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Abstract

This paper questions the effectiveness of a modern predictive uncertainty quantifi-
cation approach, called evidential deep learning (EDL), in which a single neural
network model is trained to learn a meta distribution over the predictive distribu-
tion by minimizing a specific objective function. Despite their perceived strong
empirical performance on downstream tasks, a line of recent studies by Bengs et al.
identify limitations of the existing methods to conclude their learned epistemic un-
certainties are unreliable, e.g., in that they are non-vanishing even with infinite data.
Building on and sharpening such analysis, we 1) provide a sharper understanding
of the asymptotic behavior of a wide class of EDL methods by unifying various
objective functions; 2) reveal that the EDL methods can be better interpreted as
an out-of-distribution detection algorithm based on energy-based-models; and 3)
conduct extensive ablation studies to better assess their empirical effectiveness with
real-world datasets. Through all these analyses, we conclude that even when EDL
methods are empirically effective on downstream tasks, this occurs despite their
poor uncertainty quantification capabilities. Our investigation suggests that incor-
porating model uncertainty can help EDL methods faithfully quantify uncertainties
and further improve performance on representative downstream tasks, albeit at the
cost of additional computational complexity.1

1 Introduction

Accurate estimation of uncertainty in the prediction becomes more crucial to enhance the reliability
of a predictive model, especially for high-stake applications such as medical diagnosis [1, 2]. Among
several approaches proposed, a class of uncertainty estimation methods under the category of
evidential deep learning (EDL) has recently gained attention [3], due to their claimed advantages
over other methods. EDL methods typically learn a single neural network that maps input data to
the parameters of a meta distribution, which is a distribution over the predictive distribution. The
EDL methods generally claim the following advantages. (1) Computational efficiency: they bypass
the expensive sampling costs associated with Bayesian or ensemble-based methods by training a
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single neural network and estimating uncertainty with a single forward pass. (2) Promising empirical
performance: they achieve superior results on downstream uncertainty quantification (UQ) tasks,
particularly in detecting out-of-distribution (OOD) data. (3) Ability to quantify different uncertainties:
EDL methods can quantify distributional uncertainty versus aleatoric uncertainty, by representing
them as the spread and mean of an estimated meta distribution over the prediction, respectively.

Despite the above benefits, a line of recent works has reported theoretical limitations and pitfalls
of uncertainties learned by EDL methods, including the issue of non-vanishing distributional un-
certainty [4], a possibility of non-existence of proper scoring rules for meta distributions [5], and a
gap between learned uncertainty and an ideal meta distribution [6]. While these works call for the
attention of the UQ community for the raised issues, a comprehensive theoretical understanding of
the learned uncertainties from this type of UQ model is still lacking, as the existing analyses focus on
a restricted subset of objective functions in the literature. Moreover, they did not explain the empirical
success of the EDL methods at downstream tasks, such as OOD detection, despite such issues.

In this paper, we provide a simpler and sharper theoretical characterization of what is being learned
by representative EDL methods, and re-examine the empirical success of the EDL methods based on
the analysis. More concretely, our contributions are threefold:

1. Theoretical Analysis: In Sec. 4, we provide a unifying perspective on several representative EDL
methods proposed in the literature, establishing an exact characterization of the optimal meta
distribution defined by existing methods. This reveals that existing methods enforce the meta
distribution to fit a sample-size-independent target distribution (Theorem 5.1). This analysis covers
a wider class of objective functions and modalities, and is sharper than the prior analyses [4, 6].

2. Empirical Investigation: In Sec. 5, we further provide empirical evidence to point out the
fundamental limitations of the learned uncertainties by EDL methods, and present several findings
showing that existing EDL methods are essentially OOD detectors and hence exhibit their pitfalls.

3. Insights and Solutions: In Sec. 6, we explain why model uncertainty seems inevitable for faithful
UQ and how we can improve the EDL method accordingly. We propose a new model uncertainty
based on the idea of bootstrap, and demonstrate that an EDL model can well distill its behavior
and achieve superior UQ downstream task performance compared to the existing methods.

2 Related Work

We summarize the literature that is closely aligned with the scope of this paper. We refer the reader
to Sec. B in Appendix for an overview of classical UQ literature and a recent survey paper [3] for a
comprehensive review of EDL methods.

EDL Methods. EDL methods, mainly applied in classification settings, utilize a single neural network
to model Dirichlet distributions over label distributions, which can be divided into three categories. (1)
OOD-data-dependent methods: Earlier works such as Forward Prior Network [7], and Reverse Prior
Network [8, 9], proposed to train a model to output sharp Dirichlet distribution for in-distribution
(ID) data and flat Dirichlet distribution for OOD data. (2) OOD-data-free methods: Subsequently,
several methods without OOD data were proposed with various training objectives, including the
MSE loss with reverse Kullback–Leibler (KL) regularizer [10, 11], the “VI” loss [12, 13, 14], and the
“UCE” loss [15]. (3) Distillation based methods: are motivated by training a single model to mimic
the behavior of classical UQ approaches, including END2 [16] that emulates ensemble method, and
S2D [17] that emulates (Gaussian) random dropout method. EDL methods have also been explored
for regression problems [18, 19, 20].

Critiques of EDL Methods. Recently, several works have raised concerns about the quality of
uncertainty learned by EDL methods. Bengs et al. [4] pointed out the learned distributional uncertainty
does not vanish even in the asymptotic limit of infinite training samples. Bengs et al. [5] provided
further theoretical arguments for why a proper scoring rule for learning the meta distribution might
not exist. More recently, Jürgens et al. [6] argues that the learned uncertainty by EDL methods is
inconsistent with a reference distribution. In a similar spirit to these critiques, we offer a sharper
analysis to characterize the exact behavior of EDL methods. Our analysis can subsume, generalize,
and simplify the existing analyses. See Appendix A for a more in-depth review of these works.
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3 Problem Setting and Preliminaries

In the predictive modeling, we aim to learn the label distribution p(y|x) over Y using data D =
{(xi, yi)}Ni=1 drawn from an underlying data distribution p(x)p(y|x) over X × Y . Here, Y is a
label set; Y = [C] := {1, . . . , C} for classification for some C ≥ 1 and Y = R for regression.
∆C−1 denotes the probability simplex over [C]. In addition to accurately learning the conditional
distribution ηy(x) := p(y|x), we wish to quantify “uncertainty” of the learned prediction. We focus
on classification in this paper, but some of our analyses also apply to certain existing EDL methods
for regression [19, 20]. For the sake of clarity, we defer all related discussion on regression and
beyond to Appendix F.

Bayesian and Ensemble-based Approaches. Different UQ methods define predictive uncertainties
based on different sources of randomness. The Bayesian approach is arguably the most widely studied
UQ approach, in which a parametric classifier p(y|x, ψ) is trained via the Bayesian principle, and
inference is performed with the predictive posterior distribution p(y|x,D) :=

∫
p(y|x, ψ)p(ψ|D) dψ,

where p(ψ|D) is the model posterior distribution, induced by the prior p(ψ) and likelihood p(D|ψ).
Ensemble-based methods assume a different distribution p(ψ|D) to generate random models given
data, e.g., training neural networks with different random seeds. As alluded to earlier, both Bayesian
and ensemble approaches are computationally demanding due to the intractability of p(ψ|D) and the
need for computing the integration over ψ. Moreover, p(y|x,D) can capture aleatoric uncertainty
(or data uncertainty), and the amount of spread over p(y|x, ψ) induced by the model uncertainty of
p(ψ|D) is regarded as epistemic uncertainty (or knowledge uncertainty) for its prediction.

EDL Approach. The EDL approach further decomposes the predictive posterior distribution
as p(y|x, ψ) =

∫
p(π|x, ψ)p(y|π) dπ, where p(π|x, ψ) is a meta distribution (or called second-

order distribution [4, 5]) over the prediction at x, and p(y|π) is a fixed likelihood model. For
classification, π ∈ ∆C−1 is a probability vector over C classes, p(y|π) = πy is the categorical
likelihood model, and p(π|x, ψ) is a distribution over the simplex ∆C−1. Oftentimes, p(π|x, ψ)
is chosen as a conjugate prior of the likelihood model p(y|π), like the Dirichlet distribution
for classification [7, 8, 13, 15, 20], but sometimes not [10, 18, 11]. Given the full decomposi-
tion, p(y|x,D) =

∫∫
p(y|π)p(π|x, ψ)p(ψ|D) dψ dπ, the uncertainty captured in p(y|π) is called

aleatoric uncertainty, in p(π|x, ψ) is called distributional uncertainty, a kind of epistemic uncertainty.
However, EDL methods often assume the best single model ψ⋆ learned with data D, without any
randomness in p(ψ|D), or formally setting it to be δ(ψ − ψ⋆) [7, 3]. It then aims to train the meta
distribution p(π|x, ψ) under certain learning criteria so that it encodes less uncertainty for ID points
x and more for OOD points. While this simplification allows its computational efficiency over
the classical methods, as we will argue later, no randomness assumed in the model p(ψ|D) lets all
the methods in this framework learn spurious distributional uncertainty. Since a single model ψ is
assumed, we use a frequentist notation pψ(π|x) instead of p(π|x, ψ) in that context.

4 New Taxonomy for EDL Methods

In this section, we propose a new taxonomy to understand different EDL methods (for classification)
in a systematic way. Ignoring the choice of base architectures, we identify that the key distinguishing
features in EDL methods are (1) the parametric form of the model and (2) the learning criteria. A
wide class of EDL methods can be classified with the taxonomy as in Table 1. Several theoretical
implications and empirical consequences of the new taxonomy will be investigated in the next section.

Table 1: New taxonomy of representative EDL methods. L(ψ) in Eq. (6) subsumes these as special cases.

Method (name of loss) likelihood D(·, ·) prior α0 γood αψ(x) parameterization

FPriorNet (F-KL loss) [7] categorical fwd. KL = 1C > 0 direct
RPriorNet (R-KL loss) [8] categorical rev. KL = 1C > 0 direct
EDL (MSE loss) [10] Gaussian rev. KL = 1C = 0 direct
Belief Matching (VI loss) [12, 13] categorical rev. KL ∈ RC>0 = 0 direct
PostNet (UCE loss) [15] categorical rev. KL = 1C = 0 density w/ single flow
NatPN (UCE loss) [20] categorical rev. KL = 1C = 0 density w/ multiple flows
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Criterion 1. Parametric Form of Meta Distribution. For classification, one distinguishing
feature is the parametric form of αψ(x) in Dirichlet distribution pψ(π|x) = Dir(π;αψ(x)). Earlier
works [12, 7, 8, 13, 10] typically parameterize αψ(x) by a direct output of a neural network, e.g.,
exponentiated logits; we call this direct parameterization. Later, Charpentier et al. [15] brought up a
potential issue with the direct parameterization that αψ(x) can take arbitrary values on the unseen
(i.e., OOD) data points. They proposed a more sophisticated parameterization of the form to explicitly
resemble the posterior distribution update of the Dirichlet distribution αψ(x)← α0+Nψ(x), where,
for y ∈ [C], (Nψ(x))y := Np̂(y)pψ2

(fψ1
(x)|y), with p̂(y) := Ny/N , Ny denotes the number of

data points with label y, N :=
∑
y∈[C]Ny , x 7→ fψ1

(x) a feature extractor, and pψ2
(z|y) a tractable

density model such as normalizing flows [21] for each y ∈ [C]. We call this density parameterization.
In Sec. 5, we carefully examine the effectiveness of density parameterization.

