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Abstract

This paper presents an integrated algorithmic framework for minimising product
delivery costs in e-commerce (known as the cost-to-serve or C2S). One of the
major challenges in e-commerce is the large volume of spatio-temporally diverse
orders from multiple customers, each of which has to be fulfilled from one of
several warehouses using a fleet of vehicles. This results in two levels of decision-
making: (i) selection of a fulfillment node for each order (including the option
of deferral to a future time), and then (ii) routing of vehicles (each of which
can carry multiple orders originating from the same warehouse). We propose an
approach that combines graph neural networks and reinforcement learning to train
the node selection and vehicle routing agents. We include real-world constraints
such as warehouse inventory capacity, vehicle characteristics such as travel times,
service times, carrying capacity, and customer constraints including time windows
for delivery. The complexity of this problem arises from the fact that outcomes
(rewards) are driven both by the fulfillment node mapping as well as the routing
algorithms, and are spatio-temporally distributed. Our experiments show that this
algorithmic pipeline outperforms pure heuristic policies.

1 Introduction

1.1 Motivation

Efficient operation of supply chains has been a problem area of interest for several decades (Holt
et al., 1955; Haley and Higgins, 1973; Lambert and Cooper, 2000; Pathakota et al., 2023). However,
it is still an open problem because of the constant disruptions in this field. In recent years, the advent
of electronic commerce (abbreviated to ‘e-commerce’) has created new challenges. Specifically,
the traditional retail supply chain network consisting of warehouses and stores has been abruptly
extended to include individual customer delivery locations. The fulfillment of e-commerce orders
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Step 1:
Mapping
(node selection)

Step 2:
Routing

Figure 1: Illustration of e-commerce supply chain. The proposed algorithm learns to optimise the
node selection and routing steps in an integrated fashion.

from a warehouse (‘fulfillment node’) requires two types of decisions; first, the selection of the
fulfillment node from which the order is to be served, and second, the routing of vehicles from
these nodes to a set of delivery locations. We define the total cost resulting from these decisions
as the cost-to-serve, or C2S. Presently, these decisions are based on simple heuristics or rules – the
nearest fulfillment node to every customer location is chosen, and then vehicles are sent to individual
clusters of delivery locations. Our hypothesis in this paper is that the fulfillment node selection and
vehicle routing are interdependent problems, and should be solved using an integrated approach.
This improves the efficiency of the system both from resource utilization as well as turn around time.
We show that a reinforcement learning algorithm trained to perform this task is able to outperform
heuristics on several key performance indicators, and has the ability to adapt to changes in business
objectives using weights on the individual reward terms.

1.2 Overview

We consider the scenario of last-mile delivery, where the goal of the retail e-commerce business is to
serve dynamic customer orders with minimum operating cost. The portion of interest in the supply
chain is shown by the schematic in Figure 1. An analysis of existing work in this area is given in
Section 2. In this work, we assume that there is a single type of product which can be ordered in
arbitrary quantity by every customer. The customers ‘pop up’ via a stochastic process in random
locations and with demand drawn from a probability distribution. There is a minimum and maximum
time corresponding to each order, within which delivery must happen. The warehouse locations are
fixed, and the inventory of each warehouse is replenished using an external process (outside the scope
of this work). The task of the fulfillment algorithm is to pick the warehouse for fulfilling each order,
or to choose to defer the fulfillment to a future time. All orders being fulfilled in the present time step
are then serviced by a vehicle routing agent, which takes into account vehicle capacity, travel times,
and customer time windows. As described in Section 3, we consider multiple performance indicators,
including proportion of successful deliveries, distance travelled, and vehicle capacity utilisation.

The resulting problem falls under the class of combinatorial optimisation (CO). While exact optimisa-
tion methods such as Mixed-Integer Linear Programming (MILP) perform well for static instances
with fixed locations, they are less effective in the e-commerce context where situations are constantly
changing. In Section 4, we use graph neural networks (GNN) to model the graph of customer and
warehouse locations. GNNs can adapt to dynamic changes in nodes and can be combined with
other learning techniques for downstream applications. We have found that by using the learned
embeddings from graph training, a reinforcement learning (RL) policies are able to effectively assign
fulfillment nodes and scheduling vehicle for routing. Section 6 shows that the resulting algorithm
outperforms state-of-the-art heuristics on the various performance indicators. The contributions of
this paper are as follows.

