

Q′
k−1 =

{[
Qk−1 0d(B)×(dyk

−dyk−1
)

]
, dyk

> dyk−1

Qk−1, dyk
= dyk−1

. (22)

Note that the concatenation in (22) is due to the assumption that Y train
1:k in task k contains more data

classes (hence more columns) than Y train
1:k−1. It is possible that there are no new classes appear in task

k, then Ỹ train
k should be 0.

14

Similar to what (22) does,

Ŵ
(k−1)′
FCN =

{[
Ŵ

(k−1)
FCN 0d(B)×(dyk

−dyk−1
)

]
, dyk

> dyk−1

Ŵ
(k−1)
FCN , dyk

= dyk−1

(23)

We have

Ŵ
(k−1)′
FCN = Rk−1Q

′
k−1. (24)

Hence, Ŵ (k)
FCN can be rewritten as

Ŵ
(k)
FCN = RkQk

= Rk(Q
′
k−1 +

[
X (B)⊤

k Ȳ train
k X (B)⊤

k Ỹ train
k

]
)

= RkQ
′
k−1 +RkX

(B)⊤
k

[
Ȳ train
k Ỹ train

k

]
. (25)

By substituting (20) into RkQ
′
k−1, we have

RkQ
′
k−1 = Rk−1Q

′
k−1 −Rk−1X

(B)⊤
k (I +X (B)

k Rk−1X
(B)⊤
k)−1X (B)

k Rk−1Q
′
k−1

= Ŵ
(k−1)′
FCN −Rk−1X

(B)⊤
k (I +X (B)

k Rk−1X
(B)⊤
k)−1X (B)

k Ŵ
(k−1)′
FCN . (26)

To simplify this equation, let Kk = (I +X (B)
k Rk−1X

(B)⊤
k)−1. Since

I = KkK
−1
k = Kk(I +X (B)

k Rk−1X
(B)⊤
k),

we have Kk = I −KkX
(B)
k Rk−1X

(B)⊤
k . Therefore,

Rk−1X
(B)⊤
k (I +X (B)

k Rk−1X
(B)⊤
k)−1

= Rk−1X
(B)⊤
k Kk

= Rk−1X
(B)⊤
k (I −KkX

(B)
k Rk−1X

(B)⊤
k)

= (Rk−1 −Rk−1X
(B)⊤
k KkX

(B)
k Rk−1)X

(B)⊤
k

= RkX
(B)⊤
k . (27)

Substituting (27) into (26), RkQ
′
k−1 can be written as

RkQ
′
k−1 = Ŵ

(k−1)′
FCN −RkX

(B)⊤
k X (B)

k Ŵ
(k−1)′
FCN . (28)

Substituting (28) into (25) implies that

Ŵ
(k)
FCN = Ŵ

(k−1)′
FCN −RkX

(B)⊤
k X (B)

k Ŵ
(k−1)′
FCN +RkX

(B)⊤
k

[
Ȳ train
k Ỹ train

k

]
=

[
Ŵ

(k−1)
FCN −RkX

(B)⊤
k X (B)

k Ŵ
(k−1)
FCN +RkX

(B)⊤
k Ȳ train

k RkX
(B)⊤
k Ỹ train

k

]
. (29)

which completes the proof.

15

B GCIL Properties

The GCIL scenario [6] is a recent CIL focus. Given task-wise learning tasks, we can involve all
class labels in a set S with the number of classes N . The sample sizes, such as the numbers of input
images of different classes appearing in task k, are modeled as a random vector ck ∈ RN . Each entry
ck,i is a random variable denoting the sample size of class i in task k. In the generalized form, ck is
sampled from a task-dependent distribution. The GCIL scenario can be summarized as the following
three key properties.
Property B.1. The number of classes in a task is not fixed. Suppose mk is the number of classes in
task k, we have:

Mk = |{i ∈ S : ck,i > 0}| ∼ Mk, (30)

whereMk is a task-dependent distribution.

Property B.2. Classes appearing in different tasks could overlap. For two tasks k and k′, k ̸= k′,
we have:

P (ck ⊙ ck′ ̸= 0) > 0, (31)

where ⊙ denotes element-wise multiplication of two vectors and P (·) is the probability.

