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Abstract

The extended Gaussian family is the closure of the Gaussian family obtained by completing
the Gaussian family with the counterpart elements induced by degenerate covariance or
degenerate precision matrices, or a mix of both degeneracies. The parameter space of
the extended Gaussian family forms a symmetric positive semi-definite matrix bicone, i.e.
intersection of two partial symmetric positive semi-definite matrix cones. In this paper, we
study the Hilbert geometry of such an open bounded convex symmetric positive-definite
bicone. We report the closed-form formula for the corresponding Hilbert metric distance
and study exhaustively its invariance properties. We also touch upon potential applications
of this geometry for dealing with extended Gaussian distributions.

Keywords: Extended Gaussian distributions; Symmetric positive semi-definite cone; bi-
cone; Hilbert geometry; projective geometry; invariance; open stochastic systems.

1. Introduction

In this paper, we consider the Hilbert geometry for the covariance-precision bicone domain.
To first motivate our study, we introduce the bicone closed parameter space of the extended
Gaussian family. We can parametrize the Gaussian family centered at the origin1 using
either its covariance matrix Σ, or its precision matrix P = Σ−1. That is, the Gaussian
density with respect to the Lebesgue measure can be written:
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where ⟨x, x′⟩ =
∑n

i=1 xix
′
i denotes the Euclidean inner product, and N0(0,Σ) ∼ pΣ(x) =

pP (x) are two parameterizations.
The parameter space of the Gaussian family {N0(Σ)} then consists of symmetric positive-

definite cone (SPD) PD = {X ∈ Sym(R, n) : X ≻ 0}, where ≻ denotes the Loewner partial
ordering on the vector space Sym(R, n) of n×n real symmetric matrices (written concisely
as Sym(n) in the remainder): that is, A ≻ B if and only if A−B ∈ PD. The topological clo-
sure of the PD cone is the positive semi-definite (PSD) cone: PSD = {X ∈ Sym(n) : X ⪰ 0}
where A ⪰ B iff A−B ∈ PSD. From the viewpoint of geometry, we consider the Gaussian

∗ Equal contribution.
1. We discuss the generalization to non-centered Gaussians in Section 6.
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PD = {X : X ≻ 0}

PSD = {X : X ⪰ 0}

∂PSD = {X : det(X) = 0}

I − PSD
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VPM = {0 ⪯ L ⪯ I}

VPM = {0 ≺ L ≺ I}
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Figure 1: The parameter space of the extended Gaussian family forms a closed bicone.

family as a cone manifold equipped with a single global coordinate system (the covariance
or precision coordinate systems which form a pair of dual coordinate systems (Σ(·),PD)
and (P (·),PD) in the setting of information geometry (Ohara et al., 1996; Ohara, 2019)).

Gaussian distributions with degenerate covariance matrices Σ are commonly consid-
ered as Gaussian distributions defined on lower-dimensional affine subspaces range(Σ) =
{Σx : x ∈ Rn} of Rn. James (1973) considered Gaussian distributions with degenerate pre-
cision matrices, and more generally proposed to extend the Gaussian family by considering
the following reparameterization of Gaussians:

L(Σ) = Σ(I +Σ)−1, Σ(L) = L(I − L)−1,

L(P ) = (I + P )−1, P (L) = L−1 − I.

where I = In denotes the n×n identity matrix. For full rank covariance/precision matrices,
the eigenvalues λi(L) fall inside (0, 1) for i ∈ {1, . . . , n}. James (1973) first considered the
general case of extended Gaussian distributions by considering “Gaussian elements”, i.e.,
the counterpart of Gaussians with degenerate covariance and/or precision matrices, lying
on the boundary of the bicone2(see Figure 1). The variance-precision model VPM is the
intersection of the two PSD cones and the variance-precision manifold (named the variance-
information manifold in James (1973)) VPM is its interior: VPM = VPM\∂VPM.

The pioneer approach of James was later studied in depth using the framework of cate-
gory theory of Stein and Samuelson (2023), further highlighting interpretations of the dif-
ferent types of degenerate extended Gaussian distributions and their duality relationships.
Gaussian distributions with degenerate precision matrices encode non-determinism in the

2. Terminology: a bicone is two cones joined at their bases; a double cone is two cones joined at their apex.
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open stochastic framework of Willems (2012). Loosely speaking, those degenerate precision
Gaussians can be interpreted as “uniform distributions on Rn”; which, even if strictly speak-
ing are ill-defined with respect to Lebesgue measure, are sometimes considered as improper
priors in Bayesian data analysis (Gelman et al., 1995).

