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ABSTRACT

As rodents navigate in a novel environment, a high place field density emerges
at reward locations, fields elongate against the trajectory, and individual fields
change spatial selectivity while demonstrating stable behavior. Why place fields
demonstrate these characteristic phenomena during learning remains elusive. We
develop a normative framework using reinforcement learning, whereby the Tem-
poral Difference (TD) error modulates place field representations to improve pol-
icy learning. Place fields are modeled using Gaussian radial basis functions to
represent spatial information, and directly synapse to an actor and critic for pol-
icy learning. Each field’s amplitude, center, and width, as well as downstream
weights, are updated online at each time step to maximize reward dependent ob-
jective. We demonstrate that this framework unifies three disparate phenomena
observed in navigation experiments. Furthermore, we show that these place field
representations improve policy convergence when learning to navigate to a single
target and relearning new targets. To conclude, we develop a normative model
that recapitulates several aspects of hippocampal place field learning dynamics
and unifies mechanisms to offer testable predictions for future experiments.

1 INTRODUCTION

A place field is canonically described as a localized region in an environment where the firing rate of
a hippocampal neuron is maximal and robust across trials (O’Keefe & Dostrovsky, 1971; O’Keefe,
1978). Classically, each neuron has a unique spatial receptive field such that the population activity
can describe an animal’s allocentric position within the environment (Moser et al., 2015). Ablation
studies demonstrate that the hippocampal representation is useful for learning to navigate to new
targets (Morris et al., 1982; Packard & McGaugh, 1996; Steele & Morris, 1999). Importantly, each
field’s spatial selectivity evolves with experience in a new environment before stabilizing in the
later stages of learning (Frank et al., 2004). Specifically, a high density of place fields emerge at
reward locations (Gauthier & Tank, 2018; Lee et al., 2020; Sosa et al., 2023), place fields elongate
backward against the trajectory (Mehta et al., 1997; Priestley et al., 2022), and individual field’s
spatial selectivity continues to change or “drift” even when animals demonstrate stable behavior
(Geva et al., 2023; Krishnan & Sheffield, 2023; Kentros et al., 2004; Mankin et al., 2012; Ziv et al.,
2013). Although disparate mechanisms have been proposed to model these phenomena, a framework
that can unify these phenomena and clarify their computational role remains elusive.

Here, we propose a normative model for spatial representation learning in hippocampal CA1, given
its role in representing salient spatial information (Dong et al., 2021; Dupret et al., 2010). Our
primary contributions are as follows:

• We develop a two-layered reinforcement learning model to study spatial representation learning
by place fields (Fig.1A). The first layer contains a population of Gaussian radial basis functions
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that transform continuous spatial information into a relevant representational substrate or “state”,
which feed into the actor-critic network in the second layer that uses these representations to learn
actions that maximize cumulative discounted reward. Besides the actor and critic weights, each
place field’s firing rate, center of mass and width is optimized by the temporal difference error.

• Our model recapitulates three experimentally-observed neural phenomena during task learning:
(1) the emergence of high place field density at rewards, (2) elongation of fields against the trajec-
tory, and (3) drifting fields that do not affect task performance.

• We analyze the factors that influence these representational changes: a low number of fields drives
greater spatial representation learning, the mean population firing rate reflects the value of that
location, and increasing noise magnitude during field parameter updates causes a monotonic de-
crease in population vector correlation but non-monotonic change in behavior.

• We demonstrate that optimizing place field widths and amplitudes enhances reward maximization
and policy convergence. However, field parameter optimization alone is insufficient for learning to
navigate to new targets. Introducing noisy field parameter updates improves new target learning,
suggesting a functional role for noise.

2 RELATED WORKS

Anatomically constrained architecture for navigation. Learning to navigate involves the hip-
pocampus encoding spatial information and its strong glutamatergic projections to the striatum (Lis-
man & Grace, 2005; Floresco et al., 2001). The ventral and dorsal regions of the striatum are as-
sociated with value estimation and stimulus-response associations, functioning similarly to a critic
and an actor, respectively (Niv, 2009; Joel et al., 2002; Houk et al., 1994). Additionally, dopamine
neurons in the Ventral Tegmental Area influence plasticity in the striatal synapses (Reynolds et al.,
2001; Russo & Nestler, 2013). This anatomical insight has led to the design of a biologically plausi-
ble navigation model, where place fields connect directly to an actor-critic framework, and synapses
are modulated by the TD error (Arleo & Gerstner, 2000; Foster et al., 2000; Frémaux et al., 2013;
Brown & Sharp, 1995; Kumar et al., 2022). Recent evidence shows direct dopaminergic projections
to the hippocampus to modulate place cell activity, strengthening the case for navigation models
with adaptive place fields (Palacios-Filardo & Mellor, 2019; Krishnan et al., 2022; Kempadoo et al.,
2016; Sayegh et al., 2024). How upstream information from the entorhinal cortex influences place
field representations for policy learning needs clarity (Fiete et al., 2008; Bush et al., 2015). As new
experiments challenge the canonical definition that a place cell only has one place field (Eliav et al.,
2021), we study spatial representational learning using Gaussian place fields, instead of place cells.

Field density increases near reward locations. Density traditionally refers to the number of field
centers of mass in a location. However, we also consider changes in the mean population firing rate,
which includes variations in each field’s width and amplitude. As animals learn to navigate towards
a reward, a high density of place fields emerge at reward locations (Gauthier & Tank, 2018; Lee
et al., 2020; Sosa et al., 2023). Reward location based reorganization was observed in hippocampal
CA1 and not in CA3 (Dupret et al., 2010). Interestingly, a recent study showed that place fields
initially coding for reward shifted backwards against the trajectory causing a decrease in reward
coding fields, suggesting of a representation predictively coding for reward (Yaghoubi et al., 2024).

Fields learn to encode future occupancy. As animals traverse a 1D track, most CA1 fields increase
in size and their center of mass shift backwards against the trajectory of motion (Mehta et al., 1997;
Frank et al., 2004; Priestley et al., 2022). A proposal for this behavior is that fields initially coding
for location xt are learning to also encode the previous location xt−1, hence predictively coding
for location occupancy p(xt+1|xt) (Mehta et al., 2000; Stachenfeld et al., 2017). While algorithms
such as the successor representation (Dayan, 1993) learn to predict the transition structure (Gersh-
man, 2018), the representation is dependent on a predefined navigation policy. Hence, a complete
normative argument—including policy learning—for why fields exhibit this behavior is still lacking.

Fields drift during stable behavior. After animals reach a certain performance criterion in nav-
igating to a reward location, the spatial selectivity of individual place fields changes across days,
even though animals exhibit stable behavior (Kentros et al., 2004; Mankin et al., 2012; Ziv et al.,
2013; Geva et al., 2023; de Snoo et al., 2023). A proposal is that these fields continue to drift within
a degenerate solution space while the overall representational manifold or the chosen performance
metric remains stable (Qin et al., 2023; Pashakhanloo & Koulakov, 2023; Masset et al., 2022; Kappel
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et al., 2015; Rokni et al., 2007). Another proposal is that compensatory synaptic plasticity adjusts
the readout to maintain stable decoding over time (Rule et al., 2020; Rule & O’Leary, 2022). How-
ever, a model that demonstrates stable navigation learning behavior with drifting fields is absent,
and the functional role of drift remains unclear.

3 TASK AND MODEL SETUP

Most navigational experiments involve an animal moving from a start location to a target location to
receive a reward, either in a one-dimensional (1D) track or a two-dimensional (2D) arena. Similarly,
our agents receive their true position at every time step (t) described by the variable (scalar xt in 1D,
vector xt in 2D), and have to learn a policy (π) that specifies the actions to take (gt) to move from a
start location (e.g. xstart = −0.75, Fig. 1A green dash) to a target with reward values following a
Gaussian distribution (xr = 0.5, σr = 0.05, Fig. 1A red area). The agent outputs a one-hot vector
gt (left or right in 1D and left, right, up or down in 2D), which causes its motion to be discrete,
similar to a trajectory in a grid world. To model smooth trajectories in a continuous space as an
animal’s behavior (Foster et al., 2000; Frémaux et al., 2013; Kumar et al., 2022; 2024b), we use a
low-pass filter to smooth gt using a constant αenv = 0.2 after scaling for maximum displacement
using vmax = 0.1:

xt+1 = xt + ḡt , ḡt+1 = (1− αenv)ḡt + αenvvmaxgt . (1)

To track an agent’s reward maximization performance during navigational learning we compute the
cumulative discounted reward (G =

∑T
t=0

∑T
k=0 γ

krt+1+k) for each trial using γ = 0.9 as the
discount factor, which is similar to tracking the cumulative reward. The trial is terminated when
the maximum trial time is reached Tmax or when the total reward achieved

∑T
t=0 rt+1 reaches a

threshold Rmax.

3.1 PLACE FIELDS AS SPATIAL FEATURES

The agent represents space through N place fields, which have spatial selectivity modeled as simple
Gaussian bumps:

ϕi(xt) = α2
i exp(−||xt − λi||22/2σ2

i ) , (2)
where α, λ and σ set the amplitude, center, and width respectively. Two types of place field distribu-
tions were initialized to tile the environment: (1) Homogeneous population with constant values for
amplitudes αi = 0.5, widths σi = 0.1, and centers uniformly tiling the environment λ = [−1, ..., 1]
(Foster et al., 2000; Frémaux et al., 2013; Kumar et al., 2022; 2024b). (2) Heterogeneous popula-
tion with amplitudes, widths and centers drawn from uniform random distributions between [0, 1],
[10−5, 0.1], [−1, 1] respectively. These ranges are consistent with experimental data where place
fields were 20 cm to 50 cm wide (Lee et al., 2020; Frank et al., 2004; Mehta et al., 1997; Sosa
et al., 2023). 2D place fields have scalar amplitudes, two dimensional vectors for center, and square
covariance matrices for the width (Menache et al., 2005).