Property B.3. Sample sizes of different classes at the same task could be different. That is, for task k,
we have

i, j ∈ S, i ̸= j, P (ck,i ̸= ck,j | ck,i ̸= 0, ck,j ̸= 0) > 0. (32)

In short, the number of classes and samples could vary throughout the continual learning.

C Si-Blurry Setting

Blurry Sample Division

Blurry Classes Disjoint Classes

S
a
m

p
le

 S
iz

e

Train Dataset

𝑻𝑲
𝑫

…

𝑻𝑲
𝑩𝑻𝟏

𝑩 𝑻𝟐
𝑩 𝑻𝟑

𝑩

Random Class Division

…

…

𝑻𝟏
𝑩+𝑫 𝑻𝟐

𝑩+𝑫

…

𝑻𝟑
𝑩+𝑫

…

𝑻𝑲
𝑩+𝑫

…
…

Si-Blurry Tasks

…𝑻𝟏
𝑫 𝑻𝟐

𝑫 𝑻𝟑
𝑫

…

𝑻𝟏
𝑩 𝑻𝟐

B

…

𝑻𝟑
𝑩

…

𝑻𝑲
𝑩

……

𝒓𝑩

𝒓𝑫

…

…

Figure 3: A configuration example of Si-Blurry setting.

The Si-Blurry setting [30] satisfies all the three properties of GCIL mentioned in Appendix B and
can be treated as its good realization. As shown in Figure 3, for a K-task learning, the Si-Blurry
first randomly partitions all classes into two groups: disjoint classes that cannot overlap between
tasks and blurry classes that might reappear. The ratio of partition is controlled by the disjoint class
ratio rD, which is defined as the ratio of the number of disjoint classes to the number of all classes.
Then disjoint classes and blurry classes are randomly assigned to disjoint tasks (TD) and blurry tasks
(TB) respectively. Next, each blurry task further conducts the blurry sample division by randomly
extracting part of samples to assign to other blurry tasks based on blurry sample ratio rB, which is
defined as the ratio of the extracted sample within samples in all blurry tasks. Finally, each Si-Blurry
task TB+D with a stochastic blurry task boundary consists of a disjoint and blurry task. We adopt
Si-Blurry with different combinations of rD and rB for reliable empirical validations.

16

D Compute Resources

GPU Usage. We conduct experiments in PyTorch on one Nvidia Geforce RTX 4090 GPU with a
batch size of 64 for training and 128 for inference. Figure 4 shows that the GACL uses minimal GPU
memory. Our GACL significantly reduces GPU memory usage since it requires no back-propagation,
thereby detaching gradients from tensors during calculations. This characteristic allows our approach
to be applied with a larger batch size without memory leaks.

GACL (ours) SLDA LwF ER RM MVP DualPrompt L2P MVP-R EWC++0

2

4

6

8

10

G
PU

 M
em

or
y

U
sa

ge
 (G

B
)

1.58 1.63 1.69 1.96 1.96

5.21 5.29 5.39

7.98

9.87

Figure 4: GPU memory consumption in GB with a batch size of 64 where replay-based methods are
with 2000 memory size.

Training Time. Table 5 further illustrates the GACL’s training time compared to others on one
Nvidia Geforce RTX 4090 GPU, highlighting its efficiency. The GACL is faster than any other
baselines except SLDA on three datasets because only the classifier and autocorrelation memory
matrix R are updated, leading to small numbers of trainable parameters compared to those baselines
in a back-propagation manner.

Table 5: Average Training time of 5 independent seeds in seconds (s) where replay-based methods
are with 2000 memory size.

Method EFCIL CIFAR-100 (s) ImageNet-R (s) Tiny-ImageNet (s)

RM [32] ✕ >2 days >2 days >2 days
MVP-R [30] ✕ 717 527 1597
ER [35] ✕ 369 330 715
EWC++ [16] ✕ 650 391 1356
LwF [14] ✓ 334 229 862
L2P [36] ✓ 651 285 1246
DualPrompt [33] ✓ 656 332 1294
MVP [30] ✓ 628 300 1345
SLDA [37] ✓ 401 284 915
GACL (ours) ✓ 611 321 1246

E Hyperparameter Analysis for Regularization Term

Table 6: AAUC, AAvg, and ALast of the GACL on all benchmark datasets with various values of the
regularization term γ.

