
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

UniTime: A Language-Empowered Unified Model for
Cross-Domain Time Series Forecasting

Anonymous Author(s)

ABSTRACT
Multivariate time series forecasting plays a pivotal role in contem-
porary web technologies. In contrast to conventional methods that
involve creating dedicated models for specific time series applica-
tion domains, this research advocates for a unified model paradigm
that transcends domain boundaries. However, learning an effec-
tive cross-domain model presents the following challenges. First,
various domains exhibit disparities in data characteristics, e.g., the
number of variables, posing hurdles for existing models that im-
pose inflexible constraints on these factors. Second, the model may
encounter difficulties in distinguishing data from various domains,
leading to suboptimal performance in our assessments. Third, the
diverse convergence rates of time series domains can also result
in compromised empirical performance. To address these issues,
we propose UniTime for effective cross-domain time series learn-
ing. Concretely, UniTime can flexibly adapt to data with varying
characteristics. It also uses domain instructions and a Language-TS
Transformer to offer identification information and align twomodal-
ities. In addition, UniTime employs masking to alleviate domain
convergence speed imbalance issues. Our extensive experiments
demonstrate the effectiveness of UniTime in advancing state-of-
the-art forecasting performance and zero-shot transferability.

ACM Reference Format:
Anonymous Author(s). 2018. UniTime: A Language-Empowered Unified
Model for Cross-Domain Time Series Forecasting. In Proceedings of Make
sure to enter the correct conference title from your rights confirmation emai
(Conference acronym ’XX). ACM, New York, NY, USA, 11 pages. https://doi.
org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The World Wide Web, as a dynamic and ever-evolving ecosystem,
relies heavily on the ability to anticipate and adapt to changing
patterns and user behaviors. Multivariate time series forecasting,
with its capacity to analyze historical data and predict future trends,
emerges as a crucial tool in modern web technologies [8, 10, 11, 13,
35]. The capability of accurate forecasts has the potential not only
to enhance user experiences but also to drive the development of
intelligent web services, such as content recommendations [30],
web economics modeling [35], microservice logs analysis [12], as
well as early warning systems against emerging threats [11].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Recently, Transformers [28] have achieved exceptional perfor-
mance in various tasks of natural language processing [14, 25, 26]
and computer vision [3, 5, 21], which also triggered significant
interest in the time series community [31]. Benefiting from the self-
attention mechanism to capture long-range temporal dependencies
in sequential data, a multitude of Transformer-based models have
been proposed for time series forecasting [16, 19, 20, 24, 32, 34, 40,
41]. This rapid progress has consistently pushed the boundaries
of state-of-the-art performance in forecasting benchmarks from
diverse application domains, including energy, economics, weather,
transportation, and disease predictions.

While these models have shown impressive performance, they
employ a strategy of training a dedicated model for each domain (or
dataset). We argue that this approach may be overly restrictive and
overlooks the potential benefits of training a unified model capable
of generalizing across various domains. Such a unified model para-
digm has achieved remarkable success in computer vision [15, 23],
natural language processing [1, 25], and holds promise in the con-
text of time series modeling. An illustration of the two paradigms
are presented in Figure 1.

The advantage of training a cross-domain time series model lies
in its ability to leverage abundant data from diverse domains with
varying temporal characteristics. This enables the model to learn
the underlying commonalities present in time series data, which are
intrinsic and shared across domains. For instance, while the specific
patterns of seasonality (e.g., daily or weekly) may differ between
domains, the fundamental concept of recurring patterns within the
data is a shared characteristic. Additionally, the presence of trends
(e.g., upward or downward) may vary from one domain to another,
but the shared property is the recognition of data evolving over
time. By equipping the model with this generalization capability, it
stands to benefit from enhanced predictive performance and the
ability to transfer its knowledge to previously unseen domains.
This potential for broader applicability, improved performance, and
streamlined deployment underscores the value of cross-domain
time series modeling. However, to effectively learn a unified model
for data from diverse domains is technically non-trivial, with the
following three challenges.

• Varying Data Characteristics. Data from various domains ex-
hibit differences in the number of variables (channels), lengths
of histories, and lengths of future predictions. However, existing
model designs typically impose rigid constraints on these factors,
limiting their ability to generalize across domains. For instance,
many approaches employ the channel mixing design [19, 32, 33],
which locks the number of input channels to a constant value,
making it nearly infeasible to implement a shared encoder capa-
ble of handling time series from domains with distinct semantics.

• Domain Confusion Issue. When training a model across mul-
tiple time series domains, especially when these domains display
notable variations in temporal patterns or distributions [20, 34],

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Domain-Specific Learning

Model A

(b) Cross-Domain Learning

Unified
Model

Weather

D
o

m
ai

n
 In

st
ru

ct
io

n
s

Economics Disease

Model B Model C

+

+

+

Figure 1: (a) Specialized models are separately trained on time series domains with notable distribution differences. For instance,
weather time series constantly fluctuate due to the chaotic influence of natural factors, while economic data, such as exchange
rates, tends to remain relatively stable. Disease data, like seasonal cold patterns, typically demonstrate periodicity over extended
time periods. (b) The proposed cross-domain learning approach handles time series data from distinct domains and utilizes
natural language as domain instructions to provide domain-specific information.

the model may struggle with discerning and adapting to these dif-
ferences. This challenge, termed domain confusion in this study,
results in subpar empirical performance.

• Domain Convergence Speed Imbalance. Various time series
domains exhibit diverse convergence rates attributed to their
unique characteristics. For instance, domains with simple and
regular patterns may rapidly reach convergence during model
training, and then exhibit a tendency for overfitting, whereas
others may require more iterations to achieve convergence. Ex-
perimentally, this disparity in learning dynamics leads to a com-
promise in cross-domain forecasting performance.

To address the aforementioned challenges, this paper introduces
UniTime, an innovative solution for effectively learning from cross-
domain time series data. First, UniTime offers flexibility in its overall
design, accommodating time series data with varying characteris-
tics, e.g., input and output lengths. Second, inspired by the recent
progress in language instruction-based model tuning [4, 29, 38, 39],
we propose the use of human-crafted instructions to furnish the
model with explicit domain identification information, alleviating
the issue of domain confusion. We further introduce a Language-TS
Transformer designed to process both instructions and time series.
Thus, time series from different input spaces are aligned to the
common latent space of language models, facilitating cross-domain
generalization. Third, we employ masking to mitigate the problem
of domain convergence speed imbalance, by constraining the model
from acquiring trivial solutions, such as memorizing exclusive data
patterns, on domains susceptible to overfitting. Our contributions
are summarized below.

• To the best of our knowledge, we present the first attempt to
explore the potential of using a unified model for generalization
across time series application domains.

• We propose UniTime as a versatile model, which is capable of
handling time series data with varying characteristics, distin-
guishing between different domains, and balancing data with
diverse convergence rates.

• Our extensive experiments affirm the effectiveness of UniTime. It
attains new state-of-the-art performance on popular time series
forecasting benchmarks, and showcases admirable transferability
to unseen domains.

2 RELATEDWORK
Deep Models for Time Series Forecasting. Deep learning mod-
els with elaborately crafted architectures have demonstrated great
promise in time series forecasting. Among them, Transformer-based
models have gained widespread recognition due to their exceptional
prowess in sequence modeling [31]. However, the self-attention
mechanisms in Transformers are known to introduce high com-
putational and memory complexities. Consequently, a plethora of
approaches, such as LogTrans [18], Reformer [16], Informer [40],
Pyraformer [19] have been proposed to reduce the cost for better
efficiency. Another line of research concentrates on capturing the
intricate temporal patterns within time series data by leveraging
techniques such as seasonal-trend decomposition (Autoformer [34],
ETSformer [32], FEDformer [41]) and non-stationary information
compensation (NSformer [20]), so as to boost performance. Recently,
the community has initiated efforts to develop more versatile meth-
ods. For example, TimesNet [33] proposes a generic framework to
tackle multiple time series tasks. Following TimesNet, GPT4TS [42]
proposes to leverage pretrained language models to process time
series signals. However, the above methods still employ separate
models for each domain/dataset, limiting their potential to become
the foundational architecture for general time series modeling.

Language Model Powered Cross-Modality Learning. Recently,
there has been a notable surge of interest in the utilization of pre-
trained languagemodels to other research fields with distinct modal-
ities, including recommendation systems [9, 38], graph learning
[7, 36, 39], and time series modeling [42]. For instance, InstructRec
[38] reformulates recommendation tasks into text form, utilizing
instructions to enable language models to generate recommenda-
tions. GIMLET [39] employs natural language to describe tasks,
which not only allows the incorporation of textual knowledge, but
also empowers models to accomplish molecule-related tasks using
specific instructions. GPT4TS [42] is a relevant work to this study,
as it also employs language models to forecast the future. While
GPT4TS demonstrates the feasibility of processing time series with
language models, it primarily relies on a single modality, namely
the time series data itself. It falls short of fully exploiting the pow-
erful language processing capabilities that language models offer,
which are pivotal in facilitating cross-domain time series learning.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series Forecasting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Em
b

ed
d

er

La
n

gu
ag

e-
TS

Tr

an
sf

o
rm

er

Domain Instructions

Li
gh

tw
ei

gh
t

Tr
an

sf
o

rm
er

010100…001110

Exchange rate data with
daily sampling rate.