1. We formalise the fulfillment node selection and vehicle routing scenario as an integrated optimi-
sation problem.

2. We propose an algorithm that uses GNN for modeling supply chain entities and RL based policies
for the downstream tasks of fulfilment and vehicle routing.

3. We show that the proposed approach is able to outperform separately defined heuristics for
fulfillment node selection and vehicle routing on a number of performance indicators, and for a
variety of customer demand distributions.
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2 Literature Review

This is an initial approach of integrating Cost-to-Serve (C2S) with routing of vehicles to a set of
delivery locations. There is limited literature available on C2S, which usually adopts a process
management perspective (Wilding, 2020). The term C2S involves recognizing that the cost drivers
in a supply chain can vary for different products and sales channels (Cooper and Kaplan, 1997;
Braithwaite and Samakh, 1998; Kaplan and Narayanan, 2001). In recent work, C2S was defined as a
sequential decision-making problem and proposed a learning based approach minimise it (Pathakota
et al., 2023). However, the study did not include the vehicle routing problem (VRP) in the decision
loop. VRP by itself is a well-known NP-hard problem in the area of combinatorial optimisation
(Malandraki and Daskin, 1992a; Kallehauge, 2008a). The objective is to determine the optimal routes
for one or more vehicles travelling to a specified set of customer locations. The problem is equivalent
to the travelling salesman problem (TSP); if there is only one vehicle with no restrictions on its
capacity, fuel, or range.

Capacitated VRP with time windows (CVRP-TW) is a constrained version of VRP that imposes
a limit on the load carried by each vehicle, and the time required for each leg and service on the
journey. It has been solved using the following approaches: heuristic or rule-based approach, linear
programming (Malandraki and Daskin, 1992b; Kallehauge, 2008b), randomised search or meta-
heuristics approach such as genetic algorithm (Baker and Ayechew, 2003), neighbourhood search,
ant colony optimisation based approach (Bell and McMullen, 2004) and more recent learning-based
approach such as attention mechanism and reinforcement learning (Nazari et al., 2018; Gupta et al.,
2022) or a combination of reinforcement learning and satisfiability solver (Khadilkar, 2022). The
heuristics approaches have performed excellent for the dynamic VRP problem, and are known to
produce close to optimal results in the literature, the only drawback is to design a fix set of rules for
specific instances while the learning based approaches can adapt to new instances quickly.

Recently, studies have recognised the importance of neighbourhood information in solving practical
combinatorial optimisation problems. A popular approach is using Graph Neural Networks (GNNs).
These methods have shown prominent results in wide range of applications ranging from recommender
systems (Wu et al., 2022), traffic analysis (Wang et al., 2018), drug discovery (Gaudelet et al., 2021)
to resource allocation (Liu et al., 2022). An end-to-end RL training with GNN is proposed in (Khalil
et al., 2017), where a learning based greedy algorithm is learnt for combinatorial problems by training
GNN and a Deep Q-Network (DQN) (Mnih et al., 2015) together. Their main focus is on learning
an approximate greedy policy which can adapt to slight change in data distribution from training
by adapting GNNs. In this paper, we focus on using GNN techniques to aid the learning agent by
producing better embeddings over unseen graphs of customer demand.

The proposed learning based framework aims to provide an integrated solution to the single-product,
multi-depot C2S, including VRP with the time window and capacity constraints. The problem
formulation proposed in Sec. 3. The methodology is described in Sec. 4, including the graph
embedding generation, training of RL agent for C2S, and the VRP heuristic used in this paper.
Experiments and results are described in Sec. 6.

3 Problem Formulation

3.1 High-level description

The system described is a multi-objective optimization problem that aims to fulfill customer orders
while minimizing the total cost incurred by the enterprise. The entities considered in this system are
warehouses, vehicles, and customers. The cost of fulfilling an order is determined by several factors,
including the distance traveled between various nodes, the capacity utilisation of the vehicles, and the
number of customers served. The decision variables are the allocation of warehouses to customer
orders, and the routes generated for the vehicles that deliver the orders. The characteristics are,

• At each time step, multiple customer orders may arise, each specifying a desired product quantity
and a delivery time window. Failure to meet this window incurs a penalty.

• A reinforcement learning approach is employed to calculate vehicle routes, accounting for factors
like vehicle capacity, travel times for each leg, and customer service times.

• Split deliveries is not allowed; entire product quantity must be served by allotted warehouse.
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• Each vehicle adheres to a uniform maximum capacity constraint, consistent across all vehicles, and
must return to its starting depot after serving customers on its route.

