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ABSTRACT

Out-of-distribution (OOD) detection seeks to identify inputs that fall outside the
training distribution, which is crucial for ensuring the reliability of deep neural
networks (DNNs). The dominant approach to OOD detection is score-based: each
sample receives a score, and those with scores that differ significantly from the
training data are flagged as out-of-distribution. The most effective score functions
typically rely on DNN’s classifier uncertainty, or nearest-neighbour (NN) simi-
larity of test and training samples. Moreover, recent research demonstrates that
combining the classifier- and NN-based scores - the process called NN Guidance
- yields the best OOD detectors. However, the exact reasons for the success of
NN Guidance are poorly understood. In this work, we take a closer look at NN
Guidance and uncover the core reason behind its success - the complementarity
between the classifier- and NN-based scores. Put simply, the two scores are com-
plementary when they detect diverse OOD samples, and thus they can perform
better when combined. Guided by these insights, we make three main contribu-
tions. First, we design a strong baseline OOD detector based on NN Guidance
with improved score complementarity. Second, we propose a novel model prun-
ing strategy that further enhances the complementarity and improves performance.
Third, we propose a novel method to combine complementary signals from dif-
ferent hidden DNN layers to improve NN Guidance. Finally, by integrating all the
sources of complementary information into a unified framework - CoNNGuide
- we achieve state-of-the-art performance on CIFAR and ImageNet benchmarks,
outperforming prior methods by up to 5.7% in FPR and 2.79% in AUROC.

1 INTRODUCTION

Modern machine learning systems are increasingly deployed in open-world settings, where inputs
encountered at test time may differ significantly from the training distribution Afshari et al. (2022);
Hendrycks et al. (2021). Such out-of-distribution (OOD) inputs can cause models to fail silently,
making OOD detection a critical safety requirement in applications like autonomous driving and
medical diagnosisHains et al. (2018); Ren et al. (2021); Zadorozhny et al. (2023). A growing body of
research has focused on deriving score functions from neural networks to distinguish in-distribution
(ID) from OOD inputs to address this challenge.

The dominant approach to OOD detection involves deriving a scalar score function that captures
the “familiarity” of an input—assigning high scores to in-distribution (ID) data and low scores to
unfamiliar, OOD examples. Two major families of methods have emerged: classifier-based scores,
which use a model’s predictive confidence (e.g., softmax, energyLiu et al. (2020)), and distance-
based scores, which assess similarity to training samples in feature space via k-nearest neighbors
(KNN) Sun et al. (2022). Classifier-based methods excel at capturing fine-grained differences near
decision boundaries, but often fail far from the data manifold. Conversely, distance-based methods
are more reliable for far-OOD detection but struggle with near-OOD inputs.

A promising recent direction is nearest-neighbor (NN) guidance, which aims to combine the
strengths of classifier- and NN-based scores. One such method, NNGuide Park et al. (2023), com-
putes a unified score that leverages both components. While NNGuide achieves strong empirical
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performance when paired with certain classifier-based scores, its effectiveness varies widely depend-
ing on the score it guides—sometimes offering no gain. The factors causing this variance remain
poorly understood.

In this work, we revisit NNGuide from a principled perspective and ask: what exactly enables im-
proved OOD detection? Our investigation reveals two key factors: The first is the complementarity
between the classifier-based and nearest-neighbor scores. To put it simply, if the two scores, when
applied independently, detect diverse OOD examples, then combining them via guidance will give
a larger improvement. The second factor is the feature space used for nearest neighbor search.
Different DNN hidden layers produce features with different properties, thus affecting the nearest
neighbor search and consequently the guidance quality.

With access to the above insights, we propose a principled way to build a high-performance OOD
pipeline using NN guidance. First, we construct a strong baseline OOD detector by combining exist-
ing improvements to the classifier-based score, and show that higher classifier- and NN-based scores
complementarity reflects the improved performance. Second, we propose a novel weight pruning
strategy that improves the robustness of classifier-based scores, leading to improved complementar-
ity with the NN score and better OOD performance when used with NN guidance. Third, we propose
multi-guidance - a way to combine multiple NN scores (computed at different DNN layers) into one,
which further promotes complementarity with classifier-based scores and improves OOD detection.
Finally, we build the whole pipeline - CoNNGuide (Complementary Nearest Neighbor Guidance) -
which integrates the complementary contributions of each component and achieves state-of-the-art
OOD detection performance.