Binary Indicator

Corrupted Time Series

Pa
tc

h
in

g

To
ke

n
iz

er

G
at

ed

Fu
si

o
n

Li
n

ea
r

Li
n

ea
r

Pa
tc

h
in

g

Li
n

ea
r Padded

Token

Time Series Tokenizer

Decoder

Input Reconstruction

Future Predictions

Concat

Figure 2: UniTime overview from the perspective of a univariate time series.

3 PRELIMINARIES
Problem Definition. The primary emphasis of this study lies
in the development of cross-domain time series models. To this
end, we define an observation of a multivariate time series from
domain 𝜏 at time step 𝑡 as 𝒙𝑡𝜏 = {𝑥𝑡

𝜏,1, ..., 𝑥
𝑡
𝜏,𝑐𝜏

} ∈ R𝑐𝜏 , where 𝑐𝜏
represents the number of channels or variables within domain 𝜏 .
In the context of cross-domain time series forecasting, both the
historical and future prediction lengths can vary across domains.
Thus, we use 𝐿𝜏 to denote the lookback window and 𝑇𝜏 to denote
the future prediction range in domain 𝜏 , and represent the input
and output of the model as 𝑿𝐿𝜏

𝜏 = {𝒙1
𝜏 , ..., 𝒙

𝐿𝜏
𝜏 } ∈ R𝐿𝜏×𝑐𝜏 and

�̂�𝑇𝜏
𝜏 = {�̂�𝐿𝜏+1

𝜏 , ..., �̂�𝐿𝜏+𝑇𝜏𝜏 } ∈ R𝑇𝜏×𝑐𝜏 .
Channel-Mixing v.s. Channel-Independence.Many time series
Transformer models typically adopt a channel-mixing configura-
tion [33, 34, 40, 41]. In this setup, an embedding layer is utilized to
process data from all time series channels and project them into a
hidden space for multi-channel information fusion. However, this
setting poses challenges when attempting to train models across
time series domains due to two key issues: (1) the number of chan-
nels typically varies among different time series domains, and (2)
employing a shared embedding layer to process time series chan-
nels from different domains with significantly distinct semantics is
impractical. To tackle the problems, our study embraces the channel-
independence configuration (recently introduced in PatchTST [24]),
which processes each channel individually and provides greater
flexibility in handling cross-domain time series.

4 THE UNITIME MODEL
In this section, we present the proposed UniTime model, an inno-
vative and generic solution designed for end-to-end learning with
cross-domain time series data. Figure 2 provides an overview of
the UniTime model, which comprises three primary components:
a time series tokenizer to preprocess time series raw signals and
prepare the time series tokens, a Language-TS Transformer for
domain identification and the alignment of two modalities (text
and time series), and a decoder for prediction generation. Given
our adoption of the channel-independence setting, we next offer a
detailed description of each model component from the perspective
of a univariate time series from an arbitrary application domain.
Formally, we denote the 𝑖-th univariate time series from domain 𝜏
with length 𝐿𝜏 as 𝒙𝐿𝜏

𝜏,𝑖
= {𝑥1

𝜏,𝑖
, ..., 𝑥

𝐿𝜏
𝜏,𝑖

} ∈ R𝐿𝜏 .

4.1 Time Series Tokenizer
We propose a time series tokenizer to generate the time series
tokens from raw series signals. These tokens will be fed into the
proposed Language-TS Transformer, described in next section. Our
time series tokenizer involves two sub-modules.

Time Series Patching. Recognizing that individual time points
lack sufficient semantic meaning like a word in a sentence, we
employ patching techniques, as seen in ViT [5] and PatchTST [24],
to aggregate adjacent time series into tokens. This helps capture
local semantic information in time series, and also reduces the
computational overhead when processing long input sequences.

Before patching, we preprocess the raw time series through three
steps: (1) masking by a binary vector containing zeros and ones
(explained later), (2) series stationarization to mitigate distribution
shifts [20, 33], and (3) series padding, which involves duplicating the
last value of the original sequence to ensure proper patching. We
then segment each univariate time series 𝒙𝐿𝜏

𝜏,𝑖
into tokens, which

may or may not overlap each other, depending on the specific
choice. Concretely, let 𝑃 denote the time series token length and 𝑆𝜏
represent the stride value (the non-overlapping distance between
the starting point of two consecutive tokens). The patching process
generates a sequence of tokens 𝑿𝑁𝜏

𝜏,𝑖
∈ R𝑁𝜏×𝑃 , where 𝑁𝜏 is the

resulting number of tokens, and 𝑁𝜏 = ⌈𝐿𝜏−𝑃
𝑆𝜏

⌉ + 1.
We then employ a shared and learnable linear projection to

embed the tokens of each domain to a hidden space 𝒁𝑁𝜏

𝜏,𝑖
∈ R𝑁𝜏×𝐷 ,

where 𝐷 is set to match that of the Transformer used later. It is
worth mentioning that the token size 𝑃 is fixed and shared across
domains due to the usage of the linear projection. The stride value
𝑆𝜏 , on the other hand, is adaptable and depends on the historical
observation lengths in each domain.

Masking & Gated Fusion. Different time series domains manifest
varying convergence rates due to their inherent characteristics. For
example, domains with simple and regular patterns may converge
swiftly, followed by a tendency to overfit, while others may de-
mand more iterations to achieve convergence. Such an imbalanced
learning process results in compromised cross-domain forecast-
ing performance. To alleviate this problem, we propose to employ
masking to compel the model to depend only on partial input. Con-
sequently, the model is constrained from learning trivial solutions
(e.g., simply memorizing the exclusive patterns of data) on domains

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

that are prone to overfitting, promoting the acquisition of more
robust and generalizable representations.

Concretely, for each time series channel, we first generate a bi-
nary mask vector 𝒎𝐿𝜏

𝜏,𝑖
∈ {0, 1}𝐿𝜏 , where the value 0 indicates the

specific time steps to be masked, and the ratio of zeros is specified
by a parameter 𝑟𝑚 . This mask vector has two usages: (1) masking
the raw time series signals 𝒙𝐿𝜏

𝜏,𝑖
, and (2) serving as a binary indicator

to make the model aware of which positions are masked. To achieve
the second usage, the mask vector needs to undergo a process sim-
ilar to that of the time series signals, i.e., padding and patching.
Subsequently, we apply a linear projection to map it into the hid-
den space, denoted by 𝑴𝑁𝜏

𝜏,𝑖
∈ R𝑁𝜏×𝐷 . Then we perform a gated

fusion operation to integrate its information with the time series
tokens, in order to enhance the model’s awareness of which specific
information can be used to generate the predictions. Formally,

𝒁𝑁𝜏

𝜏,𝑖
= 𝐺𝑎𝑡𝑒 ⊙ 𝒁𝑁𝜏

𝜏,𝑖
+ (1 −𝐺𝑎𝑡𝑒) ⊙ 𝑴𝑁𝜏

𝜏,𝑖
(1)

𝐺𝑎𝑡𝑒 = 𝜎 (𝒁𝑁𝜏

𝜏,𝑖
𝑾𝑔1 +𝑴𝑁𝜏

𝜏,𝑖
𝑾𝑔2 + 𝒃𝑔) (2)

where𝑾𝑔1,𝑾𝑔2, 𝒃𝑔 are learnable parameters and 𝜎 (·) is a sigmoid
function.

4.2 Language-TS Transformer
Motivation. When training a model across time series domains,
especially when these domains exhibit significant differences in tem-
poral patterns or distributions [20, 34], the model may encounter
challenges in distinguishing and generalizing between them. This
issue, which we refer to as domain confusion, leads to poor forecast-
ing performance in our empirical evaluations.

In this study, we propose the use of domain instructions to offer
explicit domain identification information to the model, facilitating
the model to discern the source of each time series and adapt its
forecasting strategy accordingly. The domain instructions are es-
sentially sentences describing each domain’s data. They are also
crafted by humans to incorporate human prior knowledge of the
data. For example, instructions can be written in a similar form to
help the model recognize that the time series of these domains tend
to be similar. Moreover, we propose the use of a Language-TS Trans-
former to learn joint representations from domain instructions and
time series, which enables cross-domain generalization by aligning
the time series from various input spaces to the common latent
space of the language models.

Model Design. In this study, we leverage a pretrained language
model to unify language and time series modalities. It is important
to note that various language models with different architectures
are available, including BERT [14], T5 [26], and GPT2 [25]. Given
the autoregressive nature of time series data, we opt for GPT2 as
our backbone model, which employs causal masking to preserve
the temporal order of inputs. Moreover, it is crucial to consider the
order of language and time series when using causal masking. If we
place the time series data first, the Transformer won’t have access
to the domain instructions while processing the time series. This
weakens the utility of the text information. Therefore, we choose
to position the instructions before the time series data, enabling
the model to directly leverage contextual identifiers to enhance its
cross-domain forecasting performance.

