
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISTRIBUTIONAL SOBOLEV REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Distributional reinforcement learning (DRL) is a framework for learning a com-
plete distribution over returns, rather than merely estimating expectations. In this
paper, we extend DRL on continuous state-action spaces by modeling not only the
distribution over the scalar state-action value function but also its gradient. We re-
fer to this method as Distributional Sobolev training. Inspired by Stochastic Value
Gradients (SVG), we achieve this by leveraging a one-step world model of the re-
ward and transition distributions implemented using a conditional Variational Au-
toencoder (cVAE). Our approach is sample-based and relies on Maximum Mean
Discrepancy (MMD) to instantiate the distributional Bellman operator. We first
showcase the method on a toy supervised learning problem. We then validate our
algorithm in several Mujoco/Brax environments.

1 INTRODUCTION

Reinforcement learning tackles sequential decision-making, where an agent maximizes cumulative
rewards from the environment. In recent years deep reinforcement learning (DRL) has achieved
remarkable success, exemplified by the Deep Q-Network (DQN) (Mnih et al., 2015), which reached
human-level performance in Atari games. Similarly, significant progress has been made in continu-
ous control tasks, where policies are parameterized by neural networks and optimized using gradient
ascent. In the model-free setting, two families of methods exist for computing policy gradients. The
first samples returns from the environment and relies on likelihood ratio estimators (Sutton et al.,
1999; Williams, 1992). The second approach, commonly referred to as value-based, computes the
gradient of a learned state-action value function via backpropagation and uses it as the policy gra-
dient (Lillicrap et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018). This work focuses on
improving the latter approach.

In value-based methods, the policy gradient is derived from a learned critic, meaning any improve-
ment in value function training could enhance policy optimization. In this paper, we propose a uni-
fied framework that integrates two orthogonal but complementary improvements. First, we incorpo-
rate gradient information in the training of the value function (Fairbank, 2008; D’Oro & Jaskowski,
2020; Czarnecki et al., 2017). Second, we borrow ideas from distributional reinforcement learning
Bellemare et al. (2017) and model uncertainty not only over returns but also over action-gradients.
This allows us to capture intrinsic environmental uncertainty more acurately by leveraging more
information from the observations collected on the environment. Since this new framework models
a distribution over both the output and input gradients of the critic, we refer to it as Distributional
Sobolev Reinforcement Learning.

Value functions are typically trained using temporal difference learning (Sutton, 1988), where tar-
gets are based on observed environment transitions. The policy is improved by backpropagating
action-gradients through the policy network. However, as noted by D’Oro & Jaskowski (2020),
action-gradients learned via temporal difference rely on smoothness assumptions on the true value
function (Lillicrap et al., 2016). Similar to D’Oro & Jaskowski (2020), we incorporate gradient
information into value function training by leveraging a learned model of transition dynamics and
rewards, providing a differentiable proxy for the environment (Heess et al., 2015). Thus our world
model is not used for imagining new samples as is common in model-based reinforcement learning
(MBRL) (Sutton, 1991; D’Oro & Jaskowski, 2020)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Moreover, many environments exhibit irreducible uncertainty in transitions and rewards. Distribu-
tional RL (Bellemare et al., 2017) models this uncertainty as a distribution over returns rather than
focusing on expected return, leading to empirical improvements in various tasks (Dabney et al.,
2018a; Barth-Maron et al., 2018; Hessel et al., 2017). We argue that the stochastic nature of return
should reflect on their action-gradient and even more so for tasks involving large action spaces.
Hence, we extend distributional modeling over both returns and their gradients, motivated by the
sample efficiency gains observed in prior work (Hessel et al., 2017; Dabney et al., 2018b; Barth-
Maron et al., 2018; Dabney et al., 2018a). As we will discuss, this combined framework not only
improves sample efficiency but also exhibits properties that could benefit broader machine learning
fields.

Paper contributions By integrating gradient-based training with uncertainty modeling, we aim
to enhance both policy and value function learning. Doing so will necessitate to model random
variables as well as their gradient. This will require a flexible generative model whose output and
input-gradient can be differentiated. Hence, one contribution of this work is to introduce distribu-
tional Sobolev training and propose a way to implement this new paradigm. As most reinforcement
learning environments are not differentiable, we will rely on inference using a conditional variational
autoencoder (cVAE) Sohn et al. (2015) to predict gradients from observed samples (in contrast to
doing it via imagination). This is another contribution of this paper as we put stochastic value gra-
dients (SVG) Heess et al. (2015) to a new use (distributional Sobolev training) and doing so with a
more expressive class of neural network (cVAEs).

Paper structure The remainder of the paper is structured as follows: Section 2 covers the key
concepts and notations related to deterministic policy gradients, neural network training with gra-
dient information, and distributional reinforcement learning. In Section 3, we detail our proposed
method and algorithm. Section 4 presents empirical results, showcasing experiments on both toy
examples and real-world tasks.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

In this work, we address a reinforcement learning problem where an agent interacts with the en-
vironment to maximize cumulative rewards. The agent operates in continuous state S and action
A spaces, with transitions governed by a distribution P : S × A → P(S) and rewards modeled
by R : S × A → P(R). The initial state distribution is µ ∈ P(S). The deterministic policy πθ,
parameterized by θ, maps states to actions. The γ-discounted state occupancy measure is given by
dπθ
µ = (1−γ)

∑∞
t=0 γ

tPr(s′|πθ, µ), as derived in D’Oro & Jaskowski (2020) and Silver et al. (2014).
The state-action value function, Qπ(s, a), defines the expected future rewards starting from state s
and action a, i.e., Qπ(s, a) = E [

∑∞
t=0 γ

tr(st, at) | s0 = s, a0 = a]. Finally, the reinforcement
learning objective is defined as

J(θ) = E
s∼µ

[Qπθ (s, πθ(s))] . (1)

The deterministic policy gradient theorem (Silver et al., 2014) states that under some mild regularity
conditions on the Markov Decision Process (MDP), the gradient of the RL objective is

∇θJ(θ) =
1

1− γ
E

s∼dπθ
µ

[
∇θπθ(s) ∇aQπθ (s, a)|a=πθ(s)

]
. (2)

Equation 2 assumes access to the true Q-function of the policy. However, it can be approximated
by a learned critic Qϕ with parameters ϕ, using temporal difference after introducing the Bellman
operator

(TπQ)(s, a) = E [R(s, a)] + γE [Q(s′, π(s′)) | s, a] . (3)
Most of the time this leads to a regression loss where the bootstrapped target is estimated using a
delayed target policy and value network with parameters θ′, ϕ′. Thanks to the off-policyness of this
scheme, the expectation is evaluated under the distribution from a replay buffer denotedB (Lillicrap
et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018). We first define the bootstrapped target
δπ(s, a, s′) = r + γQϕ′(s′, πθ′(s

′)) and use distance d(.|.) to evaluate the critic’s loss
LQ(ϕ) = E

(s,a,r,s′)∼B
[d (Qϕ(s, a)|δ)] . (4)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 DISTRIBUTIONAL REINFORCEMENT LEARNING (DRL)

Distributional reinforcement learning was proposed in Bellemare et al. (2017) and extends equation
3 by considering the full distribution over returns instead of the statistical mean. We denote the state-
action value random variable Zπ(s, a), which follows the distribution ηπ(s, a). Firstly, the expected
state-action value function is related to the distributional value function as Qπ(s, a) = E [Zπ(s, a)].
Following notation from Zhang et al. (2021); Rowland et al. (2019) we define a Bellman operator
over the distribution of random return

(T Dπ η)(s, a) =

∫
S

∫
A

(fr,γ)#η(s
′, a′)π(da′ | s′)P (ds′ | s, a), (5)

where fr,γ(x) = r + γx and f#η is the pushforward measure as defined in Rowland et al. (2018).

We can also define a Bellman operator more similarly to equation 3, but this time equality is in the
probability law of the random variables (Bellemare et al., 2017).

(T Dπ )Z(s, a)
D
= R(s, a) + γZ(s′, π(s′)) where s′ ∼ P (· | s, a). (6)

As for the non-distributional case, the distributional critic will be parametrized by a neural network.
A loss can be derived from the distributional Bellman operator which this time will have to work on
distributions. Numerous parametrizations of this one-dimensional distribution have been proposed
based on quantiles (Dabney et al., 2018b;a; Singh et al., 2022; Yue et al., 2020), discrete categorical
(Bellemare et al., 2017; Barth-Maron et al., 2018) or sample/pseudo-sample based (Freirich et al.,
2019; Zhang et al., 2021; Doan et al., 2018; Nguyen et al., 2020).