To evaluate the performance of CoNNGuide, we perform experiments for OOD detection on three
popular benchmarks, namely, CIFAR-10, CIFAR-100, and ImageNet with the DenseNetHuang et al.
(2017), ResNet50 He et al. (2015), and RegNet Xu et al. (2023) models. Our results show that
CoNNGuide outperforms prior methods by up to 5.7% in false positive rate (FPR) and 2.79% in
AUROC.

In summary, this work makes the following contributions: 1) A principled framework for analyz-
ing NN Guidance with score complementarity, leading to a strong baseline OOD detector com-
posed of carefully matched classifiers- and NN-based scores. 2) A novel network pruning strategy
and new score guidance formulation, both of which enhance score complementarity and improve
NN guidance. 3) A unified OOD detection pipeline, CoNNGuide, that achieves state-of-the-art
performance across multiple benchmarks and model architectures.

The rest of the paper is organized as follows: Section “Related work” compares CoNNGuide to re-
lated work. Section “Preliminaries” gives the background material for our work. Section “Our Ap-
proach” describes our methodology, CoNNGuide, to leverage existing OOD detection approaches to
filter effectively the unreliable DNN outputs. Section “Experimental results” presents the empirical
evaluation of the CoNNGuide’s effectiveness and efficiency. Section “Conclusion” concludes the
paper and discusses future research.

2 RELATED WORK

Out-of-distribution (OOD) detection has emerged as a critical component for building reliable ma-
chine learning systems. Broadly, prior works can be categorized into two methodological lines:
classifier-based approaches and distance-based approaches. Classifier-based methods operate on a
trained model’s output confidence, often using scores such as the maximum softmax probability
(MSP), energy Hendrycks & Gimpel (2018), or logit-based alternatives like MaxLogit Hendrycks
et al. (2022) and KL divergence Hendrycks et al. (2022). These approaches are effective at capturing
uncertainty near decision boundaries but tend to misclassify far-OOD examples overconfidently.

Distance-based methods, on the other hand, evaluate the similarity between test inputs and training
data in feature space. Techniques such as the Mahalanobis distance Lee et al. (2018), SSD Sehwag
et al. (2021), and KNN-based detection Sun et al. (2022) have shown strong performance in iden-
tifying far-OOD samples. However, they often lack the fine-grained discriminative capability of
classifier-based scores and underperform on near-OOD instances.
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To harness the complementary strengths of these paradigms, recent work has explored hybrid meth-
ods. NNGuide Park et al. (2023) represents a seminal effort in this direction. It proposes a
confidence-guided NN scoring mechanism, where classifier scores are modulated by similarity to
nearby training features. This simple, post-hoc mechanism improves both robustness to far-OODs
and sensitivity to near-OODs. However, the effectiveness of NNGuide is tightly coupled with the
base classifier score and the underlying feature space, and its performance gains vary significantly
across settings.

Beyond detection scores, various network truncation and feature rectification techniques such as
ReAct Sun et al. (2021), DICE Sun & Li (2022), LINe Ahn et al. (2023), RankFeat Song et al.
(2022), and BATS Zhu et al. (2022) have been proposed to enhance the ID-OOD separability. These
methods often improve performance when combined with appropriate OOD scores.

3 PRELIMINARIES

In this section, we define the problem of OOD detection more formally and revise the details of the
NN guidance Park et al. (2023) and importance-based pruning Ahn et al. (2023) approaches.

