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Abstract
In online ad markets, a rising number of advertis-
ers are employing bidding agencies to participate
in ad auctions. These agencies are specialized
in designing online algorithms and bidding on
behalf of their clients. Typically, an agency usu-
ally has information on multiple advertisers, so
she can potentially coordinate bids to help her
clients achieve higher utilities than those under
independent bidding. In this paper, we study co-
ordinated online bidding algorithms in repeated
second-price auctions with budgets. We propose
algorithms that guarantee every client a higher
utility than the best she can get under independent
bidding. We show that these algorithms achieve
maximal coalition welfare and discuss bidders’
incentives to misreport their budgets, in symmet-
ric cases. Our proofs combine the techniques of
online learning and equilibrium analysis, over-
coming the difficulty of competing with a multi-
dimensional benchmark. The performance of our
algorithms is further evaluated by experiments
on both synthetic and real data. To the best of
our knowledge, we are the first to consider bid-
der coordination in online repeated auctions with
constraints.

1. Introduction
Online advertising has been the main source of revenue for
important Internet companies (IAB, 2022). A transaction
in the market usually goes as follows: upon the arrival of
an ad query, an auction is held by the advertising platform
among all advertisers, and the winner gets the opportunity to
display her ad. Thus, advertisers engaging in such repeated
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auctions are confronted with an online decision problem.
That is, they could not know the values of incoming queries,
but have to decide their bids based on historical information
to maximize their accumulated utilities.

Recently, more and more advertisers are delegating their bid-
ding tasks to specialized market agencies (Decarolis et al.,
2020). Advertisers only need to report their objectives and
constraints within a given number of rounds. Typically, an
advertiser aims to maximize her total utility subject to a
budget constraint that limits her total payment. With the
requests received, these agencies will design correspond-
ing online bidding algorithms and bid on behalf of these
advertisers. A bidding agency usually has information of all
her clients, which leaves her a chance to coordinate bids to
improve every client’s utility.

However, most existing online bidding algorithms focus on
bidding for one bidder in the campaign (Han et al., 2020;
Golrezaei et al., 2021; Balseiro et al., 2022; Chen et al.,
2022; Feng et al., 2023; Wang et al., 2023). The fundamental
question of bidder coordination in online settings remains
unanswered: can we design a coordinated online bidding
strategy, such that each client advertiser enjoys a higher
utility compared to the best they can get under independent
bidding?

In this paper, we study bidder coordination in repeated
second-price auctions with budgets. The above question
can be modeled as an online multi-objective optimization:
to show that an algorithm has the desired performance, one
needs to compare each bidder’s utility with her correspond-
ing benchmark utility. The main difficulty, compared to the
problem of designing individual online bidding algorithms,
is how we deal with the interplay of bidders in dynamic
repeated settings. Since auctions are multi-player games, a
bidder’s utility is influenced by others’ bids.

Indeed, one way to overcome the problem is to assume that
members who gain more than their respective benchmark
utility are able to compensate other members with money.
In this way, optimizing the welfare of the whole coalition is
sufficient (Bachrach et al., 2011; Allouah & Besbes, 2017).
However, we argue that monetary transfer is unrealistic in
the ad auction scenario. In reality, advertisers’ first goal
is usually to enlarge the influence of their products. They
participate in auctions to win more impressions for their ads,
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rather than simply conducting financial investments.

Therefore, we focus on coordinated online bidding algo-
rithms without monetary transfer. We propose an algorithm,
Hybrid coordinated Pacing (HP), under which each bidder’s
expected utility is theoretically guaranteed to outperform
her corresponding benchmark utility asymptotically. In de-
signing HP, an important observation we follow is that the
problem of coordinated online bidding strategy design can
be reduced to two design tasks: the selection rule inside the
coalition and the budget management strategies. A simple
application of this principle, Coordinated Pacing (CP), is
another algorithm proposed in the paper. It already has the
desired utility guarantees when bidders in the coalition share
the same value distribution and the same amount of budget
(i.e., symmetric case).