From these parameterized distributions a statistical loss is minimized which we canonically denote
as

LD = E
s∼dπθ

µ

[
d((T Dπ )Z(s, a)|Z(s, a))

]
where a = π(s). (7)

From previous work (Barth-Maron et al., 2018) the deterministic policy gradient (Eq 2) can be
extended to the distributional case simply by plugging Qπ(s, a) = E [Zπ(s, a)]

∇θJ(θ) =
1

1− γ
E

s∼dπθ
µ

[
∇θπθ(s) E [∇aZπθ (s, a)]|a=πθ(s)

]
, (8)

where∇aZπθ (s, a) is a random variable that can be interpreted as the action-gradient of realizations
of the random variable z ∼ Z(s, a). We detail this intuitive interpretation in Appendix A.1.

In this work we will sometimes make use of a modification on how the temporal difference is esti-
mated. We refer to this modified setting as N-step return. It can be seen as modifying the Bellman
operator as(

TD,Nπ

)
Z(s0, a0)

D
=

N−1∑
n=0

γnr(sn, an) + γNZ(sN , π(sN )) si+1 ∼ P (· | si, ai). (9)

In practice, the actions in the N-step returns of Eq. 9, are drawn from an exploration policy which
for deterministic policies is often πexp(s) = π(s) + ϵ where ϵ is some exploration noise. This trick
is most often used to improve sample efficiency (Hessel et al., 2017). However, as the target now
depends on some action noise, it also has the nice property of making deterministic environments
stochastic from the perspective of policy evaluation.

2.3 SOBOLEV TRAINING AND VALUE GRADIENTS

Sobolev training of neural networks (Czarnecki et al., 2017) suggests using derivatives information,
when available, to train neural networks. Since the derivatives of a neural network are differentiable,
a loss function can be constructed and minimized using stochastic optimization. Given a target
differentiable function F : Ra → Rb, we train a neural network fφ with learnable parameters φ,
using a loss function incorporating both the output and its derivatives:

LS(φ;x) = ∥F (x)− fφ(x)∥2 + λ1S∥∇xF (x)−∇xfφ(x)∥2. (10)
Strong empirical evidence from Czarnecki et al. (2017); D’Oro & Jaskowski (2020) indicates that
modeling the gradient of a function using the gradient of a neural network, trained along with zero-
order information, results in both greater accuracy and stability. We refer to this observation as the
Sobolev inductive bias.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 APPROACH

3.1 LEARNING A USEFUL CRITIC

In value-based methods such as Lillicrap et al. (2016); Fujimoto et al. (2018); Haarnoja et al. (2018),
the actor’s training signal relies solely on the learned critic, meaning that ”actor can only be as good
as allowed by its critic” (D’Oro & Jaskowski, 2020). However, these learned critics are inher-
ently imperfect, partly due to the mean predictions that cannot capture the underlying uncertainty in
returns. Distributional RL, as discussed in Section 2.2, addresses this by modeling the return distri-
bution. Both involved temporal-difference learning on the returns via Eq. 4 or distribution of returns
bia Eq. 7. Another fundamental issues is that minimizing either expectation or distributional TD-
error does but an additional improvement can be made by directly considering the action-gradient
of the critic in the training objective.

Proposition 3.1 Let π be an Lπ-Lipschitz continuous policy, and suppose G(s) and Ĝ(s) are the
true and estimated distributions of the action gradients ∇aZπ(s, a) and ∇aẐ(s, a) at a = π(s),
respectively. The Wasserstein-1 distanceW1 between G(s) and Ĝ(s) is defined as:

W1(G(s), Ĝ(s)) = inf
γ∈Π(G(s),Ĝ(s))

E(X,Y )∼γ [∥X − Y ∥] , (11)

where Π(G(s), Ĝ(s)) is the set of all couplings of G(s) and Ĝ(s). Then, the error between the true
policy gradient∇θJ(θ) and estimated policy gradients∇θĴ(θ) that uses the expectation of ˆG(s)∥∥∥∇θJ(θ)−∇θĴ(θ)∥∥∥ ≤ Lπ

1− γ
E

s∼dµπ

[
W1

(
∇aZπ(s, π(s)),∇aẐ(s, π(s))

)]
. (12)

This proposition (proof in Appendix A.2) is a distributional generalization of Proposition 3.1 from
D’Oro & Jaskowski (2020). The Lipschitz assumption for π is commonly satisfied using neural
networks for approximation.

Similarly to D’Oro & Jaskowski (2020) we can induce an optimization problem for the critic from
Proposition 3.1. Indeed, it suggests we can approximate the true policy gradient by matching the
action-gradient in the distributional sense. As is common with temporal difference, the true distri-
bution will be approximated using bootstrapping which gives the following optimization problem.

Ẑ ∈ argmin
Ẑ∈Z

E
s∼dπµ(s)

(s′,r)∼p(s′,r|s,πθ(s))

[
W1

(
∇aẐ(s, a),∇ar(s, a) + γ∇aẐ(s′, πθ(s′))

)]
. (13)

We note that Eq. 13 assumes to have a known and differentiable dynamics p. We maintain this
assumption for the time being and will relax it a subsequent section. In the next section we formalize
the notions necessary to instantiate a working implementation of this optimization problem.

3.2 DISTRIBUTIONAL SOBOLEV TRAINING

In order to instantiate Eq. 13 while benefiting from Sobolev inductive bias introduced in Section 2.3,
we need to extend distributional RL to model the joint distribution of the action-gradient alongside
the standard scalar return. This first requires defining notions similar to expected return and random
return. Let’s denote the first order random action Sobolev return ZSa(s, a) that is the joint random
variable formed by the concatenation of random return and the action-gradient of random return.

ZSa(s, a) =

[ ∞∑
t=0

γtr(st, at);∇a

( ∞∑
t=0

γtr(st, at)

)]
where s0 = s, a0 = a. (14)

Here,∇a denotes the gradient taken with respect to the action variable a, which is indexed by a0 =
a. Similarly, as presented in Section. 2.2 from the random variable we can define an expectation
as the expected action Sobolev return QSa(s, a) = E

[
ZSa(s, a)

]
. The definition from Eq. 14

implies to model a random variable of size |A| + 1 and suggests to define a Bellman operator. We

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

borrow notation from Zhang et al. (2021); Rowland et al. (2019) to define such a Bellman operator
on the multivariate random Sobolev return.

(T Sa
π ηSa)(s, a)

D
=

∫
S

∫
A

∫
R
(fSs,a,r,s′,γ)#η

Sa(s′, a′)R(dr | s, a)π(da′ | s′)P (ds′ | s, a), (15)

where ηSa(s, a) is the joint distribution of the random variable ZSa(s, a). The transformation
fSa

s,a,r,s′,γ : |A| + 1 → |A| + 1 describes how to map an action Sobolev return from the next state-
action pair (s′, a′) into an action Sobolev return at the current state-action pair (s, a) . We denote
x = [xreturn;xaction] as the joint random variable over return and action-gradient. The transformation
works as follows

fSa

s,a,r,s′,γ(x) =

[
f return
s,a,r,s′,γ(x)

f action
s,a,r,s′,γ(x)

]
, (16)

where
f return
s,a,r,s′,γ(x) = r + γxreturn, (17)

and

f action
s,a,r,s′,γ(x) =

∂

∂a
r(s, a) + γ

∂s′

∂a

(
∂

∂s′
xreturn +

∂a′

∂s′
xaction

)
. (18)

The usual operator from Eq. 17 simply acts on the random return in the next state-action pair
(s′, π(s′)). Thus, under operator of Eq. 16 the first dimension undergoes the conventional transfor-
mation as described in Section 2.2. The second part of the operator in Eq. 18 is novel as it acts on
the action gradient of the random return. It takes as an input the random return xreturn and random
action-gradient xaction and depends on the reward and dynamics distributions through samples (s′, r).
Essentially, this can be seen as taking a sample from the distribution induced by operator Eq. 17 and
taking its action derivative. The proof for Eq. 18 is provided in Appendix A.3. Notably, assuming
the dynamics are know and differentiable, there is no need to manually implement equation 18, as it
can be implicitly computed using automatic differentiation (Baydin et al., 2018; Paszke et al., 2019;
Bradbury et al., 2018).

3.3 TOWARDS A SURROGATE FOR SOBOLEV BELLMAN OPERATOR

In this section, we outline the requirements and rationale behind our choice of generative model.
We then describe the final model and its training procedure. Our approach is primarily driven by a
collection of practical considerations, as detailed below.