γ
CIFAR-100 (%) ImageNet-R (%) Tiny-ImageNet (%)

AAUC AAvg ALast AAUC AAvg ALast AAUC AAvg ALast

0 8.87±4.96 9.83±5.82 8.65±6.47 2.03±0.36 2.85±0.86 0.71±0.09 4.38±2.17 6.14±4.01 0.62±0.11

10 57.57±2.35 55.97±3.22 70.45±0.08 38.65±0.69 44.38±0.83 41.96±0.10 62.74±0.64 69.24±0.79 62.73±0.09

100 57.99±2.46 56.24±3.12 70.31±0.06 41.68±0.78 47.30±0.84 42.22±0.10 63.14±0.66 69.32±0.87 62.68±0.08

500 56.98±2.61 55.46±3.23 70.00±0.02 42.92±0.79 49.01±0.85 42.70±0.14 62.90±0.67 68.95±0.88 62.41±0.09

1000 56.03±2.70 54.76±3.31 69.61±0.08 42.69±0.80 48.90±0.90 42.67±0.16 61.96±0.67 68.48±0.83 62.10±0.07

10000 51.01±3.04 50.92±3.62 66.38±0.07 38.55±0.85 45.16±0.84 40.10±0.19 57.54±0.74 65.21±0.70 59.55±0.07

17

The regularization term γ plays a crucial role and demonstrates robust behavior throughout our
experiments. We assess the impact of the regularization term γ in Table 6 and visualize the real-time
accuracy of the GACL as it learns from training samples in Figure 5. Table 6 reveals the GACL’s
consistent performance across a broad range of γ values, spanning from 10 to 10000. This highlights
the versatility and robustness of our proposed GACL. However, as indicated in Figure 5, γ of 10000
leads to slightly poorer performance because the ACL is prone to underfitting due to simple linear
regression [44].

1k 10k 20k 30k 40k
Training Sample

20

40

60

R
ea

l-t
im

e
Ac

cu
ra

cy
(%

)

CIFAR-100

1k 5k 10k 15k 20k
Training Sample

0

10

20

30

40

50

R
ea

l-t
im

e
Ac

cu
ra

cy
(%

)

ImageNet-R

1k 20k 40k 60k 80k
Training Sample

0

20

40

60

R
ea

l-t
im

e
Ac

cu
ra

cy
(%

)

Tiny-ImageNet

γ= 0 (w/o regularization) γ= 10 γ= 100 γ= 500 γ= 1000 γ= 10000

Figure 5: Real-time accuracy of the GACL on all benchmark datasets with various values of the
regularization term γ.

Notably, both Table 6 and Figure 5 demonstrate that the absence of regularization results in a
significant decline in performance. This underscores the crucial importance of incorporating γ in the
model. As indicated in (7), if we eliminate regularization by setting γ to 0, the initial autocorrelation
memory matrix R0 becomes zero. Subsequently, the computation of the autocorrelation memory
matrix in task 1, denoted as R1, is expressed as:

R1 = (X total⊤
1 X total

1)−1 = (X (B)⊤
1 X (B)

1)−1.

However, it’s crucial to emphasize that X (B)⊤
1 X (B)

1 might result in a singular matrix, rendering it
non-invertible. This potential singularity introduces an error in calculating R1, leading to a decrease
in accuracy.

F Analysis of task-wise Accuracy Trends of the GACL

As depicted in Figure 2 (a), the task-wise accuracy of the GACL on CIFAR-100 demonstrates
an increase. Notably, in the initial two tasks, the accuracy is lower compared to other EFCIL
methods. However, on the other datasets, the GACL remains relatively stable. Upon a more detailed
examination of the dataset split, we infer that the observed variations in trends are attributed to the
specific dataset settings.

For a dataset with N classes, the class number ratio rc after training on i-th samples is defined as
rc = di/N , where di is the number of classes that have been seen observed at that point. As Figure 6
indicates, by examining the real-time accuracy and the class number ratio rc across the three sets of
figures, a notable observation is made: when the sample size is small, the class number ratio rc on
CIFAR-100 always surpasses that of the other two datasets on 5 seeds. This suggests that tasks on
CIFAR-100 are notably more complex and intricate, resembling a few-shot learning scenario.