3.2 POLICY LEARNING USING AN ACTOR-CRITIC

To model an animal’s trial-and-error based learning behavior, we adopt the reinforcement learning
framework, specifically the actor-critic (Arleo & Gerstner, 2000; Brown & Sharp, 1995; Foster
et al., 2000; Frémaux et al., 2013; Kumar et al., 2022; 2024b). The critic linearly weights place field
activity using a vector wvi to estimate the value of the current location:

v(xt) =
∑N
i w

v
i ϕi(xt) . (3)

The value of a location corresponds to the expected cumulative discounted reward for that location.
The actor has M units, each specifying a movement direction. In the 1D and 2D environments,
M = 2 and M = 4 respectively to code for opposing directions in each dimension e.g. left versus
right and up versus down. Each actor unit aj linearly weights the place field activity such that the
matrix Wπ

ji computes the preference for moving in the j-th direction

aj(xt) =
∑N
i W

π
jiϕi(xt) , Pj =

exp(aj)∑M
k exp(ak)

, (4)
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with the probability of taking an action computed using a softmax. A one-hot vector gj is sampled
from the action probability distribution P as in Foster et al. (2000), making this policy stochastic.
wvi and Wπ

ji were initialized by sampling from a normal distribution N (0, 10−5).

3.3 REWARD MAXIMIZATION LEARNING OBJECTIVE

The objective of our agent is to maximize the expected cumulative discounted reward JG =

E[Gt] = E[
∑T
k=0 γ

krt+1+k]. To achieve this goal in an online manner, our agent uses the stan-
dard actor-critic algorithm using the temporal difference residual (refer to App. A):

J TD = E
[∑T

t rt+1 + γv(xt+1)− v(xt)
]
. (5)

which reduces variance and speeds up policy convergence (Sutton & Barto, 2018; Dayan & Abbott,
2005; Wang et al., 2018; Schulman et al., 2017; Mnih et al., 2016). The TD residual is also bio-
logically relevant, as the responses of midbrain dopamine neurons resemble TD reward prediction
error (Schultz et al., 1997; Starkweather & Uchida, 2021; Gershman & Uchida, 2019; Amo et al.,
2022; Montague et al., 1996). The actor learns a reward maximizing policy by ascending the gra-
dient of the policy log likelihood, modulated by the TD residual. To accurately estimate the value
function and critique policy learning using the TD error, the critic minimizes the squared TD error
L = E

[∑T
t

1
2δ

2
t

]
.

As our agent uses a single population of place fields, these fields must learn spatial features that
enhance both policy and value learning. The field parameters θ = {α, λ, σ} and the policy weights
Wπ , wv are updated by gradient ascent using a joint objective modified from Wang et al. (2018):

∇θ,Wπ,wvJ = E
[∑T

t (∇θ,Wπ log π(gt|xt) +∇θ,wvv(xt)) · δt
]
, (6)

with ∇wvJ TD = 0 and ∇WπL = 0. We estimate all parameter gradients online, and provide the
explicit update equations for each parameter in App. A. The learning rates for the actor-critic and
place field parameters can be the same (Fig. 13). For theoretical analysis, we assume a separation of
timescales between learning the actor-critic weights and updating place field parameters (App. B).

4 RESULTS

4.1 A HIGH DENSITY OF FIELDS EMERGES NEAR THE REWARD LOCATION

We first examine the neural phenomenon where a high field density emerges at the reward location.
Field density is defined by the distribution of field centers of mass (COM) (Lee et al., 2020), which
we estimate using Gaussian kernel smoothing. Figure 1C shows how our agent’s track occupancy
(p(x)), field density (d(x)), mean firing rate (f(x)), and individual field’s spatial selectivity (ϕ(x))
change when learning to navigate in a 1D track from the start xstart = −0.75 to the target at
xr = 0.5, when only optimizing place field centers (∆λ). In the early stages of learning, the
agent spends a higher proportion of time at the start location with sporadic exploration towards the
reward. Despite this behavior, a high field density and mean firing rate emerges at the target from
a homogeneous field population. Individual fields at the reward location shift closer to the target
(Fig. 1), as seen in Sosa et al. (2023), in contrast to fields at non-rewarded locations. As learning
progresses and the agent spends a higher proportion of time at the reward, field density and mean
firing rate at the start location also begins to rise slightly, replicating the two-peaked field distribution
in Gauthier & Tank (2018), with fields shifting backwards towards the start as in Yaghoubi et al.
(2024). A high density at the reward location followed by the start location robustly emerges in
heterogeneous place field populations when all the field parameters (∆λ,∆α,∆σ) are optimized
(Fig. 1C right, Fig. 2B). Similar field dynamics are observed in a 2D arena with an obstacle where
agents have to navigate to a target from a starting location (Fig. 1D). When optimizing all the field
parameters in a homogeneous population, a high field density rapidly emerges at the reward location
to increase goal representation (number of COM within 0.25 unit radius from target center) as seen
in (Dupret et al., 2010), followed by gradual reorganization of field density backward along the
agent’s trajectory.

Interestingly, increasing the number of fields in a heterogeneous place field population reduced the
average density and mean firing rate (Fig. 1B, Fig. 1) that emerges near the reward location. This is

4



To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

Figure 1: Fields shift towards and amplify at reward location. (A) The task is to navigate from
the start (green dash) to the target (red area) to receive rewards. The agent has N place fields (blue)
which synapse to an actor (red) and critic (green). The TD error δ modulates parameter updates. (B)
When initialized with a heterogeneous field population, the enhancement of average field density
(d(x)) at the reward location xr compared to non-reward location x′ decreases as the number of
fields increases. The density decreases when the reward magnitude (Rmax) decreases, and reward
location’s size (Rsize) increases. (C) Example change in field centers for an agent on a 1D track
when only optimizing field centers (∆λ). Initially (T = 1000), the agent spends a high proportion
of time (pRM (x)) at the start location while a high field density (d(x)) and mean firing rate (f(x))
emerges at the reward location. As learning proceeds, the agent spends a higher time at the reward
location with field density and mean firing rate increasing at the start location (T = 12000). (Right)
A high field density and mean firing rate emerge at the reward and start locations for agents initial-
ized with a heterogeneous population and when all parameters are optimized (∆λ,∆α,∆σ). (D)
Example change in field centers for an agent in a 2D arena with an obstacle (gray). In the early
learning phase, field centers (black dots) shift to the target, causing a high density to emerge at the
reward (10 agents, right). In the later learning phase, the rest of the centers align along the trajectory.
The start, reward locations and radius for goal representation (G.R.) are marked by green, red and
blue circles. (E) Example field dynamics when an agent (N = 512) navigates a 1D track. (Left)
Fields initialized before (λi = 0.5, blue) and after (λi = 0.6, orange) the target move forward and
backward respectively, increasing the density near the target. (Right) Fields closest to the reward
(λi = 0.5: green) show rapid amplification compared to other fields (λi = −0.75, 0.0 : blue and
orange). The first order perturbative prediction (theory) provides a good approximation. Shaded
area and error bars are 95% CI over 50 seeds.

because as the number of fields increase, the agent goes into a weak feature learning regime (Fig. 4)
in which feature learning does not contribute to additional advantage. Conversely, the density and
mean firing rate are proportional to the reward magnitude, and inversely proportional to the reward
location width as a narrower target might require higher discriminability for the agent to maximize
rewards. To understand why place fields exhibit these dynamics, we perform a perturbative ap-
proximation to the place field parameter changes under TD learning updates (Menache et al., 2005;
Bordelon et al., 2024). In this approximation, we assume that the change to the field parameters is
small, controlled by the number of fields, and by the large separation between learning rates. Fo-
cusing on the place field centers, we derive in App. B the approximation where ηλ = 0.0001 is the
learning rate for the field centers and η = 0.01 is the learning rate for the critic weights:

λi(t)− λi(0) ≈ ηλ
η

(
2
σ2
i
+ 1

σ2
x

)−1 [
λ̄−λi(0)
σ2
i

+ µ̄x−λi(0)
σ2
x

]
w2
v,i(t) , ηλ ≪ η , (7)

Under this approximation, each field’s center shifts proportionally to the squared magnitude of the
critic weights (w2

v), implying that fields at locations with a high value will shift at a faster rate
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Figure 2: Fields elongate against the trajectory. (A-B) The Reward Maximization (RM), Succes-
sor Representation (SR) and Metric Representation (MR) algorithms cause (A) field sizes to increase
and (B) center of mass to shift backwards against the trajectory in a 1D track. Field changes were
normalized separately to be between 0 to 1 for visualization. (C) All agents initially spend a high
proportion of time at the start location, and later learn to dwell at the target (black). Individual SR
fields and mean firing rate (red) closely track the proportion of time the agent spends in a location
(top). MR fields reorganize only at the start location (middle). Conversely, individual RM fields and
mean firing rate show an inverse relationship against the proportion of time the RM agent spends
at a location in the early learning phase, but start to align in the later phases (bottom). (D) SR
agents show a consistently high, positive correlation (blue) between mean firing rate and propor-
tion of time spent in a location. MR agents’ show a non-monotonic increase in correlation (green).
Conversely, the RM agents’ mean firing rate and time spent at a location become anti-correlated be-
fore becoming positively correlated (orange). (E) The SR and RM mean firing rates (blue) become
anti-correlated before becoming positively correlated at the later learning phase, while the SR and
MR fields align momentarily before de-correlating (orange), and the RM and MR fields become
anti-correlated (green). (F) Example change in field selectivity by SR (top), MR (middle), and RM
(bottom) agents in a 2D arena with an obstacle. The RM agent’s field elongation is more pronounced
than the SR and MR agents. Summary statistics in Fig. 6. Shaded area is 95% CI over 10 seeds.

compared to locations with a low value. In addition to the value of a location, the agent’s start
location (modeled as a Gaussian with mean µ̄x = −0.75 and spread σx) and the mean field center
location λ̄ over time under the policy influence each field’s displacement. As the reward location is
visited frequently, we expect λ̄ ≈ 0.5. As the term within the square bracket changes sign depending
on the field location, only the fields near the reward location will shift towards the reward, while the
rest of the fields will move towards the start location. Due to these influences, the field density at
the reward location will increase first followed by a gradual increase in start location (Fig. 1C,E).
Additional approximations are needed to model the agent’s trajectory and improve the simulation-
theory fit for place field centers (App. B). A similar perturbative analysis for amplitudes yields

αi(t)− αi(0) ≈ 2
ηα
η
w2
v,i(t) , ηα ≪ η , (8)

where ηα = 0.0001 is the learning rate for the α parameters. Thus, fields at locations with a high
value will be amplified at a rate similar to the agent learning the value function (Fig. 1F). Therefore,
this approximation predicts fields shifting to the start and reward location with field amplification at
the reward location.