Distributional Sobolev critic We preserve the Sobolev inductive bias introduced in Section 2.3,
necessitating a generative model where both the output and its input-gradient are treated as random
variables. While the reparameterization trick (Kingma, 2013) could be used with a conditional
Gaussian distribution, determining how to distribute the gradient of the samples with respect to
the conditioners is less straightforward. To address this, we employ a sample-based approach that
circumvents likelihood estimation and relies solely on sampled data.

Moreover, we found that both discrete categorical representations (Bellemare et al., 2017; Barth-
Maron et al., 2018) and quantile-based representations (Dabney et al., 2018b;a) do not scale tractably
to higher dimensions. These considerations further motivated us to adopt a sample-based approach
for the distributional Sobolev critic, similar in spirit to Singh et al. (2022); Freirich et al. (2019). As
a result, the distributional critic is structured as a generative model that deterministically maps noise
to samples.

Approximate Bellman operator via MMD minimization Similarly to Eq. 3, the Bellman op-
erator introduced in Eq. 15 requires defining a notion of distance between distributions. However,
the integral in Eq. 15 is intractable, and we only have access to sampled transitions. Therefore,
it is essential to select an objective that can be optimized using stochastic methods to effectively
approximate the Bellman operator.

Because of its simplicity we chose to minimize the Maximum Mean Discrepancy (MMD) between
the Sobolev returns ηSa and bootstrapped Sobolev returns distributions TSa

π ηSa

MMD2(P,Q; k) = Ex,x′∼P [k(x, x
′)]− 2Ex∼P,y∼Q[k(x, y)] + Ey,y′∼Q[k(y, y′)], (19)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where X and X ′ are independent random variables sampled from the distribution P , and Y and Y ′

are independent random variables sampled from the distribution Q.

The kernel function k(x, y) serves as a measure of similarity between two inputs x and y. It can
take various forms, with common choice being the Gaussian radial basis function (RBF) kernel:

kRBF
σ (x, y) = exp

(
−∥x− y∥

2

2σ2

)
. (20)

As introduced in Gretton et al. (2012), we can get an unbiased estimate of the MMD by computing
pairwise similarities between the samples using the kernel function k(x, y) as

M̂MD
2

u({xi}, {yi}; k) :=
1

m(m− 1)

∑
i ̸=j

k(xi, xj) + k(yi, yj)− 2k(xi, yj). (21)

However, it is more common for the following biased estimator to be used in the context of distri-
butional reinforcement learning, mostly because of its claimed lower variance (Nguyen et al., 2020)

M̂MD
2

b({xi}, {yi}; k) :=
1

m2

∑
i,j

k(xi, xj) + k(yi, yj)− 2k(xi, yj). (22)

In essence, our distributional critic can be viewed as a conditional Generative Moment Matching
Network (cGMMN) (Li et al., 2015; Bińkowski et al., 2021; Oskarsson, 2020). The Maximum
Mean discrepancy has already been considered in various distributional RL algorithms Nguyen et al.
(2020); Killingberg & Langseth (2023); Zhang et al. (2021) where the random variable is always
modeled through pseudo-samples, represented by multiple fixed outputs from the critic.

Convergence and kernel choice Previous works have shown that the kernel choice was of
paramount importance in order to effectively use MMD in Distributional Reinforcement Learning
(Nguyen et al., 2020; Killingberg & Langseth, 2023). The primary concern is whether the distribu-
tional Bellman operator is a contraction in terms of the distance between distribution d introduced
in Eq. 7 such that, following Killingberg & Langseth (2023), for some k ∈ (0, 1) we have

d
(
T Sπ ZS1 , TSπ ZS2

)
≤ kd

(
ZS1 , Z

S
2

)
(23)

If this condition holds, finding an estimator for d can provide a principled way to design a loss
function. Nguyen et al. (2020) demonstrated that T D from Eq. 5 and 6 is a contraction in Maximum
Mean Discrepancy (MMD) for specific kernels. Sufficient conditions on the kernel for the Bellman
operator to be a contraction in MMD were further explored by Killingberg & Langseth (2023), who
proposed the multiquadratic kernel kMQ

h (x, y) = −
√
1 + h2∥x− y∥22. They demonstrated that this

kernel exhibits beneficial properties and provides an empirical advantage over the commonly used
RBF kernel.

One-step world model To derive a computational scheme from Equation 15, we introduce a
trained stochastic and differentiable world model f(s, a)→ (ŝ′, r̂), inspired by SVG(1) and MAGE
(Heess et al., 2015; D’Oro & Jaskowski, 2020). This model mimics the environment and captures
the inherent uncertainty in transition dynamics and rewards. Since we lack explicit distributions for
these random variables, we rely on a sample-based method.

Assuming a stochastic environment represented by the function g(s, a, ε) → (s′, r), where ε ∼
ρw(ε) is a random variable drawn from a distribution ρw, we can express the distributional Bellman
equation over Sobolev returns as:

ZS(s, a)
D
= fSr,s′,γ

(
ZS(s′, a′)

)
where (s′, r) = g(s, a, ε), ε ∼ ρw(ε), a′ = π(s′). (24)

We train a model that is both capable of inferring from observations and sampling new ones such
that they can be used in lieu of the true environment in Eq. 24. This model is a conditional VAE
(cVAE) (Sohn et al., 2015), where the encoder qζ(ε | s′, r; s, a) maps the next state and reward,
conditioned on the state-action pair (s, a), into the latent space ε. The decoder pψ(s′, r | ε; s, a) then
reconstructs the next state s′ and reward r from the latent variable ε, conditioned on the state-action
pair (s, a). Assuming the cVAE is able to model the true conditional distribution while keeping the
posterior close to the prior, then gradient information can be inferred from the reconstructed samples

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

as further discussed in Appendix A.5. For completeness, we provide a short introduction to cVAEs
in Appendix A.4 and a small visualization of what inferring gradient from reconstructed samples
involves in Appendix A.6

The world model is trained alongside both policy evaluation and policy improvement. By integrating
the distributional critic and the world model into DDPG (Lillicrap et al., 2016), we introduce the
Distributional Sobolev Deterministic Policy Gradient (DSDPG) algorithm. The procedure to
estimate the update direction of the distributional critic is outlined in Algorithm 1, while an overview
of the full DSDPG method is illustrated in Figure 1.

Encoder 

Critic network 

Decoder 

Policy network 

Policy network 
(target) 

Critic network 
(target) 

Figure 1: Diagram of our Distributional Sobolev Deterministic Policy Gradient (DSDPG) algorithm.
The distributional criticZϕ (in pink) maps noise ξ and a given state-action pair (s, a) to samples from
the distribution over Sobolev returns ZS . The target samples are computed based on reconstructed
samples (ŝ′, r̂) (lower branch) from a conditional Variational Auto-Encoder (cVAE) (in blue and
green) acting as world model. The critic’s output is then differentiated with respect to a or (s, a).
The target and predicted distributions are compared using Maximum Mean Discrepancy (MMD).
The policy network (in brown) is updated based on the empirical mean of the samples produced by
the distributional critic (top of the figure). Gradient flows for the critic and the policy are shown in
dashed lines. Diagram inspired by Singh et al. (2022).

4 RESULTS

4.1 TOY SUPERVISED LEARNING

To motivate our algorithm, we demonstrate its ability to learn the joint distribution over both the
output and gradient of a random function in a supervised setup. Specifically, we show how incorpo-
rating gradient information enhances the modeling of such distributions.

The task involves a one-dimensional conditional distribution p(y|x), which is a mixture of sinusoids
sampled from the interval [0, 5], with amplitude uncertainty over five discrete modes. We define
f(x; a) = a× sin(x), where the latent variable a is uniformly drawn from {0, 1, 2, 3, 4}.
Figure 3 compares the Conditional Generative Moment Matching Network (cGMMN) and a
regression-based method, both trained using stochastic gradient descent with identical architectures.
Both models were trained in an unlimited data regime, where new pairs of x and a were drawn for
each batch. In line with the reinforcement learning setup, for each x, four a values were drawn with
replacement, producing samples (x, y1:4). More details about the empirical setup are provided in
Appendix A.7. As expected, the cGMMN learns both the output and gradient distributions, while
the regression model converges to the conditional expectation Ea[f(x; a)].