Consequently, the GACL exhibits lower task-wise accuracy compared to other gradient-based EFCIL
methods, particularly in the initial stages. However, as more training samples are acquired, its
accuracy progressively improves.

18

1k 10k 20k 30k 40k 50k
Training Sample

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

CIFAR-100 Seed 1

1k 10k 20k 30k 40k 50k
Training Sample

40

50

60

70
CIFAR-100 Seed 2

1k 10k 20k 30k 40k 50k
Training Sample

50

60

70

CIFAR-100 Seed 3

1k 10k 20k 30k 40k 50k
Training Sample

40

50

60

70
CIFAR-100 Seed 4

1k 10k 20k 30k 40k 50k
Training Sample

30

40

50

60

70
CIFAR-100 Seed 5

20

40

60

80

100

40

60

80

100

40

60

80

100

40

60

80

100

40

60

80

100

r c
 (%

)

1k 5k 10k 15k 20k
Training Sample

35

40

45

50

Ac
cu

ra
cy

 (%
)

ImageNet-R Seed 1

1k 5k 10k 15k 20k
Training Sample

25

30

35

40

45

50
ImageNet-R Seed 2

1k 5k 10k 15k 20k
Training Sample

30

35

40

45

ImageNet-R Seed 3

1k 5k 10k 15k 20k
Training Sample

25

30

35

40

45

50
ImageNet-R Seed 4

1k 5k 10k 15k 20k
Training Sample

40

50

60

ImageNet-R Seed 5

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

r c
 (%

)

1k 20k 40k 60k 80k 100k
Training Sample

50

60

70

Ac
cu

ra
cy

 (%
)

Tiny-ImageNet Seed 1

1k 20k 40k 60k 80k 100k
Training Sample

40

50

60

70

Tiny-ImageNet Seed 2

1k 20k 40k 60k 80k 100k
Training Sample

50

60

70

Tiny-ImageNet Seed 3

1k 20k 40k 60k 80k 100k
Training Sample

40

50

60

70

80
Tiny-ImageNet Seed 4

1k 20k 40k 60k 80k 100k
Training Sample

50

60

70

Tiny-ImageNet Seed 5

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

r c
 (%

)

Accuracy (%) rc (%)

Figure 6: Real-time accuracy and class number ratio rc on 5 independent random seeds.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: All the claims are clearly clarified, including the contributions made in the paper and
important assumptions and limitations.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 4.5, a discussion of the limitations and the future work of the GACL is
conducted.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the paper

has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

19

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: The proof of the Theorem 3.1 is listed in Appendix A.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper comprehensively outlines both the experimental implementation and
algorithmic details, ensuring transparency in our method.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

20

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: All datasets are publicly accessible, and we have provided the source code.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We have reported all the necessary details of our experiment.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Results in this paper are reported by the average of 5 different seeds with standard
error.
Guidelines:
• The answer NA means that the paper does not include experiments.

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: The information on the computer resources for our GACL is listed in Appendix D.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper fully complies with the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.

22

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for moni-
toring misuse, mechanisms to monitor how a system learns from feedback over time, improving
the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: The models and benchmark datasets mentioned in the paper are all openly accessible
with no personally identifiable information or offensive content.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?
Answer: [Yes]
Justification: We have verified that this paper cites all the datasets and models we used.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

23

paperswithcode.com/datasets

Answer: [Yes]
Justification: We have made our source code publicly available at https://github.com/
CHEN-YIZHU/GACL.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may

be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

24

https://github.com/CHEN-YIZHU/GACL
https://github.com/CHEN-YIZHU/GACL

	Introduction
	Related Works
	CIL Techniques
	Analytic Continual Learning
	The Generalized Class Incremental Learning

	The Proposed Method
	Problem Definition
	Exposed-unexposed Class Split
	Buffered Embedding Extraction
	Generalized Analytic Class Incremental Learning

	Experiments
	Experimental Setup
	Comparison with State-of-the-arts
	Ablation Study on the ECLG Module
	Robustness Analysis in Si-Blurry Setting
	Limitation and Future Work

	Conclusion
	Proof of Theorem 3.1
	GCIL Properties
	Si-Blurry Setting
	Compute Resources
	Hyperparameter Analysis for Regularization Term
	Analysis of task-wise Accuracy Trends of the GACL