Criterion 2. Objective Function. The desired behavior of EDL model is to output sharp pψ(π|x)
if it is confident, and fall back to output prior distribution p(π) if it is uncertain at an unseen data x.
To achieve this, various objectives have been introduced with different jargon and motivations, e.g.:

1. Prior Networks (PriorNet) [7, 8] aimed to explicitly encourage pψ(π|x) to be diffused prior p(π)
for OOD data, and a more concentrated Dirichlet distribution Dir(π;α0 + νey) for ID data, with
ν ≫ 1, α0 = 1C and ey as the one-hot true label, by minimizing

Ep(x,y)[D(Dir(π;α0 + νey), pψ(π |x)) + γoodEpood(x)[D(Dir(π;α0), pψ(π |x))] (1)

for D(p, q) = D(p ∥ q) (forward KL) in [7], and D(p, q) = D(q ∥ p) (reverse KL) later in [8]. It
is known that PriorNet with forward KL requires an additional auxiliary loss log 1

pψ(y|x) to ensure
high accuracy, and the reverse-KL version can outperform without such term.

2. The “Evidential Deep Learning” paper [10] proposed the MSE loss with a reverse KL regularizer:
ℓMSE(ψ;x, y) := Epψ(π|x)[∥π − ey∥2] + λD(pψ(π |x) ∥ Dir(π;α0)). (2)

3. Belief Matching [12, 13] proposed VI loss justified by variational inference framework:

ℓVI(ψ;x, y) := Epψ(π|x)

[
log

1

πy

]
+ λD(pψ(π |x) ∥ Dir(π;α0)). (3)

4. Posterior Networks (PostNet [15] and NatPN [20]) proposed the uncertainty-aware cross entropy
(UCE) loss, motivating it from a general framework for updating belief distributions [22]:

ℓUCE(ψ;x, y) := Epψ(π|x)

[
log

1

πy

]
− λh(pψ(π |x)). (4)

The hyper-parameter λ > 0 in objectives 2, 3, and 4 balances the first likelihood term which forces
pψ(π|x) to learn the label distribution and the second regularizer term promotes pψ(π|x) to be
close to the prior p(π). Below, we reveal that the seemingly different objectives 1, 3, 4 are exactly
equivalent, while objective Eq. (2) (different likelihood) can also be unified in a single framework.

A Unifying View. We now provide a unifying view of the fairly wide class of representative objective
functions. First, for convenience of analysis, we define the tempered likelihood: for ν > 0, define

p(ν)(π |y) := p(ν)(π, y)∫
p(ν)(π, y) dπ

, where p(ν)(π, y) :=
p(π)pν(y|π)∫

p(π)
∑
y p

ν(y|π) dπ
. (5)

Objectives 1, 3, 4 assume the likelihood model is categorical, i.e., p(y|π) = πy, by the conjugacy
of the Dirichlet distribution for the multinomial distribution, it is easy to check that p(ν)(π|y) =
Dir(π;α0 + νey), where ey ∈ RC is the one-hot vector activated at y ∈ [C]. Objective 2 used
Gaussian likelihood model p(y|π) = N (ey;π, σ

2IC), which does not admit a closed form expression
for p(ν)(π|y). The prior distribution is usually defined as p(π) = Dir(π;α0) with α0 = 1C (all-one
vector). Other choices of prior were also proposed to promote some other desired property [9].

We now introduce a unified objective function

L(ψ) := Ep(x,y)[D(p(ν)(π |y), pψ(π |x))] + γoodEpood(x)[D(p(π), pψ(π |x))] (6)

for some divergence function D(·, ·), a tempering parameter ν > 0, and an OOD regularization
parameter γood ≥ 0 with a distribution pood for OOD samples. The following theorem summarizes
how this unified objective subsumes several existing proposals. The proof is deferred to Appendix D.
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Theorem 4.1 (Unifying EDL Objectives for Classification). Let p(π) = Dir(π;1C).

1. Let p(y|π) = πy and let γood > 0. With D(p, q) = D(p ∥ q) (forward KL) and D(p, q) =
D(q ∥ p) (reverse KL), L(ψ) is equivalent to the objective (Eq. (1)) of forward PriorNet (FPrior-
Net) [7] and that of reverse PriorNet (RPriorNet) [8], respectively.

2. Let p(y|π) = N (ey;π, σ
2IC), and let γood = 0, L(ψ) is equivalent to the objective LMSE(ψ) :=

Ep(x,y)[ℓMSE(ψ;x, y)] (Eq. (2)).

3. Let p(y|π) = πy, ν = λ−1, and let γood = 0. With D(p, q) = D(q ∥ p) (reverse KL), L(ψ) is
equivalent to the objective LVI(ψ) := Ep(x,y)[ℓVI(ψ;x, y)] (Eq. (3)).

4. Let p(y|π) = πy, ν = λ−1, and let γood = 0. With D(p, q) = D(q ∥ p) (reverse KL), L(ψ) is
equivalent to the objective LUCE(ψ) := Ep(x,y)[ℓUCE(ψ;x, y)] (Eq. (4)).

We first remark that the reverse KL divergence captures most of the cases, except the forward KL
PriorNet, which is known to be outperformed by PriorNet with reverse KL. Hence, it suffices to
focus on understanding the reverse KL objective. Second, the VI loss in Eq. (3) and UCE loss Eq. (4)
turn out to be equivalent to the RPriorNet objective, where the tempering parameter ν and the
regularization parameter λ is realted to be reciprocal λ = ν−1; see Lemma D.1. Overall, this theorem
reveals that different motivations, such as VI or Bayesian updating mechanism of belief distributions,
were not very significant, and those objectives turn out to be equivalent to the simple divergence
matching in Eq. (6). Given this, distinguishing features that better classify different EDL methods
are the choices of (1) likelihood model, (2) prior, (3) use of OOD data, and (4) model parametric
form, as shown in Table 1. The recent survey [3] also offers a unified view of different objective
functions with these features. However, the dichotomy between “PriorNet-type methods” [7, 8] and
“PostNet-type methods” [12, 13, 15, 20, 14] in [3] may not effectively contrast different EDL methods
compared to our taxonomy.

We acknowledge that there exist other objective functions that might not be covered by this unified
view. We defer the discussion on another line of representative work, including the distillation-
based methods [16, 17] to Sec. 6. A notable exception that is not subsumed by this unification is
FisherEDL [11], which was recently proposed to use a variant of the MSE loss [10] by taking into
account the Fisher information of pψ(π|x); see Appendix F for a discussion. Finally, similar reasoning
can be naturally extended to unify different EDL objectives for other tasks such as regression and
count data analysis, including [19, 20]. We defer a detailed discussion to Appendix F.

5 Rethinking the Success of EDL Methods

In this section, we aim to reveal the secrets of EDL methods’ empirical success through a combination
of theoretical and empirical findings. As alluded to earlier, our empirical investigation focuses on the
reverse-KL type EDL methods, i.e., RPriorNet [8], Belief Matching (BM) [13], PostNet [15], and
NatPN [20], which are representative and widely used in the literature.

5.1 What Is the “Optimal” Meta Distribution Characterized By The EDL Objectives?

Based on the unification in Eq. (6), we can provide a sharp mathematical characterization of the
optimally learned meta distribution for a wide class of EDL objectives. A direct and important
consequence of the divergence minimization view is that we can now characterize the “optimal”
behavior of the learned meta distribution of a wide class of EDL objectives, provided that the global
minimizer is achieved in the nonparametric and population limit. The following theorem is proved in
Appendix E.
Theorem 5.1. For any prior p(π) and likelihood p(y|π), we have

min
ψ

Ep(x,y)[D(pψ(π |x) ∥ pν(π |y))] ≡ min
ψ

Ep(x)[D(pψ(π |x) ∥ p⋆(π |x))],

where p⋆(π |x) :=
p(π) exp(νEp(y|x)[log p(y|π)])∫
p(π) exp(νEp(y|x)[log p(y|π)]) dπ

. (7)

In words, Theorem 5.1 states that when the model meta distribution pψ(π|x) is trained with the
reverse-KL objective, it is forced to fit a fixed target meta distribution p⋆(π|x).
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Figure 1: Behavior of Uncertainties Learned by EDL methods on Real Data. (a) EDL methods learn spurious
epistemic uncertainty, wherein uncertainty does not vanish with an increasing number of observed samples,
contrary to the fundamental definition of epistemic uncertainty. (b) Instead of a constant, EDL methods learn
model-dependent aleatoric uncertainty that depends on hyper-parameter λ, contrary to the fundamental definition
of aleatoric uncertainty. Similar behavior holds for 2D Gaussian data (see Figure 5 in Appendix H.1).

Example 5.2 (Categorical likelihood). If we consider p(π) = Dir(π;α0) and p(y|π) = πy (cat-
egorical likelihood), we have p⋆(π|x) = Dir(π;α0 + νη(x)), where η(x) := Ep(y|x)[ey] =
[p(1|x), . . . , p(C|x)] denotes the true label distribution, Theorem 5.1 implies that

min
ψ

Ep(x,y)[D(pψ(π |x)∥pν(π |y))] ≡ min
ψ

Ep(x)[D(Dir(π;αψ(x))∥Dir(π;α0 + νη(x)))]. (8)

In particular, with the most common Dirichlet parameterization pψ(π|x) = Dir(π;αψ(x)), this
shows that αψ(x) is forced to match the scaled-and-shifted version α0 + νη(x) of the conditional
label distribution η(x) as the fixed target, under the categorical likelihood model. A similar argument
still applies to the Gaussian likelihood model of [10], but the fixed target distribution p⋆(π|x) in
Eq. (7) does not admit a closed-form expression unlike the categorical likelihood.

An immediate consequence of the Theorem 5.1 is that neither epistemic uncertainty nor aleatoric
uncertainty quantified by EDL methods is consistent with their dictionary definition.