Figure 3a shows MMD scores on the joint random variable [f(x; a);∇xf(x; a)], using a different
kernel for evaluation. Figure 3b reports the L2 discrepancy between the regression model and the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 2: Supervised learning task on a toy problem featuring a sinusoidal function with 5 distinct
modes, where the uncertainty is in the amplitude. The plot compares true samples from the random
function (blue) against predictions from the cGMMN, trained using a distributional Sobolev ap-
proach with a mixture of RBF kernels (red), and a standard regression model trained with Sobolev
L2 loss (green). The left panel shows samples from the output distribution, while the right panel
presents samples from the gradient distribution.

(a) (b)

Figure 3: Evaluation metrics on toy supervised learning problem of distributional and deterministic
methods with and without Sobolev training. Sobolev training uses gradient information during train-
ing. Distributional method is implemented as a conditional Generative Moment Matching Network
(cGMMN). Deterministic (dashed) simply uses L2 regression. (Left) is average MMD score using
an evaluation kernel different from the one used for training the generative moment matching net-
work. (Right) average L2 loss on the predicted gradient versus the true gradient. Metrics averaged
over 5 seeds.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 1 Gradient estimation of MMD2 loss via reconstruction of transition samples

Require: Number of samples M , kernel k, discount factor γ ∈ (0, 1)
Require: Distributional critic Zϕ(s, a, ε)
Require: Policy network πθ(s)
Require: Conditional VAE (cVAE) with encoder qζ(ε | s, a) and decoder pψ(s′, r | s, a, ε)

Input: Transition sample (s, a, r, s′)
Input: Online critic parameter ϕ, target critic parameter ϕ′
Input: Target policy parameter θ′
Output: Gradient estimation of MMD with respect to ϕ

1: Encode ε ∼ qζ(ε | s, a) ▷ Encode latent variable based on s and a
2: Block the gradient on ε ▷ No gradient backpropagation through the latent variable
3: Reconstruct ŝ′ and r̂ from the decoder (ŝ′, r̂) ∼ pψ(s′, r | s, a, ε)
4: a′ ← πθ′(ŝ

′) ▷ Select action on reconstructed ŝ′

5: Sample Z1:M
i.i.d.∼ Zϕ(s, a) ▷ Samples from online critic

6: Sample Znext,1:M
i.i.d.∼ Zϕ′(ŝ′, a′) ▷ Samples from target critic using reconstructed ŝ′

7: for each 1 ≤ i ≤M do
8: Yi ← fSr̂,ŝ′,γ (Znext,1:M ) ▷ Samples from target distribution
9: end for

10: MMD2 ←
∑

1≤i≤M
∑

1≤j≤M,j ̸=i[k(Zi, Zj)− 2k(Zi, Yj) + k(Yi, Yj)]

11: return ∇ϕMMD2

empirical mean of the cGMMN samples. The MMD-trained model better fits the full distribution,
while the regression model performs slightly better on the conditional expectation. Both methods
leverage gradient information effectively, as shown by the blue curves.

Limited data regime However, in both supervised and reinforcement learning tasks, the assumption
of unlimited data is unrealistic. Here, we explore how the performance of the two methods, cGMMN
and the regression-based model, diverges when the amount of available data is restricted.

Using the same setup as before, but with a fixed number of (x, y1:4) pairs, we assess stability by
reporting the average norm of the second order derivative over the input space. For accuracy, we
measure the average L2 losses between the true expected gradient and predicted gradient Results are
shown in Figure 4. As can be seen, the deterministic model tends to overfit rapidly, while the cG-
MMN proves more robust, maintaining better performance even with constrained data. Notably, the
second-order derivative for the deterministic model escalates sharply as data becomes constrained,
indicating instability in its approximation.

(a) (b)

Figure 4: Toy supervised learning problem. Comparison between conditonal Generative Moment
Matching and deterministic regression. Left panel: training curve of L2 loss (logscale) on gradi-
ent between true conditional expectation with regression prediction and with empirical mean from
cGMMN. Sobolev (blue) used gradient information to train either using MMD (full line) or L2 re-
gression (dashed line). Right panel: average over the input space of the second order derivative
(logscale) of predicted gradient from deterministic model (blue), cGMMN / stochastic (yellow) and
with gradient information / Sobolev (dashed). Metrics averaged over 5 seeds.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

A common trick Overfitting with limited data is a common issue in regression tasks. Early stopping
seems an obvious solution in this case but we emphasize that it requires an evaluation criterion that is
not always available (i.e in policy evaluation). Other solutions include weight regularization Krogh
& Hertz (1991), dropout Srivastava et al. (2014), Bayesian neural networks Blundell et al. (2015),
ensembling Chua et al. (2018), and spectral normalization Zheng et al. (2023), all of which often
reduce network capacity.

To address similar issues, Fujimoto et al. (2018) proposed adding noise to the target from Eq. 3,
effectively smoothing the critic. As argued by Ball & Roberts (2021), this method can be seen as in-
directly acting like spectral normalization, encouraging smoother gradients and effectively reducing
the magnitude of the second derivative. Appendix A.7.1 shows how noise scale impacts overfitting
by inducing bias. On the other hand, we propose avoiding such assumptions by using generative
modeling to add latent freedom.

4.2 REINFORCEMENT LEARNING

In this section, we evaluate the complete solution, including the learned world model, on several
standard Mujoco environments from the BRAX library Freeman et al. (2021). We plug Algorithm.
1 into Deep Deterministic Policy Gradient, thus using an exploration policy that stores experience in
a replay buffer that is then sampled uniformly from. To enhance exploration, we employ a collection
of 512 actors, similar to the setup in Barth-Maron et al. (2018). The multiquadratic kernel with
h = 100 and the biased estimator from Eq. 22 were used on every environment. Additional details
regarding the architecture and hyperparameters are provided in Appendix A.8

Since most continuous control environments are deterministic in both their transition and reward
functions, we applied N-step returns (with N = 5) to induce stochasticity as discussed in Section
2.2. The results across various environments are presented in Figure 5. We compare the two variants
of DSDPG, one using action gradient and one using state-action gradient. As can be seen, both
perform competitively, with at least one variant on par with the baseline DDPG across all environ-
ments. In contrast, DDPG + MMD consistently underperforms, highlighting the effectiveness of
leveraging gradient information in our approach. It is worth noting, though, that the DSDPG variant
using state-action gradients struggles on three out of five environments.

Figure 5: Comparison of Deep Deterministic Policy Gradient (DDPG) with a distributional critic
trained using Maximum Mean Discrepancy on original observations (purple), our method Distribu-
tional Sobolev Deterministic Policy Gradient (DSDPG) with Sobolev training on action gradients
(yellow) or state-action gradients (light blue), and the standard DDPG with a deterministic critic
trained on original observations (black). Rewards measured on independent evaluation with explo-
ration noise and averaged over 5 seeds. Shaded area is +- 1 standard deviation.

For fairness, we also trained a deterministic critic using gradient information, following an approach
similar to D’Oro & Jaskowski (2020), using an L2 loss on both the output and gradient temporal
differences. However, we diverged from their method by using the same world model as for DSDPG,
a cVAE, rather than their ensemble of large regressors. Results are shown in Figure 11. We were

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

unable to replicate their performance improvement, as the method frequently failed to converge.
The cause of this discrepancy remains unclear. It could stem from the difference in world models,
our modest cVAE versus their larger ensemble, or from an imbalance between the output loss and
gradient loss. In MAGE (D’Oro & Jaskowski, 2020), these losses are treated separately, while in
our MMD-based approach, they are handled together. Lastly, the stochastic nature of the predicted
gradients might also contribute to this divergence.

When updated, the critic interacts with the environment solely through reconstructed samples from
the cVAE world model. Consequently, the world model may independently influence performance,
as demonstrated in Figure 12. Overall, we observe that relying on reconstructed samples tends to
degrade performance, especially for the distributional critic trained with MMD but lacking gradient
information. However, incorporating gradient information not only bridges this performance gap
but also leads to a notable overall improvement.

5 RELATED WORKS

Our work extends distributional reinforcement learning (RL) (Bellemare et al., 2017) by model-
ing the gradients of returns, specifically in continuous action-space environments with deterministic
policies. This positions our research most closely to the work of (Barth-Maron et al., 2018) which
itself extended (Lillicrap et al., 2016) to the distributional setting. Since the gradient of the return
is typically a multi-dimensional quantity, our approach aligns closely with studies on distributional
multivariate returns (Zhang et al., 2021; Freirich et al., 2019), which emphasize the need for tractable
measures of discrepancy over multi-dimensional distributions. We conceptualize our distributional
critic as a generative model capable of producing actual samples of the modeled distribution, fol-
lowing approaches similar to (Freirich et al., 2019; Singh et al., 2022; Doan et al., 2018). This
differs from methods that generate pseudo-samples (Zhang et al., 2021; Nguyen et al., 2020) or fo-
cus solely on statistics (Bellemare et al., 2017; Barth-Maron et al., 2018; Dabney et al., 2018b;a). To
measure distributional discrepancy, we employ the Mean Maximum Discrepancy (MMD) (Gretton
et al., 2012; Li et al., 2015; Bińkowski et al., 2021; Oskarsson, 2020), a method that has been suc-
cessfully applied in distributional RL (Nguyen et al., 2020; Killingberg & Langseth, 2023; Zhang
et al., 2021).

