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ABSTRACT

Variational autoencoder (VAE) is a prominent generative model that has been ac-
tively applied to various unsupervised learning tasks such as representation learning.
Despite its representational capability, VAEs with the commonly adopted Gaussian
settings typically suffer from performance degradation in generative modeling for
high-dimensional natural data, which is often caused by their excessively limited
model family. In this paper, we introduce the exponential dissimilarity-dispersion
family (EDDF), a novel distribution family that includes a dissimilarity function
and a global dispersion parameter. A decoder with this distribution family induces
arbitrary dissimilarity functions as the reconstruction loss of the evidence lower
bound (ELBO) objective, where the model leverages domain knowledge through
this dissimilarity function. For VAEs with EDDF decoders, we also propose an
ELBO optimization method that implicitly approximates the stochastic gradient of
the normalizing constant using log-expected dissimilarity. Empirical evaluations
of the generative performance show the effectiveness of our model family and
proposed method in the vision domain, indicating that the effect of dissimilarity
determines the criteria of representational informativeness.

1 INTRODUCTION

VAE (Kingma & Welling, 2014; Rezende et al., 2014) is an influential generative model extensively
applied to unsupervised learning tasks such as probabilistic modeling and representation learning.
The applications of VAE models are attributable to their ability to learn a latent coordinate system of
the underlying data manifold (Goodfellow et al., 2016). VAEs learn a latent variable to form a low-
dimensional representation of high-dimensional data and bidirectionally infer them by their encoder–
decoder network structure. Such a latent representation is extensively applied as an informative and
concise data representation to several tasks such as real-world recognition (Ha & Schmidhuber, 2018;
Higgins et al., 2017b; Li et al., 2023), abstract reasoning (van Steenkiste et al., 2019), and knowledge
discovery (Liu et al., 2020; Takahashi et al., 2022).

The framework of VAEs has a solid theoretical foundation based on variational inference for generative
modeling (Kingma & Welling, 2014; Rezende et al., 2014); however, in naturally observed high-
dimensional data, VAEs with the commonly used settings practically suffer from performance
degradation, such as insufficient reconstruction fidelity and generation naturalness (Larsen et al.,
2016; Hou et al., 2019). The contributory factors of such shortcomings primarily fall into the
following two viewpoints as for the choice of the decoder distribution: (i) simple and oft-used
decoder families (e.g., isotropic Gaussian) represent several excessively strong assumptions about
data variables (Burda et al., 2016; Kingma et al., 2016); (ii) ignoring the decoder dispersion and
normalizing constant causes a balancing problem between reconstruction and regularization (Rezende
& Viola, 2018; Lin et al., 2019; Rybkin et al., 2021). These two viewpoints imply that an appropriate
choice of training implementation enables VAE models to practically perform as the variational
inference framework theoretically promises.

Viewpoint (i). The decoder distribution is conventionally set to several well-known distributions to
induce simple and easy-to-implement reconstruction losses, e.g., the isotropic Gaussian represents
the sum of squared error (SSE) loss. These losses yield simple and closed-form objectives enabling
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easy implementation and analysis; however, such a simple and general model occasionally conflicts
with the domain-specific property of the observed data for effectively modeling the underlying
latent manifold of real-world observations. For example, local patches of natural images form a
manifold (Carlsson et al., 2008; Carlsson, 2009), suggesting that the isotropic Gaussian implying
pixel-wise independence is incompatible with the domain knowledge on the vision domain. To
overcome these issues with such well-known distributions, several types of advanced loss functions
for the reconstruction term have been introduced, e.g., an adversarially learned metric (Larsen et al.,
2016), a classifier-based metric (Hou et al., 2019), and domain-specific guidance (Ding et al., 2020).
Although they improve performance in specific tasks, such additional or ad-hoc mechanisms could
disrupt the benefit and generality of the original VAE framework, such as stable training.

Viewpoint (ii). Simply using an arbitrary function for the reconstruction term of the ELBO ob-
jective results in a balancing problem due to the scale mismatch against the regularization term.
β-VAE (Higgins et al., 2017a) has assigned a hyperparameter weight β to the regularization term
for balancing against the reconstruction, which has been later re-interpreted as the rate-distortion
tradeoff (Alemi et al., 2018). Too low β causes performance degradation in generation and repre-
sentation learning due to posterior-prior discrepancies (Dai & Wipf, 2019), and too high β causes
posterior collapse and over-smoothed latent representations (Burgess et al., 2017; Fu et al., 2019;
Takida et al., 2022). Although the performance of β-VAE models is thus sensitive to the β value
due to the tradeoff, several studies (Rezende & Viola, 2018; Lucas et al., 2019) have addressed this
balancing problem by introducing a global dispersion parameter (Lucas et al., 2019; Lin et al., 2019).
The optimal dispersion is analytically tractable using the expected reconstruction error (Rezende &
Viola, 2018; Lin et al., 2019; Rybkin et al., 2021), improving the VAE performance even in decoders
based on simple distributions such as isotropic Gaussian (Rybkin et al., 2021). Albeit its generality,
the dispersion parameter of VAE decoders is primarily applied only to well-known and relatively
simple distributions in the literature, such as isotropic Gaussian distributions (Lucas et al., 2019;
Rybkin et al., 2021) and the exponential dispersion family (Sicks et al., 2021).

In this paper, we propose an extended VAE framework by introducing a distribution family EDDF,
and an ELBO optimization method based on the approximation of the EDDF normalizing constant.
EDDF decoders leverage domain-specific dissimilarity functions that acts as a strong induced bias
for natural high-dimensional data. This dissimilarity function is designed based on knowledge in a
particular domain. The proposed optimization method provides a tractable approximated objective
for VAEs with EDDF decoders in a near-optimal dispersion parameter. The contributions of this
study are as follows:

• We propose a novel distribution family EDDF for the VAE decoder, which uses a dissimilarity
function established on domain knowledge as an inductive bias for natural high-dimensional
data.

• We propose an approximated algorithm using a log-expected dissimilarity loss function to
optimize VAEs with EDDF decoders.

• We empirically validate an approximated algorithm, showing that the trained autoencoder
estimates optimal dispersion, and reveal that EDDF decoders in VAEs effectively utilize
domain knowledge.

2 VARIATIONAL AUTOENCODER (VAE)

VAE is a powerful approach to the generative modeling of high-dimensional natural data using
autoencoding-like neural networks (NNs). Given an N -sized set of independent and identically
distributed data points D = {x(i)}Ni=1 for M -dimensional data variables x ∼ pD(x), we assume
an L-dimensional (L ≪ M ) latent variable z distributed on the prior π(z). Because the motivation
of this assumption is the manifold hypothesis (Carlsson et al., 2008; Carlsson, 2009; Bengio et al.,
2013), it induces a formulation in which the data variable x is supported on a differentiable data
manifold X ⊆ RM with a local coordinate system referred to as a latent space Z ⊆ RL. To model
these assumptions, we consider a VAE model (Kingma & Welling, 2014) with a negative ELBO
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objective LELBO as
LELBO := −Eqϕ(x,z) [log pθ(x|z)]

+ EpD(x) [DKL (qϕ(z|x)∥π(z))] , (1)

whose minimization can be interpreted as a probabilistic autoencoding using an encoder qϕ(z|x)
with parameters ϕ and a decoder pθ(x|z) with parameters θ. This yields a generative model pθ(x, z)
and an inference model qϕ(x, z) that can be mutually approximated, as shown by

pθ(x, z) = pθ(x|z)π(z), (2)
qϕ(x, z) = qϕ(z|x)pD(x), (3)

where π(z) denotes a prior distribution of the latent variables z. A typical choice of the assumptions in
the literature is Gaussian models parameterized by NNs (Kingma & Welling, 2014; Alemi et al., 2018;
Lucas et al., 2019; Sicks et al., 2021). In such settings, the generative process comprises a standard
Gaussian prior π(z) = N (0, IL) and the Gaussian decoder parameterized by a NN x̂θ : Z → X as

pθ(x|z) = N (x|x̂θ(z), γIM ), (4)
where a global dispersion parameter γ > 0 is postulated as in Rybkin et al. (Rybkin et al., 2021).
Because the inverted generation process pθ(z|x) is intractable in this case, it is approximated with a
diagonal Gaussian encoder qϕ(z|x) parameterized by NNs µϕ : X → Z and σϕ : X → RL

>0 as

qϕ(z|x) = N (z|µϕ(x),diag(σ
2
ϕ(x))), (5)

where diag(·) denotes a diagonal matrix with the input vector as its diagonal elements.