4.2 REWARD MAXIMIZATION RESULTS IN FIELD ENLARGEMENT AGAINST MOVEMENT

We now turn to the next phenomenon where place field sizes increase and their centers shift back-
ward against the movement direction as animals learn to navigate. This behavior suggests predictive
coding for future occupancy, which can be learned through Hebbian association of fields (Mehta
et al., 2000), or through the successor representation (SR) algorithm, which minimizes state predic-
tion error for each place field to learn the transition probabilities (Stachenfeld et al., 2017). Here we
show that both our RM agent and a reward independent Metric Representation (MR) agent recapit-
ulate field elongation in a 1D track.
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For comparison, we developed two agents: A) SR agent that learns the transition probabilities in
parallel to policy learning (Fig. 5A). The SR agent has a similar architecture to our (RM) agent
(Fig. 1A), with two key differences: 1) It has one set of place fields with fixed parameters, and
only the synapses from these place fields to the actor-critic are optimized for policy learning. 2)
There is a separate set of N successor place fields ψ(x) that receive input from the fixed place fields
via synapses U which are optimized using the SR algorithm (App. C). We compare the learned
successor place fields to the learned place fields in our RM model, referring to them henceforth as
place fields. B) a Metric Representation (MR) agent (Fig. 5B) that estimates its current coordi-
nates in an environment (zt). This representation enables navigation to recalled targets by vector
subtraction (Foster et al., 2000; Kumar et al., 2024b). The coordinate readout weights and place
field parameters are updated by gradient descent to minimize the path integration-derived TD error
LMR = E[

∑T
t

1
2 (zt+1 − (zt + at))

2] (App. D), while only the actor and critic readout weights are
updated to learn a policy. This objective optimizes place fields ϕ(x) even in the absence of rewards.

All three agents (SR, MR, RM) recapitulate the phenomena seen in (Mehta et al., 1997): on average,
place fields increase in size over learning (Fig. 2A), and the center of mass (COM) shifts backwards
from their initialized positions (Fig. 2B). However, the place field dynamics evolve differently. All
agents initially spend a high proportion of time at the start location and gradually learn a policy
to spend a higher proportion of time at the reward (Fig. 2C, Fig. 5E). The SR, by design, tracks
the transition probabilities of the agent’s policy. Consequently, the SR population mean firing rate
fψ(x) closely aligns with the agent’s probability of being in a location pSR, showing a high posi-
tive correlation (Fig. 2D, blue). Since the MR representation (Fig. 6D) is only modulated by the
agent’s displacement at, fields reorganize more at the start location since displacement is nonzero,
causing a higher mean firing rate. Conversely, displacement becomes zero at the reward location
as the agent comes to a stop to maximize rewards, causing low field reorganization at the reward.
Hence, MR fields fϕMR

(x) become positively correlated with pMR at the start location, but do not
fully align with the agent’s time spent at the reward location (Fig. 2D, green). Conversely, during
early learning, the RM agent exhibits a high population mean firing rate fϕRM

(x) at the reward lo-
cation, which contrasts sharply with the proportion of time spent at that location, leading to a highly
negative correlation between fϕRM

(x) and pRM (Fig. 2D, orange). Interestingly, in the later phase
of learning, fϕRM

(x) and pRM become positively correlated.

The mean firing rates learned by the SR and RM agents become negatively correlated during the
early learning phase but become positively correlated at the later learning phase (Fig. 2E, blue). Con-
versely, the mean firing rate correlation decreases monotonically towards zero for the MR and RM
agents (Fig. 2E, green), while the correlation between SR and MR increases due to the alignment
at the start location in the early learning phase before becoming uncorrelated in the later learning
phase. A similar change in correlation is observed when comparing the individual field selectiv-
ity, and the spatial representation similarity matrix (Fig. 5F,G). Hence, while all three algorithms
demonstrate similar neural phenomenon, the dynamics of learning these representations are differ-
ent, with SR and RM agents eventually learn similar spatial representations. In a 2D arena with
an obstacle, the three agents show field elongation against the movement direction (Fig. 2, Fig. 6)
while also accounting for the blockage of path by the obstacle. The RM agent shows a significantly
larger elongation of fields to span the entire corridor while the elongation of fields by SR is subtle
and field elongation by MR is more pronounced at the start location.

4.3 STABLE NAVIGATION BEHAVIOR WITH DRIFTING FIELDS

The third phenomena that the model captures has been described as representational drift, where
the agent demonstrates stable behavior but the spatial selectivity of individual place fields changes
over time (Fig. 3A, Fig. 8G), as seen in Ziv et al. (2013). Although our agent uses a stochastic
policy, both the navigation behavior (Fig. 3E, blue) and the population vector (PV) correlation
(Fig. 3C, blue) are extremely stable. To drive larger variability in the representation, we introduced
Gaussian noise to the field parameter updates at every time step (App. E). Increasing the noise
magnitude led to a faster decrease in PV correlation but also disrupted agents’ policy convergence
for magnitudes greater than 10−3 (Fig. 3E, Fig. 7). Hence, we consider the noise magnitudes
between 10−4 and 10−3. As the noise magnitude increases, agent’s reward maximization behavior
remains stable while the PV correlation decreases rapidly (Fig. 3C,E). This demonstrates that agents
can optimize their policies to maintain stable behavior even though individual spatial selectivity is
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Figure 3: Stable representation similarity and anchor fields facilitate consistent behavior. (A)
Injecting Gaussian noise with magnitude σnoise = 0.0001 into field parameters causes individ-
ual field’s spatial selectivity to change across trials while (B) the representation similarity ma-
trix (dot product of population activity) remains stable. (C) Injecting higher noise magnitudes
(σnoise = 0.0, 0.0001, 0.001) leads to a faster decrease in population vector correlation (RPV )
across trials while (D) the similarity matrix correlation (RRS) decreases at a slower rate. (E) Agents’
reward maximization performance (G) remains fairly stable when the noise magnitude increases.
Beyond σnoise = 0.001, performance becomes highly unstable. Black dash indicates the trial at
which PV and similarity matrix correlation was measured from. (F) Normalized variance in field
parameters (θ = {α, λ, σ}) between trials 25,000 to 200,000 quantifies change in individual place
fields spatial selectivity. With no noise (blue) or a larger noise magnitude (σnoise = 0.001), fields
with a larger amplitude experiences a greater change in its parameters. When σnoise = 0.0001, we
see the opposite trend, where fields with a larger amplitude are more stable than fields with a smaller
amplitude. Refer to Fig. 8 for other σnoise values. Shaded area is 95% CI over 10 seeds.

changing. Interestingly, the spatial representation similarity matrix remains more stable than PV
correlation (Fig. 3B,D), even with a higher noise magnitude (Fig. 3D), although the agents are not
explicitly optimizing for representational similarity (Qin et al., 2023). Unlike noisy field parameter
updates, adding noise to the actor and critic synapses caused the reward maximization behavior,
representation similarity and PV correlation to change at similar rates (Fig. 7), which is not as
consistent with experiments (See Fig. 9 for comparisons to data).

We quantified this drifting behavior at the level of individual neurons by summing the normalized
(between [0, 1]) variance in each field’s parameters (

∑
V ar(θ̃) = V ar(α̃) + V ar(λ̃) + V ar(σ̃))

across learning trials, and comparing this against the mean amplitudes for each field. When no
Gaussian noise is added (Fig. 3F, blue), fields with a higher mean amplitude showed a higher
variance in its parameters, which is expected since fields with a higher amplitude are more likely to
be involved in policy learning. Conversely, with a small Gaussian noise, we see the opposite trend
where fields with a smaller mean amplitude showed a higher variance in parameters while fields
with a higher mean amplitude were more stable. At smaller noise magnitudes, there is a strong
positive correlation between higher amplitude fields and the magnitude of actor and critic readout
weights (Fig. 8). This suggests that high-amplitude fields are more involved in policy learning and
thus more stable, whereas less important fields can alter their spatial selectivity, consistent with Qin
et al. (2023).

4.4 PLACE FIELD REORGANIZATION IMPROVES POLICY CONVERGENCE
As the reward-maximizing model recapitulates experimentally-observed changes in place fields, it
is natural to ask what computational advantage these representational changes might offer. To probe
the contributions of each field parameter to policy learning, we perform ablation experiments. These
ablations are particularly important due to the parameter degeneracies in the model: one can trade
off the place field amplitudes and the critic and actor weights. We first considered the task of
navigating to a single fixed target. Agents with fixed place fields attained the lowest navigational
performance with cumulative reward G plateauing at G = 33 (Fig. 4A), and showed the slowest
policy convergence even as the number of fields increased (Fig. 4B). Optimizing place field widths
(σ) contributed to the greatest improvement in maximum reward and largest decrease in the number
of trials for policy convergence (Fig. 4A-B). Optimizing place field amplitudes (α) contributed to
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Figure 4: Field reorganization and noisy updates improve target learning. (A) Optimizing all
three field parameters, amplitude, width and center of randomly distributed fields allowed agents
(N = 16, σ = 0.1) to attain the highest cumulative discounted reward (G), while fields with fixed
field parameters attained the lowest. (B) Optimizing place field widths (σ), followed by field am-
plitudes (α) and lastly field centers (λ) caused the biggest decrease in the number of trials needed
for policy convergence (TG>45, attain a running average of G = 45 over 300 trials). As the number
of fields increased, the number of trials needed for policy convergence decreased and the computa-
tional advantage afforded by field optimization extinguished. (C) Agents need to navigate to a target
that changed after 50,000 trials xr = {0.5, 0.0, 0.75,−0.25, 0.5}. Without noisy field parameter up-
dates, agents (N = 128, σ = 0.1) struggled to learn new targets (blue, σnoise = 0.0). Field updates
with different noise magnitudes influenced the policy convergence speed and maximum cumulative
reward for subsequent targets, with σnoise = 0.0005 (red) demonstrating the highest improvement.
Shaded area is 95% CI over 50 seeds.

the next most significant improvement (Fig. 4A-B). Interestingly, place field center (λ) optimization
did not contribute to a significant improvement in performance, and in fact caused a decrease in
reward maximization performance and speed of policy convergence when optimized together with
the amplitude parameter. Hence, optimizing field widths followed by amplitudes and lastly centers
significantly improved agent’s reward maximization performance and increased the speed of policy
convergence. Optimizing field parameters using the auxiliary metric representation objective, in-
spired by Fang & Stachenfeld (2023), marginally improved policy learning (Fig. 15). However, as
the number of place fields increase (Fig. 4B), the computational advantage afforded by place field
optimization extinguishes. Nevertheless, optimizing all the parameters in a small number of fields,
e.g. 8, leads to a similar rate of policy convergence than with a larger number of randomly initialized
fields e.g. 128, which hints that representation flexibility could allow efficient learning in systems
with few neurons.