Out-of-Distribution (OOD) Detection. Out-of-distribution (OOD) detection identifies inputs that
lie outside the training distribution, which can otherwise cause incorrect or overconfident predic-
tions. A common approach is to compute a scalar OOD score S(x) that reflects the model’s confi-
dence in a given input x. If the score exceeds a threshold λ, the input is considered in-distribution
(ID); otherwise, it is deemed out-of-distribution (OOD). This decision rule is formalized as:

D(x) =

{
ID, if S(x) ≥ λ

OOD, otherwise
(1)

Typically, the λ parameter is chosen to be the 95th bottom percentile of the score S(x) distribution
in the training set.

Detection scores can broadly be categorized into two types:

• Classifier-based scores, derived from the model’s output logits (e.g., maximum softmax
probabilityHendrycks et al. (2022), energy-based Liu et al. (2020) scores), leverage class-
specific information and are typically effective at detecting near-OOD instances close to
decision boundaries.

• Distance-based scores, such as k-nearest neighbors (KNN) Sun et al. (2022) or Maha-
lanobis distance Lee et al. (2018), rely on the similarity between test and training features,
and are better suited to detecting far-OOD samples.

Nearest Neighbor Guidance (NNGUIDE). NNGuide Park et al. (2023) is a post-hoc, training-free
method that combines the strengths of classifier- and distance-based OOD detection. It starts with a
base confidence score Sbase(x) - typically classifier-derived - and adjusts it using a nearest-neighbor-
based guidance term G(x), yielding a final guided score:

SNNGuide(x) = Sbase(x) ·G(x)

The guidance term G(x) is computed from a small “bank” of in-distribution samples. It reflects how
similar the test input is to the top-k nearest neighbors in this bank, using cosine similarity weighted
by the base confidence of each neighbor. Formally:

G(x) =
1

k

k∑
i=1

s(i) · cos(z(i), z)

Here, z is the normalized feature of x, z(i) are the top-k neighbors in the training set feature space,
and s(i) = Sbase(x

(i)) are their base confidences.

This guidance corrects the overconfidence of classifier scores in far-OOD regions and retains their
fine-grained sensitivity near ID boundaries. As a result, NNGuide can combine the strengths of
classifier- and distance-based approaches and improve detection across both near- and far-OOD
regimes, offering robust performance with minimal computational overhead.
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Importance-based Pruning. Activation and weight pruning for OOD detection were first intro-
duced as a part of the LINe method Ahn et al. (2023). It aims to reduce the effect of noisy weights
and activations on the classifier-based scores, which helps to improve OOD detection. The approach
identifies important neurons by computing class-wise Shapley values, a general tool used in global
sensitivity analysis Da Veiga et al. (2021), and selectively retains only the most contributive ones.

Given a pre-trained model with penultimate layer activations h(x) = [a1, a2, . . . , ad] ∈ Rd for an
input x, where d is the number of neurons in the penultimate layer, and fθ(x) =

(
W⊤h(x) + b

)
∈

RL is the class logits of L classes, LINe estimates the contribution s
(l)
i of neuron i to class l using a

first-order Taylor approximation of the Shapley indices Shapley (1953):

s
(l)
i =

∣∣∣∣ai · ∂fθ(x(l))

∂ai

∣∣∣∣ (2)

where ai is the activation of neuron i, and x(l) is an input from class l. Averaging these values
over training samples of class l produces a contribution matrix C ∈ Rd×L, where each column
corresponds to a class.

For each class l, the top-k neurons with the highest contributions are selected to form a binary mask
vector m(l) ∈ {0, 1}d, where ones indicate the retained neurons. To prune the weight matrix, the
authors select the top-k weight entries according to the contribution matrix C. The resulting pruned
weight matrix Ŵ is then used to obtain the logits. At inference time, given a predicted class l, the
activation-pruned model output becomes:

fIP(x) = Ŵ⊤
(
m(l) ⊙ h(x)

)
+ b (3)

where Ŵ ∈ Rd×L is the prunned weight matrix, b ∈ RL is the bias, and ⊙ denotes element-wise
multiplication. More details about C, Ŵ , and m(l) can be found in Ahn et al. (2023).

This pruning removes low-contribution neurons that may introduce noise, enabling more robust
OOD detection by focusing only on class-specific informative features and weights.