The variational inference of Eq. (1) using the generative and inference models produces an interpreta-
tion as a variational autoencoding, where the first term of Eq. (1) is referred to as a reconstruction
loss Lrec, and the second term of Eq. (1) is interpreted as a regularization loss Lreg, as follows:

Lrec := −Eqϕ(x,z) [log pθ(x|z)] , (6)

Lreg := EpD(x) [DKL (qϕ(z|x)∥π(z))] . (7)
Into the regularization Lreg, β-VAE (Higgins et al., 2017a) introduces a weighted objective with a
weight hyperparameter β as follows:

Lβ = Lrec + βLreg. (8)
Here, we can balance these two losses by calibrating the β value. However, its performance is
sensitive to β whose optimal value depends on the dataset D (Lucas et al., 2019; Fil et al., 2021;
Nakagawa et al., 2023), requiring intense hyperparameter tuning and resource-consuming model
selection (Locatello et al., 2019; Duan et al., 2020). As another approach to the calibration of the
weight β, several studies have focused on a decoder dispersion that induces a trainable coefficient
equivalent to the loss weighting of β-VAE (Rezende & Viola, 2018; Lucas et al., 2019; Lin et al.,
2019). For example, the Gaussian case in Eq. (4) produces Lrec with a square error as

Lrec = Eqϕ(x,z)

[
∥x− x̂θ(z)∥22

2γ
+

M

2
log 2πγ

]
, (9)

where γ is equivalent to the weight β if γ is constant with regard to the model parameters (θ,ϕ).

3 EXPONENTIAL DISSIMILARITY-DISPERSION FAMILY (EDDF)

To design a probabilistic decoder with a strong inductive bias based on domain knowledge, we define
a distribution with a dissimilarity function d : X 2 → R≥0, a location parameter m ∈ X , and a
dispersion parameter γ ∈ R>0 as

fd(x|m, γ) = exp

[
−d(x,m)

γ
+ Cd(m, γ)

]
, (10)

where Cd(m, γ) denotes the normalizing constant, and the dissimilarity function d satisfies the
following conditions:

∀x,m ∈ X , x = m =⇒ d(x,m) = 0, (11)
∀x,m ∈ X , d(x,m) ≥ 0, (12)
∀x,m ∈ X , ∇md(x,m) exists, (13)
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Table 1: An overview of well-known distribution families that can be interpreted as a subset of EDDF.
The parameters are re-interpreted in the form of the location m and the dispersion γ. Although the
location parameter m becomes the mode argmaxm fd(x|m, γ), the dispersion parameter γ does not
necessarily represent the variance in these cases. xi and mi denote the i-th elements of x and m,
respectively.

Distribution fd(x|m, γ) Domain dom(d(·,m)) Dispersion γ Dissimilarity d

N (m, γIM ) RM γ > 0 1/2 ∥x − m∥2
2

Laplace(x|m, γ) RM γ > 0 1/2 ∥x − m∥1

vMF(x|m, 1/γ) Unit Sphere SM−1 γ > 0 −xTm

Bernoulli(x|m) {0, 1}M fixed γ = 1 −
∑M

i=1 [xi logmi + (1 − xi) log(1 − mi)]

Gamma(x|1 + m
γ , γ) (0,∞)M γ > 0

∑M
i=1 [xi − mi log xi]

where the first and second conditions require that the location m produces the mode, and the third one
indicates the differentiable dissimilarity for optimization and analysis. Note that the dissimilarity d is
not necessarily a metric because the symmetry and triangle inequality axioms are not required in this
definition. The normalizing constant Cd(m, γ) enforces the measure fd to produce a value of 1 for
the entire support, as expressed below:

Cd(m, γ) = − log

∫
dom(d(·,m))

exp

[
−d(x,m)

γ

]
dx, (14)

where dom denotes the domain of a function. A finite normalizing constant results in a condition∫
dom(d(·,m))

exp

[
−d(x,m)

γ

]
dx < ∞, (15)

which implies that the dissimilarity function d must be an unbounded function d(x,m) = ∞
as ∥x∥ → ∞ if the domain dom(d(·,m)) is unbounded.

3.1 RELATIONS TO WELL-KNOWN DISTRIBUTIONS

The probability density function of EDDF distributions in Eq. (10) resembles the exponential family,
and several distributions of the exponential family are included in the EDDF. Thus, the EDDF
distributions include several commonly adopted settings using well-known distributions, and the
details are presented in Table 1. For example, using the mean squared error (MSE) or SSE as
a dissimilarity dℓ2(x,m) := 1/2∥x − m∥22 produces the family of isotropic Gaussian distribu-
tions fdℓ2

(x|m, γ) = N (x|m, γIM ). Although the exponential family requires the dot-product
form of the variable and parameters, EDDF is less restricted in this respect, allowing more flexible
interaction between the data x and the location m, e.g., using perceptual metrics. Here, we highlight
that exponential family distributions can be characterized using Bregman divergences, a concept
detailed in "Information Geometry and Its Applications", Section 2.7 (Amari, 2016). This framework
provides a rigorous basis for the variational inference techniques used in our approach.

4 VAE OPTIMIZATION WITH EDDF DECODERS VIA LOG-EXPECTED
DISSIMILARITY LOSS

First, to introduce the EDDF distributions to the VAE decoder, we define the decoder model with an
analytic dissimilarity function d as

pθ(x|z) = fd(x|x̂θ(z), γ). (16)
To maximize the ELBO in this model, we first propose a theoretical approach that this optimization is
approximately possible in a similar manner to the previously studied analytical optimal (Rybkin et al.,
2021; Lin et al., 2019). The optimal dispersion γ∗ is induced by the decoder model, as shown below:

γ∗ ∈ arg max
γ∈R>0

LELBO(θ,ϕ, γ)

= arg max
γ∈R>0

Lrec(θ,ϕ, γ) + Lreg(ϕ)

= arg max
γ∈R>0

Lrec(θ,ϕ, γ), (17)
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where the reconstruction loss Lrec is induced by the EDDF in Eq. (16) as

Lrec(θ,ϕ, γ) = Eqϕ(x,z)

[
d(x, x̂θ(z))

γ
− Cd(x̂θ(z), γ)

]
. (18)

To compute the normalizing term including an intractable integral in Eq. (14) approximately, we
expand the dissimilarity d at the location parameter m as

d(x,m) =
1

2
(x−m)THm(x−m) + f(x−m), (19)

where Hm denotes the Hessian matrix at m defined as Hm := ∇m∇T
md(x,m), and f(x) denotes

the remainder term f(x) = O(∥x∥3) as ∥x∥ → +0. This expansion produces an asymptotic
normalizing constant

Cd(m, γ)≤ 1

2
log det

Hm

2πγ︸ ︷︷ ︸
=:C̃d(m,γ)

+O(γ1/2) as γ → +0. (20)

The asymptotic normalizing constant C̃d(m, γ) gives an asymptotic reconstruction loss L̃rec(θ,ϕ, γ)
as

Eqϕ(x,z)

[
d(x, x̂θ(z))

γ
− C̃d(x̂θ(z), γ)

]
=

1

γ
Eqϕ(x,z) [d(x, x̂θ(z))] +

M

2
log(2πγ)

− 1

2
Eqϕ(x,z)

[
log detHx̂θ(z)

]
. (21)

