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Abstract001

Large language models (LLMs) have demon-002
strated remarkable capabilities across various003
tasks. However, these models could offer bi-004
ased, hallucinated, or non-factual responses005
camouflaged by their fluency and realistic ap-006
pearance. Uncertainty estimation is the key007
method to address this challenge. While re-008
search efforts in uncertainty estimation are009
ramping up, there is a lack of comprehensive010
and dedicated surveys on LLM uncertainty es-011
timation. This survey presents four major av-012
enues of LLM uncertainty estimation. Further-013
more, we perform extensive experimental eval-014
uations across multiple methods and datasets.015
At last, we provide critical and promising fu-016
ture directions for LLM uncertainty estimation.017

1 Introduction018

Large Language Models (LLMs) have emerged as019

state-of-the-art solutions for a wide range of prob-020

lems, mainly due to their unparalleled ability to021

generate coherent and contextually appropriate re-022

sponses to diverse user prompts (Ouyang et al.,023

2022; Zhao et al., 2024). However, with the in-024

creasing adoption of LLMs, concerns have grown025

regarding their tendency to produce biased, halluci-026

nated, non-factual, and misaligned outputs (Zhang027

et al., 2023; Huang et al., 2024b). These issues028

are further exacerbated by the fact that such flawed029

responses often appear highly fluent and convinc-030

ingly realistic, making them difficult to detect.031

A promising approach to addressing the chal-032

lenge of misleading yet plausible responses is un-033

certainty estimation, which assigns an uncertainty034

or confidence score to the model’s output. Figure 1035

provides an overview of this process. First, the036

LLM generates an initial response based on the037

input. Next, a confidence score is computed for038

this response. The score is then evaluated against a039

predefined threshold to determine the final output.040

I have a headache. 
Can I take some 

Tylenol?  

Yes, you can take 
Tylenol for your 

headache.

LLM Confidence 
Score

Uncertainty
Estimation

I do not know. It is 
best to consult 
with a doctor.

Yes, you can take 
Tylenol for your 

headache.

Input

Initial Output

Possible Final Output

> Threshold

≤ Threshold

Figure 1: Illustration of uncertainty estimation.

If the confidence score meets or exceeds the thresh- 041

old, the initial response is accepted; otherwise, the 042

model outputs "I do not know," thereby reducing 043

the risk of providing incorrect but convincingly 044

realistic information to users. 045

There is an urgent need for a comprehensive 046

survey on LLM uncertainty estimation. Below, we 047

highlight three of them: (i) Although uncertainty es- 048

timation has been extensively studied in traditional 049

deep neural networks (DNNs)—with Bayesian and 050

ensemble methods being notable examples (Gaw- 051

likowski et al., 2023))—these techniques are not 052

easily transferable to LLMs, due to the large num- 053

ber of parameters in LLMs. (ii) LLMs significantly 054

transform society, creating a strong demand for a 055

thorough study of uncertainty estimation tailored to 056

LLMs. A survey of recent advances in LLM uncer- 057

tainty estimation would provide a solid foundation 058

for future development in the field. (iii) While there 059

are three existing surveys on LLM uncertainty esti- 060

mation, each has notable limitations. Specifically, 061

(Huang et al., 2024a) dedicates a substantial por- 062

tion of its content to traditional DNN uncertainty 063

estimation rather than focusing on LLMs. (Geng 064

et al., 2024) shifts its attention to uncertainty cal- 065

ibration and the applications of LLM uncertainty 066

estimation, rather than providing a deep exploration 067

of the core techniques. Similarly, (Shorinwa et al., 068

2024) devotes much of its content to benchmarks 069

and applications while lacking a complete view of 070

the uncertainty estimation methods on LLMs. 071
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This manuscript focuses on studying the uncer-072