• Consistent speed across all vehicles reuslts in travel times directly corresponding to distance.
• While each warehouse can dispatch an unlimited number of vehicles, the objective is to minimize

the number of vehicles and the number of trips. Note that the proposed algorithm generalises to
finite number of vehicles without change.

• Warehouses are replenished to their maximum capacity at fixed intervals, regardless of demand.

As orders are fulfilled, inventory is depleted from the chosen warehouse(s), leaving less available for
future orders. The C2S policy must consider the geographical distribution of customers, balancing
the overall end-to-end cost, while generating real-time optimal node fulfillment taking into account
dynamic demand, location and time windows of the customers.

3.2 Mathematical formulation

In the description below, we formally specify the notation, constraints, and objectives of the problem.

Warehouse : We assume the existence of N warehouses indexed by o = {1, 2, . . . , N}, and denote
the oth warehouse location by wo = (wo,x, wo,y). In this paper, we define a 2D grid on the range
[−100, 100]× [−100, 100] and fix the location of 4 warehouses, one in the center of each quadrant
of the grid. The warehouses stock a single type of product and their maximum inventory levels are
identical. Each warehouse is restocked to its maximum level P (max)

o after every T
2 time steps.

Customer demand generation: Each episode consists of τ time units. After every T < τ units1,
two sets of events occur. First, the warehouse inventory levels are set to their maximum levels (as
described above). Second, a new set of customer demands is generated as follows.

• At every interval T , the number of unique customers is first generated from a uniform distribution
ranging between 200 to 300 customers, which results in approximately 2500 customers over τ time
units in an episode.

• The integer quantity demanded by the customer is chosen uniformly in the range U [1, 10].
• If the current time is t, the minimum and maximum time window limits are generated using the

formulae,
[θi,min, θi,max] = [t+ U(0.2 T, 0.8 T ), θi,min + U(0.1 T, 2 T )]

where U(a, b) denotes the uniform distribution over the range (a, b).

We denote customer i by the symbol ci, and their characteristics are defined by the n-tuple
(mi, xi, yi, ti, θi,min, θi,max) where mi is the demand quantity of product, (xi, yi) is the location in a
2D grid, and ti is the time step at which the customer is generated. Each customer has a stipulated
time window [θi,min, θi,max] during which order must be delivered.

Based on the problem specifications, we derive some important quantities from the point of view of
the planning process. The Euclidean distance from warehouse o to customer i is denoted by do,i, and
distance between two customers i, j by di,j . As soon as new customer demands are generated, the C2S
agent is required to compute allocation decisions for all open demands (newly generated customers
as well as ones deferred from previous time steps). The decisions consist of either allocation to a
specific warehouse, or a deferral of the customer to the next time step.

Vehicle : We assume that vehicles can be spawned as required from each depot. Once a vehicle
is spawned for the first time, it remains available for reuse for the rest of the episode. The vehicle
characteristics are homogeneous, with maximum capacity Q and average speed v. We ensure that
the demand generated for a single customer mi cannot exceed the vehicle capacity Q, thus ensuring
that multiple vehicles are not required for serving individual customers. The VRP agent described in
Section 4 is used to compute the routes according to the decisions made by the C2S agent. Note that
if a vehicle completes its assigned tour within T time units, it will be available to serve customers
generated in the next set of demand generation. However, this is not a requirement imposed by the
environment (trip may take longer than T time units).

Our vehicle routing approach considers constraints related to both capacity and time windows,
resulting in the capacitated vehicle routing problem with time windows (CVRP-TW); and it assumes

1In this paper, we use T = 100 and τ = 1000.
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Figure 2: Proposed RL Framework

that customer-warehouse allocations are known at each time step. In our framework, the VRP
agent described in section assumes that at timestep t, the C2S agent provides information about
customer-warehouse pairs, where each customer’s location is represented as c(t)i = (c

(t)
i,x, c

(t)
i,y), with a

demanded load of mt
i and service time windows [Ti,min, Ti,max], ∈ R+, with Ti,min < Ti,max, and

where i ∈ C. Then the objective of the problem (Sultana et al., 2021) is to find the total distance J
that minimises,

J = min
a∗, f∗, l∗

∑
i,j,k

di,j ai,j,k +
∑
i,k

do,i fi,k +
∑
i,k

do,i li,k

 , (1)

where di,j is the distance from customer i to customer j, do,i is the distance from origin (depot)
to customer i, ai,j,k is an indicator variable which is 1 if vehicle k goes directly from customer i
to customer j, fi,k is an indicator variable which is 1 if customer i is the first customer served by
vehicle k, and li,k is a similar indicator variable which is 1 if customer i is the last customer visited
by vehicle k. Apart from constraints on ai,j,k, fi,k, and li,k to take values from {0, 1}, the other
constraints are defined below in brief. A detailed description can be found in (Sultana et al., 2021).