1.1. Hilbert geometry and Birkhoff geometry

Hilbert geometry (Hilbert, 1895; Goldman, 2022) is a geometry defined on any open bounded
convex domain C of a Hilbert space. It defines a metric distance dCH and ensures that the
straight lines are geodesics, with uniqueness of geodesics depending on the smoothness of the
boundary ∂C (Nielsen and Shao, 2017). Birkhoff geometry (Birkhoff, 1957; Lemmens and
Nussbaum, 2014b) is a geometry defined on any convex pointed cone K. The cone defines
a (partial) order which allows one to define a Birkhoff projective “distance” dB on the K,
satisfying dB(λr, λ

′r′) = dB(r, r
′) for any λ, λ′ > 0, therefore descending to a well-defined

distance on equivalence classes [r] and [r′], where r ∼ λr for any λ > 0. The Birkhoff
distance is also called Hilbert projective distance (Nussbaum, 1988); they are related to
each other via projectivization of K. Hilbert geometry for many different domains has
been studied: e.g., the Hilbert geometry of the unit disk yields Klein model of hyperbolic
geometry (Nielsen, 2020). The Hilbert geometry of simplices has been studied by de la Harpe
(1993) (and more generally for polytopes by Lemmens and Walsh (2009)) with applications
in machine learning in (Nielsen and Sun, 2018, 2023; Vanecek et al., 2024).

Birkhoff geometry of SPD matrices found many applications due to the fact that it
exhibits a contraction property (Birkhoff, 1957; Chen et al., 2021) and only requires the
extreme eigenvalues of matrices to compute the Birkhoff distance (Mostajeran et al., 2024).
In comparison, the affine-invariant Riemannian metric distance (Thanwerdas and Pennec,
2023) (AIRM) requires the full spectral decomposition. The Hilbert geometry of the space
of correlation matrices, whose domains are called elliptopes (Tropp, 2018), was studied
in (Nielsen and Sun, 2018). Recently, Hilbert geometry gained interest in computational
geometry due to its mathematical and computational tractability of their Voronoi dia-
grams (Gezalyan and Mount, 2023) and dual Delaunay triangulations (Gezalyan et al.,
2024), or smallest enclosing balls (Nielsen and Sun, 2018; Banerjee et al., 2024), etc.

1.2. Contributions and paper outline

In this paper, we consider the Hilbert geometry for the covariance-precision bicone domain.
The paper is organized as follows. In §2, we describe the Birkhoff projective geometry of
regular open cones and the Hilbert geometry defined on open bounded convex domains.
The Hilbert geometry of the open variance-precision manifold is studied in §3. We give
an equivalent definition of the VPM of James (1973) (in Definition 10), which is proven
open convex and bounded (Proposition 12). Automorphisms of the VPM bicones are re-
ported in Proposition 13, and a closed-form formula for the Hilbert distance in the VPM
is obtained in Theorem 14. In §4, we report two invariance properties of the Hilbert VPM
distance: under transformations X 7→ I −X in Proposition 17 and under orthonormal ma-
trix conjugation X 7→ UT X U in Proposition 19. Section 5 proves that these two isometric
transformations characterize all the VPM isometries (Theorem 39). Finally, we hint at some
future directions, including applications, in §6. All proofs are given in Appendix A.

3



Karwowski Nielsen

2. Birkhoff and Hilbert geometries

2.1. Cones and partial orders

Definition 1 (Cone order) Given any vector space V , if K ⊆ V satisfies the following:

• K is an open cone, i.e. for any v ∈ K and any c ∈ R>0, we have cv ∈ K

• K is convex, i.e. for any v, w ∈ K and any c ∈ [0, 1], we have cv + (1− c)w ∈ K

• K is pointed, i.e. K ∩ (−K) = {0}

then K defines a partial order ≺K , or simply ≺, on V , by v ≺ w ⇐⇒ w − v ∈ K. We
write v ⪯ w if w − v ∈ K.

Definition 2 (Loewner order) An example of cone order is the Loewner order ⪯ on
the set of symmetric matrices Sym(n), arising from the convex open cone of symmetric
positive definite matrices PD(n) ⊂ Sym(n). That is, define a partial order on the space of
symmetric matrices A ≺ B if and only if 0 ≺ B −A ⇐⇒ B −A ∈ PD(n).

Proposition 3 (Loewner order implies eigenvalues ordering) Given two symmet-
ric matrices A,B of V = Sym(n), if A ⪯ B, then λi(A) ≤ λi(B), where λi(X) denotes the
i-th smallest eigenvalue of X (including multiplicities). The converse holds if the ordering
is true element-wise in a common eigenbasis.

2.2. Birkhoff projective distance

Definition 4 (Birkhoff projective distance) Given a vector space V and an open con-
vex pointed cone K ⊆ V defining an order ⪯ on V , we define the Birkhoff distance dB on
K as follows:

dB(v, w) = log
M(v, w)

m(v, w)

where:
M(v, w) = inf

λ>0
{v ⪯ λw} m(v, w) = sup

µ>0
{µw ⪯ v}

Example 1 Consider the symmetric positive-definite cone PD(n). Then the Birkhoff pro-
jective distance (Nielsen and Sun, 2018; Chen et al., 2021) is:

dB(P,Q) = log
λmax(PQ−1)

λmin(PQ−1)
.

2.3. Hilbert metric distance

Definition 5 (Hilbert distance function) Given an open convex set X in a normed
vector space (V, ∥·∥) with the boundary ∂X, we define the Hilbert distance function dH(x, y)
on elements x, y ∈ X by the following formula:

dH(x, y) = log
∥x− y′∥
∥x′ − x∥

∥x′ − y∥
∥y − y′∥

where x′, x, y, y′ are points lying in this order on the line lxy, such that {x′, y′} = ∂X ∩ lxy.
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Remark 6 Hilbert distance in Definition 5 is independent of the norm on V , by the equiv-
alence of one-dimensional norms to the absolute value | · | on lxy.