We now turn to the influence of noisy fields when learning to navigate to new targets, inspired by
Dohare et al. (2024). Agents now have to navigate from the same start location to a target that
repeatedly changes location. Although all agents learned to navigate to the first and the second
targets equally well, agents without noisy field updates struggled to learn the next three targets, and
achieved a lower average cumulative reward (Figure 4C). Increasing the noise magnitude led to a
monotonic improvement in new target learning. Some fields coding for the initial reward location
shifted to code for the new reward location (Fig. 3). However, noise magnitudes beyond a threshold
(σnoise = 0.001) caused average cumulative reward to decrease. These results suggests that there
is a functional role for noise, especially for new target learning. We see a similar improvement in
reward maximization performance with noisy field updates in a 2D arena with an obstacle when we
either change the target or the obstacle location (Fig. 12).

5 DISCUSSION

We present a two-layer navigation model which uses tunable place fields as feature inputs to an actor
and a critic for policy learning. The parameters of the place fields and the policy and value function
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learn to maximize rewards using the temporal difference (TD) error. Our simple reinforcement
learning model reproduces three experimentally-observed neural phenomena: (1) the emergence of
a high place field density at rewards, (2) enlargement of fields against the trajectory, and (3) drifting
fields without influencing task performance. We analyzed the model to understand how the TD
error, number of place fields and noise magnitudes influenced place field representations. Lastly, we
demonstrate that learning place field representations with noisy field parameters improves the rate
of policy convergence when learning single and multiple targets.

The proposed reinforcement learning model might be amenable to theoretical analysis (Bordelon
et al., 2024) while remaining biologically grounded enough to make experimentally testable pre-
dictions (Kumar et al., 2024a). For instance, our model gives an alternative normative account for
field elongation against the trajectory, which can be contrasted with the successor representation
algorithm (Raju et al., 2024; Kumar et al., 2024b). As field dynamics are different in these two
models, they could be distinguished by experiments that track fields over the full course of learning
(Fig. 2C-E, Fig. 6). Furthermore, place field width and amplitude optimization increases maximum
cumulative reward and accelerates policy convergence (Fig. 4A-B).

Most models that characterized representational drift were not studied under the context of naviga-
tional policy learning (Masset et al., 2022; Pashakhanloo & Koulakov, 2023; Ratzon et al., 2024).
We showed that increasing the noise magnitudes caused different drift regimes (Fig. 3F; Fig. 9D),
and at very high noise levels navigation behavior started to collapse (Fig. 3C, Fig. 7). Importantly,
we showed that fields in the noisy regime allowed agents to consistently learn new targets in both 1D
(Fig. 4C) and 2D (Fig. 12A-B) environments, without getting stuck in local minima. The biological
origins of adding noise to place field parameters can be attributed to noisy synaptic plasticity mech-
anisms (Mongillo et al., 2017; Kappel et al., 2015; Attardo et al., 2015). Other mechanisms such
as unstable dynamics in downstream networks (Sorscher et al., 2023) and modulatory mechanisms
such dopamine fluctuations (Krishnan & Sheffield, 2023) could adaptively control drift rates. A dif-
ficult experiment that could directly verify our model is to induce or constrain place field drift rates
in animals and determine how this perturbation influences new target learning. How fluctuations in
dopamine, stochastic actions and stochastic firing rates within place fields drive drift rates needs to
be explored. The current model provides a starting point for this investigation.

5.1 LIMITATIONS AND FUTURE WORK

The proposed model is not without limitations. First, we modeled single peaked place fields instead
of the complex representations resulting from single “place” cells, which can be multi-field and
multi-scale. Nevertheless, the proposed online reinforcement learning framework is general enough
to accommodate other models of place cell description (Mainali et al., 2024; Sorscher et al., 2023)
e.g. Fig. 14, and can be extended to study representation learning in other brain regions e.g. me-
dial entorhinal (Boccara et al., 2019; Wen et al., 2024) or posterior parietal (Suhaimi et al., 2022)
cortex. Next, place field parameters are optimized by backpropagating the temporal difference error
through the actor and critic components (Fig. 15). Since the motivation was to develop a normative
model whose objective was to maximize rewards, this was a reasonable starting point. However, this
model must be extended using biologically-plausible learning rules (Miconi, 2017; Murray, 2019;
Lillicrap et al., 2016; Nøkland, 2016) before it can in any way be considered mechanistic (Lee et al.,
2024; Starkweather & Uchida, 2021; Krishnan et al., 2022; Kempadoo et al., 2016; Edelmann &
Lessmann, 2018). Although we explored a simple non-reward-dependent objective to drive place
field reorganization, extending the model to other auxiliary objectives (Low et al., 2018; Schaeffer
et al., 2022) to understand their influence in representation learning for policy learning is the next
step. While our computational experiments successfully demonstrated the model’s effectiveness in
reproducing three disparate phenomena, further work should test its robustness across other rein-
forcement learning algorithms e.g. policy gradient (Kumar & Pehlevan, 2024). Additionally, we
need to explore how place field reorganization scales in larger, more complex environments (Hill
et al., 2020; Lin et al., 2023; Nieh et al., 2021; Kumar et al., 2024b) beyond the few environments
we considered. Lastly, we need to quantitatively compare the representation alignment (Lampinen
et al., 2024; Cloos et al., 2024) between our model’s place field dynamics and experimental data.
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A DETAILS OF THE PLACE FIELD-BASED NAVIGATION MODEL

The code for initializing and training the model in 1D and 2D environments, along with the code
for analyzing neural phenomena and generating all figures, will be available on GitHub upon accep-
tance.

A.1 PLACE FIELDS IN 1D AND 2D ENVIRONMENTS

The agent contains N place fields. In a 1D track, each place field is described as

ϕi(xt) = α2
i exp

(
−||xt − λi||22

2σ2
i

)
, (9)

with α, λ and σ describing the amplitude, center and width, adapted from Foster et al. (2000); Kumar
et al. (2022; 2024b). Most of the simulations were initialized with amplitudes αi = 0.5 and widths
σi = 0.1, with centers uniformly tiling the environment λ = {−1, ..., 1}. Nevertheless, similar
representations emerge for amplitudes drawn from a uniform distribution between [0, 1] and widths
uniformly drawn between [0.01, 0.25]. This parameter initialization was used for ablation studies in
Fig. 4. In a 2D arena, each place field is described as

ϕi(xt) = α2
i exp

[
−1

2
(xt − λi)

⊤Σ−1
i (xt − λi)

]
, (10)

where Σi is a 2x2 covariance matrix, adapted from Menache et al. (2005). The off-diagonals were
initialized as zeros and diagonals initialized to match the variance in the 1D place field description,
i.e. Σii = 0.12 to ensure field widths are consistent in 1D and 2D.

A.2 REWARD MAXIMIZATION OBJECTIVE (POLICY GRADIENT)

The objective of the model is to learn a policy π parametrized by Wπ and spatial features ϕ param-
eterized by θ that maximizes the expected cumulative discounted rewards over trajectories τ in a
finite-horizon setting, modeling the trial structure in neuroscience experiments

JG = Eτ∼ϕθ,πWπ

[
T∑
t=0

T∑
k=0

γkrt+1+k

]
= E

[
T∑
t=0

Gt

]
, (11)

where γ is the discount factor, rt+1 is the reward at time step t + 1 after choosing an action gt at
time step t, and the time horizon T is finite with trials ending after a maximum of 100 steps in the
1D track and 300 steps in the 2D arena.

To maximize the cumulative reward objective, we perform gradient ascent on the policy and place
field parameters,

θnew = θold + ηθ∇θJG , Wπ
new =Wπ

old + η∇WπJG , (12)

where ηθ and η are learning rates for θ and Wπ respectively. The gradients are derived using the
log-derivative trick,

∇θ,WπJG = ∇θ,WπE [G(τ)] (13)

= ∇θ,Wπ

∫
τ

p(τ |θ,Wπ)G(τ) (14)

=

∫
p(τ |θ,Wπ)∇θ,Wπ log p(τ |θ,Wπ)G(τ) (15)

= E [∇θ,Wπ log p(τ |θ,Wπ)G(τ)] , (16)

where the trajectory τ describes the state to state transitions. We expand the above using the Markov
assumption that the transition to future states depend only on the present state and not on the states
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preceding it,

p(τ |θ,Wπ) = p(x0)

T∏
t=0

p(xt+1|xt)π(gt|xt; θ,Wπ) (17)

log p(τ |θ,Wπ) = log p(x0) +

T∑
t=0

(log p(xt+1|xt) + log π(gt|xt; θ,Wπ)) (18)

∇θ,Wπ log p(τ |θ,Wπ) =

T∑
t=0

log π(gt|xt; θ,Wπ) . (19)

Since the gradients are not dependent on the state transitions, the last line excludes them. Substitut-
ing Eq. 19 into Eq. 16 yields

∇θ,WπJG = E

[
T∑
t=0

∇θ,Wπ log π(gt|xt; θ,Wπ) ·Gt

]
, (20)

which completes the full derivation of the policy gradient theorem (Sutton et al., 1999; Sutton &
Barto, 2018). The policy gradient objective was used by Kumar & Pehlevan (2024) to optimize
the policy and place field parameters. However, this learning signal requires an explicit reward and
policy gradient methods are slow to converge as they suffer from high variance due to:

• Monte Carlo sampling: Agents need to sample an entire episode to estimate the expected
return Eτ [Gt = rt+1+γrt+2+γ

2rt+3+ ...] before updating the policy. This can introduce
significant variance because the estimate is based on a single path through the stochastic
environment, which may not be representative of the expected value over many episodes.

• No Baseline: The basic policy gradient algorithm computes the gradient solely based on the
return G from each trajectory. By introducing a baseline (either constant b or dynamically
evolving bt e.g. value function vt), which estimates the expected return from a given state,
the variance of the gradient estimate can be reduced, because now the policy learns which
action is better than the previous (concept of using an Advantage At instead of rewards).