Formally, let 𝑒𝜏 denote the instruction from domain 𝜏 with length
𝐼𝜏 and 𝑬 𝐼𝜏

𝜏,𝑖
∈ R𝐼𝜏×𝐷 denote its embeddings. The input to the

proposed Language-TS Transformer is: 𝑯 𝐼𝜏+𝑁𝜏

𝜏,𝑖
=

(
𝑬 𝐼𝜏
𝜏,𝑖
| |𝒁𝑁𝜏

𝜏,𝑖

)
+

𝑾𝑝𝑜𝑠 , where | | represents the concatenation operation, and𝑾𝑝𝑜𝑠

is the learnable positional embeddings from the pretrained lan-
guage model. Kindly note that the first dimension of 𝑯 𝐼𝜏+𝑁𝜏

𝜏,𝑖
∈

R(𝐼𝜏+𝑁𝜏)×𝐷 varies across domains. This variability is feasible due
to Transformer’s capability to handle inputs of different lengths.
Then we feed 𝑯 𝐼𝜏+𝑁𝜏

𝜏,𝑖
into 𝐿𝑙𝑚 Transformer layers with causal at-

tention, whose weights are initialized from GPT2 [25]. We change
the superscript of 𝑯 𝐼𝜏+𝑁𝜏

𝜏,𝑖
to denote the layer index temporarily,

and for layer 𝑙 = 1, ..., 𝐿𝑙𝑚 , the forward process is:

�̃�
𝑙−1
𝜏,𝑖 = LN(MSA(𝑯 𝑙−1

𝜏,𝑖)) + 𝑯 𝑙−1
𝜏,𝑖 (3)

𝑯 𝑙
𝜏,𝑖 = LN(MLP(�̃� 𝑙−1

𝜏,𝑖)) + �̃�
𝑙−1
𝜏,𝑖 (4)

where LN, MSA, and MLP denote a layer normalization, a multi-
head self-attention, and amulti-layer perceptron, respectively.Within
the MSA, the causal attention is formalized as:

Attention(𝑯 𝑙−1
𝜏,𝑖) = softmax(𝑄

𝑙 (𝐾𝑙)𝑇√︁
𝑑𝑘

+ C)𝑉 𝑙 (5)

C =

{
0, if position 𝑖 is before 𝑗
−∞, otherwise

(6)

where 𝑄𝑙 , 𝐾𝑙 , 𝑉 𝑙 are the query, key, and value matrices at layer 𝑙
derived from 𝑯 𝑙−1

𝜏,𝑖
, 𝑑𝑘 is the dimension of key, and C is a causal

mask matrix.

4.3 Decoder
Employing a linear layer to directly produce long-term forecasting
results has demonstrated great promise [24, 33, 37], outperforming
the traditional iterative approach that is susceptible to substantial
error accumulation effects. However, recall that the output of the
Language-TS Transformer 𝑯 𝐼𝜏+𝑁𝜏

𝜏,𝑖
∈ R(𝐼𝜏+𝑁𝜏)×𝐷 , which serves as

the input to the linear layer, exhibits variations in token lengths.
Moreover, the predictive lengths can also vary significantly across
diverse domains. These two sources of variability pose a challenge,
making it impractical to apply the linear layer directly.

To address this problem, we introduce a maximum token length
parameter 𝑅 and initialize a learnable padding token to ensure
consistent sequence lengths across domains. Specifically, we append
the padding token repeatedly to 𝑯 𝐼𝜏+𝑁𝜏

𝜏,𝑖
until the sequence reaches

the length of 𝑅. Then we employ a lightweight Transformer with
𝐿𝑙𝑖𝑔ℎ𝑡 (𝐿𝑙𝑖𝑔ℎ𝑡 ≪ 𝐿𝑙𝑚) layers to process the padding result. This
step serves to inform the other tokens about the presence of the
padding token. Finally, we flatten the lightweight Transformer
output �̄�𝑅

𝜏,𝑖 ∈ R𝑅×𝐷 and utilize a linear layer with a maximum
predictive length parameter 𝑂 to generate predictions. The entire
procedure is formalized as follows:

�̄�𝑅
𝜏,𝑖 = LightTrans(Pad(𝑯 𝐼𝜏+𝑁𝜏

𝜏,𝑖
)) (7)

�̂�𝑂𝜏,𝑖 = Linear(Flatten(�̄�𝑅
𝜏,𝑖)) (8)

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series Forecasting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Note that our model will always generate 𝑂 values during fore-
casting. For domains whose predictive length 𝑇𝜏 is less than 𝑂 , we
truncate the first 𝑇𝜏 values in �̂�𝑂

𝜏,𝑖
as the forecasting outcomes.

4.4 Model Training
Training Objective.We utilize the widely usedmean squared error
to assess the disparity between the prediction and the ground truth.
Moreover, we simultaneously predict future values and reconstruct
past histories, encouraging the model to align its predictions with
the observed historical trends [2]. The overall objective loss in
domain 𝜏 is averaged over 𝑐𝜏 channels, and we get:

L𝜏 =
1
𝑐𝜏

𝑐𝜏∑︁
𝑖=1

(1
𝑇𝜏

| |�̂�𝑇𝜏
𝜏,𝑖

− 𝒙𝑇𝜏
𝜏,𝑖
| |22 +

1
𝐿𝜏

| |�̂�𝐿𝜏
𝜏,𝑖

− 𝒙𝐿𝜏
𝜏,𝑖
| |22) (9)

Training Process. A straightforward approach to cross-domain
training involves sequentially feeding each domain’s training set to
the model during each epoch. However, this method often results
in unstable learning and the issue of catastrophic forgetting [6].
To mitigate this problem, we adopt a more granular approach –
operating at the batch level. To be specific, we construct batches of
data by randomly selecting instances from a pool that encompasses
all training data of all involved time series domains. But note that
each batch only consists of the data from a single domain. This
restriction is due to the varying channel numbers and sequence
lengths of each domain. Furthermore, we employ oversampling
techniques for domains that have significantly fewer training sam-
ples than others. By doing so, we ensure that the model receives
ample exposure to these underrepresented domains, preventing
them from being overshadowed by the more abundant ones. More
details are provided in Appendix A.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets.We extensively assess the proposed UniTime model on
eight real-world benchmark datasets, which cover various time
series application domains. Here are brief descriptions of the data:
(1) ETT [40] contains factors used for monitoring electricity trans-
formers between July 2016 and July 2018. These factors include six
power load features and readings of oil temperature. ETT involves
four subsets. ETTm1 and ETTm2 are recorded at 15-minute inter-
vals, while ETTh1 and ETTh2 are recorded hourly. (2) Electricity1
comprises hourly power consumption of 321 clients from 2012 to
2014. (3) Exchange [17] records daily exchange rates of eight differ-
ent countries ranging from 1990 to 2016. (4) Weather2 is recorded
every 10 minutes in the year of 2020. It contains 21 meteorological
indicators, such as temperature, humidity, and precipitation. (5)
Illness3 includes weekly recorded data on the number of patients
with seven influenza-like illnesses between 2002 and 2021. Table
1 provides a summary of the datasets. It can be seen that time se-
ries data from various domains exhibit differences in terms of the
number of variables, the semantics of those variables, the sampling
frequency, and the size of the collected data.

1https://archive.ics.uci.edu/ml/datasets/ ElectricityLoadDiagrams20112014.
2https://www.bgc-jena.mpg.de/wetter/
3https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

Table 1: Summary of datasets.
Dataset Name #Variable Frequency #Instances Application Domain
ETTm1/ETTm2 7 15 mins 57,507 Electrical Asset Monitoring
ETTh1/ETTh2 7 1 hour 14,307 Electrical Asset Monitoring
Electricity 321 1 hour 26,211 Electricity Consumption
Weather 21 10 mins 52,603 Meteorologic Monitoring
Exchange 8 1 day 7,207 Foreign Exchange Market
Illness 7 1 week 861 Epidemiological Monitoring

Baselines.We include eight state-of-the-art methods for multivari-
ate time series forecasting comparisons, including Informer [40],
Autoformer [34], FEDformer [41], NSformer [20], DLinear [37],
TimesNet [33], PatchTST [24], and GPT4TS [42], a recent paper
that uses language models to process time series data. Note that all
these methods train a dedicated model for each evaluated dataset
and for each assessed predictive length in their original papers.

Implementation Details. We integrate our method into the es-
tablished pipeline4 from Wu et al. [33], which serves as a robust
evaluation platform for various baseline methods. We also adhere
to the same experimental settings as in Wu et al. [33] to ensure
a fair comparison: we set the maximum number of epochs to 10
and fix the lookback window length to 36 for the Illness dataset,
and 96 for the others. Moreover, we utilize a pretrained GPT2 [25]
model as the backbone, with its layer count 𝐿𝑙𝑚 set at 6, and we do
not freeze any of its parameters. For the lightweight Transformer,
we configure the 𝐿𝑙𝑖𝑔ℎ𝑡 to 2. The patch length 𝑃 , maximum token
length 𝑅, maximum predictive length 𝑂 , mask ratio 𝑟𝑚 are consis-
tently set to 16, 17, 720, and 0.5, respectively. The configuration
specifics for each dataset and the results of the hyperparameter
studies are provided in Appendix A and B. We train our method via
the AdamW optimizer with an initial learning rate of 0.0001. Re-
garding model selection, we calculate the validation loss for all the
datasets involved and then compute an average score. The model
that achieves the lowest overall validation loss will be used for
testing. Experiments are repeated three times with different seeds
on an NVIDIA A100 GPU. We implement UniTime using PyTorch
1.12, and will release the code on GitHub for public use.