Every customer must be served within its time window. If vehicle k visits i at time ti,k , then

Ti,min ≤ ti,k ≤ Ti,max, if fi,k = 1 or ∃j s.t. aj,i,k = 1 (2)

The total load served by a vehicle must be at most equal to its capacity Q. This is formalised as,∑
i,j

mj ai,j,k +
∑
i

mi fi,k ≤ Q ∀k (3)

Travel time constraints are applicable between any two locations, based on the distance between them,
the speed v at which vehicles can travel, and the fixed service time ∆ required at each customer.

ti,k ≥ do,i
v

if fi,k = 1 and ti,k ≥ tj,k +∆+
dj,i
v

if aj,i,k = 1 (4)

The vehicle capacity utilisation ratio for this trip is given by,
∑

i,j mj ai,j,k+
∑

i mi fi,k
Q . On each leg of

the route, a minimum travel time proportional to the distance is enforced. The service for the first
customer on the route can start at (do,i fi,k)/v or later. A fixed service time of ∆ units is assumed,
which means the vehicle must stay at the customer location for this time. The service for the next
customer can then start after a further (di,j ai,j,k)/v time units, and so on.

4 Methodology

The proposed solution composed of three phases (i) Training a Graph Auto Encoder (Zhang et al.,
2022) to get the node embeddings of the graph, and (ii) using these learnt embeddings along with
other state features to train a DQN (Mnih et al., 2015) agent to assign warehouses to customers. The
third phase incorporates a VRP agent to compute routes and assign vehicles.
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4.1 Generating graph embeddings

We train a graph auto encoder (Zhang et al., 2022) using the Pytorch geometric library (Fey
and Lenssen, 2019) in Python, to generate node embeddings for each customer. The GAE requires
the input of a graph G = (Vt, Et). In our cases, the vertex set Vt is composed purely of the
customer locations as features. The edges (and hence adjacency matrix) is constructed such that
there is an edge between two customers if distance between them falls with in nearest distance
warehouse neighbourhood radius. The Encoder of GAE model takes input features such as the
customer locations and adjacency matrix, and learns an embedding for each node of the graph in a
2-dimensional embedding space. The decoder, which is used to reconstruct the graph, is based on
a Euclidean distance metric that calculates the distance between two embeddings. Specifically, we
define the similarity between two embeddings e1 and e2 by,

similarity = 1− ||e1 − e2||2
max ||e1 − e2||2

.

4.2 C2S Learning Agent (C2S-L) - Fulfillment node selection

C2S problem as defined in previous section can be modelled as a Markov Decision Process
(S,A, T ,R, γ), where, S denotes the current state of the system, A represents action space (mapping
customer ci to a warehouse j), T : (S,A) → S represents transition probabilities, R is the set
of rewards, and γ is the discount factor for future rewards. In prior work (Pathakota et al., 2023),
the task of C2S was only to allocate a fulfillment node (warehouse) to each customer, optimizing a
multi-objective function consisting of various costs. They assumed that delivery of order happens
instantaneously as soon as the decision was made by C2S, excluding the routing for vehicles and also
ignored time window constraints as a result.

The graph embeddings produced by the GAE, are concatenated with other state features (Table
2 mentioned in Appendix) to result in an input vector of size 19 for each customer. The action
space for each customer is of size N + 1 = 5, where N is the number of warehouses. The first N
actions correspond to assignment to that particular warehouse ID, while the last action is a choice
to defer the customer fulfillment to the next decision point (after T time units). Proceeding in a
first-come-first-served (FCFS) order, the RL agent computes a decision for each customer. This
list includes any customers carried over from previous time steps, as well as ones generated in the
current time step. Once all the decisions are completed, the customers assigned to each warehouse
are communicated to the VRP agent (Section 4.3) for delivery scheduling and routing.