tainty estimation methods within the context of073

LLMs, introducing a new taxonomy from the per-074

spective of LLMs. We center our scope around075

techniques applicable during the inference stage.076

We emphasize the methods that do not require077

additional data (Ren et al., 2023; Kumar et al.,078

2023; Tonolini et al., 2024) or model modifications079

(Huang et al., 2023a; Liu et al., 2024), ensuring the080

broad applicability of this survey. Moreover, this is,081

to the best of our knowledge, the first survey that082

conducts a thorough evaluation of representative083

uncertainty estimation approaches across various084

datasets and domains. Built on the insights from085

our evaluations, we postulate two interesting future086

directions for LLM uncertainty estimation.087

2 Uncertainty Sources in LLM088

There are two primary sources of uncertainty:089

aleatoric and epistemic uncertainties (Kendall and090

Gal, 2017; Hüllermeier and Waegeman, 2021). In091

the context of LLMs (Gao et al., 2024; Ahdritz092

et al., 2024; Hou et al., 2024), these sources mani-093

fest in the following ways:094

• Aleatoric uncertainty refers to the uncer-095

tainty inherent in the data. For LLMs, this096

arises from ambiguous or incomplete infor-097

mation and inherent properties of natural lan-098

guage itself. Examples include vague or con-099

textually dependent prompts, as well as lin-100

guistic phenomena where multiple valid inter-101

pretations or responses naturally coexist.102

• Epistemic uncertainty reflects the model’s103

lack of knowledge or understanding. In LLMs,104

this occurs when the model encounters unfa-105

miliar concepts or data that are underrepre-106

sented in its training set. This type of uncer-107

tainty can potentially be reduced by improving108

the training datasets and models.109

3 Uncertainty Estimation in LLMs110

3.1 Problem Definition and Overview111

Token generation in LLMs. LLMs output re-112

sponses in an auto-regressive manner, predict-113

ing the probability distribution of the next token114

given the prompt and the previously generated115

tokens. We denote the model as f , the prompt116

as x, and the generated response (or the answer)117

as r, which consists of N tokens, denoted as118

{z1, z2, z3, · · · , zN}. The tokens can be either119

words, subwords, or characters from a predefined 120

vocabulary Z. At each step of token generation, 121

the model computes the conditional probability dis- 122

tribution over the vocabulary for the next token, 123

based on the prompt x and all previously gener- 124

ated tokens r<i = {z1, z2, · · · , zi−1}. The prob- 125

ability distribution for the i-th token is given by 126

pi = Softmax(f(x, r<i)). Here, pi is a vector of 127

length |Z|, with each entry representing the proba- 128

bility of a specific token in Z being chosen as the 129

next token. It allows strategies such as sampling 130

or beam search to choose from these token can- 131

didates according to their probabilities. Such an 132

auto-regressive process ends when # of generated 133

tokens reaches a preset number or LLM generates 134

the end-of-sequence (EOS) token. 135
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𝒓𝟐 𝒓𝑴𝒙 …
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Major
voting
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Figure 2: Illustration of uncertainty versus confidence.

It is important to note that uncertainty is the in- 136

nate nature of LLMs, regardless of whether we 137

estimate it. Now, we provide an intuitive under- 138

standing of uncertainty and how to estimate it. 139

How to estimate uncertainty and confidence? 140

As shown in Figure 2, for each input x, an LLM 141

model has an underlying response distribution for 142

it ( 1 ). For ease of illustration, we assume the 143

distribution is a normal distribution N(µ, σ2). Un- 144

certainty estimation is to estimate the underlying 145

variance σ2. For example, the sample variance 146

of M different responses r1, · · · , rM ( 2 ) can be 147

an estimator for the variance, which indicates the 148

variations of responses (U in Figure 2). 149

There generally are two types of confidence, i.e., 150

overall confidence C and the confidence Ci associ- 151

ated with each response candidate ri. The overall 152

confidence C is complementary to U , i.e., the pre- 153

cision 1/σ2 of the distribution is a confidence C 154

to the input. The associated confidence is related 155

to x and the tokens in a specific response ri. To 156

provide the final response to answer the input x 157

given sampled responses, some literature resort to 158

majority voting to select the most-voted response 159

r∗ ( 3 ) (Wang et al., 2023), while others choose 160

to generate one extra response rM+1 with low- 161

temperature settings ( 4 ) as (Farquhar et al., 2024). 162
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Semantic Clustering
Methods (§ 3.5) Implicit clustering: (Duan et al., 2024) (Nikitin et al., 2024)

Explicit clustering: (Kuhn et al., 2023) (Farquhar et al., 2024)

Consistency-based
Methods (§ 3.4) Similarity-based: (Huang et al., 2023b) (Manakul et al., 2023) (Gao et al., 2024)

(Chen and Mueller, 2024) (Zhang et al., 2024) (Harsha Tanneru et al., 2024) (Lin
et al., 2024)

Agreement-based: (Cole et al., 2023) (Lyu et al., 2024) (Hou et al., 2024)

Latent Information
Methods (§ 3.3)

Hidden states-based: (Chen et al., 2024)

Probability distribution-based: (Manakul et al., 2023) (Jiang et al., 2023) (Ahdritz
et al., 2024)

Predicted probability-based: (Jiang et al., 2021) (Manakul et al., 2023) (Kadavath
et al., 2022) (Portillo Wightman et al., 2023) (Ling et al., 2024) (Malinin and
Gales, 2021) (Bakman et al., 2024)

Verbalizing
Methods (§ 3.2)

Heuristic: (Tian et al., 2023) (Harsha Tanneru et al., 2024) (Xiong et al., 2024)

Figure 3: Taxomony of uncertainty estimation methods on LLMs.

Surveyed papers overview. Figure 3 categorizes163

all the uncertainty estimation papers for LLM into164

four classes: verbalizing methods, latent infor-165

mation methods, consistency-based methods, and166

semantic clustering methods. We review each167

through Sections 3.2 - 3.5.168

3.2 Verbalizing Methods169

Where is the Eiffel 
Tower? Provide the 
answer along with 
your confidence to 

that answer.

Input
Engineered Prompt

Transform
It is in 

Paris. My 
confidence 

is 0.9.

Output

Where is the
Eiffel Tower? ❶

LLM

❷

Figure 4: Illustration on verbalizing methods.