5.2 Main Results
Table 2 presents the overall forecasting performance. We utilize
two vertical lines to demarcate the table. The right part of the table
signifies that separate models are trained for each dataset and for
each specific predictive length. To illustrate, for the ETTm1 dataset,
four distinct models are created to predict four different future
lengths: 96, 192, 336, and 720. On the left side of the table, models
are trained across datasets and consistently generate 720 future
values. When evaluating performance for a setting shorter than 720
entries, such as 96, we simply take the first 96 values within the 720-
value output. According to the table, the proposed UniTime model
demonstrates remarkable improvements over the baseline models
that are also trained across datasets, securing the best performance
in 79 out of 80 entries. Moreover, UniTime delivers competitive
results when compared to models trained individually on each
dataset, as demonstrated by improving 37 out of 80 entries to the
new state-of-the-art. This outcome validates the effectiveness of
our model in handling time series data with diverse characteristics,
such as sampling frequency and periodicity.

4https://github.com/thuml/Time-Series-Library

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Forecasting performance comparisons. The input sequence length is set to 36 for the Illness dataset and 96 for the
others. The predictive lengths are set to {24, 36, 48, 60} for Illness, and {96, 192, 336, 720} for others. Avg is averaged over all
predictive lengths. Note that we bold the best performance among models trained across datasets, which is on the left-hand
side of the two vertical lines, and we bold and underline the best performance for the entire row.

Method
Models Trained Across Datasets Models Trained on Each Dataset
UniTime GPT4TS† PatchTST† GPT4TS∗ PatchTST∗ TimesNet DLinear NSformer FEDformer Autoformer Informer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Tm

1

96 0.322 0.363 0.509 0.463 0.927 0.604 0.335 0.369 0.344 0.373 0.338 0.375 0.345 0.372 0.386 0.398 0.379 0.419 0.505 0.475 0.672 0.571
192 0.366 0.387 0.537 0.476 0.964 0.620 0.374 0.385 0.367 0.386 0.374 0.387 0.380 0.389 0.459 0.444 0.426 0.441 0.553 0.496 0.795 0.669
336 0.398 0.407 0.564 0.488 1.041 0.656 0.407 0.406 0.392 0.407 0.410 0.411 0.413 0.413 0.495 0.464 0.445 0.459 0.621 0.537 1.212 0.871
720 0.454 0.440 0.592 0.504 0.950 0.636 0.469 0.442 0.464 0.442 0.478 0.450 0.474 0.453 0.585 0.516 0.543 0.490 0.671 0.561 1.166 0.823
Avg 0.385 0.399 0.551 0.483 0.971 0.629 0.396 0.401 0.392 0.402 0.400 0.406 0.403 0.407 0.481 0.456 0.448 0.452 0.588 0.517 0.961 0.734

ET
Tm

2

96 0.183 0.266 0.229 0.304 0.240 0.318 0.190 0.275 0.177 0.260 0.187 0.267 0.193 0.292 0.192 0.274 0.203 0.287 0.255 0.339 0.365 0.453
192 0.251 0.310 0.287 0.338 0.301 0.352 0.253 0.313 0.246 0.305 0.249 0.309 0.284 0.362 0.280 0.339 0.269 0.328 0.281 0.340 0.533 0.563
336 0.319 0.351 0.337 0.367 0.367 0.391 0.321 0.360 0.305 0.343 0.321 0.351 0.369 0.427 0.334 0.361 0.325 0.366 0.339 0.372 1.363 0.887
720 0.420 0.410 0.430 0.416 0.451 0.432 0.411 0.406 0.410 0.405 0.408 0.403 0.554 0.522 0.417 0.413 0.421 0.415 0.433 0.432 3.379 1.338
Avg 0.293 0.334 0.321 0.356 0.340 0.373 0.294 0.339 0.285 0.328 0.291 0.333 0.350 0.401 0.306 0.347 0.305 0.349 0.327 0.371 1.410 0.810

ET
Th

1

96 0.397 0.418 0.449 0.424 0.409 0.403 0.398 0.424 0.404 0.413 0.384 0.402 0.386 0.400 0.513 0.491 0.376 0.419 0.449 0.459 0.865 0.713
192 0.434 0.439 0.503 0.453 0.467 0.444 0.449 0.427 0.454 0.440 0.436 0.429 0.437 0.432 0.534 0.504 0.420 0.448 0.500 0.482 1.008 0.792
336 0.468 0.457 0.540 0.477 0.509 0.472 0.492 0.466 0.497 0.462 0.491 0.469 0.481 0.459 0.588 0.535 0.459 0.465 0.521 0.496 1.107 0.809
720 0.469 0.477 0.515 0.489 0.503 0.485 0.487 0.483 0.496 0.481 0.521 0.500 0.519 0.516 0.643 0.616 0.506 0.507 0.514 0.512 1.181 0.865
Avg 0.442 0.448 0.502 0.461 0.472 0.451 0.457 0.450 0.463 0.449 0.458 0.450 0.456 0.452 0.570 0.537 0.440 0.460 0.496 0.487 1.040 0.795

ET
Th

2

96 0.296 0.345 0.303 0.349 0.314 0.361 0.312 0.360 0.312 0.358 0.340 0.374 0.333 0.387 0.476 0.458 0.358 0.397 0.346 0.388 3.755 1.525
192 0.374 0.394 0.391 0.399 0.407 0.411 0.387 0.405 0.397 0.408 0.402 0.414 0.477 0.476 0.512 0.493 0.429 0.439 0.456 0.452 5.602 1.931
336 0.415 0.427 0.422 0.428 0.437 0.443 0.424 0.437 0.435 0.440 0.452 0.452 0.594 0.541 0.552 0.551 0.496 0.487 0.482 0.486 4.721 1.835
720 0.425 0.444 0.429 0.449 0.434 0.448 0.433 0.453 0.436 0.449 0.462 0.468 0.831 0.657 0.562 0.560 0.463 0.474 0.515 0.511 3.647 1.625
Avg 0.378 0.403 0.386 0.406 0.398 0.416 0.389 0.414 0.395 0.414 0.414 0.427 0.559 0.515 0.526 0.516 0.437 0.449 0.450 0.459 4.431 1.729

El
ec
tr
ic
ity

96 0.196 0.287 0.232 0.321 0.198 0.290 0.197 0.290 0.186 0.269 0.168 0.272 0.197 0.282 0.169 0.273 0.193 0.308 0.201 0.317 0.274 0.368
192 0.199 0.291 0.234 0.325 0.202 0.293 0.201 0.292 0.190 0.273 0.184 0.289 0.196 0.285 0.182 0.286 0.201 0.315 0.222 0.334 0.296 0.386
336 0.214 0.305 0.249 0.338 0.223 0.318 0.217 0.309 0.206 0.290 0.198 0.300 0.209 0.301 0.200 0.304 0.214 0.329 0.231 0.338 0.300 0.394
720 0.254 0.335 0.289 0.366 0.259 0.341 0.253 0.339 0.247 0.322 0.220 0.320 0.245 0.333 0.222 0.321 0.246 0.355 0.254 0.361 0.373 0.439
Avg 0.216 0.305 0.251 0.338 0.221 0.311 0.217 0.308 0.207 0.289 0.192 0.295 0.212 0.300 0.193 0.296 0.214 0.327 0.227 0.338 0.311 0.397

W
ea
th
er

96 0.171 0.214 0.212 0.251 0.213 0.260 0.203 0.244 0.177 0.218 0.172 0.220 0.196 0.255 0.173 0.223 0.217 0.296 0.266 0.336 0.300 0.384
192 0.217 0.254 0.261 0.288 0.269 0.300 0.247 0.277 0.222 0.259 0.219 0.261 0.237 0.296 0.245 0.285 0.276 0.336 0.307 0.367 0.598 0.544
336 0.274 0.293 0.313 0.324 0.330 0.341 0.297 0.311 0.277 0.297 0.280 0.306 0.283 0.335 0.321 0.338 0.339 0.380 0.359 0.395 0.578 0.523
720 0.351 0.343 0.386 0.372 0.404 0.389 0.368 0.356 0.352 0.347 0.365 0.359 0.345 0.381 0.414 0.410 0.403 0.428 0.419 0.428 1.059 0.741
Avg 0.253 0.276 0.293 0.309 0.304 0.323 0.279 0.297 0.257 0.280 0.259 0.287 0.265 0.317 0.288 0.314 0.309 0.360 0.338 0.382 0.634 0.548