Considering that the last term is independent of the dispersion γ, this asymptotic reconstruction loss
produces an approximated optimal dispersion γ̃∗ as

γ̃∗ =
2Dθ,ϕ

M
, (22)

where Dθ,ϕ denotes the expected reconstruction dissimilarity Dθ,ϕ := Eqϕ(x,z) [d(x, x̂θ(z))]. Be-
cause the asymptotic reconstruction loss L̃rec converges to the original Lrec if γ → +0, the approxi-
mated optimal γ̃∗ asymptotically becomes an unbiased estimator of the exact optimal dispersion γ∗ if
Dθ,ϕ → +0. This setting Dθ,ϕ ≈ 0 implies that near-perfect reconstruction is feasible and practical
in high-capacity VAEs, as suggested in the literature (Rybkin et al., 2021) that Dθ,ϕ ≈ 0.006 ≪ 1 is
selected for the best generative performance in the SVHN dataset (Netzer et al., 2011). This “well-
trained autoencoder” assumption leads to a further easy-to-implement approximation; the expected
log-determinant Hessian term of Eq. (21) can be assumed to be constant in this case because well-
trained autoencoders produce better reconstruction x ≈ x̂θ(z) in which the data points x lie close to
the minimizing point of the dissimilarity d(·, x̂θ(z)). This assumption and the above consequences
in Eqs. (21) and (22) produce the gradients of the asymptotic reconstruction loss

∇θ,ϕL̃rec

∣∣∣
γ=γ̃∗

=
M

2

∇θ,ϕEqϕ(x,z) [d(x, x̂θ(z))]

Eqϕ(x,z) [d(x, x̂θ(z))]

= ∇θ,ϕ
M

2
logEqϕ(x,z) [d(x, x̂θ(z))] . (23)

Finally, we introduce a log-expected reconstruction loss

L≍
rec =

M

2
logEqϕ(x,z) [d(x, x̂θ(z))] , (24)

which is identical to L̃rec up to the constant and produces the gradients with regard to the encoder-
decoder parameters (θ,ϕ) in Eq. (23). Because the training process of VAEs is implemented
using the Monte Carlo sampling method (Kingma & Welling, 2014), we can implement the log-
expected reconstruction loss L≍

rec without adding any additional trainable parameters. For example,
in a differentiable programming framework PyTorch (Paszke et al., 2019), this loss L≍

rec can be
implemented as dissimilarities.mean().log(). The entire negative ELBO objective,
particularly under the condition where γ is sufficiently small (γ ≪ 1), simplifies to

LELBO

∣∣
γ=γ∗ ≈ L≍

rec + Lreg, (25)

where Lreg is based on the isotropic Gaussian assumption as detailed in Eq. (7). The constant term,
not contributing to the gradients, is omitted in the optimization process.
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Table 2: An overview of the visual datasets used: for those without a provided validation set (denoted
by *), we split the training dataset 90% for training and 10% for validation. #Train, #Valid, and #Test
sizes are noted, and the "Aligned" column indicates if image positions are aligned (✓) or not (–).

Dataset #Train #Valid #Test Aligned

MNIST (LeCun et al., 1998) * 54,000 6,000 10,000 ✓
SVHN (Netzer et al., 2011) * 65,931 7,326 26,032 ✓
CelebA (Liu et al., 2015) 162,770 19,867 19,962 ✓
CIFAR-10 (Krizhevsky & Hinton, 2009) * 45,000 5,000 10,000 –
Food-101 (Bossard et al., 2014) * 68,175 7,575 25,250 –

5 RELATED WORKS

Numerous studies have concentrated on rectifying practical issues in the VAE framework, despite
its theoretical foundations (Kviman et al., 2023; Liévin et al., 2023; Lin et al., 2023). Balancing
the reconstruction and regularization losses within the rate–distortion tradeoff has been a classic
focus (Alemi et al., 2018; Tishby et al., 1999; Tschannen et al., 2018). This tradeoff allows the
weighting of the reconstruction loss to produce informative latent variables about data and the
weighting of the regularization loss to offer concise latent variables for disentanglement (Higgins
et al., 2017a).

Several studies have addressed the β-VAE balancing problem by proposing algorithms to tune the
weight parameter β or the equivalent dispersion parameter γ, driven by the dependency of the optimal
β value on datasets and model settings. A significant example is GECO (Rezende & Viola, 2018),
which transforms the negative ELBO objective of VAEs into a constrained optimization problem using
Lagrange multipliers for reconstruction loss. The GECO algorithm employs a reconstruction upper
bound as a hyperparameter to balance losses, with the tuning effect observed through reconstruction
quality (De Boom et al., 2021); however, manual selection of the balancing parameter remains
an issue. Introducing trainable dispersion parameters offers another method to balance the ELBO
objective’s terms (Lucas et al., 2019; Lin et al., 2019; Rybkin et al., 2021). This approach optimizes
dispersion parameters within the log-likelihood framework for generative modeling pθ(x) ≈ pD(x).
Rybkin et al. (2021) specifically explored this design, utilizing a global dispersion parameter γ. This
parameter, an analytically solved scalar value based on reconstruction loss, leads to stable training
and easily implemented models that enhance VAE decoder variances (Kingma & Welling, 2014).
However, the analysis’s applicability is restricted to general natural data due to reliance on isotropic
Gaussian decoders.

Structural similarity (SSIM) (Wang et al., 2004) is a widely-used index measuring image similarity,
differing from MSE loss in its consideration of natural image structure. Various indices, including
one by Reisenhofer et al. (2018) using the Haar wavelet, have been proposed for enhanced perfor-
mance (Wang & Li, 2011; Sheikh & Bovik, 2006; Zhang et al., 2011; Zhang & Li, 2012; Xue et al.,
2014; Zhang et al., 2014; Balanov et al., 2015; Reisenhofer et al., 2018; Ziaei Nafchi et al., 2016).
Several similarity indices based on deep convolutional neural networks (CNNs) have been proposed to
measure the “perceptual” similarity between images (Gatys et al., 2016; Zhang et al., 2018; Prashnani
et al., 2018; Ding et al., 2022). As deep learning (DL)-based image classifiers have demonstrated
high capability (Krizhevsky et al., 2012), their hidden features have been actively studied for an
application as a visual similarity measure. The hidden features of deep CNNs provide a perceptually
preferable metric (Zhang et al., 2018). Many methods use deep visual features as the measure of
the discrepancy between images in various ways, e.g., using shallow and deep layers separately
for evaluating the style and content of images (Gatys et al., 2016). In the VAE literature (Larsen
et al., 2016; Hou et al., 2019), dissimilarity functions in the DL framework have been used as a
reconstruction loss for practical use in forms such as adversarially trained metrics (Larsen et al., 2016)
and a metric based on pretrained visual features (Hou et al., 2019). Deep CNNs-based similarity
indices measure “perceptual” similarity between images (Gatys et al., 2016; Zhang et al., 2018;
Prashnani et al., 2018; Ding et al., 2022). DL classifiers’ hidden features are studied for visual
similarity, providing a perceptually preferable metric (Zhang et al., 2018). Various methods use these
features in different ways, such as evaluating style and content (Gatys et al., 2016). In VAE literature,
dissimilarity functions in the DL framework are used for practical reconstruction loss, including
adversarially trained metrics (Larsen et al., 2016).

6



Under review as a conference paper at ICLR 2024

10 3 10 2 10 1 100 101 102

Dispersion Parameter 

10.0

7.5

5.0

2.5

0.0

2.5

5.0

No
rm

al
izi

ng
 C

on
st

an
t C

(0
,

)

Asymptotic C(0, )
Exact C(0, )

Figure 1: A plot for the exact Cd(0, γ) (dashed, orange) and the asymptotic C̃d(0, γ) (solid, blue) in a
toy dissimilarity function d(x, 0) = 1−exp

(
−x2

)
+sin2 (10x) in a domain dom(d(·, 0)) = [−5, 5].

The asymptotic normalizing constant converges to the exact value as γ → 0.