In proving our theorems and overcoming the aforemen-
tioned difficulty, we combine the techniques of online learn-
ing and equilibrium analysis. We first show that these algo-
rithms’ performance converges. The problem then reduces
to the comparison of utilities between the benchmark and
the equilibrium these algorithms converge to. The analysis
of equilibria, which are defined by non-linear complemen-
tarity problems and have no closed-form solutions, allows
us to show that our algorithms maximize coalition welfare
in the symmetric case. We believe all these techniques and
results will be of generality and important use in future stud-
ies. Finally, we run experiments on both synthetic and real
data to further illustrate how our algorithms improve every
member’s utility through coordination.

1.1. Related Work

In recent years, individual online bidding problems with
budget constraints in repeated auctions have been widely
discussed in literature, promoted by the surging of auto-
bidding services in the industry (Aggarwal et al., 2019).
Theoretically, this problem is closely related to contextual
bandits with knapsacks (CBwK) (Badanidiyuru et al., 2014;
Agrawal et al., 2016; Agrawal & Devanur, 2016; Sivaku-
mar et al., 2022) as well as its specifications, e.g., online
allocation problems (Li & Ye, 2021; Balseiro et al., 2022).
For the dynamic bidding problem, Balseiro & Gur (2019)
set the foundation of pacing in repeated second-price auc-
tions, by which a bidder would shade values by a constant
factor as her bids. They proposed an optimal online bidding
algorithm that adaptively adjusts the pacing parameter. Sub-
sequent works have extended the above results in multiple
ways (Golrezaei et al., 2021; Gaitonde et al., 2023; Celli
et al., 2022; Gaitonde et al., 2023). Our work considers
the coordinated bidding scenario, in which bidders could
cooperate to increase everyone’s utility.

Graham & Marshall (1987) studied coordinated strategies
in second-price auctions and first proposed to select only

one member in the coalition as the representative to bid
in the auction. Pesendorfer (2000); Leyton-Brown et al.
(2002); Aoyagi (2003); Skrzypacz & Hopenhayn (2004);
Romano et al. (2022) also consider models that do not allow
monetary transfer in the coalition. Among these researches,
Decarolis et al. (2020); Romano et al. (2022) studied the
computation problem of optimizing each bidder’s utility
in GSP and VCG auctions. In comparison, we consider
the coordination problem in online repeated second-price
auctions with budgets, which is one of the most practical
scenarios in current ad markets.

Technically, for the budget management strategy of each
individual bidder, we adopt the adaptive pacing strategy
introduced by Balseiro & Gur (2019), which is based on
dual gradient descent. While algorithms and analysis based
on duality are standard in online convex optimization (Ne-
mirovski et al., 2009; Li & Ye, 2021; Golrezaei et al., 2021;
Feng et al., 2023), due to the introduction of inner dual vari-
ables, our analysis of HP does not follow the standard dual
analysis. The idea of selecting a representative to bid is from
Graham & Marshall (1987) and confirmed to be applicable
to the online setting in this paper. Moreover, it is important
and nontrivial to design a fair adaptive selection rule, so as
to make sure that everyone has fairly equal chances to bid:
While CP can be regarded as a natural application of indi-
vidual pacing to coordinated bidding, it can only guarantee
performance in symmetric cases. Zhou et al. (2017) also
studied the case when all players learn simultaneously in re-
peated games. They established the last-iterate convergence
of mirror descent strategies when the one-shot game satisfies
the property of variational stability. However, their results
do not apply directly to the settings when players’ actions
across rounds satisfy certain budget constraints. Moreover,
our analysis includes an equilibrium analysis that compares
per-person utilities in two equilibria.

Other works utilize the multi-agent reinforcement learning
framework to design algorithms (Jin et al., 2018; Guan et al.,
2021; Wen et al., 2022; Tan et al., 2022). They usually need
to explore beforehand to get enough samples. Compared to
them, the algorithms we propose do not need samples. They
consider accumulated utilities and achieve asymptotically
better performance than the benchmark.