4.2.1 Reward for C2S-L Agent

The step reward for the RL agent is composed of the following components:

• Transportation reward, composed of two components. First, we assign a negative reward Di

proportional to the straight-line distance from the warehouse to the location of customer ci. The
second term is a negative reward Li proportional to the distance travelled by the vehicle in that
particular trip, equally apportioned to all the customers being served in that trip. If the vehicle has
a round-trip distance of Z for a trip that serves r customers, then Li ∝ −Z/r. Di is in the range2

of [−2.12, 0] , and Li is the range of [−1, 0].
• A fixed fulfillment reward Fi = 1 when customer ci is assigned to a warehouse, and 0 if the

customer is deferred to a future time step.
• A negative reward Ui proportional to the empty space on the vehicle when it starts on a trip, given

equally to all the customers served in that trip. It also falls in the range [−1, 0]. The overall reward
function is defined by,

reward(ci) = a1 (Di + Li) + Fi + a2 Ui, (5)

where a1 and a2 are user-defined constants. Apart from this, a fixed penalty of −10 is assigned if a
customer is dropped completely (not served before the time window θi,max elapsed). Note that the
terms Li and Ui depend on the route computed by the VRP agent. There is a special case for reward
computation when the customer is deferred to a future time step. For this decision, the quantities

2In the 2D space, the farthest euclidean distance between a customer and a warehouse is 1.5
√
2 ≈ 2.12
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from (5) cannot be computed immediately. We therefore use a backward reward computation (in the
Monte-Carlo style) from the time step when the customer is actually served. We define the reward as,

reward(ci, deferred) = γh (a1(Di + Li) + Fi + a2Ui) (6)

where h denotes the number of times service for deferred for ci, and the remaining quantities
correspond to when the customer was actually served. The calculated expected return is used as
the reward in the TD-error calculation in the Bellman equation, which is used to train the model on
samples that have the holding (deferred) action selected.

4.3 VRP learning Agent (VRP-L) - Routing and Scheduling

The problem of routing the vehicle to serve the customer is a sequential decision making problem
and modelled as an MDP. The VRP-L agent is adapted from (Khadilkar, 2022), where the input to
agent includes information corresponding to customer-vehicle pairs post C2S decisions. The agent
in (Khadilkar, 2022) which is designed for single depot problem is applied to Multi-Depot problem
in this study, by a parallel process of decisions at different depots as the customers allocated to
particular depot must be fulfilled by a vehicle originating from that depot. We have incorporated
official codebase for VRP-L (Khadilkar, 2022) in our study and scaled it for multi-depot and further
details corresponding to it mentioned in appendix A.

4.3.1 Reward for VRP-L Agent

In this framework, a vehicle denoted as k caters to a set of P customers indexed by p from a particular
warehouse along its route. Each segment of this route has a distance of dp and necessitates tp units
of time between completing service at the preceding customer and initiating service at the current
customer. The range of the neighborhood is determined by ρ, and τ serves as a time limit, equating
to the median travel time between all pairs of customers within the dataset. Consequently, the reward
associated with each decision is as follows:

Rk,p =
ρ− dp
dmax

+
τ − tp
tmax

+ γP−pRterm
, where Rterm = 2 ρ− 1

P + 1

(∑
p

dp +Dreturn

)
(7)

The reward equation is designed to encourage shorter legs in both distance and time. The terminal
reward, denoted as Rterm as defined in equation (7) , measures the average distance of individual
legs within a vehicle’s journey (including the last leg back to the depot) relative to the largest cluster
diameter, which is represented as 2 ρ.. The objective of training the neural network is to minimize the
mean squared error between its output and the actual realized reward Rk,p , for each decision.

5 Baselines

Fulfillment Node Selection Heuristic (C2S-H) : We refer to this baseline as C2S Heuristic (C2S-H)
as it essentially allocates each customer to the nearest warehouse immediately upon their generation.
It’s worth mentioning that our conversations with experts in the business domain have indicated that
this approach closely aligns with the typical practice followed by a majority of retailers.

Vehicle Routing Problem Heuristic (VRP-H) : The VRP policy is employed to determine the most
efficient route for a group of vehicles to deliver customer orders while adhering to constraints like
vehicle capacity and customer time-windows. In our current scenario, we employ a straightforward
heuristic that relies on the warehouse assignments provided by the C2S agent to fulfill the customer
demand. The VRP Heuristic or (VRP-H) is designed to ensure that the vehicles visit and serve the
customers within the specified time windows, while also meeting total time and vehicle carrying
capacity constraints. While more advanced heuristics are available, we opt for a simple approach
with the primary aim at satisfying constraints rather than achieving optimality. The procedure for the
same is described below which can be carries out in a parallel fashion:

1. Sort the assigned customers at the warehouse according to their time window opening.
2. If no vehicle is at the depot, start a new one.
3. Choose the first feasible customer from the list, based on travel time, time window constraint, and

demand quantity. Serve this customer and update time and remaining vehicle capacity.
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Table 1: Agent versions with description: values in superscript indicate reference sections.