6 EXPERIMENTS

We investigated the validity and effectiveness of the proposed distribution family EDDF for VAE
decoders in the vision domain. First, we study the validity of the asymptotic normalizing constant of
EDDF distributions. Second, for Viewpoint (i), we investigate the effectiveness of the log-expected
reconstruction loss in estimating the optimal dispersion. Third, for Viewpoint (ii), we evaluated how
the choice of the dissimilarity function d affects VAE models with EDDF decoders.

6.1 SETTINGS

We provide empirical studies for the validation and benefit of our approximated VAE optimization
method of EDDF decoders. We used small and simple convolutional NNs for all experimented VAE
models. The encoder comprises four convolution layers and two fully-connected layers, whereas the
decoder has the opposite architecture consisting of two fully-connected layers and four transposed
convolution layers. For all models, the number of latent units L is set to L = 16 in MNIST (LeCun
et al., 1998), and L = 64 in relatively complex datasets (CelebA (Liu et al., 2015), SVHN (Netzer
et al., 2011), Food-101 (Bossard et al., 2014), and CIFAR-10 (Krizhevsky & Hinton, 2009)). Fol-
lowing the benchmark in the literature (Dai & Wipf, 2019; Rybkin et al., 2021), we quantitatively
investigated the VAE models in the visual domain using several image datasets as presented in Table 2.
We evaluated the generative modeling of the experimented VAEs in the visual domain, using Fréchet
Inception Distance (FID) (Heusel et al., 2017) and Kernel Inception Distance (KID) (Bińkowski et al.,
2018).1 All images used in the experiments were resized to 64× 64 pixels. For CelebA (Liu et al.,
2015), we cropped 144 × 144 pixels in the center of the original images to remove backgrounds.
The implementation and evaluation of the models are based on PyTorch (Paszke et al., 2019) and
PIQ (Kastryulin et al., 2022).

6.2 RESULTS

Validity of Asymptotic Normalizing Constant. To validate the asymptotic normalizing con-
stant C̃d(m, γ) introduced in Eq. (20), we investigated a one-dimensional toy model with a non-
quadratic dissimilarity function. In this one-dimensional case, the data variable is a real scalar X = R,
where the exact normalizing constant can be numerically computed. For simplicity, we adopt the
zero value of the location parameter in this example, as presented in Fig. 1. The results of Fig. 1
illustrate the validity of the quadratic approximation even in a non-quadratic dissimilarity function, as
the asymptotic normalizing constant C̃d(0, γ) converges to the exact Cd(0, γ) in very small γ ≪ 1.
In a practical case, a run of the model with the log-expected reconstruction loss L≍

rec resulted in
γ = 0.095, which we believe to be sufficiently small for the asymptotic approximation. These results
suggest that the assumption γ ≪ 1 is suitable in the training process of VAEs.

1Note that the exact ELBO values are not available because an intractable constant is ignored in Eq. (24).
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Table 3: Comparison of different dispersion/weight tuning methods for VAEs. All the compared
models were trained using isotropic Gaussian decoders, producing a simple MSE reconstruction loss.
↓ means that lower values represent better performance.

MNIST SVHN CelebA Food-101 CIFAR-10

Dispersion γ / Weight β FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓

β-VAE, β = 0.001 95.17 0.1341 31.89 0.1138 65.51 0.0533 181.34 0.2558 87.61 0.1478
β-VAE, β = 0.01 89.54 0.1146 24.46 0.1030 57.41 0.0498 154.32 0.2524 81.92 0.1493
β-VAE, β = 0.1 70.75 0.0864 15.97 0.0897 48.98 0.0418 151.30 0.2436 72.89 0.1066
β-VAE, β = 1.0 33.41 0.0656 20.52 0.1199 81.77 0.0450 189.24 0.2406 86.70 0.1317
β-VAE, β = 10.0 34.68 0.1117 88.19 0.2028 179.59 0.0757 266.27 0.2386 176.89 0.2200
β-VAE, β = 100.0 334.55 0.5140 204.84 0.5465 312.18 0.1973 373.23 0.5207 325.98 0.4093

Trainable γ 75.54 0.0923 23.79 0.1079 58.40 0.0489 151.79 0.2444 74.62 0.1105
GECO (Rezende & Viola, 2018) 35.81 0.1191 38.97 0.0738 91.53 0.0556 185.20 0.2649 93.76 0.1039
σ-VAE (Rybkin et al., 2021) 82.56 0.1015 18.44 0.0952 53.66 0.0445 138.13 0.2298 73.61 0.1192

γ̃∗ via L≍
rec (Ours) 27.57 0.0858 34.17 0.1159 60.19 0.0511 136.81 0.2412 65.38 0.1696

(a) Input Images

(b) MSE

(c) Content Score

(d) Style Score

(e) LPIPS

Figure 2: Qualitative comparison of reconstructed images using different dissimilarity functions,
with columns corresponding to CelebA’s test set data points (Liu et al., 2015). The top row shows
ground-truth images, while subsequent rows display images reconstructed by EDDF decoders, with
dissimilarity functions noted on the left.

Effect of Log-Expected Dissimilarity Loss. To investigate the effect of the log-expected dissimilar-
ity loss in Eq. (24), we compared the generative performance of our EDDF-VAE with other dispersion
calibration methods in Table 3. All models reported in this subsection use isotropic Gaussian decoders
and EDDF with MSE to measure the effect of the implicit optimization of the dispersion parameter γ
by the log-expected dissimilarity loss. Although the manually tuned β achieved high performance,
the automatic tuning methods of dispersion γ compared favorably on several datasets, particularly
in two complex datasets Food-101 (Bossard et al., 2014) and CIFAR-10 (Krizhevsky & Hinton,
2009). In these results, the proposed method achieved performance similar to existing balance tuning
methods, even in a very simple MSE dissimilarity.

Selection of Dissimilarity Function. To examine how the choice of dissimilarity function affects
VAE models with EDDF decoders, we compared their reconstruction in Fig. 2 and generative
performance in Table 4. In these experiments, we used the dissimilarity functions, as discussed in
Section 5. The qualitative results of Fig. 2 suggest that the choice of dissimilarity indicates what
type of information is considered informative for the data variable. Compared with other models, the
reconstructed images of Style Score (Gatys et al., 2016) have completely distorted shapes of the faces
even though the local structures of the faces are preserved (e.g., the mouth-like object at the bottom
left). The distortion of position and the preservation of semantic parts imply that the choice of the
dissimilarity function determines what is preserved in the latent variable.

The quantitative results in Table 4 show that generative performance depends strongly on the choice
of dissimilarity function d and the domain of the dataset. Many hand-crafted dissimilarity functions
produced NaN gradients that terminated the training process on all datasets, probably due to the
function design being unsuitable for backpropagation (e.g., taking the square root of zero). We tried to
evaluate the functions on VIFp (Sheikh & Bovik, 2006), FSIM (Zhang et al., 2011), SR-SIM (Zhang
& Li, 2012), GMSD (Xue et al., 2014), VSI (Zhang et al., 2014), and DSS (Balanov et al., 2015) in
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Table 4: Quantitative comparison of EDDFs with different dissimilarity functions. – indicates that
the training was terminated unsuccessfully due to the NaN gradient value, and ↓ denotes a metric in
which lower values indicate better performance.