Implication 1: EDL Methods Learn Spurious Epistemic Uncertainty

First, epistemic uncertainty for ID data, by definition, should monotonically decrease and eventually
vanish as the number of observations increases. However, Theorem 5.1 implies that, even with
infinite data, the learned “distributional uncertainty” would remain constant for ID data. We also
empirically confirm such behavior; see Fig. 1(a). Specifically, we sample data of varying sizes to
train the EDL models and evaluate their test accuracy and averaged epistemic uncertainty (mutual
information) on a held-out test set. As observed in Fig. 1(a), epistemic uncertainties quantified by
EDL methods are almost constant with respect to the sample size and never vanish to 0, regardless of
the increasing test accuracy. This suggests that practitioners cannot rely on the learned distributional
uncertainty to determine if the model is lacking knowledge. We remark that Bengs et al. [4] identified
a similar issue in the EDL methods specifically for the UCE loss of PostNet [15, 20], which is the
reverse-KL objective for α = 1C in our view, is not appropriate in a similar spirit.3 Theorem 5.1
can be understood as a more general and sharper mathematical characterization of the behavior of the
reverse-KL objective.

Implication 2: EDL Methods Learn Spurious Aleatoric Uncertainty

Second, EDL methods quantify aleatoric (data) uncertainty as Epψ(π|x)[H(p(y|π))], where H
denotes the Shannon entropy [23]. Eq. (8) reveals the optimal meta distribution as pψ⋆(π|x) =

3We remark that the proofs and corresponding arguments in [4] are erroneous, where the errors stem from
equating the differential entropy of a Dirac delta function to 0, instead of −∞; see Appendix A for more details.
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Dir(π;α0 + νη(x)), suggesting that the aleatoric uncertainty quantified by EDL methods would also
depend on model or algorithm’s hyper-parameter (λ = ν−1). This is inconsistent with the definition
of aleatoric uncertainty, which should be a fixed constant capturing the irreducible uncertainty by
underlying label distribution p(y|x). As shown in Fig. 1(b), we empirically demonstrate that the
aleatoric uncertainty quantified by EDL methods vary with λ. In conclusion, our analysis in this
section suggests that EDL methods do not behave as a reasonable uncertainty quantifier since they
cannot faithfully quantify either epistemic or aleatoric uncertainty.

5.2 EDL Methods Are EBM-Based OOD Detector Rather Than Uncertainty Quantifier

As we have shown so far, the EDL methods with Dirichlet prior and categorical model typi-
cally aim to fit the model meta distribution αψ(x) to a fixed target α0 + νη(x), which is ap-
proximately νη(x) for ν sufficiently large. Since the induced model predictive distribution is
pψ(y|x) = Epψ(π|x)[p(y|π)] = αψ,y(x)/(1

⊺
Cαψ(x)), it can be understood that the reverse-KL

enforces pψ(y|x) to fit νη(x)/ν(1⊺
Cη(x)) = η(x) = p(y|x) for accurate prediction, while letting

the summation 1⊺αψ(x) large (i.e., 1⊺αψ(x) ≈ ν) for ID data, and small for OOD data, e.g.,
1
⊺
Cα0 = C, if there exists an explicit OOD regularization.

In the OOD detection literature, there exists an energy-based-model (EBM) based algorithm aim to
achieve the exactly same goal [24]. They consider a standard classifier with exponentiated logits
βϕ(x), whose prediction is given as pϕ(y|x) := βϕ,y(x)/1

⊺
Cβϕ(x). Liu et al. [24] related the

denominator to a free energy Eϕ(x) := − log1⊺
Cβϕ(x), and proposed to train model so that pϕ(y|x)

accurately captures p(y|x), while minimizing the energy Eϕ(x) for ID x’s, and maximizing for OOD.
They proposed to minimize

−Ep(x,y)[log pψ(y |x)] + τ
{
Ep(x)[max(0, Eϕ(x)−mid)

2] + Epood(x)[max(0,mood − Eϕ(x))2]
}
,

where τ > 0 and mood > mid > 0 are hyperparameters. This reveals that this EBM-based OOD
framework has an almost identical learning mechanism to the EDL methods; setting Eϕ(x) =
− log1⊺

Cαϕ(x), mid = − log ν, and mood = − logC makes the correspondence explicit.

This resemblance suggests that the EDL methods can be better understood as an EBM-based OOD
detector with the additional layer of Dirichlet framework for computational convenience rather than a
statistically meaningful mechanism that can faithfully distinguish epistemic uncertainty and aleatoric
uncertainty. Below, we elaborate on two particular implications based on this connection.

Implication 3: EDL Methods Always Prefer Smaller Hyper-Parameter λ
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Figure 2: OOD Detection Performance v.s. Hyper-parameter λ on CIFAR10. The x-axis represents the
increasing λ value, and the y-axis represents the Average AUROC score of OOD detection tasks. EDL Methods’
uncertainty quantification performance are sensitive to hyper-parameter λ, while generally benefit from small λ.

Just as the EBM-based OOD detection algorithm needs to manually define hyper-parameter mood

and mid, EDL methods also significantly rely on hyper-parameter tuning; recall the target distribution
Dir(π;α0+νη(x)) with ν = λ−1 is determined by the regularization parameter λ, we aim to explore
the dependency of EDL methods’ OOD detection performance on the choice of λ. Specifically, we
directly conduct such an analysis on real data using CIFAR10 as ID data, and use four OOD datasets;
see Appendix G for details. By varying λ across {1e-4,1e-3,1e-2,1e-1}, we train an EDL model
and evaluate its OOD detection performance on these OOD datasets. The performance in terms
of average AUROC score with respect to the increasing value of λ are shown in Fig. 2. The result
shows that using smaller values of λ always improves the OOD detection performance, suggesting
that the EDL model is essentially encouraged to fit its output αψ(x) to an extremely large target
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α0 + λ−1η(x), so that 1⊺
Cαψ(x) ≈ λ−1 ≫ 1 for ID data, and such behavior seems to benefit the

downstream task performance.

Implication 4: Impact of Specific Objective on UQ Performance is Less Significant

Given the close resemblance to the OOD detection algorithm, a notable difference is the reverse-
KL learning criterion used by the EDL methods. In Appendix H.2, as another ablation study, we
investigate if the reverse-KL objective induced by the Dirichlet framework has a significant practical
impact, or other Dirichlet-framework-independent objectives which promote the same behavior
suffice for the downstream task performance.

5.3 Are EDL Methods Robust for OOD Detection?

Lastly, we investigate the robustness of the auxiliary techniques like density parameterization and
OOD regularization of EDL methods for the downstream task performance. Note that in the empirical
result with real data presented in Fig. 9 in Appendix, neither OOD regularization (RPriorNet vs. BM)
nor density parameterization (PostNet/NatPN vs. BM) demonstrates a clear advantage of deploying
such techniques. Thus, we further investigate this counterintuitive phenomenon and discover that the
performance of these EDL methods on real data is hindered by certain limitations of the auxiliary
techniques they use. Namely, we find that OOD-data-dependent methods [8] are sensitive to choice
of model architectures, and methods [15, 20] using density models may not perform well even for
moderate dimensionality. We defer the detailed discussion to Appendix H.3.

6 EDL Methods Will Benefit from Incorporating Model Uncertainty

Through the series of analyses in the prior section, we attempted to provide a comprehensive
understanding of EDL methods, revealing their key limitations. A reader then may ask an important
question: What is the fundamental issue in these EDL methods that cause all these problems?
As we alluded to in Sec. 3, we identify that the issue arises from that all of the EDL methods
discussed in Sec. 4 and Sec. 5 assume no model uncertainty p(ψ|D) in the decomposition of
predictive posterior distribution p(y|x, ψ) =

∫∫
p(y|π)p(π|x, ψ)p(ψ|D) dψ dπ. A proper definition

of distributional uncertainty should be based on the induced posterior distribution p(π|x,D) :=∫
p(π|x, ψ)p(ψ|D) dψ over the prediction π at x, given the dataset D. Without the randomness in

the model, however, i.e., setting p(ψ|D)← δ(ψ − ψ⋆), the induced distribution p(π|x,D) becomes
degenerate as p(π|x, ψ⋆). This simplification is often rationalized for the computational efficiency,
but as we reveal, it renders the distributional uncertainty inherently ill-defined in this framework. The
existing EDL methods thus have no choice but to train the “UQ” model pψ(π|x) to fit to an artificial
target Dir(π;α0 + νη(x)). Consequently, the learned distributional uncertainty cannot possesses a
statistical meaning, and can be better interpreted as free energy in the EBM-based OOD detector.

Model Uncertainty Can Induce A Proper Distributional Uncertainty. This strongly suggests
that it is inevitable to assume a stochastic procedure p(ψ|D) to properly define the distributional
uncertainty p(π|x,D). We remark that, to expect the distributional uncertainty p(π|x,D) to exhibit
a desirable behavior, i.e., getting concentrated for ID data and remaining dispersed for OOD data as
|D| → ∞, we implicitly assume that the stochastic algorithm p(ψ|D) would behave as follows: as
|D| → ∞, p(ψ|D) will become supported on a subset of models ψ that agree upon the prediction for
ID data while disagreeing on OOD data. Under this assumption, the induced distributional uncertainty
will be consistent with the dictionary definition of epistemic uncertainty.

Revisiting Distillation-Based Methods. The downside of such an approach is that approximating
p(π|x,D) can be computationally intractable due to the high-dimensional integration with respect
to the stochastic algorithm p(ψ|D), which means that a practitioner needs to generate (or train)
and save multiple models to approximately emulate the randomness. In this context, the EDL
framework, which aims to quantify uncertainty by a single neural network, can be used to distill
the properly defined distributional uncertainty. Indeed, this is what has been explored by another
line of EDL literature called distillation-based methods [16, 17], which were originally proposed
to emulate the behavior the ensemble methods. Our analyses strongly advocate that considering
a stochastic algorithm p(ψ|D) and training a single meta distribution trying to fit the induced
distributional uncertainty to expedite the inference time complexity is the best practice for the EDL
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Figure 3: Comparison of Different EDL Methods on OOD Detection. Distillation based methods, including
new proposed Bootstrap-Distill method, demonstrate clear advantage over other classical EDL methods. Similar
behavior holds for selective classification task.

0.84 0.86 0.88 0.90 0.92
AUROC Score

RPriorNet
BM

PostNet
NatPN

EDL
Fisher-EDL

END2
S2D

Bootstrap-Distill 
 (New)

CIFAR10

0.80 0.82 0.84 0.86 0.88
AUROC Score

RPriorNet
BM

PostNet
NatPN

EDL
Fisher-EDL

END2
S2D

Bootstrap-Distill 
 (New)

CIFAR100

Figure 4: Comparison of Different EDL Methods on Selective Classification. Distillation based methods,
including new proposed Bootstrap-Distill method, demonstrate clear advantage over other classical EDL methods.

framework to faithfully capture uncertainties. More precisely, we can fit an UQ model pθ(π|x)
to p(π|x,D) through the forward-KL objective and Monte Carlo samples, i.e., by minimizing
Ep(x)[D(p(π|x,D) ∥ pθ(π|x))] ≈ −

∑N
i=1

∑M
j=1 log pθ(ηψ̂j (·|xi)|xi) + (const.) with respect to θ,

where x 7→ ηψ̂j (·|x) is a classifier corresponding to a randomly generated model ψ̂j ∼ p(ψ|D) [16].