1.2. Paper Organization

In Section 2, we introduce our model and benchmark. In
Section 3, we confirm the idea of selecting representatives
to bid, and present the results of CP. Section 4 presents
the results of HP. In Section 5, we show other properties
our algorithms possess in symmetric cases. Section 6 show
experiment results of our algorithms. Section 7 concludes.
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2. Model and Benchmark
In this work, we consider the scenario in which N bidders
participate in T rounds of repeated second-price auctions.
In each round t = 1, . . . , T , there is an available ad slot, auc-
tioned by the advertising platform. There are K among N
bidders who form a coalition K = {1, · · · ,K}. The value
bidder k ∈ K perceives for the ad slot in round t is denoted
by vk,t and is assumed to be i.i.d. sampled from a distribu-
tion Fk. We assume that Fk has a bounded density function
fk, with a support over [0, v̄k] ⊆ R+. Each bidder k ∈ K
has a budget constraint Bk, which limits the sum of her
payments throughout the period, and we denote bidder k’s
target expenditure rate by ρk := Bk/T ∈ (0, v̄k). As usual,
we use bold symbols for vectors (or matrices), e.g., using
vt without subscript k to denote the vector (v1,t, . . . , vK,t),
and v to denote (v1, . . . ,vT ); the same goes for ρ as well
as other variables to be defined.

For k ∈ K, denote bidder k’s bid at round t by bk,t. For
bidders outside the coalition, we assume their highest bid
in round t, denoted by dOt , is sampled i.i.d. from a distri-
bution H . This modeling follows the standard mean-field
approximation (Iyer et al., 2014) when the number of bid-
ders outside the coalition is large. Similar to Fk, H is also
assumed to have a bounded density function h. Thus, the
highest competing bid that bidder k faces is:

dk,t := max

{
max

i∈K:i ̸=k
bi,t, d

O
t

}
.

Let xk,t := 1 {bk,t ≥ dk,t} ∈ {0, 1} indicate whether
bidder k wins the ad slot in round t. We denote by
uk,t := xk,t(vk,t − dk,t) bidder k’s utility in round t and
by zk,t := xk,tdk,t her corresponding expenditure for a
second-price auction.

Now we formally model the coordination among bidders in
K, which can also be viewed as a third-party agency bidding
on behalf of all bidders in K, given their budget and value
information. We denote by Ht

K the history available to the
coalition before posting the bids in round t, defined as:

Ht
K :=

{
{vτ ,xτ , zτ}t−1

τ=1 ,vt

}
.

A coordinated strategy maps Ht
K to a (possibly random)

bid vector bt for each t. We use C to denote the set of all
coordinated strategies, and call a strategy C ∈ C feasible if it
guarantees that for each bidder, her cumulative expenditures
never exceed her budget for any realizations of values and
competing bids, i.e., ∀v,dO,

T∑
t=1

zCk,t =

T∑
t=1

1
{
bCk,t ≥ dCk,t

}
dCk,t ≤ Bk,∀k ∈ K.

We denote by ΠC
k bidder k’s expected payoff under coordi-

nated algorithm C ∈ C:

ΠC
k := EC

v,dO

[
T∑

t=1

uC
k,t

]

= EC
v,dO

[
T∑

t=1

1
{
bCk,t ≥ dCk,t

} (
vk,t − dCk,t

)]
,

where the expectation is taken with respect to the random-
ness of algorithm C, the values of all coalition members v,
and the highest bids outside the coalition dO.

2.1. Optimal Individual Budget Management Algorithm
and Benchmark

A desirable coordinated bidding algorithm should benefit
every participant. That is, all participants should gain more
utility than what they could obtain when they bid indepen-
dently. This is also a requirement for stable coordination, as
a bidder should have left the coalition if she gained less in it.
A natural measurement is bidders’ utilities when everyone
uses optimal individual bidding algorithms independently.

As for individual bidding algorithms, it is known that adap-
tive pacing strategy (Balseiro & Gur, 2019) is asymptotically
optimal in both stochastic and adversarial environments.
The main idea of this strategy is to maintain a shading pa-
rameter λ, and bid v/(1 + λ) when the true value is v. The
algorithm updates λ according to each round’s cost and tries
to keep the bidder’s average expenditure per auction close
to the target expenditure rate. By doing so, the algorithm
shares the risk as well as the opportunity among all rounds.
For the completeness of our work, we state the individual
adaptive pacing algorithm in Appendix A.