MNIST SVHN CelebA Food-101 CIFAR-10

Dissimilarity d FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓

MSE 27.57 0.0858 34.17 0.1159 60.19 0.0511 136.81 0.2412 65.38 0.1696
MAE 22.26 0.0579 31.98 0.1133 52.89 0.0495 149.69 0.2826 58.53 0.1158

Cross Entropy (CE) 28.54 0.0813 15.91 0.1316 71.44 0.0430 188.46 0.2839 109.90 0.1838
Cosine Similarity 25.95 0.0748 35.81 0.1201 59.69 0.0483 156.33 0.3064 68.74 0.1965

SSIM (Wang et al., 2004) 22.74 0.0589 31.83 0.0834 40.17 0.0496 168.92 0.3650 69.38 0.1461
IW-SSIM (Wang & Li, 2011) 91.34 0.3244 – – 217.41 0.3432 – – 191.63 0.3532

Content Score (Gatys et al., 2016) 76.41 0.3278 152.47 0.3028 78.22 0.0869 199.02 0.2315 156.68 0.1806
Style Score (Gatys et al., 2016) 200.88 0.5764 163.07 0.2876 237.74 0.2274 157.26 0.2265 145.30 0.1986

HaarPSI (Reisenhofer et al., 2018) 43.85 0.2539 290.12 0.4736 302.17 0.3509 330.97 0.3917 246.36 0.3351
LPIPS (Zhang et al., 2018) 67.59 0.3235 47.87 0.3048 25.57 0.0806 97.96 0.1636 43.66 0.1480

PieAPP (Prashnani et al., 2018) 370.99 0.5389 201.68 0.5006 387.40 0.6130 421.78 0.5927 327.23 0.5070
DISTS (Ding et al., 2022) 27.72 0.2974 44.84 0.1855 29.50 0.0607 84.59 0.1813 60.10 0.0980

MSE+LPIPS 21.03 0.1911 30.00 0.2597 22.69 0.0389 107.88 0.1739 57.51 0.1051
MAE+LPIPS 21.71 0.1244 38.86 0.2804 20.36 0.0266 109.45 0.1681 64.73 0.0742

Table 5: Comparison of various VAE-based methods, indicated by a downward arrow for metrics
where lower is better. Each method including ours was tuned using validation FID score. Se-
lected dissimilarity functions for datasets MNIST, SVHN, CelebA, Food-101, and CIFAR-10 were
MSE+LPIPS, CE, MAE+LPIPS, DISTS, and LPIPS, respectively (also see Table 4).

MNIST SVHN CelebA Food-101 CIFAR-10

Dispersion γ / Weight β FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓

VAE-GAN (Larsen et al., 2016) 40.63 0.2026 40.51 0.2332 34.86 0.0625 133.42 0.2389 64.40 0.1619
2-Stage VAE (Dai & Wipf, 2019) 62.24 0.1546 42.32 0.0885 100.48 0.0796 262.40 0.3249 105.64 0.1421

DFCVAE (Hou et al., 2019) 97.30 0.3839 108.37 0.3042 61.36 0.0637 173.43 0.2317 217.57 0.2063
Soft-IntroVAE (Daniel & Tamar, 2021) 29.86 0.0996 22.81 0.1462 113.00 0.0584 200.81 0.2552 104.32 0.1210

σ-VAE (Rybkin et al., 2021) 82.56 0.1015 18.44 0.0952 53.66 0.0445 138.13 0.2298 73.61 0.1192

Ours 21.03 0.1911 15.91 0.1316 20.36 0.0266 84.59 0.1813 43.66 0.1480

addition to the methods in Table 4; however, all of them output the NaN gradient value. Although
the DL-based dissimilarities in the lower part of Table 4 achieved high performance on relatively
complex datasets (e.g., CelebA), simple and classical dissimilarities such as MSE and cosine similarity
achieved better results than the DL-based dissimilarities, suggesting that the required strength of the
inductive biases depends on dataset complexity.

Effectiveness of Proposed Method. To investigate the effectiveness of our method, we quantita-
tively compared VAE based on EDDF decoders with existing extended VAE models in Table 5. The
methods differ in terms of their training objectives and procedures, whereas their models share the
identical architecture of encoder and decoder NNs. These quantitative results show that the proposed
decoder family and optimization method compare favorably with existing VAE-based approaches,
suggesting that it is effective to introduce domain-specific dissimilarity functions as an inductive bias
in a probabilistically consistent manner.

7 CONCLUSION

We have proposed a novel probabilistic distribution family EDDF for VAE decoders and an approxi-
mated optimization method. The EDDF distributions with domain-specific dissimilarity functions
work as strong inductive biases for complex high-dimensional data while preserving the probabilistic
framework of VAEs. The experiments in the vision domain show the effect of our method. This
investigation extends the frontiers of VAEs, a critical axis within the generative modeling paradigm,
which also encompasses GANs and diffusion models. Our sophisticated application of exponential
family distributions could have far-reaching implications, potentially enhancing the fidelity of sample
synthesis and the granularity of diffusion process regulation in these complementary generative
frameworks.
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A THE PROOF OF EQUATION (20)

The second-order Taylor expansion in Eq. (19) induces the proof of Eq. (20).

Proof.

Cd(m, γ)

= − log

∫
dom(d(·,m))

exp

[
−d(x,m)

γ

]
dx (26)

= − log
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+
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dδ (27)

= − logEN (δ|γH−1
m )
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−f(δ)

γ
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2
log det

Hm

2πγ

)]
(28)

where δ denotes the deviation δ := x−m. Applying Jensen’s inequality to this equation, as γ → +0,
we obtain

Cd(m, γ) ≤ EN (δ|γH−1
m )

[
f(δ)

γ
+

1

2
log det

Hm

2πγ

]
(29)

= C̃d(m, γ) + EN (δ|γH−1
m )

[
f(δ)

γ

]
(30)

= C̃d(m, γ) + EN (δ′|H−1
m )

[
f(γ1/2δ′)

γ

]
(31)

= C̃d(m, γ) + EN (δ′|H−1
m )

[
O(∥γ1/2δ′∥3)

γ

]
(32)

= C̃d(m, γ) +O(γ1/2), (33)

where δ′ := γ−1/2δ. Eq. (20) follows from this inequality.

B DETAILS OF RELATED WORKS

Our method is based on the literature of VAEs, and we aim to improve their model settings for
naturally observed high-dimensional data, using the vision domain as an example.

B.1 COMPARED METHODS

We performed experimental comparisons with several existing related works in Section 6. We
first compared our methods with the tuning methods of a weight β or a dispersion γ in VAEs,
and then performed our method with existing VAE-based generative models. The definitions of
the reconstruction loss Lrec and the regularization loss Lreg follow those of the original VAE as
introduced in Section 2.

B.1.1 WEIGHT/DISPERSION TUNING METHODS

β-VAE (Higgins et al., 2017a). Higgins et al. (2017a) have assigned a weight coefficient β to the
regularization term of the ELBO objective to learn a factorized latent variable. The factorization
of the latent variable implies that each independent entry of the latent variable contains a single
generative factor of variation, where humans can interpret a latent representation by reading the
value of each entry. As the β-VAE objective given in Eq. (8), the weight parameter β steers the
balance of the reconstruction and regularization in VAE models. High β encourages the element-wise
independence of the latent variable z, and low β indicates precise reconstruction. Along with the
experimental evaluations in (Higgins et al., 2017a), the performance of generative modeling or
learning representations is sensitive to β, prompting several studies to calibrate β through training
rather than hyperparameter tuning. In addition, from the viewpoint of the information bottleneck
method (Tishby et al., 1999; Alemi et al., 2018), it rather means the rate-distortion tradeoff in which
higher β encourages the latent variable z to forget the information on the data variable x.
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GECO (Rezende & Viola, 2018). GECO is a prominent approach to the intuitive tuning of the
weight β based on a reconstruction error constraint C(x, x̂θ(z)). The objective of GECO is the
Lagrangian Lλ containing the sum of the constraint and the regularization term, given as follows:

Lλ = Lreg + λTEpD(x)qϕ(z|x) [C(x, x̂θ(z))] , (34)

where λ denotes a vector of the Lagrange multipliers that has an identical shape with the con-
straint C(x, x̂θ(z)). If it is a scalar-valued constraint case, the Lagrangian λ is equivalent to the
weight λ = 1

β in β-VAE. The constraint is a reconstruction loss with a hyperparameter threshold κ,
typically given as follows:

C(x, x̂θ(z)) = ∥x− x̂θ(z)∥22 − κ2. (35)

The GECO algorithm optimizes this constraint in a min-max scheme, where the autoencoding
parameters θ and ϕ minimize the objective Lλ, and the Lagrange multipliers λ maximize Lλ. The
regularization is thus maximized, whereas the reconstruction loss is maintained approximately to
κ. Although the value of β is difficult to interpret by observing the properties of the latent space,
the GECO method enables tuning the reconstruction–regularization balance based on the threshold
hyperparameter κ of the reconstruction loss.