Value based methods (Sutton & Barto (2018), Chapter 3.5) were introduced to address some of
these issues. For instance, instead of sampling returns Gt, value functions Vt learn to estimate the
expected returns

Vt = E[Gt] , (21)

which can reduce the variance during credit assignment. The combination of policy gradient with
value-based methods lead us to the Actor-Critic algorithm.

A.3 ALTERNATIVE REWARD MAXIMIZATION OBJECTIVE (TEMPORAL DIFFERENCE)

The optimal value function Vt reflects the true expected cumulative discounted rewards, hence the
policy gradient objective can be rewritten as

JG = E

[
T∑
t=0

Gt

]
= E

[
T∑
t=0

T∑
k=0

γkrt+1+k

]
=

T∑
t=0

Vt , (22)

= E

[
T∑
t=0

rt+1 + γ

T∑
k=0

γkrt+2+k

]
, (23)

JG = E

[
T∑
t=0

rt+1 + γGt+1

]
= E

[
T∑
t=0

rt+1 + γVt+1

]
. (24)

which yields the following self-consistency equation

rt+1 + γVt+1 − Vt ≡ 0 , (25)

as argued by Sutton & Barto (2018); Frémaux et al. (2013).
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Alternatives to policy gradient algorithms propose subtracting a baseline which can be a fixed con-
stant b or a dynamically changing variable bt. Since we have the value function Vt we can modify
the objective to be

J A = E [Gt − Vt] = E [At] = E

[
T∑
t=0

rt+1 + γVt+1 − Vt

]
, (26)

which gives us the Advantage function (Mnih et al., 2016; Schulman et al., 2015). This reduces
the variance as the policy has to learn to select actions that gives an advantage over the current
value function. We get a learning objective function that is an analogue to maximizing the expected
cumulative discounted returns while subtracting a baseline Eq. 11.

∇θ,WπJ A = E

[
T∑
t=0

∇θ log π(gt|xt; θ,Wπ) ·At

]
. (27)

However, we have assumed that we are given the optimal value function Vt to critique the actor if it
is doing better or worse than before. Instead, we can learn to estimate the value function vt using a
critic by minimizing the Temporal Difference error

δt = rt+1 + γvt+1 − vt . (28)
The critic can learn to approximate the true value function by minimizing the mean squared error
between the true value function Vt and the predicted vt, or the temporal difference error δt

Lv = E

[
T∑
t=0

1

2
(V (xt)− v(xt; θ, w

v))
2

]
(29)

= E

[
T∑
t=0

1

2
(rt+1 + γV (xt+1)− v(xt; θ, w

v))
2

]
. (30)

Since we do not have the optimal value function Vt, we can approximate it by bootstrapping the
estimated value function vt and ensuring that we do not take gradients with respect to the time
shifted value estimate v(xt+1)

LTD = E

[
T∑
t=0

1

2
(rt+1 + γv(xt+1)− v(xt; θ, w

v))
2

]
(31)

= E

[
T∑
t=0

1

2
δ2t (θ, w

v)

]
. (32)

We minimize the temporal difference error using gradient descent for the critic to estimate the value
function

∇θ,wvLTD =
∂LTD

∂δ
· ∂δ
∂v

· ∇θ,wvv(θ, wv) , (33)

= E

[
T∑
t=0

δt · (−1) · ∇θ,wvv(xt; θ, w
v)

]
, (34)

= E

[
T∑
t=0

−∇θvv(xt; θ, w
v) · δt

]
. (35)

Notice the additional negative sign that pops out when you take the derivative of δ only with respect
to vt

∂δ

∂v
=
∂(rt+1 + γvt+1 − vt)

∂vt
= −1 , (36)

since rt+1 and vt+1 are treated as constants, we do not take their derivatives. Since we do not have
the optimal value function Vt but a biased estimate vt, we can use the temporal difference error as
our reward maximization objective

J TD = E

[
T∑
t=0

rt+1 + γvt+1 − vt

]
= E

[
T∑
t=0

δt

]
. (37)
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As the value estimation becomes closer to the optimal value vt → Vt, this objective becomes similar
to the advantage objective J TD → J A. Note that we are not directly maximizing the TD error
during policy learning. Rather, we want to optimize the policy π and place field parameters θ by
gradient ascent, using the biased estimate of the advantage function

∇θ,WπJ TD = E

[
T∑
t=0

∇θ,Wπ log π(gt|xt; θ,Wπ) · δt

]
. (38)

An alternative interpretation is that during policy learning, the agent learns a policy to maximize the
difference between the actual reward and the estimated value

A.4 COMBINED REWARD MAXIMIZATION OBJECTIVE FOR PLACE FIELD PARAMETERS

In our model (Fig. 1A), actor Wπ and critic wv weights are optimized separately, while the place
field parameters θ overlap. The actor uses gradient ascent for Eq. 27, and the critic employs gradient
descent for Eq. 35. Since we have a single population of place fields, we optimize these parameters
to support both objectives. Thus, we derive a combined objective function to update Wπ , wv , and θ
in a single gradient pass

∇Wπ,wv,θJ = ∇Wπ,wv,θJ TD −∇Wπ,wv,θLTD (39)

= E

[
T∑
t=0

∇Wπ,wv,θ log π(gt|xt;Wπ, θ)δt

]
− E

[
T∑
t=0

−∇Wπ,wv,θv(xt;w
v, θ)δt

]
,

(40)

= E

[
T∑
t=0

∇Wπ,wv,θ log π(gt|xt;Wπ, θ)δt +∇Wπ,wv,θv(xt;w
v, θ)δt

]
, (41)

= E

[
T∑
t=0

(∇Wπ,wv,θ log π(gt|xt;Wπ, θ) +∇Wπ,wv,θv(xt;w
v, θ)) δt

]
. (42)

where ∇wvJ TD = 0 and ∇WπLTD = 0 since the respective objectives are not parameterized by
wv and Wπ respectively. This means that Wπ is tuned to maximize J TD, wv is tuned to minimize
LTD and θ is tuned to balance both the objectives.

Since most optimizers e.g. in Tensorflow, PyTorch perform gradient descent, not ascent, we can
minimize the negative policy gradient Eq. 27, which is equivalent to the negative log likelihood

∇Wπ,wv,θL = −∇Wπ,wv,θJ TD +∇Wπ,wv,θLTD (43)

= −E

[
T∑
t=0

∇Wπ,wv,θ log π(gt|xt;Wπ, θ) · δt

]
+ E

[
T∑
t=0

−∇Wπ,wv,θṽ(xt;w
v, θ) · δt

]
, (44)

= E

[
T∑
t=0

∇Wπ,wv,θ − log π(gt|xt;Wπ, θ) · δt

]
+ E

[
T∑
t=0

−∇Wπ,wv,θṽ(xt;w
v, θ) · δt

]
, (45)

= ∇Wπ,wv,θLTDπ +∇Wπ,wv,θLTDv . (46)

which is the same update rule used in Wang et al. (2018); Mnih et al. (2016) to train the actor and
critic separately while the feature parameters are trained jointly.

It is also possible to initialize two separate populations of place fields, each for the actor and critic.
Alternatively, we only optimize place field parameters using the actor’s objective while the critic
uses the spatial features to learn the value function. The converse is also possible where the place
field parameters and critic weights are optimized to minimize the TD error while the actor learns a
policy without optimizing the spatial representations, as we did in the perturbative approximation
(App. B). From numerical experiments, optimizing place field parameters using both the actor and
critic objectives allowed the agent to achieve the fastest policy convergence and highest cumulative
reward performance (Fig. 15).
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A.5 ONLINE UPDATE OF PLACE FIELD AND ACTOR-CRITIC PARAMETERS

Now, we derive an online implementation of Eq. 6 which is the same as Eq. 42, so that all parameters
are updated at every time step. Extending from Foster et al. (2000); Kumar et al. (2022), the actor
and critic weights are updated according to the gradients

∆wv(t+ 1) = ηδtϕ(xt) , ∆W π(t+ 1) = ηδtg̃tϕ(xt)
⊤ , (47)

where g̃t,j = gt − P and η = 0.01. The gradient updates for place field parameters follow

∆θ(t+ 1) = ηθδt
(
wv(t) +W

⊤
π (t) · g̃t

)
∇θϕ(xt;θ) , (48)

where we use a significantly smaller learning rate ηθ = 0.0001 so that the spatial representation
evolves in a stable manner. Specifically, each field parameter is updated according to

δbpi,t = δt
(
wvi (t) +Wπ

ji(t) · g̃t,j
)
, (49)

∆αi,t = ηα · δbpi,t · ϕi(xt) ·
(

2

αi

)
, (50)

∆λi,t = ηλ · δbpi,t · ϕi(xt) ·
(
xt − λi
σ2
i

)
, (51)

where δbpi,t is the TD error gradient that has been backpropagated through the actor and critic weights.
Using just the wvi (t) or Wπ

ji weights alone to backpropagate the TD error influences the representa-
tion learned by the place field population and ultimately the navigation performance (Fig. 15).

There are two ways to optimize the place field width parameter. The first and straightforward method
is to update the width parameter according to

∆σi,k,t = ησ · δbpi,t · ϕi,k(xt) ·

(
(xt − λi)

2

σ3
i,k

)
, (52)

where k = 1 in a 1D place field. In a 2D place field with k = 2, we can update the diagonal elements
in the 2D matrix while keeping the off-diagonals to zeros as in Menache et al. (2005). However,
fields will only elongate along each axis. Instead, in our simulations, we optimized the off-diagonals
using the same gradient flow equations. However, we needed to include additional constraints so that
each place field’s covariance matrix remains 1) symmetric, 2) bounded, and 3)positive semi-definite
to perform matrix inversion. Specifically, the covariance matrix was bounded between [10−5, 0.5]
to prevent exploding widths and gradients.
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B DERIVATION FOR PERTURBATIVE EXPANSION

The dynamics of place field parameters are nonlinear and difficult to characterize analytically. To
gain some analytical tractability, we impose a strong separation of timescales between policy learn-
ing updates and place field parameter updates. To do so, we set the learning rates for the actor-critic
η to be much larger than the learning rates for the place field parameters ηα, ηλ, ησ ≪ η. In simula-
tions, we use η = 0.01 and ηθ = 0.0001.