4 EXPLAINING NNGUIDE’S PERFORMANCE THROUGH SCORE
COMPLEMENTARITY

In this section, we start by sharing our findings regarding what makes NNGuide work and how to
use these findings to build a SoTA pipeline for OOD detection.

We begin by taking a closer look at NNGuide, which aims to improve OOD detection by combining
classifier- and distance-based scores. While the original paper reports consistent gains when classi-
fier scores are guided by a NN-based score, not all classifier scores benefit equally. This variability is
not addressed in the original work, yet we believe it is central to unlocking NNGuide’s full potential.

Our hypothesis is that for NN guidance to be effective, the classifier score must be complementary
to the NN score. That is, each score should be able to detect different OOD examples when applied
independently (following the decision rule in Equation 1). To test this, we evaluate a range of
classifier-based scores and measure their complementarity with a NN-based score computed from
penultimate-layer features, as in Park et al. (2023).

We define complementarity as the fraction of OOD examples detected by either method alone:

rcomp =

∑
i∈SOOD

(Icls(i) ∨ Inn(i))

NOOD
(4)

Here, Icls(i) and Inn(i) are indicator functions that equal 1 if the i-th OOD example is detected by
the classifier- or NN-based method, respectively. SOOD denotes the set of OOD examples, with a
total size of NOOD.

This metric captures the intuition that if either score can detect an OOD sample independently, then
their combination via NNGuide is likely to detect it as well. In other words, a higher complemen-
tarity ratio means a better OOD detection performance after applying NNGuide. Moreover, it has
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been noticed in computer vision tasks as well that complementary information boosts NN’s perfor-
mance Dvornik et al. (2019), and we expect similar phenomena to occur in OOD detection. We use
the complementarity ratio metric to shed light on why various modifications to the classifier-based
score lead to improved OOD detection when used with NN guidance.

NNGuide++. We observe that the literature on OOD detection is rich with diverse scoring meth-
ods and neural network enhancements—each effective in isolation. In this section, we propose
NNGuide++ - a new composite framework, based on NNGuide, with a new, improved classifier-
based score. The new classifier score is obtained by carefully integrating multiple OOD detection
components, such as the energy score Liu et al. (2020), ReAct Sun et al. (2021), and significance
pruning Ahn et al. (2023). We show that the resulting pipeline already achieves new SoTA, and every
individual component improves the overall performance. To understand why, we perform analysis
through complementary ratios (see Eq 4). More precisely, starting with the energy score as the base
classifier score, we add the improvements one at a time, and measure the OOD performance and the
complementarity score (with an NN score). The results are shown in Table 1. Crucially, we can see
that the improved OOD detection and complementarity are correlated. To verify this claim, we plug
in a less capable device MaxLogit Hendrycks et al. (2022) or MSP Hendrycks & Gimpel (2018)
into the pipeline and see both the improvement and the complementarity ratio go down, suggesting
that the improved performance of the NN guide framework is indeed explained by the classifier- and
NN-based score complementarity. The above justifies our choice of individual parts of NNGuide++
and allows for a deeper understanding of further pipeline improvements.

Base scores Complementarity Ratios (%) More Complementary? FPR95 ↓ AUROC ↑ Improvement
Energy Liu et al. (2020) 89.26 - 24.79 94.99 -
MaxLogit Hendrycks & Gimpel (2018) 89.1 x 25.12 94.9 x
MSP Hendrycks et al. (2022) 86.15 x 45.57 93.79 x
ReAct Sun et al. (2021) 89.49 ✓ 21.21 96.13 ✓
ReAct+Shap Ahn et al. (2023) 91.35 ✓ 13.42 97.4 ✓

Table 1: How complementarity ratios relate to NNGuide’s improvement. The first column lists
the method added to NNGuide; the second, the complementarity ratio between classifier and NN-
based scores; the third, whether this ratio improves over Energy only (“-” meaning not applicable).
Columns four and five show OOD performance on CIFAR10, and the last column indicates improve-
ment over Energy. “Shap” denotes activation and weight pruning from Ahn et al. (2023). The OOD
score used in ReAct is Energy.