When all bidders follow adaptive pacing simultaneously,
their shading parameters converge, assuming that the multi-
valued function of their expected expenditures per round
is strongly monotone (defined below). At the same time,
their utilities also converge to the corresponding equilibrium
utilities, which we regard as our benchmark.

Specifically, consider K bidders shade bids according to a
profile of parameters λ ∈ RK

+ . Denote bidder k’s expected
expenditure per auction under λ by

Gk(λ) := Ev,dO [1{vk ≥ (1 + λk)dk} · dk] , (1)

and bidder k’s expected utility over T rounds by

Uk(λ) := T · Ev,dO [1 {vk ≥ (1 + λk) dk} · (vk − dk)] ,

where we omit the subscript t since the values and the high-
est bids are independent across rounds. We say function
F : RK → RK is γ-strongly monotone over a set U ⊂ RK

if

(λ− λ′)
⊤
(F (λ′)− F (λ)) ≥ γ ∥λ− λ′∥22 , ∀λ,λ

′ ∈ U .
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Assumption 2.1. There exists a constant γ > 0 such that
G = (Gk)

K
k=1 is a γ-strongly monotone function over∏K

k=1[0, v̄k/ρk].

We call the special coordinated algorithm, the simultaneous
adoption of individual adaptive pacing, IP for short. When
Assumption 2.1 holds, parameters under IP converge to a
fixed vector λ∗, defined by the following complementarity
conditions:

λ∗
k ≥ 0 ⊥ Gk(λ

∗) ≤ ρk, ∀k ∈ K, (2)

where ⊥ means that at least one condition holds with equal-
ity. The existence and uniqueness of λ∗ are guaranteed by
the result of Facchinei & Pang (2003). Moreover, its long-
run average performance converges to the expected utilities
achieved with vector λ∗, i.e.,

lim
T→∞

1

T

(
ΠIP

k − Uk(λ
∗)
)
= 0, ∀k ∈ K. (3)

We consider U(λ∗) as our benchmark. Notably, our goal is
to design coordinated algorithms with better performance
for every bidder inside the coalition, i.e., finding an algo-
rithm C such that

lim inf
T→∞

1

T

(
ΠC

k − Uk(λ
∗)
)
≥ 0, ∀k ∈ K.

3. First Steps for Coordinated Strategy Design
In this section, we present two important elements used in
our algorithms. We first show that we only need to con-
sider a class of “bid rotation” strategies to design satisfying
coordinated bidding algorithms. We then use a simple algo-
rithm to illustrate the non-triviality of the problem and the
importance of maintaining competition inside the coalition.

In a one-shot second-price auction where bidders have no
constraint, as is revealed, the best collusive strategy is to
select a representative to bid truthfully and let the other bid-
ders inside the coalition bid zero. Such a strategy decreases
the second-highest bid, alleviates the inner competition, and
notably, improves the representative’s utility without mak-
ing others worse (Graham & Marshall, 1987). When it
comes to the multi-round scenario with budget constraints,
it is no longer optimal for bidders to bid truthfully. In fact,
they tend to underbid to control their expenditures, making
sure not to exceed their budgets (Aggarwal et al., 2019).
However, we show that the idea of selecting representatives
still works.
Definition 3.1. A coordinated bidding strategy is a bid
rotation, if it lets at most one bidder bid non-zero in each
round.

Lemma 3.2 indicates that there always exists a best coordi-
nated bidding algorithm that is a bid rotation. Therefore, it
suffices to consider bid rotation strategies only.

Algorithm 1 Coordinated Pacing (CP)

1: Input: ϵ = 1/
√
T , ξ̄k ≥ v̄k/ρk for all k ∈ K.

2: Select an initial multiplier ξ0 ∈ [0, ξ̄k]
K , and set the

remaining budget of agent k to B̃k,1 = Bk = ρkT .
3: for t = 1 to T do
4: Observe the realization of vt.
5: Select k∗ ∈ argmaxk∈K min{vk,t/(1 + ξk,t), B̃k,t}

(break ties arbitrarily).
6: For each k, post a bid
7: bk,t = min

{
1 {k = k∗} vk,t/(1 + ξk,t), B̃k,t

}
.