Examples of Stochastic Algorithms p(ψ|D): Old and New. There are two popular proposals for
p(ψ|D) in the literature: (1) EnD2 [16] considers randomness in random initialization and stochastic
optimization, which is called ensemble [25], and (2) S2D [17] considers a random dropout [26]
applied to a single network. We propose yet another algorithm based on the frequentist approach
bootstrap: given the training datasetD, the procedure randomly samplesM different subsets {Dj}Mj=1

of size N without replacement, and train a model ψ̂j based on Dj for each j. Unlike the previous
proposals of p(ψ|D), the bootstrap method aims to leverage the internal consistency among the ID
data, beyond the randomness induced by optimization and architectures. We note that this is inspired
by a concurrent work of Jürgens et al. [6], which recently proposed an ideal meta distribution. The
proposed bootstrapping can be understood as a practical method for approximating such behavior
with finite samples. In the next section, we demonstrate that the new Bootstrap Distillation method
performs almost best on both OOD detection and selective classification tasks.

7 Comprehensive Empirical Evaluation

In this section, we conduct a comprehensive evaluation of the existing EDL methods, including the
new proposed Bootstrap Distillation method, on two UQ downstream tasks: (1) OOD data detection:
identify the OOD data based on the learned epistemic uncertainty; (2) Selective classification: identify
the wrongly predicted test samples based on total uncertainty, as wrong prediction can occur from
either high epistemic or high data uncertainty, or both. These results corroborate several key findings
and insights presented in this paper. The detailed experiment setup are provided in Appendix G, and
additional experiment results are included in Appendix H.
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• Baselines. We include a wide range of EDL methods as baselines: Classical methods: (1)
RPriorNet [8], (2) Belief Matching (BM) [13], (3) PostNet [15], (4) NatPN [20], (5) EDL [10],
and (6) Fisher-EDL [11]. Distillation-based method: (1) EnD2 [16] and (2) S2D [17]. All baseline
results are reproduced using their official implementation, if available, and their recommended
hyper-parameters.

• Benchmark. We consider two ID datasets: CIFAR10, and CIFAR100. For the OOD detection
task, we select four OOD datasets for each ID dataset: we use SVHN, FMNIST, TinyImageNet,
and corrupted ID data.

• Evaluation Metric. We elaborate metrics for quantifying different types of uncertainties in Section
C. We evaluate the UQ downstream performance through the Area Under the ROC Curve (AUROC)
and Area Under the Precision-Recall Curve (AUPR), where we treat ID (correctly classified) test
samples as the negative class and outlier (misclassified) samples as the positive class.

Results and Takeaway. The result is summarized in Fig. 3 and Fig. 4. We present the average
AUROC score across four OOD datasets for the OOD detection task, and the AUROC score for the
selective classification task. More numerical results can be found in Table 2, 3, and 4 in Appendix H.
This set of evaluations corroborates our key findings and insights in the previous sections.

Firstly, the results show that varying the likelihood model does not significantly impact performance
(BM vs. EDL and Fisher-EDL), supporting the discussion in Sec. 4. Secondly, classical EDL
methods achieve comparable performance regardless of the auxiliary techniques, such as density
parameterization (PostNet, NatPN), or leveraging OOD data (RPriorNet); this validates our finding in
Sec. 5.3. Thirdly, distillation-based methods, particularly EnD2 and the new Bootstrap Distillation,
demonstrate superior performance over other baselines, especially on CIFAR100, thereby validating
the insights provided in Sec. 6. Moreover, our empirical analysis confirms that the Bootstrap Distilla-
tion method can faithfully quantify epistemic uncertainty, as illustrated in Fig. 13 in Appendix H,
effectively addressing the limitations identified with other EDL methods in Sec. 5.1. Finally, we note
that the performance of Bootstrap Distillation comes at a higher computational cost due to training
multiple bootstrap models; see Fig. 14 in Appendix H.

8 Concluding Remarks

In this work, we revealed that the uncertainty learned by most of the existing EDL methods bear no
statistical meaning. The key theoretical insight is based on the unification of representative EDL
objectives in Sec. 5.1. Given this, we suggested that EDL methods can be better interpreted as
energy-based OOD detection algorithms, which can explain the reported empirical successes of
EDL methods from a different perspective. Additionally, we demonstrated that the performance of
EDL methods is sensitive to the choice of auxiliary techniques, further raising questions about their
robustness. Finally, we identified that the aforementioned issues with EDL arise from ignoring the
model uncertainty for computational efficiency, and argued that the distillation-based methods could
potentially remedy the issues, at the cost of additional complexity.

Overall, this work calls researchers’ attention to carefully reexamine the capabilities and limitations of
the EDL approach at large. For practitioners, EDL methods can still be utilized as efficient algorithms
for specific applications, such as OOD data detection. However, when considering EDL methods to
build reliable machine learning agents based on their UQ capabilities, practitioners should be aware
of their limitations, which contrast with the common belief that EDL approaches can accurately learn
and distinguish between epistemic and aleatoric uncertainty.

We conclude the paper with a few remarks on the theory of the Bootstrap-Distill method. As we
empirically showed, it can resolve the common issues of the EDL methods with improved downstream
task performance, and we thus believe that a careful theoretical analysis of its behavior would be a
fruitful direction. While it is relatively easy to argue that the epistemic uncertainty would vanish when
the sample size grows to infinity with the bootstrap procedure, we believe that a more sophisticated
asymptotic analysis for vanishing epistemic uncertainty could be carried out with overparameterized
neural networks, adopting a similar setting in [27]. That is, if the trained model’s prediction can be
shown to be asymptotically normal in the limit of the sample size, one can argue that the uncertainty
captured by bootstrap behaves as Gaussian of vanishing variance in the sample limit. This implies a
naturally vanishing epistemic uncertainty. We leave this as a future work.
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A In-Depth Review of Recent Critiques on EDL Methods

In this section, we conduct a compressive review of the recent critiques of EDL methods [4, 5, 6]
that are closely relevant to our paper. We begin by acknowledging the contributions of [4], which
pioneered the theoretical study of EDL methods. However, there are several limitations in these
works to be noted: (1) Some of the main arguments presented in [4] are invalid given errors in the
corresponding proofs. (2) The analysis in these works are purely theoretical. They do not sufficiently
explain the empirical behaviors of EDL methods in practical application. (3) The analyses do not
include some representative EDL approaches in the literature, such as the distillation-based methods
discussed in our paper. (4) While these works effectively point out various limitations of EDL
methods, none of these works provide insights or concrete solutions to address these issues.

A.1 Review of [4] “Pitfalls of Epistemic Uncertainty Quantification Through Loss
Minimisation”

In [4], the authors studied the property of a meta distribution characterized by minimizing a certain
loss such as the UCE loss [15] for classification. The authors proposed a definition of two desirable
properties for a faithfully learned meta distribution should satisfy [4, Definition 1]: First, for some
distributional uncertainty measure, the expected uncertainty captured in the meta distribution over
observations should monotonically decrease as the data size increases. Second, as the data size goes
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to infinity, the meta distribution needs to converge to a degenerate Dirac delta distribution around a
single distribution.

They provide three arguments based on the value of regularization parameter: (1) if λ = 0, which
means no regularizer in the UCE loss, then the meta distribution becomes a Dirac function thus the
first is violated [4, Theorem 1]; (2) if λ > 0 in the UCE loss is too large, then the second desideratum
is not satisfied [4, Theorem 2]. (3) Also, they claimed that if λ > 0 is too small, then the first is
violated [4, Theorem 3].

We respectfully point out, however, that the proofs of both Theorem 2 and Theorem 3 are erroneous
due to the steps that identify the differential entropy of a Dirac delta function as 0, instead of −∞.
After correction, we realize the statements of [4, Theorem 3] is no longer valid. Instead, the arguments
in [4, Theorem 1] and [4, Theorem 2] can be more sharply inferred from our Theorem 5.1. First,
when λ = 0, it is easy to show that the optimal meta distribution p⋆(π|x) in Eq. (7) will be Dirac
function. Second, Theorem 5.1 implies a stronger result than the second claim: for any value of
λ, the meta distribution converges to a non-Dirac-delta distribution as the sample size grows, thus
the second desideratum in [4, Definition 1] is not satisfied. We also note that we do not need an
additional regularity assumption.

A.2 Review of [5] “On Second-Order Scoring Rules for Epistemic Uncertainty
Quantification”

As a follow-up work, Bengs et al. [5] studied an existence of a proper scoring rule for second-order
distributions (i.e., meta distributions). They extended the standard definition of proper scoring
rules [28] to meta distributions, and provided theoretical arguments why there can be virtually no
such proper scoring rule, even if we hypothetically assume the existence of the true second-order
distribution.

At a facial value, this seems to contradict the fact that we use the forward KL objective in the
distillation approach. To resolve the inconsistency, we consider the classification case, and we even
omit the dependence on the covariate x for simplicity. On the one hand, Bengs et al. [5] considered
a particular form of objective in the form

L2(ψ; ptarget) := Eptarget(π)[Ey∼π[ℓ(ψ; y)]],

for some scoring rule ℓ(ψ; y). On the other hand, in the distillation-based method, we use the forward
KL objective:

LfKL(ψ; ptarget) := D(ptarget(π) ∥ pψ(π)).
Even in the standard EDL methods, we use the reverse-KL objective, though the target may not be
meaningful:

LrKL(ψ; ptarget) := D(pψ(π) ∥ ptarget(π)).
As the side-by-side comparison reveals, in practice, most existing EDL methods are using either
the forward KL objective (distillation based EDL methods) or the reverse-KL objective (classical
EDL methods), but the objective function analyzed in [5] assumes a particular form that involves the
expectation Ey∼π[·], and this implies that the negative results are of rather limited applicability. As
our Sec. 6 suggests, if we can directly construct a reasonable target meta distribution in a way that
either KL divergence is computable, then we can use such divergence matching to learn the meta
distribution in a faithful manner.

A.3 Review of [6] “Is Epistemic Uncertainty Faithfully Represented by Evidential Deep
Learning Methods?”

In a concurrent work, Jürgens et al. [6] questions the reliability of distributional uncertainty learned
by two types of loss under different settings, including classification, regression and count data: the
“inner loss” widely used by evidential regression framework [18, 29], and the “outer loss” which is
more commonly applied in classification setting and some regression methods [19, 20] (equivalent to
general UCE loss in Sec. F in our view). Jürgens et al. [6] mainly aims to examine whether the leared
distributional uncertainty can be consistent to a “target” epistemic uncertainty induced by a reference
distribution.

First, [6, Definition 3.1] defines such a reference distribution as qN (θ|x) :=
∫
(X×Y)N

I[θDN =

θ] dPN , assuming an access to the underlying data generating distribution DN ∼ PN is available,
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with θ representing the true first-order target for input x. The term θDN denotes the first-order
prediction obtained by a model optimized the first-order objective (e.g., log likelihood) using a dataset
DN with size N , randomly sampled from P .