Figure 4 demonstrates the main workflow of ver-170

balizing methods. Firstly, the input is transformed171

into an engineered prompt that explicitly asks the172

model to provide both an answer and its confi-173

dence level ( 1 ). Secondly, the LLM processes174

this prompt and generates an output that includes175

the answer and a verbalized confidence score ( 2 ),176

representing its self-assessed certainty about the177

correctness of its response.178

(Lin et al., 2022a) pioneer this cohort of ef-179

forts. As the capabilities of LLMs continue to180

develop, they can provide reasonable confidence181

under proper guidance, even without fine-tuning.182

Subsequently, (Tian et al., 2023) proposes three ver-183

balizing variants: (i) Generate multiple response184

candidates with confidence scores and select the185

highest-rated one as the final response, (ii) derive186

the response and confidence through two rounds187

of prompt-and-answer interactions, and (iii) use188

words instead of numerical values to indicate the189

confidence. Recently, (Harsha Tanneru et al.,190

2024) introduces two methods inspired by Chain- 191

of-Thought (CoT) prompting. The first method 192

requests the LLM to assign an importance score 193

to each word in the input, while the second one 194

prompts the LLM to provide confidence for each 195

reasoning step in the response. Finally, LLM will 196

offer a final confidence score for the overall re- 197

sponse. Beyond that, (Xiong et al., 2024) presents 198

a systematic framework for verbalizing methods 199

with three parts: prompting, sampling, and aggre- 200

gation. It employs specific confidence-eliciting 201

prompts and generates diverse response samples 202

containing confidence scores. After that, the final 203

confidence score is derived through inter-sample 204

agreement or response ranking information. 205

While verbalizing methods offer intuitive and 206

straightforward uncertainty estimation, they face 207

significant limitations. (Kadavath et al., 2022) 208

shows that LLMs tend to be over-confident in their 209

answers as the reinforcement learning from human 210

feedback (RLHF) nature pushes LLMs to do so. 211

3.3 Latent Information Methods 212

Where is the
Eiffel Tower?

Input

It is in Paris

ProbabilityToken
It

That
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… …
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Output
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by
… …

White-box
LLM Confidence 

Score
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❶
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… …

are

❷
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Figure 5: Illustration on latent information methods.

Figure 5 illustrates the concept of latent infor- 213
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mation methods. First of all, the LLM is prompted214

to provide an output to the input ( 1 ). Of note, la-215

tent information methods require a white-box LLM,216

which offers latent information in the output, such217

as the full probability distribution over each gen-218

erated token. Subsequently, this method leverages219

the generated information to estimate the uncer-220

tainty/confidence score via specific metrics or mea-221

sures ( 2 ). We refer the readers to Section A.2 for222

the formula of different latent information methods.223

(Jiang et al., 2021) directly uses the predicted224

probability of the response tokens to measure the225

confidence score. (Manakul et al., 2023) proposes226

to use the negative log-likelihood of the response227

tokens, either average or maximum across tokens,228

to serve as an uncertainty measure. The averaged229

negative log-likelihood across tokens is also known230

as perplexity (Ren et al., 2023). In contrast, (Kada-231

vath et al., 2022) proposes a method that prompts232

the model to evaluate its answers by answering true233

or false, using the latent probability associated with234

“True” as the confidence score.235

The analysis of token probabilities can be ex-236

tended beyond a single response for more robust237

uncertainty estimation. (Portillo Wightman et al.,238

2023) proposes to average the predicted probabili-239

ties across multiple responses. (Ling et al., 2024)240

picks the key token from the responses and aggre-241

gates them into a distribution, and the uncertainty242

is from the entropy of the distribution. (Kada-243

vath et al., 2022) considers all the tokens in the244

responses, calculates the probability for each re-245

sponse using token probabilities, and measures un-246

certainty through the entropy of the response distri-247

bution, called predictive entropy. However, varying248

response lengths can introduce undesirable noise to249

the estimation. To address this limitation, (Malinin250

and Gales, 2021) proposes the length normalized251

entropy, incorporating the response length based252

on predictive entropy. Furthermore, (Bakman et al.,253

2024) proposes to replace the length normalization254

by assigning a weight to each token with a BERT255

model to consider both the sequence length and256

semantic contribution of tokens.257

While the methods above only require access to258

the probability value of the response tokens, the fol-259

lowing papers would require access to the complete260

probability distributions: (Manakul et al., 2023)261

computes the entropy of the probability distribution262

for each generated token, using either the mean or263

maximum entropy as the uncertainty. For multiple-264

choice questions, (Jiang et al., 2023) presents a265

specialized methodology. It computes probabil- 266

ity distributions over potential options for each re- 267

sponse sample and aggregates these distributions to 268

form an ensemble probability distribution for uncer- 269

tainty estimation. (Ahdritz et al., 2024) introduces 270

a heuristic two-stage method. Initially, the LLM 271

is prompted to generate multiple next-token candi- 272

dates. Subsequently, through a "repeated prompt" 273

mechanism, the model produces the next token. 274

The final uncertainty score is then computed from 275

the probability distribution of these next tokens. 276

Beyond the methods using the probability distri- 277

butions of tokens in the response, some researchers 278

utilize the hidden states of LLMs. (Chen et al., 279

2024) proposes to use the embeddings in the mid- 280

dle layer of LLMs to construct a covariance ma- 281

trix for responses, which captures the correlation 282

relationships among them. By manipulating the 283

eigenvalues of the covariance matrix, the degree of 284

divergence among responses can be estimated and 285

considered an uncertainty measure. 286

3.4 Consistency-based Methods 287

Where is the
Eiffel Tower?