Gaussian decoder VAEs with variance γ. Several studies (Lucas et al., 2019; Lin et al., 2019;
Rybkin et al., 2021) have highlighted the correspondence between a decoder variance parameter γ in
Gaussian decoders and the weight hyperparameter β in β-VAE. A Gaussian decoder with the global
variance γ is introduced as follows:

pθ(x|z) = N (x|x̂θ(z), γIL), (36)

The reconstruction loss induced by this setting is equivalent to the weight parameter β with regard to
the autoencoding parameters (θ,ϕ), as confirmed below:

∇θ,ϕ[Lrec + Lreg] = ∇θ,ϕ

(
Eqϕ(x,z) [logN (x|x̂θ(z), γIL)] + Lreg

)
(37)
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2
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(40)
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1

γ
·
[
Lβ

∣∣∣
β=γ

]
, (41)

where Lβ denotes the β-VAE objective in Eq. (8). This approach enables the probabilistic interpreta-
tion of β-VAE, where the weight β or the variance parameter γ represents the degree of the error in
estimating the decoding process pθ(x|z).

σ-VAE (Rybkin et al., 2021). Rybkin et al. (2021) have proposed a calibration method for the
global variance parameter γ in VAEs with Gaussian decoders. They have obtained the optimal
variance value using the partial derivative of the ELBO objective with regard to the global variance γ
as follows:

∇γL = ∇γLrec (42)

= ∇γ

(
1

γ
Eqϕ(x,z)

[
1

2
∥x− x̂θ(z)∥22

]
+

M

2
log 2πγ

)
(43)

= − 1

γ2
Eqϕ(x,z)
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2
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]
+

M

2γ
(44)

The equation ∇γL = 0 produces the optimal variance γ∗, given as

γ∗ =
2

M
Eqϕ(x,z)

[
1

2
∥x− x̂θ(z)∥22

]
. (45)
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σ-VAE uses this optimal value γ∗ and favorably compares with VAEs with other variance settings
including trainable variance and per-pixel variance. The hyperparameter settings experiments in
this paper, other than those described in Section 6.1, follow the settings provided by the authors.
Specifically, the settings for MNIST and SVHN are: batch size: 128, epoch: 10, learning rate: 10−3.
However, 30,000 steps for CIFAR-10 and Food-101, 40,000 steps for CelebA.

B.1.2 VARIATIONAL AUTOENCODING GENERATIVE MODELS

DFCVAE (Hou et al., 2019). Hou et al. (2019) have proposed DFCVAE, a VAE-based model
utilizing the hidden features of pretrained image classification models instead of the per-pixel MSE
loss. This method replaces the reconstruction loss with the perceptual loss as follows:

Lrec =
1

2Nlayer

Nlayer∑
l=1

1

C(l)H(l)W (l)

C(l)∑
c=1

H(l)∑
i=1

W (l)∑
j=1

[
x
(l)
c,h,w − x̂

(l)
c,h,w(z)

]2
, (46)

where x
(l)
c,h,w and x̂

(l)
c,h,w(z) denote the hidden features of x and x̂θ(z) at the (h,w)-th entry of the

l-th layer, respectively. The hidden features consist of Nlayer layers, and the l-th layer contains H(l)×
W (l)-sized feature maps with C(l) channels (l = 1, 2, . . . , Nlayer). Although the original authors
have reported better generative results in the vision domain, the balance between the reconstruction
and regularization terms remains an issue because the perceptual loss in Eq. (46) simply takes the
mean of hidden features with the degree of freedom in its scale. In this paper, the hyperparameter
settings for experiments, except those described in Section 6.1, were based on the settings provided
by the authors. Specifically, the following parameters were used for all datasets: β = 1, batch size:
128, number of epochs: 100, learning rate: 10−3 (exponentially decayed to 10−4 during the training
process of epochs).

VAE-GAN (Larsen et al., 2016). Larsen et al. (2016) have proposed VAE-GAN, a hybrid model of
VAEs and generative adversarial networks (GANs). The VAE-GAN model introduces a discriminator
for a metric of the reconstruction term, and the VAE-GAN objective comprises three losses LEnc,
LDec, and LDis respectively for the encoder, decoder, and discriminator networks. These three losses
are given as follows:

LEnc = Lreg + Lrec, (47)
LDec = γLrec − LGAN, (48)
LDis = LGAN, (49)

where LGAN denotes an adversarial loss using the discriminator Dis(·), given as

LGAN = EpD(x) [logDis(x)] + Eqϕ(z) [logDis(x̂θ(z))] + Eπ(z) [log(1−Dis(x̂θ(z)))] . (50)

In VAE-GAN models, the reconstruction loss Lrec contains the MSE of hidden features in the
discriminator as well as that of the data variable. In this paper, the hyperparameter settings for
experiments, except those described in Section 6.1, were based on the settings provided by the
authors. Specifically, the following parameters were used for all datasets: β = 1, γ = 1, batch size:
128, number of epochs: 100, learning rate: 10−3 (exponentially decayed to 10−4 during the training
process of epochs).

2-Stage VAE (Dai & Wipf, 2019). Dai & Wipf (2019) have diagnosed VAE models theoretically
and proposed 2-Stage VAE, an improved VAE framework based on two stages of the training process.
In the first stage, a preliminary representation is learned in a Gaussian VAE. The aggregated posterior
of this preliminary representation does not always match the prior, as qϕ(z) ̸≈ π(z) in the standard
VAE. To address this issue, a second VAE is trained using the samples of the preliminary representation
as an observation variable. Thus, the latent representation is learned in the latent variable of the
second VAE. The training process consisting of these two stages improves the generative quality of
VAEs by matching the aggregated posterior qϕ(z) and the prior π(z) in the second stage of training.
In this paper, the hyperparameter settings for experiments, except those described in Section 6.1,
were based on the settings provided by the authors. Specifically, the following parameters were used
for all datasets: batch size: 128, number of epochs: 100, learning rate: 3e-4.
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Soft-IntroVAE (Daniel & Tamar, 2021). Daniel & Tamar (2021) have proposed Soft-IntroVAE, a
VAE-based adversarial generative model using its encoder as a discriminator. Although the main idea
of adversarial VAEs using their encoder had been proposed in (Huang et al., 2018), the training with
its hinge loss is practically difficult to stabilize. To solve this problem, Soft-IntroVAE maximizes
smooth exponential objectives, where an encoder objective LEnc and a decoder objective LDec are
maximized adversarially as follows:

LEnc = LELBO(x)−
1

α
exp(αLELBO(x̂θ(z))), (51)

LDec = LELBO(x) + γLELBO(x̂θ(z)), (52)
where (x, z) ∼ qϕ(x, z), and α = 2 and γ = 1 in the original authors’ settings (Daniel & Tamar,
2021) In this paper, the hyperparameter settings for experiments, except those described in Section 6.1,
were based on the settings provided by the authors. Specifically, the following parameters were used
for all datasets: βkl = 1, βrec = 1, γr = 10−8, batch size: 128, number of epochs: 100, learning
rate: 2e-4.

B.2 DISSIMILARITY FUNCTIONS FOR VISUAL DOMAIN

In this subsection, we introduce the dissimilarities d mentioned in Section 6, adopted for the vision
domain as investigated in the image quality assessment (IQA) field. Deviating from the original
definition, several dissimilarities are multiplied by −1 and constants are added to satisfy the non-
negativity in Eq. (12). Let x and m denote the variable under comparison, and M the number of
their elements. In the EDDF density, x and m correspond to the reference and distorted images,
respectively.