Example 2 Let X = (0, 1) the open unit interval of V = R. Then the Hilbert distance is:

dH(x, y) =

∣∣∣∣log (1− x)y

x(1− y)

∣∣∣∣ .
2.4. Relationship between Hilbert and Birkhoff distances

Definition 7 (Open pointed cone induced by a convex set) Given a convex set C ⊆
V , we define the open pointed cone over C as K(C) = {(λx, λ) : x ∈ C, λ ∈ R>0}.

Definition 8 (Projective space over an open pointed cone) For a pointed cone K
in a vector space V , we define the projective space over K to be the space of half-lines in K,
that is, P(K) = K/ ∼ where x ∼ y for x, y ∈ K if and only if x = λy for some λ ∈ R>0.

Proposition 9 (Birkhoff characterization of the Hilbert metric) (Lemmens and Nuss-
baum, 2014a, Theorem 2.2) For a vector space V and an open bounded convex set C ⊆ V ,
the space P(K(C)) equipped with the Birkhoff metric dB is isometric to the space C equipped
with the Hilbert metric dH .

3. Hilbert geometry of the Variance-Precision Model

Definition 10 (Variance-precision manifold VPM(n)) We define the variance-precision
manifold of dimension n as the space VPM(n) := {X ∈ Sym(n) : 0 ≺ X ≺ I}.

Remark 11 (Variance-precision model VPM(n)) James (1973) defines the variance
information manifold of dimension n as the space of real symmetric matrices n × n, such
that for all eigenvalues λi, 1 ≤ i ≤ n, we have 0 ≤ λi ≤ 1. This corresponds to the closure
VPM(n) = {X ∈ Sym(n) : 0 ⪯ X ⪯ I} in Sym(n) in our Definition 10, by the equivalence
of Loewner order to eigenvalue ordering, as in Proposition 3.

Proposition 12 VPM(n) ⊂ Sym(n) ≃ Rn(n+1)/2 is open in Sym(n), convex and bounded.

Proposition 13 VPM(n) is invariant under the mapping X 7→ I − X and conjugation
with orthonormal matrices X 7→ UTXU for U ∈ O(n).

Theorem 14 (Hilbert distance on VPM(n)) Given two matrices A,B ∈ VPM(n):

dH(A,B) = log
max

(
λmax(B

−1A), λmax

(
(I −B)−1(I −A)

))
min

(
λmin(B−1A), λmin

(
(I −B)−1(I −A)

))
where λmin and λmax denote the minimal and maximal eigenvalues of respective matrices.

Remark 15 Because of the logarithm of ratios, in Theorem 14, the Hilbert distance on
VPM(n) can be equivalently written using matrices A−1B and (I −A)−1(I −B) in place of
B−1A and (I−B)−1(I−A) respectively. The transformation Mob(A,B) = (I−A)−1(I−B)
is called a matrix Möbius transformation.
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4. Invariance properties of the Hilbert VPM distance

Let us first state the following two propositions:

Proposition 16 (ι map, James (1973)) The variance-precision manifold is diffeomor-
phic to the set of symmetric positive-definite matrices of dimension n via the map ι(X) =
X(I +X)−1 and its inverse ι−1(A) = A(I −A)−1.

Those mappings can be interpreted as matrix Möbius transformations. The formula of
the Hilbert VPM distance from Theorem 14 immediately implies the following.

Proposition 17 (Identity-complement invariance) The map X 7→ I−X is an isom-
etry of VPM(n).

Remark 18 We observe that the map X 7→ X−1 is an isometry for the affine invariant
Riemannian metric (AIRM) Pennec et al. (2006) (and for the log-Euclidean metric (Arsigny
et al., 2006)). Thus, the invariance of the Hilbert metric on VPM(n) under map X 7→ I−X
relates to the invariance of the standard Riemannian metric on PD(n) under matrix inverse.

Proposition 19 (Conjugation invariance) Conjugation under orthonormal matrix U ,
that is, a map X 7→ UTXU is an isometry in the Hilbert metric on VPM(n).

Remark 20 Similarly, the conjugation with the orthonormal matrix X 7→ UTXU is an
isometry for the AIRM metric (and for the log-Euclidean metric). Thus, the invariance of
the Hilbert metric on VPM(n) under conjugation with orthonormal matrix X 7→ UTXU
relates to the invariance of the standard Riemannian metric on PD(n) under conjugation.

5. Characterization of VPM isometries

We now show that these two invariant transformations are the only ones by characterizing
the isometries of the VPM when n ≥ 2, which we assume everywhere below. The argument
is based on the simplification from isometries of Hilbert metric to collineations of the un-
derlying cone (for the Birkhoff characterization). We will denote the group of isometries of
a metric space X by Isom(X).

Definition 21 Given a real vector space V , three points x, y, z ∈ V are called collinear if
there exist real constants λ, λ′ such that (x− y) = λ(x− z) = λ′(y − z).