5 OUR APPROACH

In this section, we present our novel feature pruning strategy and a multi-guidance mechanism that
further enhances the framework, which together lead to our complete method - CoNNGuide.

5.1 IMPORTANCE-BASED ACTIVATION PRUNING WITH CLASS–PROBABILITY INFORMATION

We focus now on improving the individual components of the pipeline, starting with model pruning
based on Shapley indices. Activation pruning in OOD detection aims to improve the classifier score
by removing activations that are unimportant for classification and that introduce noise into the score
computation Ahn et al. (2023). While the original approach measures each neuron’s contribution to
the logits, classification ultimately depends on the softmax probabilities rather than the raw logits.
Computing importance solely on per-class logits assumes that class contributions are independent,
which can misidentify unimportant neurons that affect all logits equally (and thus do not change
class probability) as important. For example, a neuron ai may change every logit by the same
amount, leaving the class probabilities unchanged and thus irrelevant to the final decision. To address
this undesired property, we propose P-Shapley indices that consider the class probabilities when
computing the neuron’s importance. More formally, we change the Equation 2 as follows:

s
(l)
i =

∣∣∣∣∣ai · ∂
(
fθ(x

(l)) · pθ(x(l))
)

∂ai

∣∣∣∣∣ , (5)

where pθ(x
(l))) are the class probabilities. By pruning neurons based on their effect on the softmax

outputs (and otherwise following Equation 3), we improve the complementarity ratio by 2.22% on
CIFAR-10 Krizhevsky (2009), yielding better OOD detection performance.
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5.2 MULTI-GUIDANCE: EXPLORING COMPLEMENTARITY AMONG HIDDEN LAYERS FOR NN
GUIDANCE

So far, we have focused on improving the classifier-based score used for guidance. However, we
have largely overlooked the other component of the guidance mechanism—the distance-based score
computed via nearest neighbors (NN). Previous works Park et al. (2023); Lee et al. (2018) that
employ distance-based scores rely exclusively on the penultimate layer of the DNN as the feature
representation for NN search and distance computation.

However, different layers in a DNN capture varying levels of semantic information, which may
offer complementary signals for OOD detection. For example, Figure 1 shows the distribution of
activations from the last two layers of the pretrained DenseNet on CIFAR10, clearly illustrating the
difference in the encoded information between the ID and OOD data.

(a) The feature NN guidance score distributions ob-
tained with the pretrained densenet on CIFAR10.

(b) The logit NN guidance score distributions obtained
with the pretrained densenet on CIFAR10.

Figure 1: An illustration for the NN guidance scores on different layers using the pretrained
DenseNet model on CIFAR10 dataset.

To this end, we propose multi-guidance—an approach that leverages the complementary information
from different DNN layers to enhance the NNGuide framework. Suppose we aim to use NN scores
{G1, . . . , Gn}, derived from intermediate DNN layers {l1, . . . , ln}, to guide the classifier-based
score S. Each Gi is computed as the normalized average cosine similarity between its feature vector
(zi) and the ones of its top-k neighbors (z(j)i ) in layer li. Then, the multi-guidance score is defined
as:

Gi(x) =
1
k

∑k
j=1

1+cos(z(j)
i ,zi)

2 , G1,n
multi = S ·

∏n
i=1 Gi = G1,n−1

multi ·Gn (6)

In other words, multi-guidance is achieved by replacing the single-layer NN-based score with a
product of NN-based scores from multiple layers, as shown in the first equality.

A more informative perspective on multi-guidance stems from recognizing that guidance is simply
the operation of multiplying two scores, which do not necessarily need to be a classifier- and a
distance-based score. Thus, multi-guidance can be defined recursively—as expressed by the second
equality in Equation 6—by treating it as NN guidance applied to a score that is itself the result of
prior guidance (originating from different layers’ NN scores).