Ex
ch
an
ge

96 0.086 0.209 0.142 0.261 0.137 0.260 0.091 0.212 0.109 0.236 0.107 0.234 0.088 0.218 0.111 0.237 0.148 0.278 0.197 0.323 0.847 0.752
192 0.174 0.299 0.224 0.339 0.222 0.341 0.183 0.304 0.205 0.327 0.226 0.344 0.176 0.315 0.219 0.335 0.271 0.380 0.300 0.369 1.204 0.895
336 0.319 0.408 0.377 0.448 0.372 0.447 0.328 0.417 0.356 0.436 0.367 0.448 0.313 0.427 0.421 0.476 0.460 0.500 0.509 0.524 1.672 1.036
720 0.875 0.701 0.939 0.736 0.912 0.727 0.880 0.704 0.888 0.716 0.964 0.746 0.839 0.695 1.092 0.769 1.195 0.841 1.447 0.941 2.478 1.310
Avg 0.364 0.404 0.421 0.446 0.411 0.444 0.371 0.409 0.390 0.429 0.416 0.443 0.354 0.414 0.461 0.454 0.519 0.500 0.613 0.539 1.550 0.998

Ill
ne
ss

24 2.346 0.954 3.322 1.278 4.289 1.485 2.732 1.100 2.335 0.989 2.317 0.934 2.398 1.040 2.294 0.945 3.228 1.260 3.483 1.287 5.764 1.677
36 1.998 0.912 3.696 1.374 4.360 1.510 2.664 1.063 2.561 1.035 1.972 0.920 2.646 1.088 1.825 0.848 2.679 1.080 3.103 1.148 4.755 1.467
48 1.979 0.912 3.765 1.402 4.209 1.481 2.617 1.041 2.465 1.022 2.238 0.940 2.614 1.086 2.010 0.900 2.622 1.078 2.669 1.085 4.763 1.469
60 2.109 0.938 3.928 1.432 3.981 1.444 2.478 1.035 2.189 0.997 2.027 0.928 2.804 1.146 2.178 0.963 2.857 1.157 2.770 1.125 5.264 1.564
Avg 2.108 0.929 3.678 1.372 4.210 1.480 2.623 1.060 2.388 1.011 2.139 0.931 2.616 1.090 2.077 0.914 2.847 1.144 3.006 1.161 5.137 1.544

1st Count 37 0 0 3 13 10 6 7 4 0 0
† means that we modify the baselines’ code (e.g., use padding to align input lengths across different domains), and make them train and test in the same way
as our method. ∗ indicates that we adopt the official code of the baselines and reset their input sequence length and maximum training epochs number for a
fair comparison to other methods. Other results are from TimesNet [33].

5.3 Ablation Studies
To better understand the effectiveness of model designs in UniTime,
we construct five variants of the model and conduct ablation studies
across all evaluated datasets. The experimental results are summa-
rized in Table 3, indicating that all the designed components are
indispensable.

Firstly, w/o instructions causes a significant drop in performance
across all datasets, with the most pronounced effects on ETTm1
and Illness. This emphasizes the critical role of domain instructions

in providing identification information to the model. To further
investigate the domain confusion issue, we conduct a comparison
between the hidden representations of UniTime w/o instructions
and UniTime w/ instructions using the T-SNE visualization tool [27].
Specifically, for each dataset, we randomly select 100 samples from
their respective test sets, and visualize the hidden representations
produced by the Language-TS Transformer. In Figure 4, we can
observe that in the absence of instructions, the representations of
different domains are mixed together, whereas with the inclusion of

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series Forecasting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Ablation of method designs. Due to page limit, for each dataset, we report the average value over all predictive lengths.
Full results are provided in Table 7.

Variant ETTm1 ETTm2 ETTh1 ETTh2 Electricity Weather Exchange Illness
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

UniTime 0.385 0.399 0.293 0.334 0.442 0.448 0.378 0.403 0.216 0.305 0.253 0.276 0.364 0.404 2.108 0.929
w/o instructions 0.479 0.461 0.311 0.349 0.466 0.449 0.397 0.409 0.221 0.310 0.283 0.307 0.389 0.428 2.381 1.041
w/o masking 0.390 0.408 0.286 0.332 0.459 0.461 0.380 0.406 0.210 0.298 0.257 0.280 0.379 0.417 2.606 1.112

w/o LightTrans 0.392 0.402 0.295 0.336 0.443 0.445 0.382 0.405 0.222 0.308 0.261 0.284 0.375 0.414 2.303 0.998
w/o reconstruction 0.392 0.405 0.294 0.336 0.439 0.447 0.383 0.407 0.220 0.312 0.259 0.281 0.383 0.417 2.197 0.956

w/o all 0.487 0.462 0.313 0.352 0.469 0.459 0.391 0.407 0.219 0.308 0.276 0.297 0.395 0.430 2.479 1.084

2 4 6 8 10
ETTm1

1.00

1.05

Va
l M

SE

UniTime w/ mask
UniTime w/o mask

2 4 6 8 10
ETTm2

0.30

0.32

2 4 6 8 10
ETTh1

1.57
1.60
1.62

2 4 6 8 10
ETTh2

0.65

0.70

2 4 6 8 10
Electricity

0.22

0.24

Va
l M

SE

UniTime w/ mask
UniTime w/o mask

2 4 6 8 10
Weather

0.73

0.75

2 4 6 8 10
Exchange

0.14

0.16

2 4 6 8 10
Illness

0.40

0.60

Figure 3: Visualization of the validation loss during model training. The x-axis denotes the training epoch number.

10 5 0 5 10 15
UniTime w/o instructions

10

5

0

5

10
ETTm1
ETTm2
ETTh1
ETTh2
Electricity
Weather
Exchange
Illness

10 5 0 5 10 15
UniTime w/ instructions

10

5

0

5

10

15 ETTm1
ETTm2
ETTh1
ETTh2
Electricity
Weather
Exchange
Illness

Figure 4: T-SNE visualization of the hidden representations.

instructions, they exhibit clear clustering-like patterns. This obser-
vation confirms the existence of domain confusion, and underscores
the effectiveness of instructions as a tool to address this issue. Note
that in the visualization of UniTime w/ instructions, the clusters
of ETTm1, ETTm2, ETTh1, ETTh2 are close to each other. This
proximity is attributed to the fact that they belong to the same
domain and thus share underlying temporal characteristics.

The results obtained under the w/o masking setting reveal that
while the model performs satisfactorily on some datasets, the per-
formance on other datasets is significantly degraded, especially
on Illness. This decline can be attributed to an imbalanced cross-
domain learning process that occurs when masking is disabled. To
illustrate this point further, we have plotted the changes in valida-
tion loss in Figure 3. Recall that the overall validation loss across
all domains is a critical factor during the model selection process.
When masking is turned off, the datasets display varying conver-
gence speeds. For example, ETTm2, ETTh2, Exchange, and Illness
experience severe overfitting beyond the 4th epoch, while others
require more epochs to reach convergence. This lack of balance
poses challenges in the model selection process when aiming to
choose a model that performs well across all datasets. However,

when masking is enabled, the majority of loss curves do not demon-
strate an overfitting trend. Instead, they converge at a later phase
and exhibit increased stability. Such a balanced learning environ-
ment allows the model to be selected in the later phase of training,
leading to superior overall performance.

Furthermore, w/o LightTrans and w/o reconstruction mean that
we remove the light Transformer after the language model and
disable the auxiliary reconstruction loss, respectively. The results
show that both of them are effective in boosting the overall perfor-
mance. Finally, the setting ofw/o all turns off all the aforementioned
designs, resulting in degraded performance across all datasets.

5.4 Zero-Shot Transferability Analysis
Setups. In this part, we delve into the transferability of our meth-
ods and baseline models from the source (training) domains to the
target (unseen) domains. Specifically, we first train the models on
the datasets of ETTh1, ETTm1, and ETTm2. Then we assess their
performance in both in-domain transfer and out-domain transfer
scenarios through zero-shot testing. This testing is conducted on
ETTh2 (hailing from the same domain as the source), Electricity (a
different domain with some underlying relations to the source do-
main), and Weather (representing a completely unrelated domain).

Transfer Protocol. Before executing zero-shot transfers with our
UniTime model, a preliminary step involves selecting the appro-
priate domain instructions for the unseen domain. The rationale
behind this is that if two domains share common patterns, they
may favor similar instructions for their identification. In this study,
we propose an instruction selection protocol that hinges on the
instructions visible to the models during training. Specifically, we
leverage the model input, namely historical observations, and par-
tition them into two parts: the first part is fed into the model to

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Results of design choices related to the language model. We report the average results over all predictive lengths. Full
results are offered in Table 7.

Variant ETTm1 ETTm2 ETTh1 ETTh2 Electricity Weather Exchange Illness
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

UniTime 0.385 0.399 0.293 0.334 0.442 0.448 0.378 0.403 0.216 0.305 0.253 0.276 0.364 0.404 2.108 0.929
TS-Text 0.391 0.403 0.295 0.337 0.446 0.452 0.381 0.406 0.220 0.309 0.261 0.284 0.381 0.414 2.258 1.018

Random Init 0.404 0.411 0.297 0.339 0.446 0.451 0.379 0.404 0.220 0.309 0.260 0.281 0.374 0.413 2.336 1.043
Freeze PLM 0.398 0.410 0.297 0.338 0.444 0.452 0.378 0.405 0.224 0.314 0.262 0.283 0.373 0.409 2.481 1.078
FPT PLM 0.391 0.407 0.295 0.336 0.438 0.446 0.378 0.403 0.220 0.310 0.260 0.283 0.376 0.412 2.286 1.028

Table 5: Zero-shot transferability comparisons. Avg is aver-
aged over all predictive lengths.