Agent Description
C2S-H + VRP-H Combination of the C2S-Heuristic and VRP-Heuristic5, serving as a com-

prehensive heuristic baseline
C2S-L + VRP-H Utilizes the C2S Agent4.2 along with the VRP-Heuristic5

C2S-H + VRP-L Incorporates the C2S-Heuristic5 and the VRP-Agent defined in4.3

C2S-L + VRP-L Signifies the use of both agents as learning-based for C2S and VRP.
C2S-P + VRP-L We use a pre-trained model from C2S-L + VRP-H to set the weights for the

C2S agent, and the VRP agent also adopts a learning-based approach. Our
training strategy unfolds in two phases: first, we exclusively train the C2S
Agent with VRP-H, and subsequently, we train the VRP Agent based on
decisions made by the pre-trained C2S Agent without further training.
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Figure 3: The figure has six plots, divided into two rows. The top row shows the Sum of Rewards,
Negative Distance Reward, and Negative Trip Reward from left to right. The bottom row displays
Capacity Utilization Reward, Vehicle Trips, and Served Customers per Trip from left to right. For the
RL proposed agent, the shaded regions represent the standard deviation across 5 seeds.

4. Repeat the above step until there are no further feasible customers.
5. Return the vehicle to the warehouse and update its availability time.
6. Repeat steps 2-5 with additional vehicles until all customers are either (i) served, or (ii) computed

to be infeasible for any vehicle. A penalty will be applied in the latter case.

We have trained five agent versions depending on the types of available algorithms, as per Table 1.

6 Experiments and Results

Training: We trained different agent versions and plotted the training curves to see how they perform
across different metrics. The description of each agent is given in Table 1. Any versions involving a
learning based agent are trained for 200 episodes using an ϵ-greedy approach. Please note that the
customer locations are uniformly randomly generated in the 2D grid during training.

Figure 3 shows the average training curves for all the different agents, taken over 5 random seeds. For
the learning based agents, the shaded regions represent the standard deviation across all random seeds.
The top-left figure shows a simple sum of all the reward components. It can be seen that the C2S-P +
VRP-L and C2S-H + VRP-L outperform the rest of the agents and converges pretty fast. Where C2S-L
+ VRP-L converges almost to the similar scale. The other plots provide greater insight into the agent’s
performance. The top middle-figure plots the straight-line distance reward Di and is constant for the
agents having C2S-H and C2S-P (C2S-H + VRP-H, C2S-H + VRP-L and C2S-P + VRP-L) since for
them the C2S agent is not trained. Since the heuristic always picks the nearest warehouse (in the case
of C2S-P we make use C2S-L + VRP-H which almost learns to pick the customers like the heuristic)
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Figure 4: Testing values of metrics averaged over 20 episodes for the different agents. The left figure
plots the average number of total trips for different agents, whereas the figure on the right plots the
different rewards namely Negative Distance, Negative Trip and Capacity Utilization.

this plot shows that the RL agents learn similar warehouse assignment and minimize the distance.
But having similar warehouse assignment does not guarantee better customer-vehicle mapping. In the
top-right plot, the trip reward Li depicts that having a learning based VRP agent does better grouping
as the trips comprise of more efficient routes by minimizing the overall trip distance. The bottom-left
figure depicts the capacity utilization Ui, here it is visibly seen that learning-based VRP agents due to
their efficient routing are able to utilize the vehicle capacity better compared to VRP-H. The C2S-H +
VRP-L and C2S-P + VRP-L have the best capacity utilization compared to others. The bottom-middle
figure displays the total number trips taken by agent for serving all the customers. The learning-based
VRP agents outperform the rule-based VRP agent by a margin with almost 40% lesser trips. All the
RL agents initially take more number of trips during the exploration phase due to random warehouse
assignments, but it gradually learns to serve the customers in fewer trips with improved and efficient
routing. The final bottom-right figure illustrates the number of customers served per trip, here we can
see that the agents C2S-H + VRP-L and C2S-P + VRP-L surpasses the rest of the approaches at the
end of training.