Input
LLM

It is in Paris

Output

Where can I 
find the 

Eiffel Tower?

It’s located 
in Paris

Paris

It is in Rome

…

Paraphrased
Input

Repeat M times

❶

Outputs

❷
Confidence 

Score

Confidence 
Calculation

❹

Similarity 
ScoresSim

ilarity C
alculation

❸

LLM

Figure 6: Illustration of consistency-based methods.

Figure 6 illustrates the workflow of consistency- 288

based methods. First, LLM gives an output to 289

the original input ( 1 ). Second, the input is para- 290

phrased to maintain the same meaning as the origi- 291

nal one but has different contents, where LLM is 292

prompted to answer this changed input. Such pro- 293

cess is repeated M times to generate various sam- 294

pled outputs ( 2 ). Third, the similarities between 295

the original output and each sampled output are 296

computed ( 3 ). Finally, the confidence score is cal- 297

culated based on derived similarities ( 4 ). We refer 298

the readers to Section A.3 for detailed mathemati- 299

cal definitions of this consistency-based method. 300

The fundamental principle of consistency-based 301

methods is that response consistency typically cor- 302

relates with confidence levels, a.k.a. high response 303

variability suggests higher uncertainty, while con- 304

sistent responses indicate greater confidence. 305

(Cole et al., 2023) introduces sampling diversity 306

and sampling repetition. Sampling diversity quanti- 307
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fies the ratio of unique answers to the total number308

of samples, while sampling repetition measures309

the proportion of samples that align with the most310

frequent answer. Extending this framework, (Lyu311

et al., 2024) enhances the sampling repetition met-312

ric by incorporating the most frequent and second-313

most frequent responses in its analysis. (Hou et al.,314

2024) presents a more nuanced approach by intro-315

ducing clarification-based uncertainty estimation.316

It first generates multiple clarifications for the input317

and then produces responses based on these clar-318

ified inputs. The estimated uncertainty combines319

two parts: one from answer frequency distribution320

and the other from input clarification variance.321

While the methods primarily focus on analyzing322

answer agreement patterns to estimate uncertainty,323

more methods emphasize evaluating the similar-324

ities among responses ( 3 ). For domain-specific325

tasks, targeted metrics like BLEU (Papineni et al.,326

2002) and CodeBLEU (Ren et al., 2020) have been327

successfully applied to machine translation and328

code generation tasks, respectively (Huang et al.,329

2023b). In general question-answering scenarios,330

token-level similarity metrics such as BERTScore331

(Zhang et al., 2020) and RougeL (Lin, 2004) have332

been widely adopted (Huang et al., 2023b; Man-333

akul et al., 2023; Gao et al., 2024). Moving beyond334

token-level comparisons, more sophisticated ap-335

proaches that capture semantic relationships have336

emerged, including SentenceBERT and NLI-based337

methods (Gao et al., 2024; Chen and Mueller, 2024;338

Zhang et al., 2024). SentenceBERT computes the339

cosine similarity between two sentences using em-340

beddings generated by the Sentence Transformer341

model. The NLI-based method leverages natural342

language inference (NLI) classifiers to categorize343

sentence relationships as entailment, neutral, or344

contradiction, regarding the probability the NLI345

classifier assigns to the “entailment” class as the346

similarity score. Moreover, (Harsha Tanneru et al.,347

2024) proposes token importance uncertainty and348

CoT uncertainty. The former quantifies uncertainty349

through token agreement and token rank metrics,350

while the latter evaluates inter-step relationships351

using NLI classification techniques.352

The generation of diverse LLM outputs in step353

2 represents another critical avenue for enhancing354

consistency-based methods. (Harsha Tanneru et al.,355

2024) presents two fundamental approaches: sam-356

ple probing, which employs semantically equiva-357

lent prompts, and model probing, which manip-358

ulates temperature settings to introduce output359

stochasticity. (Chen and Mueller, 2024) introduces 360

a method that modifies CoT steps specifically for 361

prompts employing CoT techniques. Additional ap- 362

proaches have been proposed by (Gao et al., 2024), 363

including the strategic insertion of dummy tokens 364

(such as newline characters and tab spaces) and 365

modifications to system messages within prompts. 366

While most methods estimate confidence by sim- 367

ply averaging similarities among responses in step 368

( 4 ), (Lin et al., 2024) proposes a new similarity- 369

based method for calculating confidence inspired 370

by spectral clustering. It treats generated responses 371

as nodes and obtains the degree matrix and the 372

graph Laplacian matrix. Correspondingly, this 373

method defines several uncertainty and confidence 374

measures from the matrices. 375

3.5 Semantic Clustering Methods 376
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Figure 7: Illustration on semantic clustering methods.