Given this reference distribution, [6, Theorem 3.2] suggests that the optimal second-order distri-
butions derived from EDL methods using “inner loss” are not uniquely defined, [6, Theorem 3.3]
states that when there is no regularizer, i.e., λ = 0, the optimal second-order distribution derived
from optimizing the “outer loss” is a Dirac delta function, and [6, Theorem 3.4] demonstrates that for
any data generation distribution, there exists a λ > 0 for which the optimal second-order distribution
learned by “outer loss” differs from the reference distribution defined in [6, Definition 3.1].

While [6, Theorem 3.2] falls outside the primary scope of our paper, the arguments from both [6,
Theorem 3.3] and [6, Theorem 3.4] can be derived from our Theorem 5.1, which provides an exact
characterization of the optimal second-order distribution as follows:

p⋆(θ |x) =
p(θ) exp(νEp(y|x)[log p(y|θ)])∫
p(θ) exp(νEp(y|x)[log p(y|θ)]) dθ

. (9)

For the λ = 0 scenario described in [6, Theorem 3.3], where ν = λ−1 → ∞, the sample θ∗ that
maximizes Ep(y|x)[log p(y|θ)] will exponentially dominate the integral, leading to:

p⋆(θ |x) =
p(θ) exp(νEp(y|x)[log p(y|θ)])∫
p(θ) exp(νEp(y|x)[log p(y|θ)]) dθ

ν→∞−−−−→ δ(θ − θ∗),

where θ∗ = argmaxθ Ep(y|x)[log p(y|θ)] = η(x). For the case when λ > 0 analyzed in [6,
Theorem 3.4], our analysis provides the exact optimal second-order distribution in Eq. (9), which
clearly demonstrates that it is different from their reference distribution for any specific choice of λ.

For the classification setting with categorical likelihood p(y|θ) = πy, our analysis in Example 5.2
provides even sharper results. Here, the optimal Dirichlet distribution can be expressed as:

p⋆(π |x) = Dir(π;α0 + νη(x))

When λ = 0, ν = λ−1 →∞, the optimal Dirichlet distribution converges to a Dirac function, i.e.,
Dir(π;α0 + νη(x))

ν→∞−−−−→ δ(π − η(x)). When λ > 0, the behavior of the learned second-order
distribution can be exactly characterized by Dir(π;α0 + λ−1η(x)).

Hence, both [6, Theorem 3.3] and [6, Theorem 3.4] can be understood as simple corollaries of our
Theorem 5.1.

B Literature Review for Classical UQ Methods

Classical UQ methods include Bayesian approaches, which model posterior distributions over
model parameters and approximate the Bayesian inference in various ways, including variational
inference [30, 31], MCMC [32, 33], Monte-Carlo dropout [26], and Laplace approximation [34,
35]. Frequentist methods construct uncertainty sets through techniques such as jackknife [36] and
bootstrap [37]. Ensemble methods aggregate decisions of several random models to capture predictive
uncertainty [25, 38]. These classical methods suffer from expensive computation cost incurred by
either multiple forward passes or training multiple models. More comprehensive review of classical
UQ approaches can be found in survey papers [39, 40].

C Definition of Uncertainty and Its Measures

In EDL, the uncertainty captured by pψ(π|x) and pψ(y|x) are called the distributional uncertainty
and aleatoric (data) uncertainty, respectively. distributional uncertainty is also a kind of epistemic
(knowledge) uncertainty that captures the model’s lack of knowledge arising from the mismatch in the
training distribution and test distribution. That is, the distribution pψ(π|x0) should be dispersed if the
model is uncertain on the particular query point x0, and sharp otherwise. As the adjective epistemic
suggests, this uncertainty is supposed to vanish at points in the support of the underlying distribution,
when the model has observed infinitely many samples. In contrast, the aleatoric uncertainty captures
the inherent uncertainty in p(y|x), and thus must be invariant to the sample size in principle.
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There are two standard metrics to measure distributional uncertainty: (1) differential entropy
(DEnt) hψ(π|x) := −

∫
pψ(π|x) log pψ(π|x)dπ; (2) mutual information (MI) Iψ(y;π|x) :=

H(pψ(y|x))−Epψ(π|x)[H(p(y|π))], where Epψ(π|x)[H (p(y|π))] is usually defined as the aleatoric
(data) uncertainty. The resulting probabilistic classifier pψ(y|x) captures both epistemic and aleatoric
uncertainties without distinction, and the total uncertainty is often measured via two standard met-
rics: (1) entropy (Ent) of pψ(y|x), i.e., H (pψ(y|x)); (2) max probability (MaxP) of pψ(y|x), i.e.,
maxy pψ(y|x).

D Proof of Theorem 4.1

We prove the four statements in Theorem 4.1 in the following three subsections: the first (PriorNet
objectives) is proved in Appendix D.1, second (EDL/MSE objective) and third (VI/ELBO objective)
in Appendix D.2, and fourth (PostNet/UCE objective) in Appendix D.3.

D.1 Prior Network Objective

Prior networks [7, 8] proposed to use the following form of objectives:

Ep(x,y)[D(p(ν)(π |y), pψ(π |x)) + γoodEpood(x)[D(p(π), pψ(π |x))].

Here, ν(∈ {102, 103}) and γood are hyperparameters.

• The F-KL objective [7] is when D(p, q) = D(p ∥ q). The in-distribution objective can be
written as

Ep(x,y)[D(p(ν)(π |y) ∥ pψ(π |x))] = Ep(x)[D(Ep(y|x)[p(ν)(π |y)] ∥ pψ(π |x))] + (const.).

This implies that minimizing the F-KL objective function forces the unimodal UQ model
pψ(π|x) to fit the mixture of Dirichlet distributions Ep(y|x)[p(ν)(π|y)]. Since the mixture
can be multimodal when p(y|x) is not one-hot, or equivalently, if aleatoric uncertainty is
nonzero, the F-KL objective will drive the UQ model to spread the probability mass over
the simplex, which possibly leads to low accuracy.

• The R-KL objective [8] is when D(p, q) = D(q ∥ p). Unlike the F-KL objective, the
in-distribution objective can be written as

Ep(x,y)[D(pψ(π |x) ∥ p(ν)(π |y))] = Ep(x)[D(pψ(π |x) ∥Dir(π;α0+νη(x)))]+(const.).

Since pψ(π|x) is being fit to another Dirichlet distribution Dir(π;α0 + νη(x)), it no longer
has the issue of the F-KL objective above. We note in passing that Nandy et al. [9] proposed
an ad-hoc objective such that αψ(x) < 1 for OOD x’s.

D.2 Variational Inference and EDL Objective

The variational inference (VI) loss was proposed by Chen et al. [12], Joo et al. [13] in the following
form:

ℓVI(ψ;x, y) := Epψ(π|x)

[
log

1

p(y|π)

]
+ λD(pψ(π |x) ∥ p(π)). (10)

Although the original derivation is a bit involved, we can rephrase the key logic in the paper by the
following variational relaxation:

D(p(x, y) ∥ p(x)pλ−1(y)) ≤ D(p(x, y)pψ(π |x) ∥ p(x)pλ−1(π, y)),

where p(ν)(y) is induced by the tempered distribution p(ν)(π, y) ∝ p(π)pν(y|π). The inequality is
a simple application of a form of data processing inequality [23]. We remark that the original name,
“ELBO loss,” is a misnomer for this loss function, as the right-hand side simply bounds a constant on
the left-hand side, as opposed to the negative ELBO, which bounds the negative log-likelihood.
Lemma D.1. Let ν := λ−1. Then, we have

min
ψ

Ep(x,y)[ℓVI(ψ;x, y)] ≡ min
ψ

Ep(x,y)[D(pψ(π |x) ∥ p(ν)(π |y))].
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Proof. Note that by the chain rule of KL divergence, we have on the one hand

D(p(x, y)pψ(π |x) ∥ p(x)p(ν)(π, y)) = D(p(x, y) ∥ p(x)p(ν)(y))+Ep(x,y)[D(pψ(π |x) ∥ p(ν)(π |y)].

Hence,

min
ψ

Ep(x,y)[D(pψ(π |x) ∥ p(ν)(π |y))] ≡ min
ψ
D(p(x, y)pψ(π |x) ∥ p(x)p(ν)(π, y)). (11)

On the other hand, we have

D(p(x, y)pψ(π |x) ∥ p(x)p(ν)(π, y))

= Ep(x,y)pψ(π|x)

[
log

p(x, y)pψ(π|x)
p(x)p(ν)(π, y)

]
= Ep(x,y)pψ(π|x)

[
log

p(x, y)pψ(π|x)
p(x)p(π)pν(y|π)

]
+ logB

= Ep(x,y)
[
νEpψ(π|x)

[
log

1

p(y|π)

]
+D(pψ(π |x) ∥ p(π))

]
+D(p(x, y) ∥ p(x)) + logB

= Ep(x,y)[ℓVI(ψ;x, y)] +D(p(x, y) ∥ p(x)) + logB.

Here, we let B :=
∑
y

∫
p(π)pν(y|π) dπ is the normalization constant, which satisfies p(ν)(π, y) =

1
B p(π)p

ν(y|π). This implies that

min
ψ
D(p(x, y)pψ(π |x) ∥ p(x)p(ν)(π, y)) ≡ min

ψ
Ep(x,y)[ℓVI(ψ;x, y)]. (12)

Combining Eq. (12) and Eq. (11), we prove the desired equivalence.

D.3 Uncertainty Cross Entropy Objective

Charpentier et al. [15, 20] proposed to use the uncertainty cross-entropy loss, which is defined as

ℓUCE(ψ;x, y) := νEpψ(π|x)

[
log

1

p(y|π)

]
− h(pψ(π |x)).

In [15, 20], this loss function was originally motivated from a general framework for updating belief
distributions [22].

As alluded to earlier, however, it is a special instance of the VI objective of Joo et al. [13] when
α0 = 1, since p(π) = Dir(π;1) = 1

B(1) = (C − 1)! and thus

D(pψ(π |x) ∥ p(π)) = Epψ(π|x)

[
log

pψ(π|x)
p(π)

]
= −h(pψ(π |x))− Epψ(π|x)[log p(π)]

= −h(pψ(π |x))− log(C − 1)!.

Since the VI loss Eq. (10) also only uses α0 = 1 in the original paper [13], this implies that the VI
loss and the UCE loss are essentially equivalent.

E Proof of Theorem 5.1

We prove a stronger result than Theorem 5.1, allowing any observation model for y beyond the
categorical case, i.e., y ∈ [C].
Theorem E.1. For a choice of prior distribution p(θ) and λ > 0, define

L(ψ) := Ep(x,y)pψ(θ|x)
[
log

1

p(y|θ)

]
+ λEp(x)[D(pψ(θ |x) ∥ p(θ))]. (13)

Let ν := λ−1. Define the tempered likelihood

p(ν)(θ |y) := p(ν)(θ, y)∫
p(ν)(θ, y) dθ

, where p(ν)(θ, y) :=
p(θ)pν(y|θ)∫∫
p(θ)pν(y|θ) dθ dy

.
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Then, we have

min
ψ
L(ψ) = min

ψ
Ep(x,y)[D(pψ(θ |x) ∥ p(ν)(θ |y))]

≡ min
ψ

Ep(x)[D(pψ(θ |x) ∥ p⋆(θ |x))], (14)

where

p⋆(θ |x) :=
p(θ) exp(νEp(y|x)[log p(y|θ)])∫
p(θ) exp(νEp(y|x)[log p(y|θ)]) dθ

.