Testing: We have also tested the performance of these agents by modifying the customer data
distribution by introducing skewness in the probability distribution across the four quadrants. The
trained agents are tested for 20 episodes across another set of 3 random seeds.

In Figure 4 we have compared the metrics of the baselines. The figure is split into two, the left figure
shows the average number of total trips for each of the agents. We can see here that, the agent C2S-H
+ VRP-L performs the best followed closely by the agents C2S-L + VRP-L and C2S-P + VRP-L. In
the figure on the right, we have plotted together the average of the crucial reward components namely
negative distance, negative trip and capacity utilization. Here we can clearly see that the negative
distance reward is almost constant for all the five agents. The difference lies in the rest of the two,
the C2S-H + VRP-H performs the worst with poor negative trip reward and capacity utilization. In
the learning-based VRP agents the C2S-H + VRP-L outperforms others with better trip reward and
vehicle utilization. This is followed by the rest of the two where one component compensate the
other. It can stated that having a learning-based VRP agent not only learns better routes but also
indirectly benefit the learning-based C2S agent by scheduling efficient routes ultimately leading to
better rewards being learnt during exploration. Please note that we do not have any shared information
among the two agents we just have reward components derived from the vehicle routing decisions.
Additional training and testing results are added in Appendix B

To sum it up, the two best performing agents C2S-H + VRP-L and C2S-P + VRP-L have very similar
training and testing results with marginal difference. The only difference between the C2S-P + VRP-L
agent and C2S-L + VRP-L is the way we have trained each of them where the pre-trained agent
is trained in two phases (first C2S training followed by VRP training) compared to simultaneous
training in the latter. We can infer that training both learning-based agents together reaches a local
optima in performance as compared to training each one separately.
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7 Conclusion and Future Work

We introduce and compare various methodologies for addressing the combined challenge of fulfillment
node selection and vehicle routing within an integrated framework. As far as our knowledge extends,
this marks the pioneering attempt to confront this commercially significant issue within the realm of
e-commerce, utilizing a structured learning-based approach. Our two learning-based VRP agents
consistently outperform the complete heuristic-based approach by a substantial margin. Furthermore,
we demonstrate the robustness of these learned models across different customer data distributions,
including skewed and random datasets. Given the complexity of this problem, characterized by
dynamic demand and a large customer base, opting for a learning-based VRP agent proves to be
the most effective strategy, in contrast to simplistic VRP heuristics. Looking ahead, our future
research aims to delve deeper into this multi-agent setup, with a specific focus on comprehensive
learning-based approaches. We are keen to explore the impact of introducing shared information
(features), credit assignment for cooperative training, and the implementation of a central critic shared
among the C2S and VRP agents, among other aspects.
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A Neural network architecture and training

GAE: The architecture for GAE consists of two graph convoultional layers (2-hop) with the embed-
ding output dimension of 2, with ReLU activation function for hidden layers. The adjacency matrix
is constructed by creating positive and negative samples, where positive samples are all instances
with edges between two nodes (a relative minority) and negative samples are randomly selected pairs
of nodes without edges from the graph (equal in number to the positive samples). The training of
the GAE is done iteratively from a buffer of 1000 graphs which are previously generated by running
simple heuristic policies for both C2S and VRP functions.

C2S-L Agent: The RL agent is a Deep Q-Learning Network model for customer-warehouse mapping
with 19 inputs mentioned in Table 2 and 5 outputs, as described earlier. The DQN model has a neural
network architecture with 4 fully connected layers. The dimensions of the layers are [19, 76, 38, 5],
where the first and last layers are the input and output layers respectively. The hidden layers have
a tanh activation function, while the output layer has a linear activation function. The model is
trained using the PyTorch library in Python 3.8, with an Adam optimizer, a discount factor of 0.9, a
batch size of 512, and a mean squared loss function. The experience replay buffer has a capacity of
1,00,000 samples, which are randomly drawn to train the C2S agent.

VRP-L Agent: The input is a vector of size 17, as specified in Table 3. This is followed by a
fully connected neural network with layers of size (128, 64, 32, 8) and an output layer of size 1
(scalar value). The hidden layers have tanh activation. A memory buffer of maximum 1,00,000
samples is maintained, with training happening after every 4 times every 100 timesteps (basically
after completion of each depot routing) with a batch of size 512 samples. The learning rate is 0.001.
Exploration is implemented using an ϵ−greedy policy with ϵ decayed from 1 to 0 with a factor of
0.999 after each episode. Exploration steps are taken uniformly randomly, while exploitation steps
are chosen using a softmax function over the values attached to vehicle-customer pairs.