Definition 22 (Collineation) Given two vector spaces V,W and subsets X ⊆ V and
Y ⊆ W , an invertible transformation f : X → Y is called a collineation if for every three
collinear points x, y, z ∈ X, their images f(x), f(y), f(z) are also collinear. The group of
collineations of W is denoted Coll(W ).

Proposition 23 (Goldman (2022)) For an open convex bounded set C ⊆ Rn equipped
with the Hilbert geometry dH , we have Coll(C) ⊆ Isom(C).

The converse of Proposition 23 is not true in general. But we establish it for VPM(n)
in particular, using the theory developed in Walsh (2017).
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5.1. Isometries of VPM are collineations

Definition 24 (Lorentzian cone) A cone C ⊆ Rn is called Lorentzian if it’s of a form
C =

{
(x1, . . . xn) : x1 > 0, x21 −

∑
i>1 x

2
i > 0

}
.

Definition 25 (Dual cone) For a cone C in a linear space V equipped with an inner
product ⟨·, ·⟩, its dual cone is defined to be C∗ = {y ∈ V : ⟨x, y⟩ > 0 for all x ∈ C}.

Definition 26 (Homogeneous cone) A cone C ⊆ V is said to be homogeneous, if for
every two points x, y ∈ C there exists a linear automorphism F of V , such that F restricts
to an automorphism of C, and F (x) = y.

Definition 27 (Symmetric cone) An open convex pointed cone C is said to be symmetric
if it is homogeneous, and equal to its dual C = C∗.

Theorem 28 (Walsh (2017), Corollary 1.4) Given a cone C and D = P(C) its pro-
jective space, we have that Isom(D) is a normal subgroup of Coll(D) if and only if C is
symmetric and non-Lorentzian. Otherwise, Isom(D) = Coll(D).

Definition 29 (Cone Cn over VPM(n)) The cone over VPM(n) is given by:

Cn = K(VPM(n)) = {(tX, t) : X ∈ VPM(n), t ∈ R>0} =

{
(Y, t) :

1

t
Y ∈ VPM(n), t ∈ R>0

}
for which VPM(n) = P(Cn) is the projective space - in the projective coordinates we have
VPM(n) ≃ [X : 1].

Proposition 30 The cone Cn for n > 1 is not symmetric.

Therefore, from Proposition 30 and Theorem 28 we derive the desired characterisation.

Corollary 31 We have Isom(VPM(n)) = Coll(VPM(n)) for all n ≥ 2.

5.2. Classification of collineations of VPM

Let us classify the collineations of VPM(n). To do that, we use the fact that VPM(n) can
be seen as the projective space of its cone P(Cn), as in in Definition 29.

Theorem 32 (Fundamental theorem of projective geometry) Any bijective collineation
f̂ : RPn → RPn is induced by some linear isomorphism f : Rn+1 → Rn+1, such that f̂ = [f ],
where [f ][x] = [fx].

Definition 33 (PGL(n)) By PGL(n) we denote the projective general linear group of di-
mension n, that is, the group GL(R, n)/GL(R, 1). That is, F ∼ G iff F = aG for some real
constant a ̸= 0.

Proposition 34 (Shiffman (1995), Lemma 4) Given an open set U ⊆ RPn for n ≥ 2,
and a continuous injective map f : U → RPn, such that for all projective lines L ⊆ RPn, the
set f(L ∩ U) is collinear, then there exist a collineation f̂ : RPn → RPn such that f̂ |U = f .

Combining Lemma 34 and Theorem 32 instead of classifying collineations of VPM(n),
we can instead classify the linear cone isomorphisms, as we do in the next section.
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5.2.1. Classification of the projectivizations of linear cone isomorphism

Definition 35 (Linear cone isomorphism) For a vector space V and a cone C ⊆ V ,
we call a map L : V → V a linear cone automorphism for C, if L is a linear isomorphism
and L(C) = C.

Using the two lemmas below, we prove our major result following.

Lemma 36 (Gowda et al. (2013), Example 1) Linear cone isomorphism A : Sym(n) →
Sym(n) for PD(n) exactly correspond to conjugation with some U ∈ GL(R, n), that is
A(X) = UTXU .

Lemma 37 Given a vector space V , a pointed closed cone K such that 0 ∈ K, and a
smooth curve η(t) ∈ K, for t ∈ (−ϵ, ϵ) and ϵ > 0, if η(0) = 0, then necessarily η′(0) = 0.

Lemma 38 Given an affine isomorphism L : Sym(n) → Sym(n) where L(VPM(n)) =
VPM(n), we either have:

L(0) = 0

L(I) = I
or

L(0) = I

L(I) = 0

Theorem 39 (Classification of VPM isometries) The group of isometries of VPM(n)
for n > 1 is generated by conjugation by orthonormal matrices X 7→ UTXU for U ∈ O(n)
and inversion X 7→ I −X.

6. Discussion with some perspectives

We motivated this work by showing that the parameter space of the extended Gaussian
family is a closed bicone called the variance-precision model. We then considered the Hilbert
geometry for the corresponding interior of this parameter space, reported the closed-form
formula for the Hilbert distance, and fully characterized its isometries. Below, we outline
some extensions which we delegate to future work, along the full stratification of VPM(n).