Method UniTime GPT4TS PatchTST Repeat
MSE MAE MSE MAE MSE MAE MSE MAE

ET
Th

2

96 0.306 0.352 0.316 0.361 0.332 0.371 0.432 0.422
192 0.389 0.401 0.400 0.410 0.422 0.421 0.534 0.473
336 0.424 0.434 0.430 0.439 0.462 0.455 0.597 0.511
720 0.433 0.450 0.442 0.461 0.467 0.469 0.594 0.519
Avg 0.388 0.409 0.397 0.418 0.421 0.429 0.539 0.481

El
ec
tr
ic
ity

96 0.409 0.481 0.448 0.520 0.529 0.562 1.588 0.945
192 0.410 0.484 0.443 0.517 0.507 0.550 1.596 0.951
336 0.439 0.504 0.462 0.526 0.536 0.566 1.618 0.961
720 0.487 0.531 0.494 0.542 0.563 0.581 1.647 0.975
Avg 0.436 0.500 0.462 0.526 0.534 0.565 1.612 0.958

W
ea
th
er

96 0.210 0.262 0.223 0.271 0.235 0.277 0.259 0.254
192 0.264 0.303 0.287 0.319 0.293 0.320 0.309 0.292
336 0.326 0.334 0.347 0.357 0.351 0.356 0.376 0.338
720 0.402 0.382 0.432 0.409 0.427 0.404 0.465 0.394
Avg 0.301 0.320 0.322 0.339 0.327 0.339 0.352 0.320

generate the predictions and the second part is utilized to compute
the forecasting loss. This loss calculation offers insights into which
instruction is most suitable for the unseen data. Experimentally,
we conduct this protocol on 0.5% of test samples to determine the
instructions to be used. We then apply the selected instruction to
the remaining samples in the test set.

Results. Table 5 displays the results of zero-shot testing, with the
last column labeled "Repeat" serving as a baseline that simply uti-
lizes the last value of histories as the forecast value for all future
time steps. The table clearly illustrates that UniTime consistently
outperforms the baselines across the majority of cases, affirming
the effectiveness of incorporating instructions. Furthermore, in ac-
cordance with our instruction selection protocol, all three zero-shot
datasets opt for instructions derived from the data of ETTh1. This
choice is well-founded, particularly for the ETTh2 dataset, as it
exhibits strong connections with ETTh1. The reason for the Elec-
tricity and Weather datasets opting for ETTh1’s instruction likely
stems from their similar underlying patterns, which lends further
support to our approach’s adaptability across diverse domains.

5.5 Exploration Studies on Language Models
In this section, we conduct further investigations into the factors
associated with the language model, aiming to enhance the com-
prehension of the design choices made in UniTime.

Input Order. We explore the effects of altering the input order by
placing the time series data before the instructions. In this config-
uration, time series tokens are unable to attend to the instruction

tokens due to the presence of a causal mask. As shown in the second
row of Table 4, it’s clear that UniTime outperforms this variant with
the changed order. The relatively small performance gap is due to
our use of a decoder following the Language-TS Transformer. This
decoder uses information from the instruction tokens to generate
predictions, mitigating the impact of the altered input order.

Initialization. In this setting, we forego the use of pretrained
weights fromGPT-2, opting instead for randomly initializedweights.
As evident from the third row of Table 4, we can see that the per-
formance of this configuration on all datasets is inferior to that of
our default model. This observation indicates the superiority of
pretrained weights, which have been learned from a vast language
corpus, in effectively processing textual information.

Tunability. In our main results, we fully tuned the pretrained lan-
guage model (PLM). In this part, we explore alternative approaches:
freezing the entire language model, referred to as "Freeze PLM", and
freezing the majority of parameters in the language model, denoted
as "FPT PLM" [22, 42]. To be specific, the FPTmethod tunes only the
positional embeddings and layer normalization components of the
model while keeping the other components, such as self-attention
and feed-forward networks, frozen.

The experimental results are summarized in the last two rows
of Table 4. Firstly, it is evident that fully tuning the model yields
the best performance, followed by the cases of FPT and Freeze.
Secondly, a noteworthy finding is that the performance remains
relatively strong even when we freeze the entire language model.
This outcome suggests that the language model possesses the capa-
bility to process time series tokens and generate reasonable hidden
representations. This interesting phenomenon is also observed by
a recent study [42], and they attribute such universal computing
ability to the self-attention modules of a trained Transformer, which
behaves similarly to principal component analysis. Thirdly, consid-
ering that only a minor subset of parameters requires tuning under
the FPT method, it strikes a good balance between performance and
efficiency. This makes it an attractive choice when computational
resources are limited.

6 CONCLUSION
This paper delves into an innovative and pivotal learning paradigm:
developing a unified forecasting model capable of accommodating
diverse time series application domains. We identify the challenges
in constructing such a unifiedmodel and propose the novel UniTime
to address them accordingly. Our extensive evaluations confirm
the effectiveness of UniTime compared to existing solutions. We
believe that this work represents a significant step towards building
a foundation model for general time series forecasting.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series Forecasting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. In Advances in neural
information processing systems. 1877–1901.

[2] Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang,
Yunhai Tong, Bixiong Xu, Jing Bai, Jie Tong, et al. 2020. Spectral temporal graph
neural network for multivariate time-series forecasting. In Advances in Neural
Information Processing Systems. 17766–17778.

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexan-
der Kirillov, and Sergey Zagoruyko. 2020. End-to-end object detection with
transformers. In European conference on computer vision. 213–229.

[4] Shizhe Diao, Rui Pan, Hanze Dong, Ka Shun Shum, Jipeng Zhang, Wei Xiong, and
Tong Zhang. 2023. Lmflow: An extensible toolkit for finetuning and inference of
large foundation models. arXiv preprint arXiv:2306.12420 (2023).

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2021. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International Conference on Learning
Representations.

[6] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio.
2013. An empirical investigation of catastrophic forgetting in gradient-based
neural networks. arXiv preprint arXiv:1312.6211 (2013).

[7] Xiaoxin He, Xavier Bresson, Thomas Laurent, and Bryan Hooi. 2023. Explana-
tions as Features: LLM-Based Features for Text-Attributed Graphs. arXiv preprint
arXiv:2305.19523 (2023).

[8] Min Hou, Chang Xu, Zhi Li, Yang Liu, Weiqing Liu, Enhong Chen, and Jiang
Bian. 2022. Multi-Granularity Residual Learning with Confidence Estimation for
Time Series Prediction. In Proceedings of the ACMWeb Conference 2022. 112–121.

[9] Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley,
and Wayne Xin Zhao. 2023. Large language models are zero-shot rankers for
recommender systems. arXiv preprint arXiv:2305.08845 (2023).

[10] Sheo Yon Jhin, Jaehoon Lee, Minju Jo, Seungji Kook, Jinsung Jeon, Jihyeon
Hyeong, Jayoung Kim, and Noseong Park. 2022. Exit: Extrapolation and
interpolation-based neural controlled differential equations for time-series clas-
sification and forecasting. In Proceedings of the ACM Web Conference 2022. 3102–
3112.

[11] Renhe Jiang, Zhaonan Wang, Yudong Tao, Chuang Yang, Xuan Song, Ryosuke
Shibasaki, Shu-Ching Chen, and Mei-Ling Shyu. 2023. Learning Social Meta-
knowledge for Nowcasting Human Mobility in Disaster. In Proceedings of the
ACM Web Conference 2023. 2655–2665.

[12] Xinrui Jiang, Yicheng Pan, Meng Ma, and Ping Wang. 2023. Look Deep into the
Microservice System Anomaly through Very Sparse Logs. In Proceedings of the
ACM Web Conference 2023. 2970–2978.

[13] Harshavardhan Kamarthi, Lingkai Kong, Alexander Rodríguez, Chao Zhang, and
B Aditya Prakash. 2022. CAMul: Calibrated and Accurate Multi-view Time-Series
Forecasting. In Proceedings of the ACM Web Conference 2022. 3174–3185.

[14] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of NAACL-HLT. 2.

[15] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al.
2023. Segment anything. arXiv preprint arXiv:2304.02643 (2023).

[16] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. 2020. Reformer: The efficient
transformer. In International Conference on Learning Representations.

[17] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Modeling
long-and short-term temporal patterns with deep neural networks. In The 41st
international ACM SIGIR conference on research & development in information
retrieval. 95–104.

[18] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang,
and Xifeng Yan. 2019. Enhancing the locality and breaking the memory bottle-
neck of transformer on time series forecasting. In Advances in neural information
processing systems.

[19] Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and
Schahram Dustdar. 2022. Pyraformer: Low-complexity pyramidal attention for
long-range time series modeling and forecasting. In International Conference on
Learning Representations.

[20] Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. 2022. Non-stationary
Transformers: Exploring the Stationarity in Time Series Forecasting. In Advances
in Neural Information Processing Systems. 9881–9893.

[21] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer
using shifted windows. In Proceedings of the IEEE/CVF international conference
on computer vision. 10012–10022.

[22] Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. 2022. Pretrained
transformers as universal computation engines. In Proceedings of the AAAI con-
ference on Artificial Intelligence. 7628–7636.