Secondly, as we explicitly model gradients using neural networks, our work can also be seen as
a distributional extension of Sobolev training Czarnecki et al. (2017) which was already adapted
to reinforcement learning in (D’Oro & Jaskowski, 2020). The idea of gradient modeling in value-
based RL was initially explored in (Fairbank, 2008). Additionally, our approach shares connections
with Physics Informed Neural Networks (PINNs) (Raissi et al., 2017), where neural networks are
used to approximate physical processes and differential constraints are applied to enforce physical
consistency. Uncertainty modeling in PINNs has already been considered in (Yang & Perdikaris,
2019; Daw et al., 2021).

Lastly, since the environment dynamics and reward functions are neither assumed to be differen-
tiable nor known, we infer these quantities from true observations using a world model, similar to
SVG(1) (Heess et al., 2015). To achieve this, we leverage variational inference by instantiating our
world model as a conditional Variational Autoencoder (cVAE) (Kingma, 2013; Sohn et al., 2015).
Although we do not use our world model to generate new data (Sutton, 1991), our approach connects
to the broader literature on model-based reinforcement learning (Deisenroth & Rasmussen, 2011;
Chua et al., 2018), particularly to works utilizing variational methods (Ha & Schmidhuber, 2018;
Hafner et al., 2020; Zhu et al., 2024).

6 CONCLUSION

In this work, we introduced Distributional Sobolev Deterministic Policy Gradient (DSDPG). Our
main contributions involve modeling a distribution over the output and the gradient of a random
function and deriving a tractable computational scheme to do so using Maximum Mean Discrep-
ancy (MMD). We demonstrated that the method is effective at utilizing gradient information. We
empirically showed that training neural networks this way could have beneficial properties, partic-
ularly when data is scarce, while making minimal assumptions about the random function being
modeled. We extended this idea to reinforcement learning by leveraging a differentiable world

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

model of the environment that infers gradients from observations. This approach was applied to
train a distributional critic using temporal difference learning on both returns and their gradients.

This work, however, has several limitations. Future work should focus on reducing the computa-
tional cost of the current method. Currently, both policy evaluation and policy improvement require
drawing several samples from the distributional critic and calculating their input gradients, leading
to a significant computational burden. We suggest that more efficient inductive biases might exist,
such as generating multiple samples simultaneously, offering a middle ground between determinis-
tic noise transformation and pseudo-samples . This approach did not yield successful results in our
attempts. Additionally, future research should focus on improving the design of the world model,
as we found it challenging to apply the same hyperparameters across different environments. In
particular, a more principled approach to weighting the KL regularization is needed.

Finally, we believe that the ideas introduced in this work could benefit other fields where uncertainty
in gradient modeling is important, such as Physics-Informed Neural Networks and distillation Czar-
necki et al. (2017) of generative models.

Reproducibility Statement Code and models will be made available upon acceptance of the paper
in a public repository. This will include a README file with instructions for setting up the environ-
ment and reproducing the experiments. All datasets and environments used are publicly available.

REFERENCES

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Philip J Ball and Stephen J Roberts. Offcon 3̂: What is state of the art anyway? arXiv preprint
arXiv:2101.11331, 2021.

Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva TB,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
policy gradients. In International Conference on Learning Representations (ICLR), Vancouver,
Canada, 2018.

Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of Machine Learning Research,
18(153):1–43, 2018. URL http://jmlr.org/papers/v18/17-468.html.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pp. 449–458. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/
bellemare17a.html.

Mikołaj Bińkowski, Danica J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans, 2021.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural network. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pp. 1613–1622, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.
press/v37/blundell15.html.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforce-
ment learning in a handful of trials using probabilistic dynamics models. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf.

12

http://jmlr.org/papers/v18/17-468.html
https://proceedings.mlr.press/v70/bellemare17a.html
https://proceedings.mlr.press/v70/bellemare17a.html
https://proceedings.mlr.press/v37/blundell15.html
https://proceedings.mlr.press/v37/blundell15.html
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://proceedings.neurips.cc/paper_files/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Wojciech M. Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Raz-
van Pascanu. Sobolev training for neural networks. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/758a06618c69880a6cee5314ee42d52f-Paper.pdf.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pp. 1096–
1105. PMLR, 2018a.

Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018b.

Arka Daw, Maruf Maruf, and Anuj Karpatne. Pid-gan: A gan framework based on a physics-
informed discriminator for uncertainty quantification with physics. Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, 2021. URL https://api.
semanticscholar.org/CorpusID:235358491.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

Thang Doan, Bogdan Mazoure, and Clare Lyle. Gan q-learning. arXiv preprint arXiv:1805.04874,
2018.

Pierluca D’Oro and Wojciech Jaskowski. How to learn a useful critic? model-based action-gradient-
estimator policy optimization. In 34th Conference on Neural Information Processing Systems
(NeurIPS 2020), Vancouver, Canada, 2020.

Michael Fairbank. Reinforcement learning by value gradients. arXiv preprint arXiv:0803.3539,
2008.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax – a differentiable physics engine for large scale rigid body simulation, 2021. URL https:
//arxiv.org/abs/2106.13281.

Dror Freirich, Ron Meir, and Aviv Tamar. Distributional multivariate policy evaluation and explo-
ration with the bellman gan. In Proceedings of the 36th International Conference on Machine
Learning, volume 97, pp. 2361–2370, Long Beach, California, 2019. PMLR. *Equal contribu-
tion.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. Journal of Machine Learning Research, 13(25):723–773, 2012. URL
http://jmlr.org/papers/v13/gretton12a.html.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models. arXiv preprint arXiv:2010.02193, 2020.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learn-
ing continuous control policies by stochastic value gradients. Advances in neural information
processing systems, 28, 2015.

13

https://proceedings.neurips.cc/paper_files/paper/2017/file/758a06618c69880a6cee5314ee42d52f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/758a06618c69880a6cee5314ee42d52f-Paper.pdf
https://api.semanticscholar.org/CorpusID:235358491
https://api.semanticscholar.org/CorpusID:235358491
https://arxiv.org/abs/2106.13281
https://arxiv.org/abs/2106.13281
http://jmlr.org/papers/v13/gretton12a.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning, 2017. URL https://arxiv.org/abs/1710.02298.

Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. ICLR (Poster), 3, 2017.

Ludvig Killingberg and Helge Langseth. The multiquadric kernel for moment-matching distribu-
tional reinforcement learning. Transactions on Machine Learning Research, 2023.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. In J. Moody,
S. Hanson, and R.P. Lippmann (eds.), Advances in Neural Information Processing Systems, vol-
ume 4. Morgan-Kaufmann, 1991. URL https://proceedings.neurips.cc/paper_
files/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf.

Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks. In International
conference on machine learning, pp. 1718–1727. PMLR, 2015.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Inter-
national Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2016.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Thanh Tang Nguyen, Sunil Gupta, and Svetha Venkatesh. Distributional reinforcement learning with
maximum mean discrepancy. Association for the Advancement of Artificial Intelligence (AAAI),
2020.

Joel Oskarsson. Probabilistic regression using conditional generative adversarial networks, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learn-
ing (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Mark Rowland, Marc Bellemare, Will Dabney, Rémi Munos, and Yee Whye Teh. An analysis
of categorical distributional reinforcement learning. In International Conference on Artificial
Intelligence and Statistics, pp. 29–37. PMLR, 2018.

Mark Rowland, Robert Dadashi, Saurabh Kumar, Rémi Munos, Marc G Bellemare, and Will Dab-
ney. Statistics and samples in distributional reinforcement learning. In International Conference
on Machine Learning, pp. 5528–5536. PMLR, 2019.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In Proceedings of the 31st International Conference on
Machine Learning (ICML-14), volume 32, pp. 147–155, Beijing, China, 2014. JMLR: W&CP.
Copyright 2014 by the author(s).