Comparison with AIRM (see Table 1) Coincidentally, the well-known affine invariant
Riemannian metric (AIRM) distance (Pennec et al., 2006) obtained by taking the Rieman-
nian trace metric in PD with length element ds2Q(dQ) = tr

(
(Q−1dQ)

)
at Q ∈ PD was calcu-

lated in the same paper of James (1973). The AIRM distance betweenQ1, Q2 ∈ PD(n), com-

puted via ρ(Q1, Q2) =
√∑n

i=1 log
2 λi(Q1Q

−1
2 ), requires the full set of eigenvalues. Hilbert

VPM distance requires only four extreme eigenvalues, which might make it of interest in
applications like in Diffusion Tensor Imaging (Arsigny et al., 2006).

Table 1: Comparison of the AIRM vs Hilbert VPM distances. By Mob(Q1, Q2) we denote
the Möbius transformation Mob(Q1, Q2) = (I −Q1)

−1(I −Q2).

AIRM distance Hilbert VPM distance

Eigenvalues: {λi(Q1Q
−1
2 )}1≤i≤n λ1(Q1Q

−1
2 ), λn(Q1Q

−1
2 )

λ1(Mob(Q1, Q2)), λn(Mob(Q1, Q2))
Invariance under a map: X 7→ X−1 X 7→ I −X
Invariance under congruence: GL(n) O(n)
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(a) (b)

Figure 2: Left: boundary of the 3D bicone with VPMϵ(2) (in blue) encapsulating VPM(2)
(in black). Right: fine approximation of the smallest enclosing ball (SEB, in red) w.r.t. the
Hilbert distance on VPM(2) of a set of 2D SPD matrices (in black).

Hilbert distance on the extended Gaussians So far, we have only considered the
Hilbert distance on the open set VPM, that is, full-rank covariance/precision matrices. How-
ever, we observe that we could enlarge VPM by defining VPMϵ = {−ϵ I ⪯ X ⪯ (1+ϵ) I} for
ϵ ≥ 0 (see Figure 2(a)). Let dH,ϵ denote the Hilbert distance induced by VPMϵ. Hilbert dis-
tances defined on nested VPMϵ domains satisfy the following monotonicity property (Bear-
don, 1999; Nielsen, 2020): for all ϵ > 0 and all P,Q ∈ VPM(n), we have dH(P,Q) ≥
dH,ϵ(P,Q). Even if ∀P,Q ∈ ∂VPM, dH(P,Q) = +∞, we have dH,ϵ(P,Q) < +∞, resulting
in a practically useful bounded distance between degenerate covariance/precision matrices.

Non-centered Gaussians The paper concerns the centered Gaussians, but we may em-
bed (Calvo and Oller, 2002) the full Gaussian family {N(µ,Σ) : µ ∈ Rn,Σ ∈ PD(n)} by:

(µ,Σ) 7→ Σ+
µ =

[
Σ+ µµT µ
µT 1

]
∈ PD(n+ 1) ↪→ VPM(n+ 1)

Smallest enclosing ball Having straight lines being geodesics allows one to imple-
ment easily computational geometric primitives. For example, we may extend the Badoiu
and Clarkson iterative geodesic-cut algorithm for approximating the smallest enclosing
ball (Bâdoiu and Clarkson, 2003; Arnaudon and Nielsen, 2013) (SEB). Figure 2(b) shows a
fine approximation of the Hilbert VPM SEB which we implemented as a proof-of-concept.

Correlation matrices We may also consider the VPM subdomain of correlation matri-
ces, potentially degenerate. For the symmetric positive-definite cone PD(n), the subdomain
of correlation matrices is called an elliptope, an open bounded convex domain whose sim-
plicial facial structure was studied in Tropp (2018) and corresponding Hilbert geometry
investigated in Nielsen and Sun (2018).

Supplementary material We provide supplementary material, code, and visualizations
at https://franknielsen.github.io/ExtendedGaussianGeometry/ and maintain an ex-
tended version of the paper on arXiv:2508.14369.
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Appendix A. Deferred Proofs

Proof [Proof of Proposition 3] For the forward direction, following Stein, assume that
A ⪯ B, that is, 0 ⪯ B −A. Then from the min-max theorem, we have:

λi(A) = min
U⊂Rn;dim(U)=i

max
x∈U

vTAv

∥v∥22
≤ min

U⊂Rn;dim(U)=i
max
x∈U

vTBv

∥v∥22
= λi(B)

In the other direction, we assumeA = QT diag(α1, . . . , αn)Q andB = QT diag(β1, . . . , βn)Q
in the common eigenbasis given by Q. If αi ≤ βi, then we have (B − A)qi = (βi − αi),
proving the converse.

Proof [Proof of Proposition 12] PD(n) is convex and open in Sym(n), and VPM(n) =
PD(n) ∩ (I − PD(n)), i.e., an intersection of two open convex sets is open and convex.
Moreover, all norms in a finite-dimensional vector space are equivalent, which means we
only have to show boundedness in one norm. This means that 0 ⪯ A ⪯ I implies that:

0 ⪯ A2 ⪯ A ⪯ I
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and therefore:
∥A∥2F = tr(ATA) ≤ tr(A) ≤ n.