Proof. Note that we can rewrite the objective function as

L(ψ) = λEp(x,y)
[
D
(
pψ(θ |x)

∥∥∥ p(θ)pν(y|θ)∫
p(θ)pν(y|θ) dθ

)]
+ C

= λEp(x)
[
D
(
pψ(θ |x)

∥∥∥ exp
(
Ep(y|x)

[
log p(θ)pν(y|θ)∫

p(θ)pν(y|θ) dθ

])
∫
exp

(
Ep(y|x)

[
log p(θ)pν(y|θ)∫

p(θ)pν(y|θ) dθ

])
dθ

)]
+ C ′

= λEp(x)
[
D
(
pψ(θ |x)

∥∥∥ p(θ) exp(νEp(y|x)[log p(y|θ)])∫
p(θ) exp(νEp(y|x)[log p(y|θ)]) dθ

)]
+ C ′′. (15)

Here, ν := 1
λ and C,C ′, and C ′′ are some constants with respect to ψ. In particular,

C ′′ = Ep(x)
[
log

1∫
p(θ) exp(νEp(y|x)[log p(y|θ)]) dθ

]
. (16)

This characterizes the optimal pψ(θ|x) under this objective function as

pψ∗(θ |x) =
p(θ) exp(νEp(y|x)[log p(y|θ)])∫
p(θ) exp(νEp(y|x)[log p(y|θ)]) dθ

, (17)

which concludes the proof.

F An Extension For General Observation Models

In this section, following the similar exponential family distribution setup, We consider a likelihood
model of exponential family distribution over a target variable y ∈ R with natural parameters θ ∈ RL

p(y |θ) := h(y) exp(θ⊺u(y)−A(θ)).
Here, h : R→ R is the base measure, A : RL → R is the log-partition function, and u ∈ R→ RL
is sufficient statistics. Note that the entropy of the parametric distribution is given as h(p(y|θ)) =
A(θ)− θ⊺∇θA(θ)− E[log h(y)].
In EDL methods, a distribution over the parameter θ is assumed to capture uncertainty. A convenient
choice is the conjugate prior p(θ|ξ, n) of the likelihood p(y|θ), which is given as

p(θ |ξ, n) = η(ξ, n) exp(n(θ⊺ξ −A(θ))).

Here, ξ ∈ RL is the prior parameter, n ∈ R>0 is the evidence parameter, and η(ξ, n) is the
normalization constant.

The benefit of the conjugate distribution is in the easy posterior update. Given N observations yN
and prior p(θ|ξo, no), the posterior is p(θ|ξ+, n+), where

ξ+ =
noξo +

∑N
j=1 u(yj)

no +N

n+ = no +N.

Now, we assume that there exists neural networks that, for each point x, can approximate the
“associated parameters” nψ(x) and ξψ(x). We then define the target posterior distribution as

pψ(θ |x) := p
(
θ
∣∣∣ noξo + nψ(x)ξψ(x)

no + nψ(x)
, no + nψ(x)

)
.
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For a choice of prior distribution p(θ) and λ > 0, define the objective function as

L(ψ) := Ep(x,y)pψ(θ|x)
[
log

1

p(y|θ)

]
+ λEp(x)[D(pψ(θ |x) ∥ p(θ))].

This is a generalization of the UCE loss proposed by NatPN [20], as will be detailed below. We note
that Theorem 5.1 remains to hold for this general observation model. That is, by minimizing the UCE
loss, pψ(θ|x) is encouraged to fit to a fixed target

p⋆(θ |x) =
p(θ) exp(νEp(y|x)[log p(y|θ)])∫
p(θ) exp(νEp(y|x)[log p(y|θ)]) dθ

.

F.1 Example: Classification

For classification, we set θ(= π) ∈ ∆Y , p(y|θ) = θy (categorical model), and we have, for αo = 1,
p(θ) = Dir(θ;αo),

pψ(θ |x) = Dir(θ;αo + nψ(x)αψ(x)),

p⋆(θ |x) = Dir(θ;α0 + νη(x)) ∝ exp
(
Ep(y|x)

[
logDir(θ;αo + νey)

])
.

While the categorical model is typically assumed, a few exceptions exist. Sensoy et al. [41] used
p(y|θ) = N (ey;θ, σ

2I). Deng et al. [11] used p(y|θ,αψ(x)) = N (ey;θ, σ
2I(αψ(x))−1), where

I(α) denotes the Fisher information matrix of the probability model Dir(α), i.e.,

I(α) := Eθ∼Dir(α)

[∂ logDir(θ;α)

∂α

∂ logDir(θ;α)

∂α

⊺]
.

In this modified case, the equivalence in Eq. (14) in Theorem E.1 does not hold. The analysis breaks
down since the constant C ′′ in Eq. (15) now becomes dependent on ψ, and cannot be ignored in the
optimization:

C ′′ = Ep(x)
[
log

1

Ep(θ)[exp(νEp(y|x)[log p(y|θ,αψ(x))])]

]
.

Our high-level critique on the EDL methods remains to hold, since the FisherEDL still does not
take into account any external uncertainty in the model ψ. Therefore, the FisherEDL would fit the
meta distribution to some arbitrary target, which could be however potentially better than the simple
scaled-and-shifted target. We also note that in our empirical demonstration in Sec. 7, FisherEDL did
not show outstanding performance on the downstream task performance.

F.2 Example: Regression

For regression, we can set θ = (µ, σ) ∈ R×R≥0, p(y|θ) = N (y;µ, σ2). For a prior, normal-inverse-
Gamma (NIG) distribution NΓ−1(µ, σ;µ0, λ, α, β) is a convenient choice due to its conjugacy
to the Gaussian likelihood. Charpentier et al. [20] proposed to use this choice with the UCE
loss Eq. (D.3). Malinin et al. [19] considered a multivariate regression with Gaussian likelihood
together with the Normal-Wishart distribution, which is a multi-dimensional generalization of the
NIG distribution. They used the reverse-KL type objective extending their prior work [8]. In our
unified view (Theorem E.1), both objectives are equivalent, and these two approaches would suffer
the same issue in its UQ ability.

While the “Deep Evidential Regression” objective proposed by Amini et al. [18] cannot be subsumed
by our work, Meinert et al. [42] recently investigated the effectiveness of the EDL method of Amini
et al. [18], and also showed that the objective function characterizes a degenerate distribution as
its optimal meta distribution, suggesting that its empirical success is likely due to an optimization
artifact.

G Experiment Setup

G.1 Data Processing

Details about Synthetic Data. We create a mixture of Gaussian distribution with mean [−2, 3],
[0, 0], and [2, 3], and variance 0.25. We randomly sample 1000 training data used to train EDL
models and use 2000 test data for the generation of visualization plots in Fig. 6 and Fig. 8.
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Data Split of Real Data. For in-distribution datasets CIFAR10 and CIFAR100, we divide the
original training data into two subsets: a training set and a validation set, using an 80%/20% split
ratio. The testing set of these datasets is utilized as in-distribution samples for evaluation. For OOD
datasets, we utilize their testing sets as OOD data. To maintain consistency in sample size, we ensured
that each OOD dataset contains exactly 10,000 samples, matching the number of in-distribution test
samples.

Details about OOD Data. For all the OOD datasets, we standardized the dataset images by
resizing them to dimensions of 32x32 pixels. Additionally, all gray-scale images were converted to a
three-channel format. The following datasets are selected for the OOD detection task:

• Fashion-MNIST: Contains article images of clothes. We use the testing set, which contains
10,000 images.

• SVHN: The Street View House Numbers (SVHN) dataset contains images of house numbers
sourced from Google Street View. We use 10,000 images from its testing set as OOD
samples.

• TinyImageNet (TIM): As a subset of the larger ImageNet dataset, TIM’s validation set,
containing 10,000 images, is used as OOD samples.

• Corrupted: This is an artificially created dataset generated by applying perturbations, in-
cluding Gaussian blurring, pixel permutation, and contrast re-scaling to the original testing
images.

G.2 Model Architecture

Base Model Architecture. To ensure a fair comparison, we use the same base model architecture
for all EDL methods. We describe the base model architecture for different tasks as follows:

• Synthetic 2-D Gaussian Data: We utilize a simple Multi-Layer Perceptron (MLP) model.
This model comprises three linear layers, each with a hidden dimension of 64, each followed
by the ReLU activation function.

• Real Datasets (CIFAR10 and CIFAR100): We adopt the existing model architecture
VGG16 [43] and ResNet18 [44] as the base model.

The base model serves as the feature extractor for the EDL model, which extracts the feature with
latent dimension 6 for 2-D Gaussian Data and CIFAR10, and extracts the feature with latent dimension
12 for CIFAR100.

UQ Model Head. The UQ model of most EDL methods consists of a base model feature extractor
and a UQ head. The feature extractor takes the data as input and extracts the latent features. The
UQ head then takes the latent feature to parameterize a Dirichlet distribution Dir(π;αψ(x)). As we
discussed in Sec. 4, different EDL method mainly differs from the parametric form of αψ(x), either
direct parameterization or density parameterization, which is achieved by using different types of
UQ head. We describe the model architecture of these two different UQ heads as follows:

• Direct Parameterization: the UQ head of direct parameterization is similar to a typical
classification head, which consists of two linear layers with hidden dimension 64 (128 for
CIFAR100), equipped with a ReLU activation between the two layers.

• Density Parameterization: density parameterization adopts a density model. PostNet [15]
uses a radial flow model with a flow length of 6 to estimate class-wise density, which results
in the creation of multiple flow models corresponding to the number of classes in datasets.
NatPN [20] uses a single radial flow model with a flow length of 8 to estimate the density of
marginal data distribution p(x).

G.3 Implementation Details

For all the EDL methods, we use the same base model architecture discussed previously. We elaborate
on their common configurations, method-specific configurations, and hyper-parameter as follows.
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Figure 5: Behavior of Uncertainties Learned by EDL methods on Toy Data. (a) EDL methods learn spurious
epistemic uncertainty, wherein uncertainty does not vanish with an increasing number of observed samples,
contrary to the fundamental definition of epistemic uncertainty. (b) Instead of a constant, EDL methods learn
model-dependent aleatoric uncertainty that depends on hyper-parameter λ, contrary to the fundamental definition
of aleatoric uncertainty.