Figure 7 depicts the workflow of semantic clus- 377

tering methods, which leverages both the latent 378

information and the semantic relationships among 379

responses to offer a more comprehensive estima- 380

tion of the uncertainty. The first two steps are sim- 381

ilar to the consistency-based methods, where the 382

LLM generates responses to the original input and 383

its paraphrased versions ( 1 - 2 ). Next, instead of 384

calculating the similarities, the sampled outputs 385

are partitioned into clusters with a new probabil- 386

ity for each cluster ( 3 ). Finally, the probability 387

distribution over these clusters calculates a confi- 388

dence score ( 4 ). The motivation behind semantic 389

clustering methods is that consistency-based meth- 390

ods regard two responses as consistent only if they 391

have identical words, which is too strict. Therefore, 392

semantic clustering of the latent information is pro- 393

posed to deal with the limitations. We refer the 394

readers to Section A.4 for the formula of different 395

semantic clustering methods. 396

(Kuhn et al., 2023) introduces semantic entropy 397

for uncertainty estimation. The method comprises 398

three phases: generation ( 1 - 2 ), clustering ( 3 ), 399

and entropy estimation ( 4 ). In step 3 , a bi- 400

directional entailment algorithm is employed to 401
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cluster semantically equivalent responses. It as-402

sesses the entailment relationship between each403

pair of responses, considering them to express the404

same meaning if they mutually entail each other.405

The entailment relationship can be determined with406

the help of an NLI classifier or by simply request-407

ing a general-purpose LLM. The uncertainty is the408

entropy calculated from the cluster probabilities in409

step 4 . In case there is no access to the token prob-410

ability, (Farquhar et al., 2024) introduces discrete411

semantic entropy, which leverages the response412

frequency to derive the aggregated probabilities.413

While the above method clusters the responses414

explicitly, some methods propose implicit cluster-415

ing. Instead of utilizing the bi-directional entail-416

ment algorithm, (Duan et al., 2024) introduces sen-417

tence relevance scores between each response pair,418

which is more effective over long sentences than the419

bi-directional entail algorithm. (Nikitin et al., 2024)420

further considers the distances between the clusters.421

The method encodes similarities among responses422

via positive semidefinite unit trace kernels. It offers423

a more fine-grained uncertainty measure using the424

von Neumann entropy of these kernels.425

4 Evaluation426

4.1 Metrics427

We use two primary metrics to evaluate the uncer-428

tainty estimation: AUROC (Area Under the Re-429

ceiver Operating Characteristics curve) (Bradley,430

1997) and AUARC (Area Under the Accuracy-431

Rejection Curve) (Nadeem et al., 2009). Both met-432

rics range from 0 to 1, with higher scores reflecting433

better uncertainty estimation methods. § B contains434

more details about AUROC and AUARC.435

4.2 Evaluated Methods436

We select several representative methods from each437

method category as follows:438

• Verbalizing methods (Verb): We evaluate the439

2S (Tian et al., 2023) emthod that asks for440

confidence in a second-round dialogue.441

• Latent information methods (Latent): We se-442

lect the self-evaluation method (Ptrue) (Kada-443

vath et al., 2022), perplexity (Perp), predictive444

entropy (PE), length-normalized entropy (LN-445

E), and the method leveraging hidden states446

of LLMs (INSIDE) (Chen et al., 2024).447

• Consistency-based methods (Consis): We448

adopt four similarity measures: BERTScore,449

RoughL, cosine similarity from BERT em- 450

beddings (Cosine), and the “entailment” prob- 451

ability from an NLI classifier (NLI). The con- 452

fidence score is averaged from similarities. 453

• Semantic clustering methods (Cluster): We 454

include semantic entropy (SE) and discrete 455

semantic entropy (DSE). 456

4.3 Model Settings 457

We use LLaMA3.1-8B-Instruct (Llama Team, 458

2024) in our experiments. Following (Farquhar 459

et al., 2024), we first set the temperature = 0.1 and 460

generate an answer as the final answer. Then, we 461

set the temperature to be 1 and generate 20 answers, 462

which are used for methods that need extra sam- 463

ples. We employ the multinomial sampling as the 464

decoding strategy and set top_k equal to 50. Due 465

to the varying types of questions and domains, we 466

used the same model to determine the correctness 467

of an answer. The prompts used are in § C. 468

4.4 Illustrative Results 469

Figures 8 - 12 show the ROC and ARC with 470

the corresponding AUROC and AUARC values 471

in the legend for five different datasets (Details 472

about the datasets are in § D). For the AU- 473

ROC and AUARC values from the legend, we 474

color-coded the “best” , “2nd best” , “3rd best” , 475

“3rd worst” , “2nd worst” , and “worst” . 476

TruthfulQA (Figure 8) is a benchmark designed 477

to evaluate the truthfulness of language models in 478

answering questions spanning 38 categories (Lin 479

et al., 2022b). The questions in the dataset ap- 480

pear in a multiple-choice form, providing the LLM 481

with clear guidance and ensuring a fixed response 482

format. Therefore, most of the uncertainty is epis- 483

temic uncertainty. In the ROC curve, Perp and 484

INSIDE ( 1 ) demonstrate the lowest performance, 485

close to random guessing. The ROC curve of 2S 486

( 2 ) starts with the steepest rise, indicating most 487

responses assigned with high confidence are cor- 488

rect. In the ARC curve, the worst-performing 489

method ( 1 ) shows no improvement in accuracy 490

as the rejection rate increases until the rejection 491

rate is high. Although 2S ( 2 ) shows a slower ini- 492

tial improvement, it enjoys higher improvements 493

afterward, again demonstrating its high accuracy 494

for high-confidence answers. 2S achieves the best 495

performance on this dataset, showing that LLMs 496

can tell their uncertainty, especially when this is 497

mainly epistemic uncertainty. 498
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Figure 9: SciQ: ROC (left), ARC (right) curves, and AUROC and AUARC.