Proof [Proof of Proposition 13] We use the characterization of the Loewner order in terms
of eigenvalues, as in Proposition 3. For the first part, observe that for each eigenvalue λ
of X, the inequality 0 < λ < 1 implies 0 < 1 − λ < 1. For the second part, spectrum is
invariant under conjugation with O(n).

Proof [Proof of Theorem 14]
VPM(n) is an open bounded convex set (Proposition 12), therefore VPM(n) can be

equipped with the Hilbert distance. To prove the theorem, we employ Birkhoff’s character-
ization of the Hilbert metric, using the Loewner order ⪯ (see Definition 2).

We consider the affine map (̂·) : VPM(n) → PD(n) × PD(n) given by Â = (A, I − A).
The image of this map is a convex set:

C = {(X,Y ) ∈ PD(n)× PD(n) : X + Y = I}

On the set C, we build the cone

K(C) = {(λX, λY, λ) : (X,Y ) ∈ C, λ ∈ R>0} ⊂ Sym(n)× Sym(n)× R>0

By Proposition 9, we have the equality:

dH(A,B) = dH(Â, B̂) = dB((Â, 1), (B̂, 1)) = log
M

(
(Â, 1), (B̂, 1)

)
m

(
(Â, 1), (B̂, 1)

)
where dH is the Hilbert metric on VPM(n) equal to the Hilbert metric on its affine image
C, and dB is the Birkhoff metric on P(K(C)), which we obtain here by considering the
projective slice [X̂ : 1]. We first compute the numerator M :

M
(
(Â, 1), (B̂, 1)

)
= inf

{
λ > 0 : (Â, 1) ⪯K(C) λ(B̂, 1)

}
,

= inf
{
λ > 0 : λ(B̂, 1)− (Â, 1) ∈ K(C)

}
,

= inf
{
λ > 0 : ∃Z∈VPM(n)∃θ∈R>0 s.t. λ(B̂, 1)− (Â, 1) = (θẐ, θ)

}
.

The last equality can only happen if θ = λ− 1, and therefore λB̂− Â = (λ− 1)Ẑ, meaning:

λB −A = (λ− 1)Z, λ(I −B)− (I −A) = (λ− 1)(I − Z),

where the second equality is equivalent to the first one. Since 0 ≺ Z ≺ I, we arrive at two
inequalities:

A ≺ λB, (I −A) ≺ λ(I −B)
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Performing an analogous computation for m
(
(Â, 1), (B̂, 1)

)
, we get:

M(Â, B̂) = inf
λ>0

{A ⪯ λB and (I −A) ⪯ λ(I −B)},

m(Â, B̂) = sup
µ>0

{µB ⪯ A and µ(I −B) ⪯ I −A}.

Still focusing on M(Â, B̂), if A ⪯ λB, then A−1/2AA−1/2 ⪯ λA−1/2BA−1/2. The converse
in Proposition 3 proves that this holds if and only 1

λ ≤ λmin(A
−1B) = λmin(A

−1/2BA−1/2),
and therefore:

λ ≥ 1

λmin(A−1B)
= λmax(B

−1A)

Similarly, applied to (I − A) ⪯ λ(I − B), we get λ ≥ λmax((I − B)−1(I − A)). Taking the
infimum over λ, we obtain:

M(Â, B̂) = max
(
λmax(B

−1A), λmax((I −B)−1(I −A))
)
.

The case of m(Â, B̂) follows in the same way. If µI ≤ B−1A and µI ≤ (I − B)−1(I − A),
then:

µ ≤ λmin(B
−1A), µ ≤ λmin((I −B)−1(I −A)),

and so taking the infimum:

m(Â, B̂) = min
(
λmin(B

−1A), λmin((I −B)−1(I −A))
)
.

Substituting it in the original formula, we get the claimed formula:

dH(A,B) = log
max(λmax, µmax)

min(λmin, µmin)
,

for λmin,max the minimal and maximal eigenvalues of B−1A, and µmin,max the minimal and
maximal eigenvalues of (I −B)−1(I −A).

Proof [Proof of Remark 18] We compute:

(ι−1 ◦ (I − ·) ◦ ι)(X) = ι−1(I − ι(X))

= ι−1(I −X(I +X)−1)

= (I −X(I +X)−1)(I − I +X(I +X)−1)−1

= (I −X(I +X)−1)(I +X)X−1

= ((I +X)X−1 − I)

= X−1(I +X −X) = X−1

Proof [Proof of Proposition 19]

14
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First, we note that eigenvalues are invariant under conjugation, and conjugation with
an orthonormal matrix U ∈ O(n) is a congruence, which preserves symmetry, therefore
conjugation X 7→ UTXU = U−1XU is an automorphism of VPM(n). Given two matrices
X,Y ∈ VPM(n) and an orthonormal matrix U , we write A = U−1XU and B = U−1Y U
and calculate:

dH(A,B) = log
max(λmax(A

−1B), λmax((I −A)−1(I −B)))

min(λmin(A−1B), λmin((I −A)−1(I −B)))

But then:

A−1B = (U−1XU)−1(U−1Y U) = (U−1X−1U)(U−1Y U) = U−1(X−1Y )U

and again, the eigenvalues are invariant under conjugation, so λmin,max

(
A−1B

)
= λmin,max

(
X1−Y

)
.