The critic estimates the value as

v(xt) =

N∑
i=1

wiϕi(xt,θi) , (53)

where θi = (αi, λi, σi) are neuron specific parameters (amplitude, mean, and bandwidth respec-
tively). We write wv as w for clarity. To start with let’s just consider

ϕi(xt,θi) = α2
i exp

(
− 1

2σ2
i

(xt − λi)
2

)
. (54)

We consider a TD based update, which in the gradient flow (infinitesimal learning rate) limit can be
approximated as

d

dt
w(t) =M(t)(wV −w(t)) , (55)

d

dt
θi(t) = ϵ wi(t)Ext

∇θi
ϕi(xt,θi)δt , (56)

The key assumption we make is that the dimensionless ratio of learning rates, ϵ is perturbatively
small

ϵ =
ηθ
η

≪ 1, (57)

where ηθ is the learning rate for the place field parameters θi and η is the learning rate for the
actor-critic. The matrix M(t) = Σ(t) − γΣ+(t) where Σ = ⟨ψ(xt)ψ(xt)⟩ and Σ+(t) =〈
ψ(xt)ψ(xt+1)

⊤〉 depends on the equal time and time-step shifted correlations of features. The
vector wV =M−1ΣwR where wR ·ψ(x) = R(x). We investigate a simple perturbation series.

w(t) = w0(t) + ϵw1(t) + ϵ2w2(t) + ...

θ(t) = θ0(t) + ϵθ1(t) + ϵ2θ2(t) + ... (58)

and examine the dynamics up to first order in ϵ. We will show that this recovers many qualitative
features of the observed representational updates.

The leading zeroth order dynamics are

d

dt
θ0(t) = 0 ,

d

dt
w0(t) =M0(wV −w0(t)) , (59)

whereM0 = Σ(0)− γΣ+(0) is the initial feature covariance under the initial policy.

B.1 PLACE FIELD AMPLITUDE

We start by asserting a separation of timescales between training readout weights and feature pa-
rameters during a simple TD learning setup

d

dt
wi(t) =

∑
j

Mij(w
V
j − wj) , (60)

d

dt
αi(t) = ϵ

2

αi(t)
wi
∑
j

Mij(w
V
j − wj) , (61)

The zero-th order solution to Eq. 55 is
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∆w0(t) ≡ wV −w0(t) = exp (−M t)wV , (62)
w0(t) = [I − exp (−M t)]wV , (63)

which can be substituted in to get the first order correction to the dynamics for θ

d

dt
α1(t) = 2α−1

0 ⊙ [I − exp (−M t)]wV ⊙M exp (−M t)wV . (64)

Under the condition that α0 = 1 and M = M⊤ we can work out an exact expression in terms of
the eigendecompositionM =

∑
k λkuku

⊤
k

α1(t) = 2
∑
kℓ

(wV · uk)(uℓ ·wV ) (uk ⊙ uℓ)
[
(1− e−λkt)− λk

λk + λℓ
(1− e−(λk+λℓ)t)

]
, (65)

we can approximate this at late times as
lim
t→∞

α1(t) ≈ 2wV ⊙wV . (66)

As t → ∞ we can approximate this as limt→∞ θ(t) ≈ 2(wV )
2. This indicates that neurons which

are heavily involved in the reproduction of the value function are upweighted in their amplitude.

B.2 FIELD CENTER

Based on the place field center update equation and rewriting the terms as above,

d

dt
λi(t) ≈ ϵ

xt − λi
σ2
i

wiϕi(x)
∑
j

ϕj(x)(w
V
j − wj) . (67)

We need to compute an average over spatial positions. We approximate the space position early in
training as a Gaussian with mean s0 and variance σ2

x〈
(xt − λi)

σ2
ϕi(x)ϕj(x)

〉
≈ µij − λi

σ2
Mij , (68)

where µij =
(

2
σ2 + 1

σ2
x

)−1 (
1
σ2 (λi + λj) +

1
σ2
x
µ̄x

)
is the mean value of x obtained by the above

Gaussian integral under the approximation that p(x) ∼ N (µ̄x, σ
2
x). Approximating λj as the mean

position of the tuning curves λ̄ we obtain the following prediction

λ(t)− λ(0) ≈ ϵwV ⊙

[(
2

σ2
+

1

σ2
x

)−1(
1

σ2
(λ(0) + λ̄) +

1

σ2
x

µ̄x

)
− λ(0)

]
⊙ [I − exp (−M t)]wV .

(69)

Following the solution in Eq. 63, we can approximate this at late times as

lim
t→∞

λ(t)− λ(0) ≈ ϵwV ⊙

[(
2

σ2
+

1

σ2
x

)−1(
1

σ2
(λ(0) + λ̄) +

1

σ2
x

µ̄x

)
− λ(0)

]
⊙wV . (70)

Hence, in addition to the value of a location, three additional factors influence each field’s displace-
ment.

λi(t)− λi(0) ≈
ηλ
η

(
2

σ2
i

+
1

σ2
x

)−1 [
λ̄− λi(0)

σ2
i

+
µ̄x − λi(0)

σ2
x

]
w2
v,i(t) , ηλ ≪ η , (71)

where λ̄ is the agent’s expected location sampled from its policy, µ̄x = −0.75 is the starting location
and σx is the estimated spread of the trajectory. This analysis suggests that fields will be influenced
by both the start location and the location where the agent spends a higher proportion of time at. In
later learning phases, this will be the reward location λ̄ = 0.5. Consequently, only the fields near the
reward location will shift towards the reward, while the rest of the fields will move towards the start
location. We illustrate this perturbative approximation at early and late times of training in Figure 5.
The theory is quite accurate early in training, but fails at sufficiently long training time.
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Figure 5: Difference in early versus late time perturbative approximation. Blue scatter points
shows the magnitude and direction of change in (N = 256) field center position compared to the
position at which the fields were initialized (λi(T ) − λi(0)). (A) In early time, the perturbative
expansion is a good fit to the field center displacement, and captures the shift in fields towards the
reward location xr = 0.5 (red) (B) As learning proceeds, the approximation begins to break down
for fields further from the reward location. Free parameters were fit with λ̄ = 0.535 and σx = 0.45.

C SUCCESSOR REPRESENTATION AGENT

The generalized temporal difference error is given by

δSRt,j = ϕj(xt) + γψπj (xt+1)− ψπj (xt) , (72)

with Mi representing the predicted successor representation and ϕ(x) representing the initialized
place field representation that is not optimized.

ψπi (xt) =

N∑
i

[Uji]+ϕi(xt) , (73)

The successor representation is computed using a summation of the place fields with a learned matrix
U that is positively rectified. The rectification is necessary to have a non-negative representation.

∆Ut = ϕi(xt) · δ⊤t,j , (74)

The matrix U is initialized as an identity matrix and is updated using a two-factor rule using the TD
error as in Gardner et al. (2018).

D METRIC REPRESENTATION LEARNING OBJECTIVE

The hippocampus is known to learn and represent spatial maps even in the absence of rewards,
enabling rapid navigation to new locations when required (Tolman, 1948; Steele & Morris, 1999;
Tse et al., 2007). This requires reorganization of place fields in non-rewarded conditions, which has
been proposed as a mechanism for learning a predictive map that estimates future spatial occupancy
(Mehta et al., 1997; Stachenfeld et al., 2017). To describe this non-reward-based reorganization,
the successor representation algorithm (Dayan, 1993) has been used. More recently, an auxiliary
predictive objective has been proposed (Fang & Stachenfeld, 2023).

Here, we present a simple predictive objective for place field reorganization that is independent of
rewards. We introduce a previously described objective called the Metric Representation (MR),
which learns a low-dimensional representation of an environment using place field activity and a
biologically plausible learning rule that is modulated by a path integration-derived Temporal Differ-
ence error. This representation allows an agent to predict its current coordinates z(xt) and perform
vector subtraction to rapidly navigate to recalled goals (Foster et al., 2000; Kumar et al., 2024b).
However, representation learning was not studied using this objective. Recently, a similar objec-
tive was proposed to learn a spatial map using local learning rules, although as a high-dimensional
representation (Stöckl et al., 2024).

The dimensionality of the coordinate prediction z(xt) is equal to the dimensionality of the environ-
ment, calculated through a linear summation of place field activity:

zj(xt) =

N∑
i

WMR
ji ϕi(xt) , z ∈ RD . (75)
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When the agent accurately predicts its coordinates in the environment, the following path
integration-derived self-consistency equation holds:

zj(xt+1) ≡ zj(xt) + aj(xt) , (76)
zj(xt+1)− zj(xt)− aj(xt) ≡ 0 , (77)

where aj(xt) is the true displacement of the agent in the environment. However, if the prediction is
inaccurate, Eq. 77 can be reformulated into a temporal difference error for each dimension j of the
environment as described by Foster et al. (2000); Kumar et al. (2024b):

χt = zj(xt+1)− zj(xt)− aj(xt) , χ ∈ RD . (78)

This one step prediction error (χt) can be expressed as a loss function, similar to Fang & Stachenfeld
(2023) without the temporal discounting factor:

LMR = Eg∼π

[
T∑
t=0

1

2
χ2
t

]
= E

[
T∑
t=0

1

2
(z(xt+1;W

MR)− z(xt;WMR)− a(xt))2
]
, (79)

which can be minimized by gradient descent by optimizing both the coordinate readout weights
(WMR) and place field parameters (θ ∈ {α,λ,σ}):

∇WMR,θ = E[
T∑
t=0

χt∇ϕ(xt; θ)⊤] . (80)

The gradient updates were implemented in an online manner:

∆WMR(t+ 1) = ηχtϕ(xt)
⊤ , (81)

∆θ(t+ 1) = ηθW
⊤
MR(t)χt∇θϕ(xt; θ) , (82)

We can analyze how the different temporal difference residues (both the canonical reward-dependent
and newly proposed metric representation-based) influence place field reorganization and agent pol-
icy learning performance by propagating the residues through a combination of actor, critic, and
metric representation weights:

δbpt = δt
(
βvwv(t) + βπW

⊤
π (t) · g̃t

)
+ βMRW

⊤
MR(t)χt , (83)

∆θi(t+ 1) = ηθδ
bp
t ∇θϕ(xt; θ) . (84)

This can be done by setting the weighting of each component βv, βπ, βMR ∈ {0, 1}. Refer to Fig.
15 for policy convergence performance in both the 1D and 2D environments when using different
combinations to learn place field representations.