Common configurations. The maximum training epochs are set to 50, 100, and 200 for 2-D
Gaussian data, CIFAR10 and CIFAR100, respectively. We train models with the early stopping of
patience 10. The model is evaluated on the validation set with frequency 2, and the optimal model
with the lowest validation loss or highest accuracy is returned. The training batch size is set to 64, 64,
and 256 for Gaussian data, CIFAR10 and CIFAR100, respectively. We use Adam optimizer without
weight decay or learning rate schedule during model optimization. The learning rates of the optimizer
are 1e-3,2.5e-4,2.5e-4 for Gaussian data, CIFAR10 and CIFAR100, respectively. The default
hyper-parameter λ is set to 1e-4 for those EDL methods with regularizer. All reported numbers are
averaged over five runs. All experiments are implemented in PyTorch using a Tesla V100 GPU with
32 GB memory.

Method-specific Configurations. We describe those EDL methods with additional training config-
urations and hyper-parameters as follows,

• RPriorNet [8]: This method requires additional OOD data during training. In alignment
with the original paper, CIFAR100 serves as the OOD data for CIFAR10, and TinyImageNet
is utilized as the OOD data for CIFAR100. We set the OOD regularizer weight γood = 5
and γood = 1 for CIFAR10 and CIFAR100, respectively. We realize that both the training
loss and validation loss can fluctuate significantly due to the conflict between in-distribution
and OOD data optimization. In this case, we use validation accuracy as the criterion to save
the optimal model, making sure the model is well optimized.

• NatPN [20]: NatPN uses a single density model with flow length 8 and latent feature
dimension 16 to parameterize density. The method also requires “warm-up training” and
“fine-tuning” of the density model, where we set warm-up epochs to be 3 and fine-tuning
epochs to 100, as the paper’s official implementation suggests.

• Fisher-EDL [11]: This method requires two regularizers, one is the standard r-KL regularizer,
the other their proposed “Fisher Information” regularizer in the training objective. As the
paper suggest, we set the corresponding hyper-parameter λ2 = 5e-2 and λ2 = 5e-3 for
CIFAR10 and CIFAR100, respectively, and set λ1 = 1 for both datasets.

• END2 [16]: To obtain the ensemble samples, we train 100 ensemble models using standard
cross entropy loss. In alignment with the original paper, we also use the temperature
annealing technique, which is the key technique to ensure the distillation training works
smoothly. The temperature will be initialized as a large value and then gradually decay to 1
after certain epochs. We set the initial temperature to 5 for both datasets and set the decay
epochs to 30 and 60 for CIFAR10 and CIFAR100, respectively.
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• S2D [17]: We train a single model with random dropout and then run inference of the model
to obtain 100 samples. We also use the temperature annealing technique with the same
configurations as END2 for the distillation training.

• Bootstrap Distillation (Ours): First, we randomly sample 100 subsets of training data from
the original training set with an 80%/20% split ratio. Then, for each dataset, we train a
bootstrap model using standard cross entropy loss, resulting 100 bootstrap models. For
the distillation stage, we also apply the temperature annealing technique with the same
configurations as END2.

H Additional Experiment Results

H.1 Omitted Results in Sec. 5.1

The behavior of both epistemic uncertainty and aleatoric uncertainty learned by EDL methods on 2D
Gaussian data is shown in Fig. 5. We observe similar behavior as real data. EDL methods cannot
quantify either epistemic or aleatoric uncertainty in a faithful way.

H.2 Ablation Study in Sec. 5.2
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Figure 6: Visualization of Epistemic Uncertainty on 2D Gaussian Data. The first row (a)-(d) corresponds to
differential entropy quantified by EDL models trained using their original proposed training objective (reverse-
KL), and the second row (e)-(h) corresponds to epistemic uncertainty quantified by same EDL methods ablated
with MSE objective in Eq. (18). This ablation study implies that the specific training objectives has no actual
impact on the methods’ ability to quantify uncertainty. Other techniques, such as using density estimation
(PostNet (c, g), NatPN (d, h)), and using OOD data during training (RPriorNet (b, f )), play a more significant role
in EDL methods’ UQ performance. Without auxiliary techniques, BM (a, e) cannot distinguish in-distribution
and OOD regions. Similar behavior holds for total uncertainty quantification (see Fig. 8).

There could be many other Dirichlet-framework-independent objectives that can capture similar
behavior. For instance, we can consider a simple variant of MSE loss as follows:

min
ψ

Ep(x,y)[∥ log(αψ(x))− log(α0 + λ−1ey)∥2]. (18)

The global minimum of optimizing this heuristic loss function can be characterized by log(αψ⋆(x)) =
Ep(y|x)[log(α0 + λ−1ey)], which implies αψ(x) ≈ α0 + λ−1η(x) under the assumption of a sharp
true label distribution p(y|x). Independent of the training procedure, we can artificially define
− log1⊺

Cαψ(x) as an epistemic uncertainty metric, while the entropy of normalized model output
H(αψ(x)/1

⊺
Cαψ(x)) can represent total uncertainty.

We conduct an ablation study by replacing the reverse-KL objective with the MSE objective in Eq. (18)
for model training. First, we provide visualization of epistemic uncertainty, aleatoric uncertainty,
and total uncertainty on 2D Gaussian data quantified by different EDL methods in Fig. 6, Fig. 7,
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Figure 7: Visualization of Aleatoric Uncertainty on 2D Gaussian Data. The first row (a− d) corresponds
to the aleatoric uncertainty quantified by EDL models trained using their original proposed training objective
(reverse-KL), and the second row (e − h) corresponds to aleatoric uncertainty quantified by the same EDL
methods ablated with MSE objective in the equation Eq. (18). Based on these results, We can draw a similar
conclusion as Fig. 6: specific training objective has no actual impact on the methods’ ability to quantify aleatoric
uncertainty either.
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Figure 8: Visualization of Total Uncertainty on 2D Gaussian Data. Total uncertainty is measured using
entropy. We can draw a similar conclusion as Fig. 6 and Fig. 7.

and Fig. 8, respectively. Next, we extend the ablation study to OOD detection (using epistemic
uncertainty) and ambiguous data detection (using aleatoric uncertainty) tasks using real data in Fig. 9
and Fig. 10, respectively. The results indicate that EDL methods exhibit similar behavior by using
reverse KL or MSE objectives.

H.3 Ablation Study in Sec. 5.3

Empirical Finding 1. OOD-Data-Dependent Methods are Sensitive to Model Architectures

Firstly, we remark on the conflicting empirical findings regarding the Prior Network [7, 8] as reported
in current EDL literature. Baseline results of [8] on the OOD detection task, reproduced by [15, 11],
deviate a lot from the original paper’s results. Upon closer investigation, we can attribute these
conflicting results to nuances in different model architectures, i.e., the use of BatchNorm has a
significant impact when incorporating OOD data during training. Specifically, we conduct an ablation
study on the model architectures of RPriorNet, using VGG-16 and ResNet as backbone models, and
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Figure 9: Comparison of OOD Detection Performance of EDL methods with Original Objective v.s. MSE
Objective. The EDL models trained using MSE objective in Eq. (18) demonstrate comparable performance.
These results further justify that the specific training objective has no actual impact on the downstream task
performance.
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Figure 10: Comparison of Ambiguous Data Detection Performance of EDL methods with Original
Objective v.s. MSE Objective. We can draw a similar conclusion as Fig. 9.

compare their performance with and without BatchNorm layers removed. As illustrated in Figures 11,
the OOD detection performance of RPriorNet shows sensitivity to the model architecture, with the
removal of BatchNorm layers leading to performance improvement. This observation further reflects
the limitations of utilizing OOD data during training, particularly for large-scale models in which
BatchNorm is usually employed.

Empirical Finding 2. Density Models May Not Perform Well with Moderate Dimensionality

Charpentier et al. [15, 20] claim that utilizing density parametrization can effectively address the OOD
detection task without the need to observe OOD data during training. This seems to be intuitive, since
a perfect density estimator should be capable of identifying OOD data, as OOD data are typically
from low-density regions. However, density estimation itself may encounter challenges, particularly
in high-dimensional spaces. To validate this conjecture, we train PostNet [15] with a latent feature
dimension of 2. As illustrated in Fig. 12, we visualize the epistemic uncertainty (measured by
differential entropy) in the latent feature space and plot the features of both in-distribution and OOD
data. Despite the density model effectively generating higher uncertainty for OOD regions, the OOD
data are mapped to the same region as the in-distribution data. This phenomenon, known as model
collapse [45], limits the model’s capability to distinguish between in-distribution and OOD data.

H.4 Bootstrap Distillation Method Faithfully quantify Epistemic Uncertainty

The comparison of epistemic uncertainty quantified by existing EDL methods and our proposed
Bootstrap Distillation method is shown in Fig. 13. Compared to existing EDL methods, our proposed
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Figure 11: OOD Detection Performance of RPriorNet with Different Model Architecture. RPriorNet is
trained using CIFAR10 as in-distribution data and CIFAR100 as OOD data. The OOD detection performance
(showing four OOD datasets) is sensitive to the choice of model architecture.
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Figure 12: Visualization of Epistemic Uncertainty in PostNet’s 2D Latent Feature Space. PostNet leverages
a flow-based density estimation model, which outputs low (high) uncertainty for in-distribution (OOD) regions
as expected. However, given that the input data is high-dimensional, PostNet suffers from the feature collapse
issue that mapping OOD data to the same region as ID data in the latent space, making them indistinguishable.

Bootstrap Distillation method demonstrates monotonically decreasing and eventually vanishing
uncertainty, consistent with the dictionary definition of epistemic uncertainty.
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Figure 13: Epistemic Uncertainty and Test Accuracy v.s. Number of Training Data. Compared to other
EDL methods, our proposed Bootstrap Distillation method can faithfully quantify epistemic uncertainty, i.e., the
uncertainty is monotonically decreasing with increasing number of data.

H.5 Bootstrap Distillation Method Benefits from More Samples

As discussed in Sec. 6, the Bootstrap Distillation method needs the sampling of multiple bootstrap
samples, with each requiring the training of a model using randomly sampled datasets. To understand
the impact of varying the number of samples 5, 10, 20, 50, 100, we conduct an empirical
investigation on the OOD detection performance of Bootstrap Distillation. The results shown in
Fig. 14 reveal that Bootstrap Distillation indeed benefits from a larger number of samples, particularly
in more complex OOD detection tasks using CIFAR100 as the in-distribution data.
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Figure 14: Bootstrap Distillation’s OOD Detection Performance v.s. Number of Bootstrap Samples. The
x-axis represents the number of bootstrap samples, and the y-axis represents the Average AUROC score of OOD
detection tasks. Bootstrap Distillation’s UQ performance will improve by obtaining more bootstrap samples, but
more computational cost is the price needs to pay.

Table 2: OOD detection AUROC score. MI and Dent stand for Mutual Information and Differential Entropy.