14

https://arxiv.org/abs/1710.02298
https://proceedings.neurips.cc/paper_files/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Rahul Singh, Keuntaek Lee, and Yongxin Chen. Sample-based distributional policy gradient. In
Learning for Dynamics and Control Conference, pp. 676–688. PMLR, 2022.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

R.S. Sutton, D.A. McAllester, S.P. Singh, and Y. Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. In Advances in Neural Information Processing Sys-
tems, 1999.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Yibo Yang and Paris Perdikaris. Adversarial uncertainty quantification in physics-informed neural
networks. Journal of Computational Physics, 394:136–152, 2019.

Yuguang Yue, Zhendong Wang, and Mingyuan Zhou. Implicit distributional reinforcement learning.
Advances in Neural Information Processing Systems, 33:7135–7147, 2020.

Pushi Zhang, Xiaoyu Chen, Li Zhao, Wei Xiong, Tao Qin, and Tie-Yan Liu. Distributional reinforce-
ment learning for multi-dimensional reward functions. In 35th Conference on Neural Information
Processing Systems (NeurIPS 2021), 2021. *Equal contribution, †Corresponding author.

Ruijie Zheng, Xiyao Wang, Huazhe Xu, and Furong Huang. Is model ensemble necessary?
model-based rl via a single model with lipschitz regularized value function. arXiv preprint
arXiv:2302.01244, 2023.

Ting Zhu, Ruibin Ren, Yukai Li, and Wenbin Liu. A model-based reinforcement learning method
with conditional variational auto-encoder. Journal of Data Science and Intelligent Systems, 2024.

A APPENDIX

A.1 DERIVATIVE OF A CONDITIONAL RANDOM VARIABLE WITH RESPECT TO ITS
CONDITIONING VARIABLE

Here we provide an intuitive interpretation of the meaning of random variable gradients with respect
to their conditioning variable. We rely on this notion in 8 and Section 3.2.

Let y | x be a conditional random variable where x ∈ X ⊂ Rn is the conditioning variable, and
y ∈ Y ⊂ Rm. A realization of y | x can be expressed as:

y(x) = g(z, x),

where:

• z ∈ Z is a hidden latent variable sampled from a unknown distribution p(z),

15

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• g : Z × X → Y is a deterministic mapping that is differentiable with respect to x.

The derivative of the realization y(x) with respect to x, for a fixed latent variable z, is defined as:

∂y

∂x
:=

∂g(z, x)

∂x
.

Since z ∼ p(z), the derivative ∂y
∂x is itself a random variable, with its distribution induced by p(z).

A.2 PROOF OF PROPOSITION 3.1

Let π be an Lπ-Lipschitz continuous policy, and suppose G(s) and Ĝ(s) are the true and estimated
distributions of the action gradients ∇aZπ(s, a) and ∇aẐ(s, a) at a = π(s), respectively. Then,
the error between the true and estimated policy gradients is bounded by:∥∥∥∇θJ(θ)−∇θĴ(θ)∥∥∥ ≤ cLπ

1− γ
Es∼dµπ

[
D
(
∇aZπ(s, π(s)),∇aẐ(s, π(s))

)]
,

where D is a discrepancy measure defined as follows:

D
(
∇aZπ(s, π(s)),∇aẐ(s, π(s))

)
=

W1

(
∇aZπ(s, π(s)),∇aẐ(s, π(s))

)
(Wasserstein-1 distance),

MMD
(
∇aZπ(s, π(s)),∇aẐ(s, π(s))

)
(Maximum Mean Discrepancy).

The scaling factor c is defined as:

c =

{
1 if D is the Wasserstein-1 distanceW1,

κ1/2 if D is the Maximum Mean Discrepancy (MMD).

Here, κ = supx k(x, x) represents the maximum value of the kernel function k used in the MMD
computation.

PROOF FOR WASSERSTEIN-1 (W1) DISTANCE

Step 1: True and Estimated Policy Gradients

The true policy gradient is given by:

∇θJ(θ) =
1

1− γ
Es∼dµπ

[
E
[
∇aZπ(s, a)

∣∣
a=π(s)

]
∇θπ(s)

]
,

The estimated policy gradient is:

∇θĴ(θ) =
1

1− γ
Es∼dµπ

[
E
[
∇aẐ(s, a)

∣∣
a=π(s)

]
∇θπ(s)

]
.

Step 3: Policy Gradient Error

The L2 norm of the difference between the true and estimated policy gradients is:∥∥∥∇θJ(θ)−∇θĴ(θ)∥∥∥ =

∥∥∥∥ 1

1− γ
Es∼dµπ

[(
E
[
∇aZπ(s, a)

∣∣
a=π(s)

]
− E

[
∇aẐ(s, a)

∣∣
a=π(s)

])
∇θπ(s)

]∥∥∥∥ .
Step 4: Applying the Triangle Inequality and Lipschitz Continuity

Using the triangle inequality and the Lipschitz continuity of the policy (∥∇θπ(s)∥ ≤ Lπ), we have:∥∥∥∇θJ(θ)−∇θĴ(θ)∥∥∥ ≤ 1

1− γ
Es∼dµπ

[∥∥∥E [∇aZπ(s, a)∣∣a=π(s)]− E
[
∇aẐ(s, a)

∣∣
a=π(s)

]∥∥∥ ∥∇θπ(s)∥]
≤ Lπ

1− γ
Es∼dµπ

[∥∥∥E [∇aZπ(s, a)∣∣a=π(s)]− E
[
∇aẐ(s, a)

∣∣
a=π(s)

]∥∥∥] .
Step 5: Applying Kantorovich-Rubinstein Duality

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The Wasserstein-1 distanceW1(L(X),L(Y )) between two random variables X and Y (with distri-
butions µ and ν, respectively) is defined as:

W1(µ, ν) = inf
γ∈Π(µ,ν)

E(X,Y )∼γ [∥X − Y ∥] ,

where Π(µ, ν) is the set of all couplings of µ and ν.

By Kantorovich–Rubinstein duality Villani et al. (2009), we equivalently have:

W1(µ, ν) = sup
∥f∥Lip≤1

|Eµ[f(X)]− Eν [f(Y )]| .

The dual formulation above holds for any f with Lipschitz constant ∥f∥Lip ≤ 1. Choosing f(x) =
x, we note that this function has a Lipschitz constant of 1 because ∥f(x)−f(y)∥ = ∥x−y∥ satisfies
the Lipschitz condition. Consequently, the difference of expectations becomes:

∥E[X]− E[Y ]∥ = ∥Eµ[f(X)]− Eν [f(Y )]∥ .
Since f is 1-Lipschitz, the Kantorovich–Rubinstein duality ensures that this is bounded by the
Wasserstein-1 distance:

∥E[X]− E[Y ]∥ ≤ W1(L(X),L(Y )).

Let X = ∇aZπ(s, π(s)) and Y = ∇aẐ(s, π(s)). The difference of their expectations is:∥∥∥E [∇aZπ(s, π(s))]− E
[
∇aẐ(s, π(s))

]∥∥∥ .
Using the argument above, this difference is bounded by the Wasserstein-1 distance between the
distributions of X and Y :∥∥∥E [∇aZπ(s, π(s))]− E

[
∇aẐ(s, π(s))

]∥∥∥ ≤ W1

(
∇aZπ(s, π(s)),∇aẐ(s, π(s))

)
.

Step 6: Conclusion

Combining the results from the previous steps, we established that the L2 norm of the difference
between the true and estimated policy gradients can be bounded as follows:∥∥∥∇θJ(θ)−∇θĴ(θ)∥∥∥ ≤ Lπ

1− γ
Es∼dµπ

[
W1

(
∇aZπ(s, π(s)),∇aẐ(s, π(s))

)]
.

PROOF FOR MAXIMUM MEAN DISCREPANCY (MMD)

The first steps are identical to the proof for the Wasserstein-1 distance.