B Additional Results

In fig. B and 6 we can see that C2S-H always assigns the customers to their nearest warehouse, these
must be fulfilled by the vehicles originating from that depot as can be seen in the left-top most figure
of C2S-H + VRP-H and C2S-H+ VRP-L. This behaviour of always assigning nearest warehouse is
not observed in any C2S-L agent baseline, and results show there is an aggregation of the customers
of neighbourhood areas. From the scatter we can clearly see this in C2S-L + VRP-H, C2S-L + VRP-L
and C2S-P + VRP-L. In some cases, always assigning nearest warehouse may not result in optimal
solution and aggregating the customer orders to second nearest warehouse may result in overall
less trip distance, utilization of lesser number of vehicles increasing capacity utilization. These
observations are true for both the types of customer data distribution (Training - Uniform Data and
Testing - Skewed Data).

Total capacity utilization per vehicle is shown in the figure 7 Training (Uniform Data), and it can be
seen that in the case of agents C2S-P + VRP-L and C2S-H + VRP-L, total utilization of a vehicle
is almost at 80% followed by C2S-L + VRP-L agent. This shows that learning based approach for
VRP resulted in better routing of customers, which resulted in utilization at greater capacity. The
other two agents C2S-H + VRP-H and C2S-L + VRP-H resulted in the usage of only 40% of vehicle
capacity, which clearly indicates that incorporating VRP-L resulted in the increase of vehicle capacity

Feature Description Size
Embeddings Output of GAE 2
Distance Distance dj,i from each warehouse N = 4
Local Availability Quantity Pj of current product available at each warehouse N = 4
Demand Customer demand pi for current product 1
Time Window Interval [θi,min, θi,max] during which order to be fulfilled 2
Clock Current timestep in environment 1
Holding Interval Amount of time the order is put on hold 1
Warehouse Indicator Vehicle availabaility at depots N = 4

Table 2: Features in state representation for each customer ci, used by C2S agent as input.
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Table 3: VRP Agent inputs for evaluating the value of each vehicle-customer pair, with loc as current
location, c as proposed customer, and v as the proposed vehicle. All features are normalised as
explained in text.

Input Explanation
d Distance from loc to c
bd,short Is d smaller than neighbourhood radius ρ
t Time gap from now to start of service at c
bt,short Is time gap within time threshold τ
ngb Are loc and c part of the same cluster
non_d If ngb = 1, distance from c to nearest non-member
c_left If ngb = 0, are any in-cluster customers left unserved
dropfar If c_left = 1, are the dropped customers farther from depot than loc
dropcls If c_left = 1, are dropped customers within a distance of ρ from loc
droplong If c_left = 1, is the distance from dropped customers to nearest non-member more

than distance from loc to dropped customers
served How many customers of c cluster has v served so far
clsdem Could v serve all cluster members of c based on demand
hops How many cluster members of c can be served before c
clstim Is every cluster member feasible following c
urgt How close to time window closure of c is v arriving
dfrac Ratio of time being consumed for serving c to the fraction of v’s capacity being

consumed
remote How remote is the neighbourhood of c

utilization by almost double. The similar behaviour is observed in Testing(Skewed Data), where the
capacity utilization per vehicle at each varies by large margin in case of agents with learning agents
compared with the heuristic approaches.
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Figure 5: Scatter plot illustrating the training data with various customer markers, each assigned to a
specific depot by the C2S Agent. A black hexagon marks the warehouse location in each quadrant,
and bold black lines separate the depot areas for clarity. The figure is divided into four sub-figures,
each corresponding to a different baseline mentioned in the subplot title. It’s worth noting that
this figure represents uniform customer data distribution, with customers equally distributed in all
quadrants.
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Figure 6: This scatter plot tests various baselines across the entire customer space. Customers are
color-coded and marked according to their assigned depot by the C2S Agent. A black hexagon
represents the warehouse in each quadrant, and bold black lines separate the depot quadrants for
clarity. The figure is divided into four sub-figures, each labeled with its baseline. Note that the
customer data distribution is skewed, with more customers concentrated in the upper two quadrants
compared to the lower two.
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Figure 7: Barplots for showing the average customer demand served per trip for the different agents
across depots for both the customer data distributions.
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