E DETAILS FOR NOISY FIELD UPDATES

To induce drift, we independently introduced noise to field amplitudes, centers and width, as well as
the synapses to the actor and critic (θ ∈ {α, λ, σ, wv,Wπ}).

θt+1 = θt + ξt , (85)

where the noise term ξt are independent Gaussian noises with zero mean and magnitude σnoise ∈
{10−6, 10−1}. We performed a noise sweep to determine how increasing the noise magnitude af-
fected the agent’s reward maximization behavior, population vector correlation and representation
similarity. Refer to Fig. 7.
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F SUPPLEMENTARY FIGURES

Supplementary Figure 1: Influence of place field parameter optimization for a single seed. Ex-
ample change in individual field’s spatial selectivity (ϕ(x), colored), mean firing activity at a location
(
∑N
i ϕi(x)), field density which is the number of Center of Mass (COM) in a location after smooth-

ing with a Gaussian kernel density estimate (gKDE) (gKDE(COM), blue) and, the frequency of
being in a location (pRM (x)), when optimizing different combinations of field parameters (α, λ, σ)
during reward maximization (RM). The location in which the highest value for mean firing activ-
ity, field density and frequency is attained is indicated by a red, blue and black vertical dash line
respectively. Optimizing a (A) small number (N = 16) and (B) large number of place fields yields
a similar high mean firing rate at the reward location followed by the start location. However, the
field density evolves differently when in the low field regime, (A) a high density emerges at the
reward location in the early stages of learning, but it shifts to the start location at later stages of
learning. This effect was observed in a recent experiment where place fields which initially encoded
the reward location, gradually shifted backward towards the corresponding start location. This shift
led to a decrease in place fields specifically coding for the reward, suggesting that the hippocampal
representation reorganizes to predictively code for the reward (Yaghoubi et al., 2024). Whether ex-
periments demonstrate such misalignment between place field density and mean firing rate needs to
be analyzed. Based on the ablation studies (Fig. 4A,B), mean firing rate will be a stronger indicator
of learning performance than field density. (B) In the high field regime, a high field density at the re-
ward location remains stable throughout learning. Note that COM changes only when the place field
centers are optimized (∆λ). Distribution is shown for a single seed run for a homogeneous place
field population that has been initialized by with equal spacing between field centers (λ ∈ [−1, 1]),
equal amplitude (α = 0.5) and width (σ = 0.01). Refer to Fig. 2 for general place field reorganiza-
tion over different seeds.
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Supplementary Figure 2: Average change in field density and mean firing rate for different
number of place fields. Vertical blue and red dash lines indicate the location with the highest
density and mean firing rate, with the legend indicating the location (x). (A) Homogeneous place
field distribution was initialized with field parameters similar to Sup. Fig. 1, equal spacing between
field centers (λ ∈ [−1, 1]), equal amplitude (α = 0.5) and equal width (σ = 0.01). (B) All
place field parameters center (λ), amplitude (α), and width (σ) were initialized by sampling from a
uniform distribution between [−1, 1], [0, 1], [10−5, 0.1] respectively to model heterogeneous place
field population. Learning rates for the place field parameters and actor-critic were nθ = 0.0001
and n = 0.01 respectively. Shaded area is 95% CI over 50 different seeds.
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Supplementary Figure 3: A small proportion of reward-encoding place fields shift to the new
reward location. Agents with N = 256 place fields and Gaussian noise injected to field parameters
(σnoise = 0.0001) were trained to navigate to a reward location at xr = 0.75 for 50,000 trials,
thereafter the reward location was shifted to xr = −0.2 for the next 50,000 trials. (A) Place field
density at the start of learning was uniformly distributed (left) and increased near the first reward
location at the end of the first 50,000 trials (center). After the shift in reward location, a high density
of fields emerged at the new reward location (right). The black line shows the learned policy, where
a velocity of 0.1(-0.1) indicates moving right (left). Agents learn to navigate to the reward location,
both before and after the shift. (B) Example distribution of individual place fields before learning
(left), before the shift (center) and after the shift (right). All place field parameters λ, α, and σ were
initialized by sampling from a uniform distribution between [−1, 1], [0, 1], [10−5, 0.1] respectively
to model heterogeneous place field population. Notice the backward shift of some place fields
that were at the initial reward location to the new reward location. (C) About 2.6% of the place
fields coding for the initial reward at xr = 0.75 (green dots) shifted to the new reward location
at xr = −0.2 (about 19 of the 734 green dots are within the blue circle). Other place fields at
xr = −0.2 increased their firing rate to encode the new reward location. We see a large number of
fields shifting backward, though not entirely to the new reward location. Shaded area shows 95%
CI for 10 seeds of agents with 256 place fields each. Black and green dots show a total 2560 place
fields for all 10 agents.
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Supplementary Figure 4: Weak feature learning with large number of place fields. Critic wvi
and actor Wπ

ji weights were initialized by sampling from a random normal distribution N (0, 10−5),
despite the number of place fields N , similar to Foster et al. (2000); Kumar et al. (2022); Frémaux
et al. (2013). (A) Homogeneous place field population: Place field parameters were initialized with
equal spacing between field centers (λ ∈ [−1, 1]), equal amplitude (α = 0.5) and equal width (σ =
0.01). (B) Heterogeneous place field population: All place field parameters center (λ), amplitude
(α), and width (σ) were initialized by sampling from a uniform distribution between [−1, 1], [0, 1],
[10−5, 0.1] respectively. (A-B) The sum of the L2 norm for each place field’s center λ, amplitude
α and width σ between its initialized and final value decreases as the number of fields available
increases. Hence, as the number of fields increases, the change in each place field’s parameter
becomes smaller. This suggests a weak feature learning regime with large N. (C) Similar to Fig.
1D. Density at the reward location d(xr) compared to non-reward location d(x′) decreases with
a higher number of fields. (D) The mean firing rate at the reward location

∑
ϕ(xr) compared to

non-reward location
∑
ϕ(x′) decreases with a higher number of fields. (C-D) Density and mean

firing rate at the reward location are proportional to the reward magnitude (Rmax), and inversely
proportional to the size of the reward location (Rsize). Error bars show 95% CI over 50 different
seeds.
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Supplementary Figure 5: SR and MR agent architecture, and representation dynamics. (A) Suc-
cessor Representation (SR) agent architecture to learn a navigational policy and the SR place fields.
Only the synapses from the initialized place field (ϕfixed) to the actor (red) and critic (green), and
the synapses (U ) to the SR fields (ψ) were plastic. Refer to App. C for implementation details. (B)
Left: Metric Representation (MR) agent architecture learns to predict the agent’s coordinates in an
environment. The coordinate readout is a linear summation of place field activity, and its dimension
is the same as the displacement in the environment. The agent learns to predict its coordinates by
minimizing a path integration derived temporal difference error χt. The gradient updates are per-
formed on both the coordinate readout weightsWMR

ji and place field parametersα,λ,σ. The agent
learns to navigate to the reward location only by updating the actor and critic weights, without influ-
encing place field parameters Refer to App. D for details. Hence, place fields in the MR agent will
reorganize even in the absence of rewards. Right: Change in MR agent’s coordinate estimation in a
1D track across trials (T = 0, 1, 10, 50000). Coordinate estimation was close to zero during WMR

ji
initialization. After 10 trial, the agent starts to show a monotonic increase in coordinate estimation
as the agent moves from x = −1 to x = 1. By 50,000 trials, the agent’s coordinate estimation
becomes stable. (C) Average change for 16 and 64 place fields’ size (firing rate greater than 10−3 in
the track) (top row) and center of mass (bottom row) when SR, RM and MR agents navigate in a 1D
track with the absolute change reflected in the y axis. Shaded area shows 95% CI over 5 seeds for
agents with 16 and 64 place fields. (D) Spatial representation similarity matrix for SR (top row) and
RM (middle row) and MR (bottom row) agents in a 1D track is visualized by taking the dot product
of the place field activity at each location. (E) Difference in correlation between the proportion of
time spent in a location between SR, RM, MR agents. (F) The correlation between the individual
field firing rates learned by SR, RM, and MR agents rapidly diverge but remain positively correlated.
(G) The correlation between the spatial representation similarity matrices (purple) learned by SR,
RM and MR rapidly diverge in the early learning phase but stabilize and remain positively correlated
in later phases.
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Supplementary Figure 6: Field elongation in 2D arena. (A-C) 2D Place field distortion dynamics
by SR (A), RM (B), and MR (C) agents as learning proceeds. Numbers in yellow on the obstacle
indicates (Field ID)-(Maximum firing rate). (D) Average change for 256 place fields’ size (top row)
and center of mass () (bottom row) when SR, RM and MR agents navigate in a 2D arena with
the absolute change reflected in the y axis. Area was determined by computing the firing rate that
was greater than 10−3 in the arena. The 2D arena was divided into three sub-areas to track COM
movement 1) away from the reward location, 2) the corridor from right to left, and 3) towards the
start location. All three agents showed an increase in field area and backward COM shift towards the
start location. Shaded area shows 95% CI over 3 seeds. (E) Change in coordinate readout weights
in a 2D environment. Each plot indicates the synaptic weights WMR