SciQ (Figure 9) is another multiple-choice Q&A499

dataset, with a collection of science-focused ques-500

tions (Welbl et al., 2017). In the ROC curve, Perp501

( 1 ) performs like random guessing (analogous to502

TruthfulQA), whereas all other methods achieve503

significantly better performance, including Ptrue504

( 2 ). Most of the methods ( 3 ) achieve a very high505

True Positive Rate (TPR) when the False Posi-506

tive Rate (FPR) approaches 0.4, indicating they507

assign most of the low confidence scores to neg-508

ative samples correctly. As for AUARC, most509

methods exhibit similar performance, as the dataset510

is considered simple for the LLM, evidenced by511

a high initial accuracy of about 0.95 ( 3 ). How-512

ever, the accuracy of Perp ( 1 ) decreases from the513

very beginning, resulting in the worst AUARC. In514

contrast, Ptrue ( 2 ), another variant of the latent515

information-based method, gains better accuracy516

with higher rejection rates. The difference between517

Perp and Ptrue shows the aggregated predicted518

probability of tokens is not well-calibrated, but the519

probability of answering the true/false of the entire520

response is well-calibrated.521

TriviaQA (Figure 10) is a reading comprehen-522

sion dataset where no context is provided in our523

settings (Joshi et al., 2017). As a free-form Q&A524

dataset, it allows responses to a question to vary525

while still expressing the same meaning. There-526

fore, the aleatoric uncertainty caused by language527

ambiguity in questions and responses exists. The528

ROC curve reveals that 2S and Perp ( 1 ) demon-529

strate relatively poor performance. In contrast, NLI530

( 2 ) achieves the highest performance. In the ARC531

curve, the accuracy of 2S and Perp ( 1 ) deterio-532

rates as the rejection rate increases from 0.5, while 533

DSE ( 2 ) achieves the highest AUARC score. 534

GSM8K (Figure 11) is comprised of math prob- 535

lems that need reasoning steps to solve (Cobbe 536

et al., 2021). The responses thus can be more 537

diverse than TriviaQA due to the variability in 538

reasoning steps. Hence, the aleatoric uncertainty 539

is even higher. The results on AUROC demon- 540

strate that INSIDE ( 1 ) performs below random 541

guessing. On the contrary, NLI, DSE, and SE ( 2 ) 542

maintain more gains on TPR with the increase of 543

FPR. A noteworthy observation is that NLI and 544

SE ( 3 ) achieve positive TPR even when FPR = 0 545

because they perfectly classify the high-confidence 546

responses. In the ARC curve, this phenomenon is 547

once again reflected that these methods achieve per- 548

fect accuracy when considering only the top 20% 549

high-confidence responses ( 3 ). From the point 550

where the rejection rate is 0, better methods exhibit 551

faster rates of improvement ( 2 ), while the worst 552

one (i.e., INSIDE) has a negative rate ( 1 ). 553

Comparing the TriviaQA and GSM8K datasets, 554

NLI, SE, and DSE perform the best on the free- 555

form questions. They all consider the entailment 556

relationship among responses, which can tremen- 557

dously eliminate the aleatoric uncertainty and thus 558

better estimate epistemic uncertainty. By doing so, 559

they obtain better final results. 560

SimpleQA (Figure 12) is a recent Q&A dataset 561

that presents significant challenges for state-of-the- 562

art LLM models as of 2024 (Wei et al., 2024). In- 563

terestingly, in the ROC curve, methods ( 1 ) that 564

traditionally demonstrate superior performance on 565

other datasets exhibit notably poor outcomes here. 566
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Figure 12: SimpleQA: ROC (left), ARC (right) curves, and AUROC and AUARC.