Step 1: Bounding the Expectation Difference Using MMD

The MMD between the distributions of∇aZπ(s, π(s)) and ∇aẐ(s, π(s)) is defined as:

MMD2(∇aZπ(s, π(s)),∇aẐ(s, π(s))) = EX,X′∼L(Z)[k(X,X
′)]

+ EY,Y ′∼L(Ẑ)[k(Y, Y
′)]

− 2EX∼L(Z),Y∼L(Ẑ)[k(X,Y )],

where k is the kernel function, and L(Z) denotes the distribution of ∇aZπ(s, π(s)), while L(Ẑ)
denotes the distribution of∇aẐ(s, π(s)).
Step 2: Relating Policy Gradient Error to MMD For a linear kernel k(x, y) = x⊤y, the MMD
simplifies to:

MMDlinear(∇aZπ(s, π(s)),∇aẐ(s, π(s))) =
∥∥∥E [∇aZπ(s, π(s))]− E

[
∇aẐ(s, π(s))

]∥∥∥ .
Substituting this result back, we have:∥∥∥∇θJ(θ)−∇θĴ(θ)∥∥∥ ≤ Lπ

1− γ
Es∼dµπ

[
MMDlinear(∇aZπ(s, π(s)),∇aẐ(s, π(s)))

]
.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Step 3: Extending to Non-Linear Kernels

For non-linear kernels, the MMD measures differences in higher-order statistics. Using the Cauchy-
Schwarz inequality in the RKHS, we have:∥∥∥E [∇aZπ(s, π(s))]− E

[
∇aẐ(s, π(s))

]∥∥∥ ≤ κ1/2MMD(∇aZπ(s, π(s)),∇aẐ(s, π(s))),

where κ = supx k(x, x) is the maximum value of the kernel function.

Substituting this bound back:∥∥∥∇θJ(θ)−∇θĴ(θ)∥∥∥ ≤ Lπκ
1/2

1− γ
Es∼dµπ

[
MMD(∇aZπ(s, π(s)),∇aẐ(s, π(s)))

]
.

Step 4: Conclusion

Combining the results from the previous steps, we established that the L2 norm of the difference
between the true and estimated policy gradients can be bounded as follows:∥∥∥∇θJ(θ)−∇θĴ(θ)∥∥∥ ≤ Lπκ

1/2

1− γ
Es∼dµπ

[
MMD(∇aZπ(s, π(s)),∇aẐ(s, π(s)))

]
.

A.3 DISTRIBUTIONAL SOBOLEV OPERATOR

In Section 3.2, we defined the new operator:

fSa

s,a,r,s′,γ(x) =

[
f return
s,a,r,s′,γ(x)

f action
s,a,r,s′,γ(x)

]
, (25)

where
f return
s,a,r,s′,γ(x) = r + γxreturn, (26)

and

f action
s,a,r,s′,γ(x) =

∂

∂a
r(s, a) + γ

∂s′

∂a

(
∂

∂s′
xreturn +

∂a′

∂s′
xaction

)
. (27)

We now demonstrate how to obtain the result from Eq. 27. We first assume that samples from the
transition-reward distributions are differentiable with respect to state and action. We start from Eq.
26 and write down the action-gradient. We abuse notation and consider r, s and xreturn as explicit
samples conditioned on (s, a)

∂

∂a

(
r + γxreturn) = ∂

∂a
(r(s, a) + γz(s, a))

=
∂

∂a
r(s, a) +

∂s′

∂a

(
∂

∂s
z(s, π(s′))

∣∣∣∣
s=s′

+
∂π(s′)

∂s′
∂

∂a
z(s′, a)

∣∣∣∣
a=π(s′)

) (28)

We identify that ∂
∂sz(s, π(s

′))

∣∣∣∣
s=s′

is equivalent to ∂
∂s′x

return and ∂
∂az(s

′, a)

∣∣∣∣
a=π(s′)

is equivalent,

by definition, to xaction

A.4 CONDITIONAL VARIATIONAL AUTO-ENCODERS

A principled invertible generative model can be obtained from a Variational Auto-Encoder (VAE)
(Kingma, 2013). More interestingly for us are conditional VAE Sohn et al. (2015) which we briefly
introduce.

A Conditional Variational Autoencoder (cVAE) is a generative model that learns to generate new
samples from a distribution conditioned on given input information. In our case, the cVAE models
the distribution of next states and rewards conditioned on current states and actions.

Formally, the cVAE consists of two components:

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• Encoder: The encoder qζ(ε | s′, r; s, a) maps the observed next state s′ and reward r,
conditioned on the current state-action pair (s, a), to a latent variable ε, typically modeled
as a Gaussian distribution with diagonal covariance matrix:

qζ(ε | s′, r; s, a) = N (ε;µζ(s
′, r, s, a), σ2

ζ (s
′, r, s, a)⊙ I). (29)

• Decoder: The decoder pψ(s′, r | ε; s, a) reconstructs the next state s′ and reward r from
the latent variable ε, conditioned on the current state-action pair (s, a).

The objective of a cVAE is to maximize the Evidence Lower Bound (ELBO), which balances accu-
rate reconstruction of the input with a regularization term that ensures the learned posterior distribu-
tion remains close to the prior distribution. In this work we adopted β − VAE Higgins et al. (2017)
which put a weight ̸= 1 on the KL regularization term. The objective is as follows

LcVAE(ζ, ψ) = Eqζ(ε|s′,r;s,a) [log pψ(s
′, r | ε; s, a)]

−λKL ×DKL (qζ(ε | s′, r; s, a) ∥ N (0, I)) .
(30)

The first term encourages faithful reconstruction of the next state and reward, while the second term
regularizes the posterior distribution to remain close to a standard Gaussian prior. Assuming the
decoder pψ(s′, r | ε; s, a) is Gaussian with a fixed variance, the reconstruction term reduces to an
L2 loss, which can be estimated using the difference between the reconstructed samples and the true
samples.

Assuming the encoder parametrizes a Gaussian with diagonal covariance and that the prior is also
Gaussian with identity covariance and zero mean, the KL divergence can be estimated from encoded
input samples as

DKL(ζ) = E(s,a)

1
2

d∑
j=1

(
1 + log(σ2

ζ,j(s, a))− µ2
ζ,j(s, a)− σ2

ζ,j(s, a)
) . (31)

A.5 SAMPLING FROM AUTO-ENCODING MODEL

Following the approach from Heess et al. (2015), we propose to use a world model that can es-
sentially work in two ways: imagination or inference from real observations. Imagination involves
using samples from the generative model to use in Eq. 24 whereas inference uses actual observations
to infer the latent variable ε. The inference approach uses the encoder and generator to reconstruct
samples. In this section we aim to show that both are valid ways to get samples to differentiate.

We seek to estimate samples from the function on random variables we write as g(s, a, s′, r, εw).
This implies sampling from p(s′, r, εw | s, a). Imagination allows a forward process εw | a, s →
ŝ′, r̂. But we seek to evaluate g from actual observations s′, r | s, a → εw. This is in essence the
same idea as developed in Heess et al. (2015) except we work on tuple of next state and reward
instead of state and action. Moreover, our policy is assumed to be deterministic.

We want to show that imagination and inference are equivalent such that
p(s′, r, εw | s, a) = p(εw)p(s

′, r | s, a, εw)︸ ︷︷ ︸
imagination/forward

= p(s′, r | s, a)p(εw | s, a, s′, r)︸ ︷︷ ︸
inference/reconstruction

(32)

Using Bayes’ theorem, we have:

p(εw|s, a, s′, r) =
p(s′, r|s, a, εw)p(εw|s, a)

p(s′, r|s, a)
(33)

Assuming εw is independent of s and a, we simplify p(εw|s, a) to p(ε), thus:

p(εw|s, a, s′, r) =
p(s′, r|s, a, εw)p(εw)

p(s′, r|s, a)
(34)

Rearranging to isolate p(s′, r|s, a), we get:

p(s′, r|s, a) = p(s′, r|s, a, εw)p(εw)
p(εw|s, a, s′, r)

(35)

Substitute this expression back into p(s′, r|s, a)p(εw|s, a, s′, r):
p(s′, r|s, a)p(εw|s, a, s′, r) = p(εw)p(s

′, r|s, a, εw) (36)
■

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.6 INFERRING GRADIENTS FROM RECONSTRUCTED SAMPLES

Here we demonstrate visually how, using a cVAE trained on the toy supervised task introduced in
Section 4.1, we can infer gradients from reconstructed samples. This exemplifies the idea of a cVAE
world model applied in Section 4.2. Result is show in Figure 6. As can be seen on the left panel, the
reconstruction is near perfect while the gradient inferred from those reconstructed samples matches
the true gradient to some extent. Indeed, we see that without using gradient information for training
the cVAE cannot disentangle ambiguous locations such as x = 0 but especially x = π where the
gradient collapses to the conditional expectation at that point.

Figure 6: Gradient inference from reconstructed samples in the same toy problem as described in
Section 4.1. The left panel compares the true distribution (blue) with reconstructed samples (green)
after passing them through the encoder and decoder. The right panel shows a comparison of true
gradients with inferred gradients on the reconstructed samples, where the gradient from the latent
variable is blocked.