[23] Jun Ma and Bo Wang. 2023. Segment anything in medical images. arXiv preprint
arXiv:2304.12306 (2023).

[24] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. 2023.
A time series is worth 64 words: Long-term forecasting with transformers. In
International Conference on Learning Representations.

[25] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog (2019), 9.

[26] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text transformer. The Journal of
Machine Learning Research (2020), 5485–5551.

[27] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using
t-SNE. Journal of machine learning research 9, 11 (2008).

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[29] YizhongWang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel
Khashabi, and Hannaneh Hajishirzi. 2023. Self-instruct: Aligning language model
with self generated instructions. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics. 13484–13508.

[30] Wei Wei, Chao Huang, Lianghao Xia, and Chuxu Zhang. 2023. Multi-Modal
Self-Supervised Learning for Recommendation. In Proceedings of the ACM Web
Conference 2023. 790–800.

[31] Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan,
and Liang Sun. 2022. Transformers in time series: A survey. In Proceedings of the
Thirty-Second International Joint Conference on Artificial Intelligence. 6778–6786.

[32] Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. 2022.
Etsformer: Exponential smoothing transformers for time-series forecasting. In
arXiv preprint arXiv:2202.01381.

[33] Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng
Long. 2023. Timesnet: Temporal 2d-variation modeling for general time series
analysis. In International Conference on Learning Representations.

[34] HaixuWu, Jiehui Xu, JianminWang, andMingsheng Long. 2021. Autoformer: De-
composition transformers with auto-correlation for long-term series forecasting.
In Advances in Neural Information Processing Systems, Vol. 34. 22419–22430.

[35] Wentao Xu, Weiqing Liu, Chang Xu, Jiang Bian, Jian Yin, and Tie-Yan Liu. 2021.
Rest: Relational event-driven stock trend forecasting. In Proceedings of the Web
Conference 2021. 1–10.

[36] Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang.
2023. Natural language is all a graph needs. arXiv preprint arXiv:2308.07134
(2023).

[37] Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 2023. Are transformers
effective for time series forecasting?. In Proceedings of the AAAI conference on
artificial intelligence. 11121–11128.

[38] Junjie Zhang, Ruobing Xie, Yupeng Hou, Wayne Xin Zhao, Leyu Lin, and Ji-Rong
Wen. 2023. Recommendation as instruction following: A large language model
empowered recommendation approach. arXiv preprint arXiv:2305.07001 (2023).

[39] Haiteng Zhao, Shengchao Liu, Chang Ma, Hannan Xu, Jie Fu, Zhi-Hong Deng,
Lingpeng Kong, and Qi Liu. 2023. GIMLET: A Unified Graph-Text Model for
Instruction-Based Molecule Zero-Shot Learning. In Advances in neural informa-
tion processing systems.

[40] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond efficient transformer for long se-
quence time-series forecasting. In Proceedings of the AAAI conference on Artificial
Intelligence. 11106–11115.

[41] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. 2022.
Fedformer: Frequency enhanced decomposed transformer for long-term series
forecasting. In International Conference on Machine Learning. 27268–27286.

[42] Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. 2023. One Fits All:
Power General Time Series Analysis by Pretrained LM. In Advances in Neural
Information Processing Systems.

A MORE CONFIGURATION DETAILS
This section offers detailed configurations for each dataset evaluated
in this study. The results are shown in Table 6. First, we partition all
datasets into training, validation and test set in chronological order.
The split ratio is 6:2:2 for the ETT series dataset and 7:1:2 for others.
We can observe that the datasets ETTm1, ETTm2, and Weather
have the highest number of training samples, each exceeding 30,000.
They are followed by ETTh1 and ETTh2 with approximately 8,500
samples, Exchange with 5,000 samples, and Illness, which has only
600 samples. Then we determine the batch size for each dataset

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 6: Details of the training, validation, and testing set partitions, as well as the configurations specific to different domains.
Dataset #Training #Validation #Testing Batch Size Oversample Times Stride Domain Instructions

ETTm1 34,465 11,521 11,521 64 0 16 Electricity transformer A data with fifteen minutes sample rate.
ETTm2 34,465 11,521 11,521 64 0 16 Electricity transformer B data with fifteen minutes sample rate.
ETTh1 8,545 2,881 2,881 32 0 16 Electricity transformer A data with one hour sample rate.
ETTh2 8,545 2,881 2,881 32 0 16 Electricity transformer B data with one hour sample rate.
Electricity 18,317 2,633 5,261 24 0 16 Power consumption data with one hour sample rate.
Weather 36,792 5,271 10,540 64 0 16 Meteorological indicator data with ten minutes sample rate.
Exchange 5,120 665 1,422 24 0 16 Exchange rate data with one day sample rate.
Illness 617 74 170 16 12 4 Patient number data with one week sample rate.

0.2 0.3 0.4 0.5 0.6
ETTm1

0.385

0.390

Te
st

 M
SE

0.2 0.3 0.4 0.5 0.6
ETTm2

0.290

0.300

0.2 0.3 0.4 0.5 0.6
ETTh1

0.440

0.450

0.2 0.3 0.4 0.5 0.6
ETTh2

0.375

0.380

0.2 0.3 0.4 0.5 0.6
Electricity

0.210

0.215

0.220

Te
st

 M
SE

0.2 0.3 0.4 0.5 0.6
Weather

0.255

0.260

0.2 0.3 0.4 0.5 0.6
Exchange

0.360

0.380

0.400

0.2 0.3 0.4 0.5 0.6
Illness

2.200

2.400

Figure 5: Effects of mask ratio. The y-axis is the average test MSE over four predictive lengths.

2 3 4 5 6
ETTm1

0.380

0.390

0.400

0.410

Te
st

 M
SE

2 3 4 5 6
ETTm2

0.292

0.295

0.297

2 3 4 5 6
ETTh1

0.440

0.450

2 3 4 5 6
ETTh2

0.375

0.380

2 3 4 5 6
Electricity

0.215

0.220

Te
st

 M
SE

2 3 4 5 6
Weather

0.255

0.260

2 3 4 5 6
Exchange

0.360

0.380

2 3 4 5 6
Illness

2.100

2.200

Figure 6: Effects of Language-TS Transformer’s number of layers. The y-axis is the average test MSE over four predictive lengths.

based on the number of training samples. The guiding principle
is to allocate a larger batch size for datasets with more training
samples and a smaller batch size for those with fewer samples.
This strategy allows the model to undergo more frequent updates
when training on smaller datasets during each epoch. Following
this principle, we assign a batch size of 64 to the ETTm1, ETTm2,
and Weather datasets, 32 to ETTh1 and ETTh2, 24 to the Exchange
dataset, and 16 to the Illness dataset. An exception to this principle
is for the Electricity dataset, which is supposed to be set to 32, but
due to GPU memory constraints, it is set to 24 in our experiments.
Furthermore, recall that we implement oversampling to augment
the size of datasets with significantly fewer training samples. This
strategy is applied to the Illness dataset, which contains only 600
samples. The decision to perform oversampling 12 times on the
Illness dataset is based on our empirical assessments. In short, the
primary goal of the two strategies is to ensure that themodel obtains
ample exposure to the underrepresented domains, preventing them
from being marginalized by the more abundant ones.

We next elaborate on the design rationales of the domain instruc-
tions, which are listed in Table 6. These instructions are essentially

sentences that describe the data in each domain. In this study, we
aim to keep them concise to reduce the computational and mem-
ory cost, considering that we are tuning language models, which
typically have a substantial number of parameters. We also try to
incorporate human prior knowledge of the data. For instance, we
structure the instructions to resemble each other in cases where do-
mains share similarities. Consider the situation of ETTm1, ETTm2,
ETTh1, ETTh2: these four datasets originate from the same source.
Moreover, ETTm1 and ETTh1, as well as ETTm2 and ETTh2, are
essentially the same dataset with different sampling frequencies.
Therefore, we craft the instructions for these datasets in a similar
form, with differences limited to the identifier of the data, i.e., "A"
and "B," and the sampling rate, i.e., "fifteen minutes" and "one hour".

B HYPERPARAMETER STUDIES
In this part, we conduct an investigate into two critical hyperpa-
rameters: the mask ratio 𝑟𝑚 and the number of layers 𝐿𝑙𝑚 in the
Language-TS Transformer. The results of these assessments are
depicted in Figure 5 and Figure 6. Regarding the mask ratio value,
we observe that the model generally performs better with a larger

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series Forecasting Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 7: Full results of ablation and exploration studies. The predictive lengths are set to 𝐿1, 𝐿2, 𝐿3, 𝐿4 = {24, 36, 48, 60} for the
Illness dataset, and 𝐿1, 𝐿2, 𝐿3, 𝐿4 = {96, 192, 336, 720} for the others.