2S and Ptrue ( 2 ) emerge as the top performers,567

distinguished by their ability to maintain low FPR568

while TPR approaches 1. In the ARC curve, there569

is no accuracy improvement for NLI and DSE as570

the rejection rate increases ( 1 ). Notably, LN-E571

( 2 ) becomes the highest because its accuracy con-572

tinues to grow after the rejection rate passes 0.8,573

while others drop. Although SimpleQA is still a574

free-form dataset, NLI, SE, and DSE do not show575

their superior performance here. It shows they can-576

not estimate the epistemic uncertainty well if it is577

too big, postulating whether current benchmarks578

adequately evaluate LLM uncertainty estimation.579

5 Future Directions580

Uncertainty estimation benchmark. We need a581

dataset specifically designed for uncertainty esti-582

mations on LLMs. Existing datasets are designed583

to evaluate the capability of LLMs (not their uncer-584

tainty). They always have unambiguous questions,585

resulting in low aleatoric uncertainty. We antici-586

pate three rules for designing this dataset: First, it587

should incorporate a diverse set of question types,588

including general Q&A problems, math problems,589

translation problems, etc. Second, the questions590

should have varying difficulty levels, from simple591

to extremely challenging. Finally, the dataset can 592

control the degree of ambiguity for the questions 593

to directly evaluate the uncertainty. 594

Uncertainty estimation method enhancement. 595

Uncertainty estimation for long responses remains 596

under-explored. While some papers propose to 597

break long responses into shorter segments and pro- 598

cess each part individually (Zhang et al., 2024; Far- 599

quhar et al., 2024), they ignore the inter-sentence re- 600

lationships that are critical for capturing the overall 601

uncertainty of the response. Further, the large vo- 602

cabulary in long responses challenges the effective- 603

ness of consistency-based and semantic clustering 604

methods. Current uncertainty estimation methods, 605

predominantly validated on short-answer scenar- 606

ios, may not adequately address the complexities 607

inherent in longer, multi-step reasoning processes. 608

6 Conclusion 609

This survey paints a comprehensive landscape 610

for uncertainty estimation methods on LLMs dur- 611

ing the inference stage, classifying them into 612

four classes: verbalizing, latent information, 613

consistency-based, and semantic clustering meth- 614

ods. We further enrich our survey with extensive 615

evaluations and promising future directions. 616
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7 Limitations617

This survey contains three limitations, mainly due618

to space constraints. First, we omitted detailed619

methodological explanations for various methods620

from the main text. Second, we did not evaluate621

and report the results of all the introduced meth-622

ods. Finally, we exclude the literature that does623

not surround the inference stage of LLMs. We ac-624

knowledge these limitations and remain open to625

academic discussion and collaborative efforts to626

address them in future work.627
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Notation Description
f Large language model
x Input
ri The i-th sampled response
r∗ The most-voted response from samples
N Number of tokens in a response
M Number of sampled responses
Ri The i-th response cluster
K Number of response clusters
zi the i-th token in a response
Z Vocabulary of the large language model
r<i All tokens before the i-th token
pi The probability distribution for the i-th token
pzi The probability for the token zi
p The probability of something
a(ri, rj) Similarity score between ri and rj
U Estimated uncertainty
C Estimated overall confidence score
Ci Estimated confidence score for response ri

Table 1: Common notations and descriptions.

A.2 Latent Information Methods951

Average over negative logarithm likelihood (Per-952

plexity) (Manakul et al., 2023; Ren et al., 2023):953

U = − 1

|r|

N∑
i=1

log pzi954

Maximum over negative logarithm likeli-955

hood (Manakul et al., 2023):956

U = max
i

(− log pzi), i ∈ [1, N ]957

Ptrue (Kadavath et al., 2022):958

C = p(ztrue|x′),959

where ztrue is the token for “true”, and x′ is the960

designed prompt to ask LLM to decide whether the961

answer is true or false.962

Predictive entropy (Kadavath et al., 2022):963

U = − 1

M

M∑
j=1

|rj |∑
i=1

log pzi964

Length-normalized entropy (Malinin and Gales,965

2021):966

U = − 1

M

M∑
j

1

|rj |

|rj |∑
i=1

log pzi967

Average over tokens’ probability distribu-968

tions (Manakul et al., 2023; Ren et al., 2023):969

U = − 1

|r|

N∑
i=1

∑
pi ◦ log pi,970

where ◦ is the element-wise multiplication, and the 971

second
∑

means sum over all the elements in a 972

vector. 973

Maximum over tokens’ probability distribu- 974

tions (Manakul et al., 2023): 975

U = max
i

(−
∑

pi ◦ log pi), i ∈ [1, N ], 976

where ◦ is the element-wise multiplication, and
∑

977

means sum over all the elements in a vector. 978

INSIDE (Chen et al., 2024): 979

U =
1

N
log det(Σ+ αI) =

1

N

N∑
i=1

log(λi), 980

where Σ is the covariance matrix, α is a small 981

regularization term, I is an identity matrix, and 982

λi is the i-th eigenvalue of the matrix Σ + αI . 983

Specifically, 984

Σ = V · Jd · V , V = [v1,v2, · · · ,vN ], 985

where vi is the representative embedding for ri, 986

Jd = Id − 1
d1N1TN represents the centering ma- 987

trix, and d corresponds to the dimension of the 988

embeddings. 989

A.3 Consistency-based Methods 990

Sampling diversity (Cole et al., 2023): 991

C = 1− K

M
992

Sampling diversity (Cole et al., 2023): 993

C =
1

M

M∑
i=1

1(ri = r∗), 994

where 1() is the indicator function. 995

First-second-distance-based (FSD) method (Lyu 996

et al., 2024): 997

C =
1

M

M∑
i=1

1(ri = r∗)−
1

M

M∑
i=1

1(ri = r∗∗), 998

where 1() is the indicator function, and r∗∗ denotes 999

the second most-voted answer. 1000

Variation ratio (VR) (when the final response is 1001

r∗) (Huang et al., 2023b): 1002

U = 1−
∑M

i=1

∑j=M
j=1,j ̸=i a(ri,rj)

M−1

M
1003
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Variation ratio (VR) (when the final response is1004

rM+1) (Huang et al., 2023b):1005

U = 1−
∑M

i=1 a(ri, rM+1)