A.7 TOY SUPERVISED

The Conditional Generative Moment Matching and regression used the same architecture except for
some noise of dimension 10 drawn fromN (0; I) concatenated to the input for the cGMMN. For each
pair (x, y1:4), four samples were drawn from the generator. Both were trained using Rectified Adam
Liu et al. (2019) optimizer with a learning rate of 1×10−3 and (β0, β1) = (0.5, 0.9). Neural network
is a simple MLP with 2 hidden layers of 256 neurons and Swish non-linearities (Ramachandran et al.,
2017).

Maximum Mean Discrepancy (MMD) was estimated using a mixture of RBF kernels with band-
widths σi from the set {σ1, σ2, . . . , σ7} = {0.01, 0.05, 0.1, 0.5, 1, 10, 100}. We used the biased
estimator from Eq. 22.

The equation for a mixture of RBF kernels is given by:

kmix(x, y) =

7∑
i=1

exp

(
−∥x− y∥

2

2σ2
i

)
. (37)

The evaluation kernel we used was the Rational Quadratic kRQ
α with α = 1 with

kRQ
α (x, y) =

(
1 +
∥x− y∥2

2α

)−α

(38)

Regarding the dataset, the (x, y1:4) pairs were drawn with x ∼ U [0; 5] and a was draw from
{0, 1, 2, 3, 4} with replacement. In the limited data regime, the pairs (x, y1:4) were drawn once
and stayed fix. The batch size was thus equal to the number of points in the dataset. In the unlimited

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

data regime 256 new pairs were drawn for each batch. Every experiment was ran for 25 000 batch
sampled and thus the same number of SGD steps.

A.7.1 ADDING NOISE

Inspired by Fujimoto et al. (2018), we added some independent noise on x for each (x, y1:4). Noise
scale σ was in {0.01, 0.1, 0.5}. For each new batch sampled it was sampled from a standard Gaus-
sian η ∼ N (0;σ2) and added as x̃ = x+ η

In Figure 7-8, we can see the impact of the various noise scales on the predictions of the deterministic
regression. As can be seen, adding noise on x as a positive effect in terms of stabilizing the gradient
but it induces an bias that grows with the scale of the noise. Moreover, as discussed in Section 4.1,
this noise depend on the application and makes strong assumption about the function to learn. The
stabilizing effect of additive noise can further be seen in Figure 9-10 where both the L2 loss and
average second order derivative are displayed as function on the number of sampled locations.

Figure 7: Toy supervised learning problem. Comparison of samples from the true five-mode dis-
tribution with predictions made by a deterministic model trained with L2 loss (green). The output
space is shown on the left, and the gradient space on the right. Results obtained after 25,000 training
steps.

Figure 8: Toy supervised learning problem. Comparison between true samples from the distribution
of five modes and deterministic models trained with varying levels of additive noise on their input
data. Low level of noise (green), medium level of noise (orange), high level of noise (red). Results
obtained after 25,000 training steps.

A.8 REINFORCEMENT LEARNING EXPERIMENTS

The experiments were ran in BRAX Freeman et al. (2021), a JAX Bradbury et al. (2018) re-
implementation of common Mujoco environments (Todorov et al., 2012). We took advantage of

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 9: Toy supervised learning problem. Comparison of the L2 loss between the predicted gra-
dient and the conditional expectation of the true distribution. Different scales of additive noise on
the input are compared: low noise (light blue), medium noise (medium blue), and high noise (dark
blue), alongside Sobolev training (dashed). Results are shown after 25,000 training steps.

Figure 10: Toy supervised learning problem. Comparison of the average second order derivative
norm over the input space. Different scales of additive noise on the input are compared: low noise
(light blue), medium noise (medium blue), and high noise (dark blue), alongside Sobolev training
(dashed).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

BRAX’s high parallelizability to have 512 actors running the exploration in parallel. Their experi-
ences were pushed in a uniform replay buffer. The procedure described in Algorithm 1 was plugged
into DDPG (Lillicrap et al., 2016).

Now we describe the architectures, optimizers and other hyperparameters of the full Distributional
Sobolev Deterministic Policy Gradient algorithm.

Table 1: Hyperparameters for the DDPG and DSDPG experiments on Brax environments

Item Value
Discount γ 0.99
Polyak averaging τ 0.005
Buffer size 106

Exploration noise scale 0.1
Critic learning rate 3× 10−4

Policy learning rate 3× 10−4

cVAE learning rate 6× 10−4

cVAE KL weight 0.1
cVAE latent dim |S|+ 1
Critic input noise dim 50
Number of samples MMD 50

Policy network Policy network is a MLP with 2 hidden layers of 256 neurons. In order to improve
gradient flow, skip connections from the input s to hidden layers’ input were used as well as residual
connection. The non-linearity was Swish (Ramachandran et al., 2017). Final activations are mapped
to the output space using a linear transformation followed by a tanh non-linearity. The policy
network was optimized using the Rectified Adam Liu et al. (2019) with a learning rate of 3× 10−4.

Crtic network Critic network architecture is almost the same as for the policy network. Im-
portantly, it is kept constant for experiments using normal DDPG and DSDPG apart from noise
concatenated on the input [s; a]. The network is a MLP with 256 neurons, skip connections from the
input, residual connection and Swish activations. No non-linearity was applied on the output after
the last linear layer. The critic network is optimized using Rectified Adam Liu et al. (2019) with
(β1, β2) = (0.9, 0.999) and a learning rate of 3× 10−4.

Conditional VAE world model Both the encoder and decoder are MLPs with 3 hidden layers,
each containing 512 neurons. Skip connections are applied from the input to each hidden layer, and
Layer Normalization (Ba, 2016) is used after the non-linearity activations to normalize the hidden
layers. The cVAE was optimized using Adam, as we observed using RAdam to systematically
diverge, (β1, β2) = (0.9, 0.999) and a learning rate of 3 × 10−4. As explained in A.4, we used a
β − VAE where the weight on KL divergence was set to 0.1 as we found it to work well on most
environments.

The prior is a fixed standard GaussianN (0, I) with a latent dimension equal to the size of the random
variable being modeled, which is |S|+1 for (s′, r). Following D’Oro & Jaskowski (2020); Zhu et al.
(2024), the cVAE predicts the difference between the current and next observation, δs = s′−swhich
is then added back to s, along with the reward r.

Conditional Generative Moment Matching For the distributional critic, noise vectors were con-
catenated with the state-action pairs (s, a) and passed through the same architecture as the determin-
istic critic. The noise dimension was set to 50. For each state-action pair, 50 samples were drawn to
update both the critic and the policy. The multiquadratic kernel kMQ

h (x, y) = −
√
1 + h2∥x− y∥22

Killingberg & Langseth (2023) was used, with the kernel parameter h set to 100.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 11: Comparison of our method DSDPG with action gradient training (yellow) or state-action
gradient training (light blue) with deterministic Sobolev training using L2 loss.

A.8.1 COMPARISON DETERMINISTIC AND DISTRIBUTIONAL SOBOLEV TRAINING

A.8.2 INFLUENCE OF WORLD MODEL ON PERFORMANCE

When updated, the critic interacts with the environment exclusively through reconstructed samples
from the cVAE world model. Consequently, the quality of the world model may independently in-
fluence performance, as shown in Figure 12. Overall, we observe that using reconstructed samples
from the world model generally has a negative impact on performance, particularly for the distri-
butional critic trained with MMD but without gradient information. However, gradient information
not only compensates for this gap but also leads to an overall improvement in performance.

Figure 12: Impact of the world model on the performance of DDPG with a deterministic critic
and a distributional critic trained using MMD. The results compare DDPG (red), DDPG trained on
reconstructed samples from the cVAE (green), DDPG with a distributional critic (blue), and DDPG
with a distributional critic trained on reconstructed samples (purple).

24


	Introduction
	Background
	Reinforcement learning
	Distributional reinforcement learning (DRL)
	Sobolev training and Value gradients

	Approach
	Learning a useful critic
	Distributional Sobolev training
	Towards a surrogate for Sobolev Bellman Operator

	Results
	Toy supervised learning
	Reinforcement learning

	Related works
	Conclusion
	Appendix
	Derivative of a conditional random variable with respect to its conditioning variable
	Proof of Proposition 3.1
	Distributional Sobolev operator
	Conditional variational auto-encoders
	Sampling from auto-encoding model
	Inferring gradients from reconstructed samples
	Toy supervised
	Adding noise

	Reinforcement learning experiments
	Comparison deterministic and distributional Sobolev training
	Influence of world model on performance