ID Data Method Metric SVHN FMNIST TImageNet Corrupted

CIFAR10 RPriorNet MI 72.6±6.9 79.8±2.9 74.0±1.9 77.6±9.8

Dent 77.6±5.8 82.7±2.1 77.4±1.5 81.3±7.1

BM MI 97.5±0.6 93.6±0.6 87.4±1.2 98.8±0.4

Dent 97.0±0.8 93.3±0.5 87.7±1.1 98.3±0.4

PostNet MI 94.4±1.0 89.8±1.6 86.3±0.3 96.8±0.8

Dent 95.5±1.0 90.6±1.2 86.8±0.3 97.8±0.6

NatPN MI 17.8±2.9 21.0±2.7 26.3±3.2 14.9±2.1

Dent 67.0±6.7 60.6±4.1 54.6±2.6 69.7±5.8

EDL MI 96.2±1.1 90.3±0.6 86.3±0.4 98.7±0.8

Dent 96.5±0.9 90.3±0.6 86.9±0.4 98.8±0.3

Fisher-EDL MI 91.3±0.3 86.9±0.8 86.1±0.6 95.1±1.0

Dent 93.7±1.3 88.1±1.1 86.6±0.8 97.1±0.7

END2 MI 95.8±0.4 92.7±0.7 89.0±0.4 95.7±0.5

Dent 96.9±0.2 93.4±0.7 87.1±0.8 96.9±0.4

S2D MI 89.1±2.7 87.9±0.6 83.9±0.6 90.3±3.5

Dent 93.3±1.5 90.0±0.4 87.0±0.4 93.9±0.2

Bootstrap Distill MI 97.2±0.1 94.4±0.5 89.6±0.3 98.2±0.2

Dent 97.8±0.1 94.3±0.6 87.6±0.4 98.4±0.2

ID Data Method Metric SVHN FMNIST TImageNet Corrupted

CIFAR100 RPriorNet MI 74.8±1.8 73.1±4.6 61.6±2.5 72.9±5.3

Dent 74.3±1.6 73.7±4.5 63.1±2.2 68.9±6.4

BM MI 71.5±9.6 74.6±6.8 71.4±5.5 64.8±6.9

Dent 68.5±10.2 74.2±6.7 70.2±6.0 58.6±6.8

PostNet MI 75.9±5.6 70.8±2.4 64.4±1.6 57.9±11.6

Dent 79.4±5.0 74.7±1.8 72.0±0.9 55.5±10.6

NatPN MI 56.4±5.6 41.6±4.1 43.5±1.5 53.2±5.9

Dent 64.7±4.4 47.0±4.5 49.6±0.9 57.0±3.5

EDL MI 68.7±0.4 74.8±2.6 73.7±0.5 50.5±6.5

Dent 68.2±3.4 74.4±2.5 73.5±0.5 49.9±6.3

Fisher-EDL MI 71.3±2.6 71.0±3.2 74.8±0.6 54.8±7.5

Dent 71.5±2.9 69.6±3.3 75.4±0.3 53.6±6.3

END2 MI 78.1±2.9 79.6±1.5 76.6±0.4 68.4±2.6

Dent 82.0±2.4 85.0±0.6 83.2±0.2 73.4±1.6

S2D MI 62.1±2.2 69.8±0.9 71.5±0.2 31.6±1.1

Dent 50.5±0.2 50.4±0.3 50.9±0.3 50.3±0.3

Bootstrap Distill MI 77.9±1.3 83.3±1.6 78.2±0.5 53.4±3.0

Dent 85.6±1.0 86.8±1.2 84.1±0.2 68.1±3.1

H.6 Detailed Results on UQ Downstream Tasks

The complete AUROC and AUPR results of OOD data detection are shown in Table 2 and Table 3,
respectively. The complete results of selective classification are shown in Table 4.
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Table 3: OOD detection AUPR score. MI and Dent stand for Mutual Information and Differential Entropy.

ID Data Method Metric SVHN FMNIST TImageNet Corrupted

CIFAR10 RPriorNet MI 68.2±7.5 75.6±3.0 69.3±2.9 73.6±9.6

Dent 73.5±6.3 79.9±1.9 72.9±1.9 75.4±8.9

BM MI 96.9±0.8 92.3±0.4 85.3±1.3 98.2±0.6

Dent 95.0±1.7 90.5±1.2 84.2±1.6 96.4±1.2

PostNet MI 90.9±1.6 86.6±2.3 82.3±0.6 93.3±2.2

Dent 93.5±1.2 88.5±1.3 83.7±0.4 96.1±1.2

NatPN MI 43.9±2.9 40.4±2.0 38.7±1.2 44.9±2.6

Dent 70.2±5.4 65.1±3.2 59.2±1.9 73.6±3.9

EDL MI 93.7±1.9 87.6±0.9 82.6±0.5 97.6±0.6

Dent 94.4±1.6 87.7±0.8 83.4±0.4 98.0±0.4

Fisher-EDL MI 82.2±1.3 80.5±1.1 80.9±0.6 89.0±2.7

Dent 88.2±2.7 84.7±1.5 82.5±1.1 94.0±1.7

END2 MI 93.3±0.2 90.9±0.8 84.3±0.7 91.7±1.0

Dent 95.1±0.2 91.8±0.7 83.7±0.8 93.8±0.9

S2D MI 83.0±3.9 82.6±0.9 77.7±0.7 83.0±5.2

Dent 89.0±2.4 86.4±0.7 82.4±0.4 87.5±3.6

Bootstrap Distill MI 94.6±0.4 92.5±0.7 85.6±0.5 95.2±0.5

Dent 95.7±0.3 92.5±0.8 84.5±0.6 96.0±0.4

ID Data Method Metric SVHN FMNIST TImageNet Corrupted

CIFAR100 RPriorNet MI 70.3±1.3 69.6±4.9 58.7±2.1 71.6±6.2

Dent 69.1±1.4 69.2±4.6 59.2±1.6 68.5±6.7

BM MI 67.3±7.8 68.9±5.8 67.2±5.5 59.3±5.5

Dent 65.0±7.5 68.1±5.1 66.4±5.5 53.7±4.3

PostNet MI 69.7±6.6 64.4±2.6 57.5±1.4 59.7±10.3

Dent 75.4±5.5 69.3±2.3 66.2±1.2 57.6±9.5

NatPN MI 54.3±5.2 44.1±2.5 45.5±1.1 50.2±3.7

Dent 59.8±4.7 47.0±2.7 48.9±0.8 52.0±2.3

EDL MI 63.9±3.8 69.7±2.7 68.9±0.5 48.5±3.8

Dent 63.1±3.3 68.8±2.6 68.6±0.5 47.8±3.6

Fisher-EDL MI 64.0±3.1 66.6±3.1 69.6±1.3 53.0±6.1

Dent 65.0±3.2 64.9±3.2 71.0±0.7 49.9±4.1

END2 MI 71.1±3.6 70.3±1.3 70.5±0.4 57.9±2.3

Dent 75.1±2.7 77.0±0.4 78.2±0.3 63.5±2.4

S2D MI 58.5±2.0 63.9±0.7 68.6±0.3 38.0±0.4

Dent 46.4±0.4 45.6±0.1 45.8±0.1 52.5±0.7

Bootstrap Distill MI 68.5±1.6 73.6±2.5 71.9±0.8 46.6±1.4

Dent 77.7±1.0 78.6±2.0 79.4±0.4 55.8±2.3

Table 4: Selective classification Test Accuracy, AUROC, and AUPR score. Ent and MaxP stand for Entropy
and Max Probability, respectively.

Method Metric CIFAR10 CIFAR100

Test Acc AUROC AUPR Test Acc AUROC AUPR

RPriorNet Ent 85.4±1.4 86.0±0.4 49.7±2.0 57.9±1.3 80.8±0.5 72.2±0.9

MaxP 85.4±1.4 86.6±0.3 51.3±1.6 57.9±1.3 81.8±0.3 74.0±0.6

BM Ent 88.7±0.1 90.1±0.2 51.5±0.7 54.3±1.2 81.8±0.1 76.0±0.7

MaxP 88.7±0.1 90.0±0.2 51.6±0.7 54.3±1.2 82.6±0.1 76.9±0.7

PostNet Ent 88.4±0.1 89.2±0.2 50.4±0.6 58.0±0.8 81.6±0.2 74.1±1.0

MaxP 88.4±0.1 89.2±0.2 50.7±0.8 58.0±0.8 82.6±0.2 75.4±0.5

NatPN Ent 83.2±0.6 86.2±0.2 53.5±0.5 56.0±0.4 80.8±0.2 73.8±0.5

MaxP 83.2±0.6 86.4±0.2 54.4±0.6 56.0±0.4 82.2±0.2 76.2±0.3

EDL Ent 89.9±0.1 89.7±0.2 49.2±0.7 62.9±0.3 84.5±0.2 74.1±0.3

MaxP 89.9±0.1 89.7±0.2 48.8±0.7 62.9±0.3 84.9±0.2 74.9±0.3

Fisher-EDL Ent 88.2±0.4 90.4±0.1 53.7±0.9 55.9±0.8 85.8±0.2 79.6±0.3

MaxP 88.2±0.4 90.4±0.1 53.8±0.8 55.9±0.8 86.1±0.2 80.1±0.3

END2 Ent 89.4±0.1 89.8±0.3 50.6±1.0 65.0±0.2 83.0±0.1 69.3±0.2

MaxP 89.4±0.1 89.6±0.3 51.1±1.0 65.0±0.2 85.3±0.1 72.6±0.2

S2D Ent 89.1±0.1 89.4±0.1 50.5±0.2 61.0±0.1 83.4±0.1 72.7±0.2

MaxP 89.1±0.1 89.3±0.1 51.0±0.5 61.0±0.1 84.4±0.1 74.2±0.2

Bootstrap Distill Ent 89.4±0.1 90.3±0.2 51.2±0.5 65.4±0.1 83.2±0.1 69.4±0.3

MaxP 89.4±0.1 90.2±0.2 52.1±0.4 65.4±0.1 85.7±0.1 73.2±0.3
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state our conclusion and contribution of
this paper, which are supported by both theoretical analysis and empirical evidence presented
in the subsequent sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: This paper mainly aims to discuss the limitations of existing methods. For the
new methods proposed in this paper, i.e., Bootstrap Distillation, we also acknowledge its
computational limitation in Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We clearly state the assumptions of our proposed theorems, and the proofs and
derivations are included in Appendix.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all experiment settings and implementation details in Appendix G,
and we further include the code in the supplementary material.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the code in the supplementary material. We also include the
scripts and instructions to run the code. We also plan to make the code open-source upon
acceptance. All the data used in our experiments are those publicly available datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all experiment settings and implementation details in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the results are averaged over five random trials, with mean and standard
error reported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This is included in Appendix G.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed Code of Ethics and our paper conforms with the
Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The high-level goal of this paper is to better improve the reliability of machine
learning models, we do not expect negative societal impacts of our work.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper uses publicly available, standard image classification datasets with
no risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets used in this paper are all publicly available datasets, and we have
properly cited the relevant papers.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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