ji from place fields to the x (top
row) and y dimensions of the 2D environment respectively. Weights were randomly initialized in
trial 0. As the agent explores the environment, the weights converge to reflect a spatial map where
the coordinate estimation for the X and Y axes increase monotonically when the agent moves left
to right and bottom to top respectively, similar to Foster et al. (2000); Kumar et al. (2024b) which
used a similar path-integration TD error but with eligibility traces instead.
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Supplementary Figure 7: Noise amplitude monotonically influences population vector correla-
tion and agent performance. Adding Gaussian noise with increasing magnitude [5x10−7, 101]
either in field parameters (α, λ, σ) or Actor-Critic (Wπ, wv) influences the variance in Population
Vector Correlation (RPV , blue), Spatial Representation Similarity which is the dot product of field
activity (RRS , orange) and cumulative discounted reward (G, green). Low variance of RPV and
RRS indicates high correlation as learning progresses. Low variance in G indicates stable perfor-
mance. When G increases before decreasing as the noise amplitude increases, agent’s navigation
performance collapsed and the agent achieves 0 reward with low variance. A high ratio of variance
in population vector correlation and reward maximization behavior (RPV /G, red) indicates that
there is an optimal noise amplitude which causes high variance in population vector correlation (low
PV correlation) while demonstrating stable performance. A similar analysis can be performed using
representational similarity (RPV /RRS , purple) to determine the optimal noise amplitude for high
variance in population vector correlation but stable representation similarity as seen in Qin et al.
(2023). Note that our agents are only optimizing for navigation behavior instead of representation
similarity.
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Supplementary Figure 8: Influence of noisy fields on agent performance and field representa-
tion. (A) Reward maximization performance variability increases when noise magnitude increases.
(B) With no noise injection, variance in parameter update is initially positively correlated with field
amplitude (blue). When a small amount of noise is added, fields with a larger mean amplitude show
a smaller variance in change in parameter while fields with a smaller amplitude show higher vari-
ance. Conversely, when the magnitude of noise is further increased (purple), fields with a higher
amplitude show higher variance in its parameters. (C) The correlation between mean amplitude and
the magnitude of the readout weights (sum over all actions for squared actor weights and squared
critic weights) is high and positively correlated when the noise magnitude is low. This correla-
tion decreases and becomes weakly positive when σnoise = 0.001. This supports the claim that in
the low noise regime, fields with a high amplitude are more involved in policy learning and hence
drift less or are more stable to maintain performance integrity. (D) Population vector correlation
decreases at a faster rate than the similarity matrix when noise magnitude increases. (E) Represen-
tation similarity correlation decreases as the noise magnitude increases, but at a slower rate than PV
correlation. (F) Proportion of fields that are active (average fraction of fields with firing rate less than
0.05, 0.1,0,25) continues to increase with higher noise magnitude. (G) Introducing Gaussian noise
with zero mean and variance N(0, 0.00025) to place field parameters during updates θt+1 = θt+ ξt
caused each place field’s center, firing rate and width to fluctuate as trials progressed. See App. E
for details. This causes each field’s spatial selectivity to change over time. Specifically, each field’s
centroid (λ) shifted from its initialized location, firing rates fluctuated (α2) causing fields to gain
or lose selectivity, and most fields increased in size (σ2) while some did not. The first two were
observed by Qin et al. (2023) who analyzed Gonzalez et al. (2019). Each color corresponds to the
dynamics of a specific field, with 5 example fields shown.
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Supplementary Figure 9: Noisy place field parameter update replicates drift dynamics seen
in neural data. (A) Place field centroids becomes distinctively different across trials, after sta-
ble navigation performance was attained at trial 25,000, similar to Ziv et al. (2013); de Snoo
et al. (2023). Each place field’s centroid position was sorted according to trial 25,000, 125,000
and 195,000. (B) When no Gaussian noise is added to place field parameters (α, λ, σ), place
field optimization alone does not cause centroids to shift. Instead, adding small Gaussian noise
(σnoise ∈ {0.0001, 0.00025, 0.0005}) replicates the gradual shift in centroid position across trials
(25,100 to 125,000) as seen in Qin et al. (2023); Ziv et al. (2013); Geva et al. (2023). When the
noise magnitude is high e.g. σnoise ≥ 0.001, centroids shift rapidly to a new location, similar to
the random shuffle or null hypothesis seen in Ziv et al. (2013); Qin et al. (2023); Geva et al. (2023).
(A-B) Analysis was done for 64 place fields aggregated over 10 agents initialized with different
seeds to have 640 fields in total. (C) Example graph topology for one agent with N = 64 place
fields with Gaussian noise σnoise = 0.00025 added to field parameters. Each node indicates a place
field’s centroid position across learning, and the edge is weighted by the normalized (between 0 to
1) cosine distance between each node that is less than 0.55. Red, green, blue, orange, black nodes
indicate centroids initialized at the reward, start, end of track near the reward, end of track near the
start locations and the middle of the track respectively. As learning progressed, the cosine distance
between each centroid changed and the ensemble representation rotated. Nevertheless, fields encod-
ing the reward, start, and track were fairly stably as seen in Gonzalez et al. (2019), and the greater
separation of clusters support the phenomenon where a high density of fields emerge at the reward
and start locations.
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Supplementary Figure 10: Influence of field width and number of fields on agent performance.
(A) Fields initialized with σ = 0.1 and (B) σ = 0.05. Policy learning is slower when initialized
with a smaller field width. (C) Influence of field parameter optimization on the average maximum
cumulative reward (left) and trial at which agent achieves cumulative discounted reward of 45 and
above for the previous 300 trials (right). Correlation plot shows the p-value for a pairwise t-test
performed to determine the influence of fields parameters on learning performance.
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Supplementary Figure 11: Influence of noise on new target learning performance in 1D track.
Increasing the number of place fields (N ) and field widths (σ) led to a general increase in new target
learning performance. When no noise was injected to field parameters (σnoise = 0.0, blue), most
agents struggled to learn to navigate to new targets and seem to be stuck in a local minima. Instead,
noise magnitude of σnoise = 0.0005 allowed agents to maximize rewards throughout the 250,000
trials. Increasing the noise magnitude beyond this (σnoise = 0.001) negatively affected the agent’s
target learning performance, especially when the number of fields were low.
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Supplementary Figure 12: Influence of noise on learning performance in 2D arena with
an obstacle. (A) Agents started at the same location xstart = (0.0, 0.75) and had to nav-
igate to a target that changed to a new location every 50,000 trials following the sequence
(xr ∈ [(0.75,−0.75), (−0.75, 0.75), (0.75, 0.75), (−0.75,−0.75)]). Increasing the noise magni-
tude improved new target learning performance. (B) Agents learned to navigate to a target at
xr = (0.75, 0.0) from a start location xstart = (−0.75, 0.0) with an obstacle with coordinates
(xmin = −0.2, xmax = 0.2, ymin = −1.0, ymax = 0.5) for the first 50,000 trials. After which, the
location of the obstacle was shifted up to (xmin = −0.2, xmax = 0.2, ymin = −0.5, ymax = 1.0)
while the start and target location was the same. Agents with a noise magnitude σnoise = 0.00025
showed the highest average reward maximization performance followed by σnoise = 0.0005. A
high noise magnitude (σnoise = 0.001) disrupted learning performance while agents without noisy
field updates (σnoise = 0.0) did not learn to navigate around the new obstacle. Note that field ampli-
tudes and widths were clipped to be between [10−5, 2] and [10−5, 0.5] respectively to ensure the Σ
covariance matrix in 2D place fields remained valid for matrix inversion. Performance was averaged
over agents initialized with different number of 2D place fields (N ∈ {64, 144, 256, 576}) with the
diagonals of the field width initialized with Σ = 0.01 and constant amplitude α = 1.0, over 30
different seeds. Shaded area is 95% CI.
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Supplementary Figure 13: Using the same learning rates for the place field parameters and
actor-critic recovers the same phenomena of a high field density emerging at reward location
followed by the start location, and field elongation against the agent’s trajectory. (A) Each
place field’s amplitude, center and width were sampled from a uniform distribution of [0, 1], [−1, 1],
[10−5, 0.1] respectively to model heterogeneous place field distribution. After learning, a high den-
sity (number) of fields emerged at the start (green dash) and reward (red area) location, similar to
Fig. 1B (right) and Sup. Fig. 2B. This phenomenon is consistent across different numbers of place
fields. Shaded area is 95% CI over 50 different seeds. (C) In a 2D arena with obstacles, place fields
elongate from the reward location (red circle) back to the start location (green circle), while narrow-
ing along the corridor with an obstacle (gray), similar to Fig. 2F. Learning rates for the actor, critic
and place field parameters were η = ηθ = 0.0005.
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Supplementary Figure 14: Center-surround place fields reproduces the emergence of a high
density of fields at the reward location. (A) Example of 16 center-surround fields uniformly
distributed before (left) and after learning for 10,000 trials (right), with the learning rates for the
center-surround place field parameters and policy network being the same (η = ηθ = 0.001). Place
fields near the reward shifted to the reward location while others elongated from the reward location
back to the start location similar to Fig. 2C (bottom row). (B) A high field density (gKDE(COM))
and mean firing rate (

∑
ϕ(x)) emerged at the reward location for N = 16 (left) and N = 64 (right)

when using center-surrounds fields. However, we do not see a high density emerging at the start
location robustly. Further analysis is needed to verify if the representations learned by Gaussian
basis functions and center-surround fields (difference of Gaussians) are similar, and if not why.
Shaded area is 95% CI for 10 seeds.
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Supplementary Figure 15: Difference in policy convergence when backpropagating tempo-
ral difference error to optimize place field parameters. We evaluated the speed of policy
learning when optimizing (A) heterogeneously distributed place field population in the 1D track
and (B) homogeneously distributed place field population in the 2D arena using: (1) fixed place
field parameters (blue), (2) backpropagating the TD error δt through the actor weights W⊤

π g̃t
(βπ = 1, βv = 0, βMR = 0, orange), (3) backpropagating the TD error through the critic weights
wv (βπ = 0, βv = 1, βMR = 0, green), (4) backpropagating the path integration derived TD er-
ror χt through the metric representation weights WMR (βπ = 0, βv = 0, βMR = 1, red) while
learning the value function and policy by optimizing only the readout critic and actor weights, (5)
backpropagating the TD error through both the actor and critic weights, otherwise called the Reward
Maximization agent (βπ = 1, βv = 1, βMR = 0, purple), (6) backpropagating the TD error through
both the actor and critic weights and the path integration based TD error through the metric repre-
sentation weights, (βπ = 1, βv = 1, βMR = 1, brown). The combined RM+MR objective used for
place field parameter optimization achieved the fastest policy learning, similar to Stachenfeld et al.
(2017) when the number of fields was low (N = {4, 8, 16, 32} in 1D and N = {4, 8} in 2D). With
more fields, the reward maximization agent (RM , purple) was almost as effective as the combined
objective (RM +MR, brown). Optimizing place field parameters using only the actor weights led
to the slowest policy convergence (orange), nevertheless faster than using fixed place fields. The
same learning rates were used when the number of fields were increased. Hence, tuning learning
rates should improve the stability of policy learning, especially in the 2D arena for the agent with
the combined RM+MR objective. Shaded area indicates 95% CI over 50 random seeds.
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