This recursive formulation offers deeper insight, as it allows us to analyze multi-guidance using
our complementarity ratio—by computing how complementary G1,n−1

multi and Gn are. This, in turn,
enables a principled selection of DNN layers that can improve the final detection framework. Going
forward, we refer to multi-guidance as Gmulti, unless we want to specify the used layers explicitly.

5.3 CONNGUIDE: PUTTING IT ALL TOGETHER

We now bring together the components introduced above into a unified OOD detection pipeline:
CoNNGuide. Given a test input x, we first extract intermediate activations from a pre-trained clas-
sifier. These activations are pruned using our P-Shapley (see Eq 5) indices and subsequently used to
compute the classifier-based score S.

6
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In parallel, we compute multiple NN-based scores {Gn−1, Gn} from the last two (the penulti-
mate and logits) layers. We chose the last two layers because those have low intra-class and high
inter-class variance and thus are best suited for OOD detection Masarczyk et al. (2023); Lakshmi-
narayanan et al. (2017). These scores are combined via Equation 6 to form the multi-layer guidance
score. Finally, we use the multi-guidance score—i.e., SCoNNGuide = Gmulti—to detect OOD exam-
ples. This design yields a simple, modular, and highly effective OOD detection system capable of
achieving state-of-the-art performance.

6 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our strong baseline NNGuide++, and our complete
method, CoNNGuide, and perform the analysis of the novel components.

Computing resources. All experiments were performed using the NVIDIA GeForce RTX 4080
Laptop graphics card and the CPU i9-13900HX. When performing GPU-accelerated nearest neigh-
bour (NN) search, it takes up to 10 minutes each, depending on the model and dataset.

Competitive Methods. The goal of this work is not only to develop a new OOD detection approach
but also to perform a thorough comparison to existing methods. We compare our method CoN-
NGuide against a comprehensive suite of baseline and state-of-the-art (SoTA) OOD detection tech-
niques, including: MSP Hendrycks & Gimpel (2018), MaxLogit and KL Hendrycks et al. (2022),
Energy Liu et al. (2020), ReAct Sun et al. (2021), Mahalanobis Lee et al. (2018), DICE Sun & Li
(2022), KNN Sun et al. (2022), NNGuide Park et al. (2023), and LINe Ahn et al. (2023). These
methods span both traditional and recent advancements in OOD detection and serve as strong base-
lines to assess the effectiveness of our approach.

Evaluation Metrics. We adopt the standard evaluation metrics commonly used in recent SoTA
works Ahn et al. (2023); Sun & Li (2022); Park et al. (2023): (i) the false positive rate at 95% true
positive rate (FPR95), and (ii) the area under the receiver operating characteristic curve (AUROC).
Unless stated otherwise, all reported values correspond to averages over the relevant OOD datasets
used in each experiment.

6.1 EVALUATION ON CIFAR BENCHMARKS

Implementation Details. We evaluate the proposed methodology on the CIFAR10 and CIFAR100
datasets Krizhevsky (2009), the common OOD detection benchmarks. Their test sets are considered
as ID data. We use the same pretrained models in Sun & Li (2022): the DenseNet-101 Huang
et al. (2017) being trained for 100 epochs with a learning rate of 0.1, batch size 64, weight decay of
0.0001 and momentum of 0.9. The penultimate layer (i.e., feature vectors) has a size of 342. We also
chose the same OOD datasets in Sun & Li (2022) to apply a valid comparison with the competitive
methods; these sets are Textures Cimpoi et al. (2014), SVHN Netzer et al. (2011), Places365 Zhou
et al. (2017), LSUN-Crop Yu et al. (2016), LSUN-Resize Yu et al. (2016), and iSUNXu et al. (2015).
The results are shown in Table 2.