B.2.1 CLASSICAL DISSIMILARITIES

Mean squared error (MSE). MSE is a commonly adopted loss function of general variables, given
as follows:

d(x,m) =
1

M
∥x−m∥22. (53)

This loss is equivalent to the squared L2 norm up to the coefficient 1
M .

Mean absolute error (MAE). MAE is another well-known loss function of general variables, given
as follows:

d(x,m) =
1

M
∥x−m∥1. (54)

As in the MSE loss, this is equivalent to the L1 norm up to 1
M .

Cross entropy (CE). The cross entropy loss is an oft-used loss function for binary variables, given
as follows:

d(x,m) = −
M∑
i=1

xi logmi −
M∑
i=1

(1− xi) log(1−mi), (55)

where xi and mi denote the i-th entry (i = 1, 2, . . . ,M ) of x and m, respectively.

Cosine Similarity. The cosine similarity is also a well-known similarity function that compares the
direction of variables, given as follows:

d(x,m) = 1− xTm

∥x∥2∥m∥2
. (56)

B.2.2 DISSIMILARITY INDICES BASED ON HAND-CRAFTED FEATURES

Structural similarity (SSIM) (Wang et al., 2004). SSIM is a similarity function for assessing the
image quality, transformed into a dissimilarity function as follows:

d(x,m) = 1− (2µxµm + c1)(2σx,m + c2)

(µ2
x + µ2

m + c1)(σ2
x + σ2

m + c2)
, (57)
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where µ· and σ· respectively denote the mean and (co)variance in the window of the image denoted
by the subscript, c1 = (0.01L)2, c2 = (0.03L)2, and L denotes the dynamic range of the images.
Because SSIM is a bounded function with the range [0, 1], we used it as a dissimilarity function
1− SSIM. SSIM has many derived methods for measuring similarity in the image quality assessment
(IQA) task (Wang & Li, 2011; Sheikh & Bovik, 2006; Zhang et al., 2011; Zhang & Li, 2012; Xue
et al., 2014; Zhang et al., 2014; Balanov et al., 2015). We present these methods to provide the
comparison details of Table 4.

IW-SSIM (Wang & Li, 2011). IW-SSIM is an extended similarity function based on SSIM (Wang
et al., 2004), introducing the idea of information content-weighted pooling. The computation of
IW-SSIM is based on the mutual information between input signals and their perception channels.

VIFp (Sheikh & Bovik, 2006). VIFp is a similarity function proposed in Sheikh & Bovik (2006),
based on the ratio of distorted and reference image information. These two types of image information
are computed by the mutual information between the input and output of the human visual system
(HVS) channel. The HVS channel is based on the visual perception of humans, enabling the
measurement of image fidelity based on information that humans can perceive.

FSIM (Zhang et al., 2011). FSIM is an image similarity index based on low-level image features
with which the HVS understands images. The FSIM function consists of two parts: phase congruency
and image gradient magnitude. These two parts complementarily function as the features of FSIM,
where the phase congruency part primarily measures the significance of local structures, and the
image gradient magnitude part secondarily captures contrast information.

SR-SIM (Zhang & Li, 2012). SR-SIM is a visual similarity function based on spectral residual
visual saliency. This similarity function assumes that visual saliency maps have a close relation to the
quality of human perception, and the similarity is a weighted sum of local similarities by the spectral
residual visual saliency map proposed by Hou & Zhang (2006).

GMSD (Xue et al., 2014). GMSD is an IQA index based on the global variation of spacial
gradient-based local quality maps, considering the sensitivity of image gradients to visual distortion.
It measures the per-pixel similarity of image gradient magnitudes and uses a pooling method to
estimate the standard deviation of the gradient magnitude similarity. The original paper (Xue et al.,
2014) reported that these strategies yield a fast running time compared with other similarity indices,
including SSIM (Wang et al., 2004), IW-SSIM (Wang & Li, 2011), and VIFp (Sheikh & Bovik,
2006).

VSI (Zhang et al., 2014). VSI is a visual similarity index based on visual saliency, a crucial part of
the HVS for the IQA field. This index uses visual saliency in its computation, which plays a key role
in the prediction performance in measuring image quality.

DSS (Balanov et al., 2015). DSS is an image similarity index based on the subbands of the discrete
cosine transform (DCT). The DSS index measures the structural changes in the DCT domain, where
signals of different frequencies can be separately compared. Although the computation cost of DSS
is higher than those of simpler similarity indices, such as PSNR and SSIM, the DSS achieves better
performance in the IQA task (Balanov et al., 2015).

HaarPSI (Reisenhofer et al., 2018). HaarPSI is an image similarity measure established upon
the Haar wavelet-based perceptual similarity. HaarPSI is computationally inexpensive because
the Haar wavelets can be efficiently computed (Stanković & Falkowski, 2003), and the original
paper (Reisenhofer et al., 2018) has reported that HaarPSI had achieved a better correlation with
human quality assessment and moderately fast computation than other image quality indices.

B.2.3 DEEP LEARNING (DL)-BASED DISSIMILARITIES

Content and Style Scores (Gatys et al., 2016). Content Score and Style Score have been proposed
by Gatys et al. (2016) for the style transfer task using pretrained convolutional neural networks
(CNNs). To control the artistic style of images, Gatys et al. (2016) separate and recombine the content
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Table 6: Model architecture of encoders for the neural networks (NNs) µϕ and logσϕ. Conv
means a convolution layer, and FC denotes a fully-connected layer. We applied the GELU activa-
tion (Hendrycks & Gimpel, 2016) to the output of each layer, except the last layer, and used batch
normalization after each convolution layer.

Layer Input Output Settings

Inverse sigmoid function σ−1

Conv 3× 64× 64 32× 32× 32 kernel 4× 4, stride 2, padding 1
Conv 32× 32× 32 64× 16× 16 kernel 4× 4, stride 2, padding 1
Conv 64× 16× 16 128× 8× 8 kernel 4× 4, stride 2, padding 1
Conv 128× 8× 8 256× 4× 4 kernel 4× 4, stride 2, padding 1
FC 4096 256
FC 256 L for each of µϕ and logσϕ

and style information of images, based on the hidden features of pretrained CNNs. In this method,
they use separate losses to match content and style, where such losses can also be used for the image
assessment from different perspectives. These losses are constructed based on the CNNs, which have
tractable gradients and smoothness for applying stochastic gradient descent.

LPIPS (Zhang et al., 2018). LPIPS is a DL-based image similarity metric that uses the features
of pretrained CNNs as a perceptual metric space. LPIPS measures the perceptual distance between
images using the weighted mean of hidden CNN features. Hidden features are provided by pretrained
image classification networks, such as the VGG networks (Simonyan & Zisserman, 2015). The
original paper (Zhang et al., 2018) has reported that LPIPS outperforms traditional shallow similarities
such as SSIM in perceptual tasks and the IQA.

PieApp (Prashnani et al., 2018). PieAPP is an image-error assessment index based on learning
pair-wise preference. The pair-wise preference is annotated by humans and contains the preference
of humans between images distorted in different ways, which becomes the target variable of learning
PieAPP (Prashnani et al., 2018). The original paper (Prashnani et al., 2018) has reported its effective-
ness in the IQA task over traditional similarities including SSIM and several DL-based methods such
as LPIPS (Zhang et al., 2018).

DISTS (Ding et al., 2022). DISTS is an IQA similarity based on structure and texture, that uses
injective and differentiable CNNs for measuring distortion with beneficial gradients in their feature
maps. It has been reported by Ding et al. (2022) that the IQA performance of DISTS compares
favorably with those of other similarity indices such as LPIPS. The original paper of DISTS (Ding
et al., 2022) has also reported the effectiveness of DISTS in texture classification tasks and its
insensitivity to mild geometric transformations.