We also observe that:

(I −A)−1(I −B) = (I −Q−1XQ)−1(I −Q−1Y Q)

= (Q−1(I −X)Q)−1(Q−1(I − Y )Q)

= Q−1(I −X)−1(I − Y )Q

and therefore the same argument applies here. Thus, the Hilbert distance is preserved.

Proof [Proof of Remark 20]

We compute:

UT ι(X)U = UTX(I +X)−1U

= (UTXU)
(
UT (I +X)−1U

)
= (UTXU)

(
(UT (I +X)U)−1

)
= (UTXU)

(
(I + UTXU)−1

)
= ι(UTXU)

and similarly for UT ι−1(X)U = ι−1(UTXU). Thus:

(ι−1 ◦ (UT · U) ◦ ι)(X) = UTXU

Proof [Proof of Proposition 30]

We form the dual cone:

C∗
n = {(Y, s) ∈ Sym(n)× R : ⟨(X, t), (Y, s)⟩ > 0 for all (X, t) ∈ C}

where the inner product is induced on the product space as:

⟨(X, t), (Y, s)⟩ = ⟨X,Y ⟩+ ts = tr(XY ) + ts

15



Karwowski Nielsen

We denote Z = 1
tX, where Z ∈ VPM(n) and t > 0 are now arbitrary, and write:

t(tr(ZY ) + s) > 0

which is equivalent to tr(ZY )+s > 0. Because VPM(n) is invariant under conjugation with
orthonormal matrices as Proposition 19 showed, we can diagonalize Y = QTdiag(λ1, . . . , λn)Q
and compute the infimum:

inf
Z∈VPM(n)

tr(ZY ) = inf
Z∈VPM(n)

n∑
i=1

λiq
T
i Zqi

≥ inf
Z∈VPM(n)

∑
λi<0

λiq
T
i Zqi

≥
∑
λi<0

λi = −tr(Y−)

and the infimum is achieved by letting Z → QTdiag(1λ1<0, . . . ,1λn<0)Q (which is attained
in the closure of VPM(n) in Sym(n)). This means that the sufficient and necessary condition
defining the dual cone is:

C∗
n = {(Y, s) ∈ Sym(n)× R : s > tr(Y−)}

which is clearly different from VPM(n), since it does not even depend on the positive
eigenvalues of Y .

Proof [Proof of Lemma 37]

For any t ∈ R>0, we have η(t)
t ∈ K, because K is a cone. Since K is closed, for t > 0,

we also have

lim
t→0+

η(t)

t
= lim

t→0+

η(t)− η(0)

t
= η′(0) ∈ K

By a similar argument, this time taking t < 0, we have:

lim
t→0−

η(t)

−t
= −η′(0) ∈ K

But K is pointed, so K ∩ (−K) = {0}, and therefore η′(0) = 0.

Proof [Proof of Lemma 38] A general affine isomorphism L : Sym(n) → Sym(n) has a
form LX = AX +B for some linear isomorphism A : Sym(n) → Sym(n) and B ∈ Sym(n).
Since L preserves VPM(n) and is smooth, it also maps the closure VPM(n), and thus the
∂VPM(n) = VPM(n)\VPM(n) to itself L(∂VPM(n)) = ∂VPM(n).

Let us assume that L(X) = 0 for some X ∈ VPM(n) and X ̸∈ {0, I}. First, we consider
a case where X = αI for some 0 < α < 1. Take some 0 < β < min(α, 1 − α), therefore
αI ± βI ∈ VPM(n), and compute:

L(αI ± βI) = A(αI ± βI) +B = (A(αI) +B)±AβI = L(αI)±AβI = ±AβI ∈ VPM(n)
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But having both AI ≺ 0 and 0 ≺ AI is impossible.
Next, assume there exist at least two distinct eigenvalues λ1 < λ2 of X, with corre-

sponding unit eigenvectors v1, v2. Let Uθ for θ ∈ (0, 2π] be a rotation matrix which rotates
the subspace V = span(v1, v2) by angle θ, that is:

Uθ = exp (θZ) Z = v1v
T
2 − v2v

T
1

Since Uθ ∈ O(n), both Sym(n) and PSD(n) are invariant under conjugation with Uθ.
We thus have a smooth curve η : S1 → Sym(n) given by η(θ) = L(UT

θ XUθ) lying inside

VPM(n) ⊂ PSD(n), such that for θ = 0, we have η(0) = 0. This means that η′(0) = 0, by
Lemma 37. By standard computation, we have:

d

dθ
UT
θ XUθ = UT

θ (XZ − ZX)Uθ

and therefore:
d

dθ
η(θ) = A

(
UT
θ (XZ − ZX)Uθ

)
Thus, A(XZ − ZX) = 0, meaning XZ − ZX = 0. Unfolding:

X(v1v
T
2 −v2v

T
1 )−(v1v

T
2 −v2v

T
1 )X = λ1v1v

T
2 −λ2v2v

T
1 −λ2v1v

T
2 +λ1v2v

T
1 = (λ1−λ2)(v1v

T
2 +v2v

T
1 )

But if v1v
T
2 + v2v

T
1 is a non-zero symmetric matrix, implying λ1 = λ2, a contradiction.