Method CIFAR-10 CIFAR-100
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

MSP 48.6 92.52 80.75 73.83
MaxLogit 26.56 94.65 69.78 80.37
KL 26.38 94.76 69.82 80.7
Energy 26.38 94.64 69.84 80.47
ReAct 22.9 95.87 65.42 84.1
Mahalanobis 17.65 95.84 32.73 91.62
DICE 21.7 94.97 51.59 86.54
KNN 16.12 96.8 42.18 87.54
DICE + ReAct 16.11 96.74 44.53 87.2
NNGuide 22.36 95.9 62.16 81.61
LINe 14.7 97.13 31.71 89.21
NNGuide++ 13.48 97.4 28.57 90.87
CoNNGuide (Ours) 12.77 97.45 26.01 92

Table 2: OOD detection performance comparison between our methods and the competitive methods
on the CIFAR datasets.
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SoTA Comparison. Table 2 demonstrates the comparisons of our methods to existing baselines.
Significantly, our strong baseline - NNGuide++, already outperforms all the existing methods by
a sizable margin. More precisely, the strong baseline NNGuide++ surpasses LINe, which has the
best performance across the existing methods on CIFAR10 and CIFAR100, by 1.22% and 3.14% in
terms of FPR95 on each dataset. On top of that, our full methods - CoNNGuide - further outperforms
NNGuide++ by 0.71% and 2.56%, resulting in a total improvement of 1.93% and 5.7%. The same
observations can be made for AUROC, where CoNNGuide outperforms LINe by 0.32% and 2.79%
on CIFAR10 and CIFAR100 datasets. These results showed that CoNNGuide had successfully
surpassed the existing SoTA methods by identifying the important feature (i.e., significant neurons
in the penultimate layer) more accurately and introducing additional guidance from the logit layer.

6.2 EVALUATION ON IMAGENET

Implementation Details. The real vision classification is more complicated and possesses more
target classes. To validate the OOD detection performance of our methodology in real-world sce-
narios, we evaluate CoNNGuide on the Imagenet-1K dataset Russakovsky et al. (2015), which is a
large-scale dataset with high-resolution images. Similar to the CIFAR implementation, we utilize
the test set from Imagenet as our ID data. We considered five OOD datasets: Textures Cimpoi et al.
(2014), Places365 Zhou et al. (2017), iNaturalist Van Horn et al. (2018), SUN Xiao et al. (2010)
and OpenImage-OWang et al. (2022), the first four datasets are called “curated datasets” and are
used for the standard benchmarking on Imagenet. We use two pretrained models for the evalua-
tion: a ResNet50 He et al. (2016) and a RegNet PyTorch Team (2024), which are both trained on
Imagenet-1K. The results are displayed in Table 3.

Method ResNet50 RegNet
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

MSP 65.08 82.75 45.54 88.27
MaxLogit 58.05 87 28.12 92.29
KL 57.78 87 26.8 92.47
Energy 57.78 87 26.77 92.49
DICE 35.7 90.9 26.77 92.49
Mahalanobis 46.34 90.19 35.32 92.22
KNN 53.53 85.2 25.6 93.08
NNGuide 26.86 92.69 17.97 95.42
LINe 20.7 95.03 26.58 92.5
NNGuide++ 17.93 96.1 16.04 96.36
CoNNGuide (Ours) 16.36 96.43 14.85 96.74

Table 3: Performance comparison for the curated OOD sets between our methods and the competi-
tive methods on the Imagenet dataset. The shown FPR95 and AUROC are the average values over
the considered OOD datasets except OpenImage-O.

SoTA Comparison. For the ResNet50 model, the built strong baseline NNGuide++ also outper-
forms the existing SoTA methods directly, and by introducing the Multi-guidance and P-Shapley
indices, CoNNGuide achieves the state-of-the-art performance by surpassing LINe with an im-
provement of 4.34% and 1.4% in terms of FPR95 and AUROC. Same for the RegNet model, CoN-
NGuide outperforms NNguide, which is the current SoTA for the OOD detection on Imagenet,
by reducing FPR95 to 14.85% and increasing AUROC to 96.74%. These results demonstrate that
CoNNGuide possesses a good performance for OOD detection on large-scale and high-resolution
scenarios, which can be seen as proof of its application in real-world situations.