C ARCHITECTURE DETAILS

We used the encoder architecture shown in Table 6 and the decoder architecture in Table 7 in all
models experimented. These architectures are simple and lightweight networks consisting of the
fully-connected, convolution, and transposed convolution layers. We trained each of these variational
autoencoder (VAE) networks using the Adam (Kingma & Ba, 2015) optimizer with a learning rate of
10−3, exponentially decayed into 10−4 during the training process of 100 epochs. A single run of
VAEs with this architecture took approximately an hour in a single GPU of GeForce® RTX 2080
Ti™, which is considerably less computationally expensive than adversarial approaches.
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Table 7: Model architecture of decoders for the NN x̂θ(z). TrConv means a transposed convolution
layer, and FC denotes a fully-connected layer. We applied the GELU activation (Hendrycks & Gimpel,
2016) to the output of each layer, excluding the last layer, and used batch normalization after each
transposed convolution layer, except for the last one.

Layer Input Output Settings

FC L 256
FC 256 4096

TrConv 256× 4× 4 128× 8× 8 kernel 4× 4, stride 2, padding 1
TrConv 128× 8× 8 64× 16× 16 kernel 4× 4, stride 2, padding 1
TrConv 64× 16× 16 32× 32× 32 kernel 4× 4, stride 2, padding 1
TrConv 32× 32× 32 3× 64× 64 kernel 4× 4, stride 2, padding 1

Sigmoid activation σ

D DATASET DETAILS

As shown in Table 2, we used several vision datasets including various backgrounds, where all images
were resized to 64 × 64 pixels for experiments for a fair comparison between datasets. For the
experiments, we used the torchvision2 implementation for the five datasets presented below.

MNIST (LeCun et al., 1998). The MNIST dataset consists of 70,000 binary images of hand-written
numerical digits with class labels ranging from 0 to 9. The original author provides 60,000 of these
images as the training set and 10,000 as the test set separately. We further divided the training set
into 54,000 for training and 6,000 for validation randomly. The original dataset is available online.3

SVHN (Netzer et al., 2011). The SVHN dataset comprises color digit images obtained from house
numbers, with the training set containing contains 73,257 images and the test set comprising 26,032
images. Each of these images has a class label that corresponds to the digit located in the center of
the image, whereas some of the images contain peripheral digits other than the center digit. The
original author provides this dataset online.4

CelebA (Liu et al., 2015). CelebA is a color image dataset containing 202,599 celebrity face
images with 40 binary attributes for each. The original author provides a data split online,5 which
includes 162,770 images for the training set, 19,867 images for the validation set, and 19,962 images
for the test set. The original author provides this dataset online.6 Although the original resolution is
178× 218 pixels, we further cropped the center 144× 144 pixels of each image for the experiments.

Food-101 (Bossard et al., 2014). The Food-101 dataset comprises color food images of 101
categories, totaling 101,000 images. We randomly split them into 68,175 images for the training
set, 7,575 images for the validation set, and 25,250 images for the test set. Although this dataset
may contain images with inaccurate category labels as the original author mentioned (Bossard et al.,
2014), such noise does not affect the experiments in this paper because we evaluated the unsupervised
models. The original dataset is available online.7

CIFAR-10 (Krizhevsky & Hinton, 2009). The CIFAR-10 dataset consists of 60,000 color images
with 10 categories of vehicles and animals. Although this dataset originally contains 50,000 training
images and 10,000 test images, we randomly select 5,000 images from the original training set to
create a validation set. CIFAR-10 is a more complex dataset than the aforementioned datasets because

2https://github.com/pytorch/vision
3http://yann.lecun.com/exdb/mnist/
4http://ufldl.stanford.edu/housenumbers/
5https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
6https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
7https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/
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it contains a wide range of categories, and hence, its images are not positionally aligned. The original
dataset is available online.8

E EVALUATION INDEX DETAILS

Using the Inception-v3 (Szegedy et al., 2016) features trained in ImageNet (Deng et al., 2009),
Fréchet Inception Distance (FID) is defined as the 2-Wasserstein distance of real and generated image
features, as follows:

FID = ∥µgen − µreal∥22
+ tr

(
Σgen +Σreal − 2Σ1/2

genΣrealΣ
1/2
gen

)
, (58)

where (µgen,Σgen) denote the Inception-v3 feature mean and covariance of the generated images, and
(µreal,Σreal) represent those of real images. Kernel Inception Distance (KID) is another approach
for evaluating the generative performance using the squared maximum mean discrepancy (MMD)
estimator with a third-order polynomial kernel function k instead of the 2-Wasserstein distance, as
follows:

KID = Epgen(f)Epgen(f ′) [k(f, f
′)]

+ Epreal(f)Epreal(f ′) [k(f, f
′)]

− 2Epgen(f)Epreal(f ′) [k(f, f
′)] , (59)

where pgen and preal denote the Inception-v3 feature distributions of the generated and real images,
respectively.

F QUALITATIVE RESULTS

In addition to the quantitative evaluations in Tables 3 and 5, we compared the proposed method
with existing variational autoencoding models on reconstruction and generation in Figs. 3 and 4,
respectively. In Fig. 3, VAEs with exponential dissimilarity-dispersion family (EDDF) decoders
denoted by “Ours” appears to have retained the style and details of the input images, especially on
relatively complex datasets such as Food-101 and CIFAR-10. Although DFCVAE (Hou et al., 2019)
also reconstructed detailed edges using the pretrained CNN, the reconstruction does not appear to
retain global style such as overall color. In Fig. 4, VAEs based on the proposed method successfully
generated unseen images. Compared with other VAE-based methods, the generated image samples
using the proposed method seems to inhibit over-smoothing frequently observed in VAEs due to
stochastic training.

G EMPIRICAL VALIDATION OF “WELL-TRAINED AUTOENCODER”
ASSUMPTION

To investigate the validity of the “well-trained autoencoder” assumption γ ≪ 1 made in Section 4, we
present the curve of the approximated calibrated dispersion γ̃∗ in several runs of the proposed method
in Fig. 5. Although there was a slight tendency of overfitting, their values diverged to small values on
the order of 10−2. These results suggest that the global dispersion γ is small even in high-dimensional
natural data, as theoretically shown by Dai & Wipf (2019). Therefore, the “well-trained autoencoder”
assumption is suitable for practical cases, at least in the vision domain.

8https://www.cs.toronto.edu/~kriz/cifar.html
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(b) SVHN (Netzer et al., 2011).
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(c) CelebA (Liu et al., 2015).
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(d) Food-101 (Bossard et al., 2014).
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(e) CIFAR-10 (Krizhevsky & Hinton, 2009).

Figure 3: Qualitative comparisons in terms of reconstruction. The images on the “Input Images” rows
represent the images input into the models shown below these rows. Each column corresponds to
a sample of the test set. The words in parentheses appended to “Ours” represent the dissimilarity
function selected through FID validation, and “CE” denotes the Cross Entropy dissimilarity.
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(a) MNIST (LeCun et al., 1998).
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(b) SVHN (Netzer et al., 2011).
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(c) CelebA (Liu et al., 2015).
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(d) Food-101 (Bossard et al., 2014).

1 2 3 4 5
Index in Generated Samples

-VAE

DFCVAE

GECO

-VAE

Soft-IntroVAE

2-Stage VAE

VAE-GAN

Ours (LPIPS)

M
et

ho
ds

(e) CIFAR-10 (Krizhevsky & Hinton, 2009).

Figure 4: Qualitative comparisons in terms of generation. Each image sample is independently drawn
from the generative model pθ(x). To draw samples, we first drew a latent sample from the prior π(z)
and then obtained an image sample using the decoder (generator) of the model corresponding to the
row. Quantitative comparisons are shown in Table 5.
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(b) SVHN (Netzer et al., 2011).
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(c) CelebA (Liu et al., 2015).
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(e) CIFAR-10 (Krizhevsky & Hinton, 2009).

Figure 5: Curves of the approximated dispersion γ̃∗ implicitly learned via the log-expected dissim-
ilarity loss L≍

rec. The curves “Training” and “Validation” denote the γ̃∗ values of the training and
validation sets, respectively.
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