Thus, we can only have L(0) = 0 or L(I) = 0. Let us compute:

L(0) + L(I) = A0 +B +AI +B = AX +B +A(I −X) +B = L(X) + L(I −X)

Since L is onto VPM(n) and a diffeomorphism, it is also onto VPM(n), so for each Y =
L(X), we also have L(I − X) = C − L(X) ∈ VPM(n), for C := L(0) + L(1). Thus,
substituting Y = 0, we get C ∈ VPM(n), i.e. C ⪯ I, and substituting Y = I, we get
C − I ∈ VPM(n), i.e. I ⪯ C, forcing I = C. Thus, L(0) + L(I) = I, and if L(0) = 0, then
L(I) = I. Otherwise, L(0) = I and L(I) = 0, proving the thesis.

Proof [Proof of Theorem 39]
We will prove that given a linear cone automorphism L : Sym(n)×R → Sym(n)×R for

Cn, there exists P ∈ O(n) and ϵ ∈ {0, 1} such that:

[L(X, t)] = [P T ((1− ϵ)X + ϵ(I −X))P : 1]

from which the theorem follows immediately.
A linear cone automorphism L : Sym(n)× R → Sym(n)× R is, in general, of a form:

L(X, t) = (AX + tB, ⟨C,X⟩+ st) = (AX + tB, tr(CX) + st)

for some linear A : Sym(n) → Sym(n) and B,C ∈ Sym(n) and s ∈ R. Because L maps the
origin (0, 0) to itself, and maps straight lines to straight lines, it has to map rays through
the origin to rays through the origin. Thus, it is an isomorphism on each projective slice.
That is, for each fixed t0 ∈ R>0, we get an affine isomorphism π ◦ L(·, t0) ◦ ιt0 : Sym(n) →
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Sym(n), where π(X, t) = 1
tX is the projectivization and ιt0(X) = (X, t0) is an inclusion.

After applying Lemma 38, we get that either L(I, t) = (I, t′) and L(0, t) = L(0, t′′) or
L(I, t) = (0, t′) and L(0, t) = (I, t′′) for some t′, t′′ ∈ R>0. By possibly precomposing with a
map (X, t) 7→ (It−X, t), we can ensure that L(0,R>0) = (0,R>0) and L(I,R>0) = (I,R>0).
Setting X = 0, we have:

L(0, t) = (A0 + tB, tr(C0) + st) = (tB, st)

which means B = 0. Therefore, we can write simpler formula for the inverse:

L−1(X, t) =

(
A−1X,−tr(CA−1X)

s
+

t

s

)
Next, substituting X = I, and remembering that L(I,R>0) = (I,R>0), we have:

L(I, t) = (AI, tr(CI) + st) =

(
I,−tr(C) +

t

s

)
L−1(I, t) =

(
A−1I,−tr(CA−1I)

s
+

t

s

)
=

(
I,−tr(C)

s
+

t

s

)
From the fact that VPM(n) is mapped into itself, and the fact that L is a linear isomor-
phism and thus a diffeomorphism, we get that the closure VPM(n), and thus the boundary
VPM(n)\VPM(n), is preserved by both L and L−1. Therefore:

I ⪯ (tr(C) + s)I =⇒ 1− s ≤ tr(C)

I ⪯
(
−tr(C)

s
+

1

s

)
I =⇒ 1− s ≥ tr(C)

where we also used the fact that s ≥ 0, from the fact that L preserves the positivity of rays
(0,R>0). Therefore, we conclude that 1− s = tr(C).

Now, we note that since we’re interested only in the equivalence class [L], we can assume
w.l.o.g. that s = 1:

[L] = [AX, tr(CX) + st] =

[
A
s
X, tr

(
C

s
X

)
+ t

]
and this combined with the previous point, sets tr(C) = 0. Finally, assume that C has at
least one negative eigenvalue λ, with the unit eigenvector v. Set X = vvT , and compute:

tr(CX) = tr(CvvT ) = tr(λvvT ) = tr(λvvT I) = λtr(vT v) = λ||v||2 = λ < 0

Now, pick some 0 < t0 < −λ, and compute:

L(t0X, t0) = (t0AX,λ− t0)

making the second component negative, which is a contradiction with the positivity of rays.
This means that all eigenvalues λC

i of C must be non-negative, and thus:

0 = tr(C) =
∑
i

λC
i =⇒ λC

i = 0
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So far, the above argument proved that:

[L(X, t)] = [AX, t]

Now, using Lemma 36 and the fact that

L(PD(n),R>0) = (PD(n),R>0)

which holds because every element of Y ∈ PD(n) can be scaled to a point in VPM(n) by
a non-negative factor 1

λmax(X)+1 , we have [L(X, t)] = [P TXP, t]. This proves the statement
of the theorem, since we have been possibly precomposing L with I −X, and:

P T (I −X)P = P TP − P TXP = I − P TXP

which used the fact that AI = I, i.e. that P must be orthonormal. In other words, the
group of isometries of VPM(n) for n > 1 is generated by conjugation by orthonormal matrix
X 7→ UTXU and inversion X 7→ I −X.
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