Method PShap MD FPR95 (Curated) ↓ AUROC (Curated) ↑ FPR95 ↓ AUROC ↑
NNGuide++ 17.93 96.1 22.53 94.89
NNGuide++ with PShap ✓ 17.55 96.2 22.25 94.87
NNGuide++ with MD ✓ 16.48 96.45 21.89 95.1
CoNNGuide (Ours) ✓ ✓ 16.36 96.43 21.68 95.12

Table 4: Ablation study on the proposed novel techniques with the pretrained ResNet50 on Imagenet.
FPR95 (Curated) and AUROC (Curated) are the average values over the chosen OOD datasets
except OpenImage-O. FPR95 and AUROC are the average values over all the OOD datasets.
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Method PShap MD FPR95 ↓ AUROC ↑
NNGuide++ 28.58 90.87
NNGuide++ with PShap ✓ 28.49 91.05
NNGuide++ with MD ✓ 26.22 91.8
CoNNGuide (Ours) ✓ ✓ 26.01 92

Table 5: Ablation study on the proposed techniques with the pretrained DenseNet on CIFAR100.

6.3 ANALYSIS

The goal of this section is to evaluate individual contributions and analyze the complementarity
properties of the novel components of CoNNGuide introduced in this paper.

Ablation Study. We analyze the individual components by performing ablations on (i) the P-
Shapely indices used to prune the activation and weights of the network, and (ii) the multi-guidance
approach, gathering information from multiple DNN layers to improve OOD detection. Since both
components are built on top of our strong baseline, NNGuide++, we chose it as the baseline here.

Table 5 and 4 show the ablation study for the main CoNNGuide’s components. The results in both ta-
bles show that each novel component improved the OOD detection performance. More precisely, for
the Imagenet dataset, introducing the P-Shapley indices for activation importance identification re-
duces FPR95 by 0.38% and the NN guidance through logit information improves FPR95 by 1.45%.
With both techniques, we successfully reduce FPR95 to 16.36%. Similarly, for the CIFAR100
dataset, the P-Shapley indices and the logit NN guidance reduce FPR95 by 2.57% compared to the
proposed strong baseline NNGuide++, and improve the AUROC by 1.13%.

Base scores Complementarity Ratios (%) FPR95 ↓ AUROC ↑
Energy 89.26 24.79 94.99
ReAct 89.49 21.21 96.13
ReAct+PShap 91.71 13.32 97.44
ReAct+PShap+MD 91.92 12.77 97.45

Table 6: Complementarity ratios and performance after the feature guidance for the detected OOD
examples with the feature NN scores and different base scores on CIFAR10 dataset. PShap stand
for P-Shapley and MD is Multi-guidance. The OOD score used in ReAct is Energy.

Complementarity of CoNNGuide Components. Here, we measure the complementarity proper-
ties of the components of CoNNGuide. To do so, we build up the CoNNGuide pipeline, starting
from vanilla Energy scoreLiu et al. (2020), and measure the complementarity of the classification-
and NN-based scores on CIFAR10. As shown in Table 6, both the selection of important neurons
based on P-Shapley indices and Multi-guidance improve the complementarity score and lead to the
improved final performance of CoNNGuide.

7 CONCLUSION

In this work, we revisited the problem of OOD detection through the lens of nearest-neighbor guid-
ance. We introduced a principled framework for understanding and exploiting the complementarity
of OOD detection scores. By carefully analyzing the conditions under which classifier-based and
distance-based scores synergize, we proposed a systematic method to construct strong baselines
from existing components. We further enhanced this foundation with two novel contributions: P-
Shapley pruning, which improves the robustness and complementarity of classifier-based scores, and
multi-guidance, which aggregates signals across multiple feature layers. These insights culminated
in CoNNGuide, a simple yet highly effective detection pipeline that achieves state-of-the-art results
across CIFAR and ImageNet benchmarks. It must be noted that our method inherits the limitations
of NNGuide, and, for example, is expected to benefit from combining multiple NN-based scores to
a lesser degree. Nevertheless, our findings highlight the central role of complementarity in guided
OOD detection and offer the potential to build upon this work in future research.
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