Method ETTm1 ETTm2 ETTh1 ETTh2 Electricity Weather Exchange Illness
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

UniTime

𝐿1 0.322 0.363 0.183 0.266 0.397 0.418 0.296 0.345 0.196 0.287 0.171 0.214 0.086 0.209 2.346 0.954
𝐿2 0.366 0.387 0.251 0.310 0.434 0.439 0.374 0.394 0.199 0.291 0.217 0.254 0.174 0.299 1.998 0.912
𝐿3 0.398 0.407 0.319 0.351 0.468 0.457 0.415 0.427 0.214 0.305 0.274 0.293 0.319 0.408 1.979 0.912
𝐿4 0.454 0.440 0.420 0.410 0.469 0.477 0.425 0.444 0.254 0.335 0.351 0.343 0.875 0.701 2.109 0.938
Avg 0.385 0.399 0.293 0.334 0.442 0.448 0.378 0.403 0.216 0.305 0.253 0.276 0.364 0.404 2.108 0.929

w/o instructions

𝐿1 0.427 0.432 0.214 0.293 0.412 0.415 0.318 0.357 0.202 0.292 0.198 0.247 0.115 0.240 2.383 1.045
𝐿2 0.460 0.448 0.273 0.327 0.460 0.438 0.405 0.405 0.205 0.296 0.250 0.287 0.204 0.326 2.357 1.035
𝐿3 0.499 0.473 0.332 0.364 0.499 0.466 0.435 0.434 0.219 0.310 0.304 0.323 0.349 0.431 2.364 1.038
𝐿4 0.531 0.489 0.424 0.412 0.492 0.476 0.430 0.441 0.259 0.341 0.379 0.371 0.888 0.716 2.421 1.045
Avg 0.479 0.461 0.311 0.349 0.466 0.449 0.397 0.409 0.221 0.310 0.283 0.307 0.389 0.428 2.381 1.041

w/o mask

𝐿1 0.334 0.376 0.180 0.265 0.420 0.434 0.298 0.350 0.191 0.280 0.178 0.220 0.096 0.219 2.636 1.129
𝐿2 0.369 0.394 0.245 0.306 0.455 0.451 0.379 0.397 0.194 0.284 0.222 0.258 0.191 0.312 2.646 1.136
𝐿3 0.398 0.413 0.308 0.348 0.484 0.469 0.414 0.429 0.208 0.298 0.276 0.297 0.336 0.422 2.611 1.104
𝐿4 0.460 0.448 0.411 0.407 0.478 0.489 0.429 0.448 0.248 0.330 0.352 0.345 0.893 0.715 2.531 1.076
Avg 0.390 0.408 0.286 0.332 0.459 0.461 0.380 0.406 0.210 0.298 0.257 0.280 0.379 0.417 2.606 1.112

w/o LightTrans

𝐿1 0.333 0.370 0.185 0.269 0.393 0.414 0.301 0.348 0.204 0.292 0.182 0.225 0.094 0.218 2.549 1.045
𝐿2 0.371 0.388 0.249 0.311 0.437 0.440 0.379 0.396 0.206 0.295 0.226 0.262 0.186 0.308 2.365 0.998
𝐿3 0.403 0.409 0.321 0.353 0.471 0.456 0.419 0.428 0.220 0.308 0.280 0.300 0.334 0.420 2.157 0.971
𝐿4 0.460 0.441 0.425 0.412 0.471 0.470 0.430 0.446 0.259 0.338 0.356 0.349 0.887 0.711 2.141 0.978
Avg 0.392 0.402 0.295 0.336 0.443 0.445 0.382 0.405 0.222 0.308 0.261 0.284 0.375 0.414 2.303 0.998

w/o reconstruction

𝐿1 0.331 0.370 0.183 0.266 0.394 0.416 0.300 0.350 0.202 0.293 0.178 0.220 0.093 0.215 2.330 0.968
𝐿2 0.374 0.393 0.250 0.312 0.431 0.437 0.381 0.400 0.204 0.299 0.224 0.259 0.189 0.309 2.174 0.955
𝐿3 0.403 0.413 0.320 0.353 0.465 0.457 0.418 0.430 0.218 0.312 0.279 0.298 0.339 0.422 2.112 0.943
𝐿4 0.460 0.445 0.423 0.413 0.465 0.476 0.431 0.447 0.257 0.342 0.355 0.347 0.911 0.720 2.171 0.956
Avg 0.392 0.405 0.294 0.336 0.439 0.447 0.383 0.407 0.220 0.312 0.259 0.281 0.383 0.417 2.197 0.956

w/o all

𝐿1 0.445 0.436 0.218 0.297 0.425 0.438 0.308 0.350 0.199 0.290 0.193 0.237 0.116 0.241 2.223 1.027
𝐿2 0.473 0.451 0.277 0.332 0.457 0.454 0.395 0.399 0.201 0.294 0.243 0.276 0.206 0.326 2.522 1.095
𝐿3 0.498 0.470 0.329 0.361 0.496 0.465 0.423 0.428 0.217 0.307 0.296 0.313 0.354 0.433 2.569 1.104
𝐿4 0.533 0.490 0.426 0.417 0.499 0.479 0.436 0.449 0.258 0.339 0.370 0.361 0.902 0.721 2.601 1.110
Avg 0.487 0.462 0.313 0.352 0.469 0.459 0.391 0.407 0.219 0.308 0.276 0.297 0.395 0.430 2.479 1.084

TS-Text

𝐿1 0.330 0.368 0.185 0.269 0.392 0.416 0.299 0.349 0.199 0.291 0.182 0.224 0.095 0.215 2.276 1.015
𝐿2 0.372 0.389 0.250 0.309 0.435 0.439 0.375 0.396 0.203 0.296 0.226 0.262 0.186 0.307 2.232 1.020
𝐿3 0.404 0.410 0.322 0.355 0.474 0.466 0.418 0.428 0.218 0.310 0.281 0.300 0.332 0.418 2.247 1.019
𝐿4 0.459 0.445 0.424 0.413 0.481 0.485 0.431 0.449 0.258 0.340 0.355 0.348 0.910 0.717 2.275 1.016
Avg 0.391 0.403 0.295 0.337 0.446 0.452 0.381 0.406 0.220 0.309 0.261 0.284 0.381 0.414 2.258 1.018

Random Init

𝐿1 0.344 0.378 0.183 0.268 0.400 0.419 0.297 0.348 0.201 0.291 0.180 0.221 0.093 0.216 2.404 1.065
𝐿2 0.386 0.398 0.250 0.309 0.439 0.443 0.377 0.395 0.203 0.295 0.225 0.259 0.184 0.306 2.323 1.038
𝐿3 0.415 0.418 0.327 0.359 0.471 0.460 0.415 0.428 0.218 0.309 0.279 0.298 0.330 0.416 2.302 1.028
𝐿4 0.470 0.449 0.426 0.418 0.473 0.482 0.426 0.444 0.258 0.339 0.354 0.347 0.890 0.713 2.313 1.041
Avg 0.404 0.411 0.297 0.339 0.446 0.451 0.379 0.404 0.220 0.309 0.260 0.281 0.374 0.413 2.336 1.043

Freeze PLM

𝐿1 0.340 0.378 0.185 0.269 0.399 0.422 0.296 0.347 0.203 0.297 0.182 0.226 0.090 0.210 2.657 1.121
𝐿2 0.378 0.397 0.253 0.313 0.436 0.444 0.376 0.397 0.207 0.301 0.228 0.262 0.181 0.302 2.473 1.078
𝐿3 0.409 0.417 0.324 0.356 0.470 0.462 0.414 0.430 0.222 0.315 0.281 0.299 0.323 0.412 2.416 1.054
𝐿4 0.465 0.447 0.425 0.415 0.470 0.479 0.427 0.447 0.263 0.344 0.355 0.346 0.899 0.713 2.376 1.057
Avg 0.398 0.410 0.297 0.338 0.444 0.452 0.378 0.405 0.224 0.314 0.262 0.283 0.373 0.409 2.481 1.078

FPT PLM

𝐿1 0.332 0.373 0.182 0.265 0.395 0.416 0.297 0.346 0.199 0.291 0.180 0.225 0.091 0.212 2.316 1.042
𝐿2 0.371 0.393 0.255 0.311 0.433 0.439 0.375 0.395 0.202 0.294 0.226 0.262 0.183 0.304 2.243 1.024
𝐿3 0.403 0.415 0.321 0.352 0.464 0.456 0.414 0.429 0.219 0.313 0.279 0.298 0.331 0.416 2.287 1.023
𝐿4 0.459 0.445 0.423 0.414 0.458 0.472 0.426 0.443 0.259 0.343 0.354 0.346 0.898 0.716 2.297 1.023
Avg 0.391 0.407 0.295 0.336 0.438 0.446 0.378 0.403 0.220 0.310 0.260 0.283 0.376 0.412 2.286 1.028

ratio compared to a smaller one. The best performance is generally
obtained when the ratio is set to 0.5. As for the number of layers in
the Language-TS Transformer, a count of 6 appears to be the most

favorable choice. We refrain from setting the number of layers to a
larger value, such as 7, due to constraints imposed by GPU memory
limitations.

11

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The UniTime Model
	4.1 Time Series Tokenizer
	4.2 Language-TS Transformer
	4.3 Decoder
	4.4 Model Training

	5 Experiments
	5.1 Experimental Setup
	5.2 Main Results
	5.3 Ablation Studies
	5.4 Zero-Shot Transferability Analysis
	5.5 Exploration Studies on Language Models

	6 Conclusion
	References
	A More Configuration Details
	B Hyperparameter Studies