M
1006

Based on VR and VRO, using different similarity1007

calculation methods for a(·, ·) can achieve different1008

estimated uncertainty.1009

A.4 Semantic Clustering Methods1010

Semantic entropy (Kuhn et al., 2023):1011

U = −
K∑
k=1

p(Rk) log p(Rk),1012

where1013

p(Rk) =
∑

rj∈Rk

exp(
1

|rj |

|rj |∑
i=1

log pzi)1014

Discrete semantic entropy (Farquhar et al., 2024):1015

U = −
K∑
k=1

p(Rk) log p(Rk),1016

where1017

p(Rk) = |Rk|/K1018

B Detailed Explanation of AUROC and1019

AUARC1020

AUROC: For each response, we consider it as a1021

positive sample (correct) or a negative sample (in-1022

correct) based on whether it matches the ground-1023

truth label. The ROC curve is then created by plot-1024

ting the true positive rate (TPR) against the false1025

positive rate (FPR). To derive TPRs and FPRs, the1026

accepted confidence threshold is changed to get dif-1027

ferent Predicted Positives and Negatives (i.e., PP1028

and PN), where a response with confidence higher1029

than the threshold is regarded as PP or PN other-1030

wise. The AUROC is the area under the ROC curve,1031

measuring the discriminability of confidence scores1032

to distinguish between correct and false responses.1033

AUARC: Accuracy-Rejection Curve (RAC) is1034

specifically designed for uncertainty estimation,1035

which plots how the accuracy on the accepted sam-1036

ples changes as more low-confidence answers are1037

rejected. The area under it indicates the uncertainty1038

estimation’s ability to maintain high accuracy when1039

low-confidence answers are rejected.1040

C Prompts 1041

The prompt for Q&A questions is as follows: 1042

System:
You are a highly knowledgeable assistant. An-
swer the following question as briefly as pos-
sible.
... (several few-shot examples)
User:
[Question]

1043

The prompt for correctness decisions is as fol- 1044

lows: 1045

User:
We are assessing the quality of answers to the
following question: [Question]
The expected answer is: [Gt_answer]
The proposed answer is: [Predicted_answer]
Within the context of the question, does the
proposed answer mean the same as the ex-
pected answer? Respond only with yes or no.
Response:

1046

D Detailed Explanation of Dataset 1047

We give a sample for each dataset in Table 2. 1048

TruthfulQA (Lin et al., 2022b) is a benchmark de- 1049

signed to evaluate the truthfulness of language mod- 1050

els in generating answers to questions. It consists of 1051

817 questions spanning 38 diverse categories such 1052

as health, law, finance, and politics. The dataset 1053

is intentionally crafted with questions that humans 1054

may answer falsely due to misconceptions or false 1055

beliefs 1056

SciQ (Welbl et al., 2017) is a dataset with 13,7K 1057

multiple-choice science questions spanning top- 1058

ics such as biology, chemistry, earth science, and 1059

physics. We chose to test our method using its 1060

validation set, which contains 1K samples. 1061

TriviaQA (Joshi et al., 2017) is a large-scale read- 1062

ing comprehension benchmark containing over 1063

650K question-answer-evidence triples, designed 1064

to challenge models with complex, compositional 1065

questions and diverse evidence sources. In our ex- 1066

perimental setup, we do not provide context to the 1067

LLM but directly ask it the questions. We selected 1068

2K samples from the validation set for testing. 1069

GSM8K (Cobbe et al., 2021) is a dataset of 8.5K 1070

high-quality linguistically diverse grade school 1071

math word problems. Each problem requires 2 1072

to 8 steps to solve, using elementary arithmetic op- 1073

erations (+,−,×,÷). In our experiments, we in- 1074

cluded reasoning steps in the examples provided in 1075
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the prompts, and we used their test dataset, which1076

consists of 1.32K samples.1077

SimpleQA (Wei et al., 2024) is a benchmark con-1078

sisting of 4,326 short, fact-seeking questions de-1079

signed to evaluate the factual accuracy of large1080

language models. It covers a diverse range of top-1081

ics, including science, politics, art, and so on. The1082

Latest LLMs showed poor accuracy and calibration1083

results on this result. We used 2K samples from1084

the dataset for testing.1085
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Dataset Year Question Answer

TruthfulQA 2021
What are some cities that get more rainfall than Seattle?
A) Miami and New Orleans get more rainfall than Seattle.
B) No cities get more rainfall than Seattle.
C) Seattle gets the most rain.
D) It’s always raining in Seattle.

A) Miami and
New Orleans get
more rainfall than
Seattle.

SciQ 2017
Who proposed the theory of evolution by natural selection?
A) darwin
B) Linnaeus
C) shaw
D) Scopes

A) darwin

TriviaQA 2017 Who was the man behind The Chipmunks? David Seville

GSM8K 2021

Janet’s ducks lay 16 eggs per day. She eats three for break-
fast every morning and bakes muffins for her friends every
day with four. She sells the remainder at the farmers’ mar-
ket daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?

18

SimpleQA 2024 Who received the IEEE Frank Rosenblatt Award in 2010? Michio Sugeno

Table 2: Samples from each dataset.

15
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