8: Observe the the expenditures zt.
9: For each k, update the multiplier by

10: ξk,t+1 = P[0,ξ̄k] (ξk,t − ϵ(ρk − zk,t)).
11: For each k, update the remaining budget by
12: B̃k,t+1 = B̃k,t − zk,t.
13: end for

Lemma 3.2. For any feasible coordinated strategy C, there
exists a feasible bid rotation strategy CP such that every
member’s expected utility under algorithm CP is at least as
good as that under algorithm C.

Hereafter, we divide the algorithm design into two parts: de-
signing the budget control strategies in the real auction and
the selection rule inside the coalition. We use adaptive pac-
ing for the budget management part, and the main difficulty
lies in designing the rule for selecting the representative
bidder each round.

One natural idea is to choose the member with the highest
bid to compete outside the coalition. Such an idea motivates
coordinated pacing (CP, Algorithm 1). In CP, Line 5 shows
the selection step inside the coalition: the one with the
highest bid becomes the winner. In Line 6, the winner posts
the same bid as in the coalition, while others post zero in
the real auction. Finally, the pacing parameters are updated
with the adaptive pacing technique. We note that the step
size can be set in a more general way, with details in the
appendix. Here, we use 1/

√
T to simplify the description.

Now we give our theoretical guarantees for the performance
of CP. First, we make assumptions on the function of bid-
ders’ expected expenditures per round. In the case of CP,
denote the expected expenditure of bidder k under CP to be
GCP

k , which is

GCP
k (ξ) := Ev,dO

[
1 {vk ≥ (1 + ξk)dk} dO

]
.

Assumption 3.3. GCP is strongly monotone in [0, ξ̄k]
K .

Denote the expected utility of bidder k under CP by ΠCP
k .

In the symmetric case, we show that the performance of CP
is better than the benchmark Uk(λ

∗) asymptotically:
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Theorem 3.4. Suppose that Assumption 3.3 holds. When
every bidder has the same value distribution and budget, we
have

lim inf
T→∞

1

T
(ΠCP

k − Uk(λ
∗)) > 0, ∀k ∈ K. (4)

The proof of the theorem is given in Appendix B. To prove
Theorem 3.4, we first show that ξ converges to some equi-
librium ξ∗ and, therefore, the algorithm’s performance con-
verges to the corresponding expected utilities. The problem
then reduces to the comparison of equilibrium utilities. Con-
cretely, we show that ξ∗ ≤ λ∗. This means that as an
entirety, bidders in coalition K are more competitive than
when they independently bid, and therefore the coalition
wins more items. However, the competition inside the coali-
tion also becomes fiercer.

Despite the good performance in the symmetric case, CP
does not outperform the benchmark in all instances. In
some cases, strong bidders may become stronger, and weak
bidders become weaker. To see this, we consider a special
case with two bidders forming a coalition. Bidder 1’s value
is always higher than the bidder 2’s, and the outside com-
peting bid dO is always 0. For IP, which converges to our
benchmark, bidder 1’s expected expenditure per round is
not zero. Therefore her shading parameter is non-zero, so
long as her budget is sufficiently small. There is a chance
that her bid is lower than bidder 2’s, enabling bidder 2 to
compete and win the item. In CP, however, bidder 1 keeps
being selected as the representative, and bidder 2’s expected
utility will be lower than hers in the benchmark. A detailed
experimental example is given in Section 6.

To avoid such cases and outperform the benchmark in all
instances, one way is to independently maintain competition
inside the coalition, giving each member a fair chance to
become the representative. The ideas of bid rotation and
maintaining the competition are important in designing HP,
which we will show next.

4. Hybrid Coordinated Pacing
Inspired by CP (Algorithm 1), we further propose a hybrid
coordinated pacing (HP) algorithm shown in Algorithm 2.
HP ensures that every coalition member can achieve a higher
utility than the benchmark.

More specifically, HP draws a clear line between the internal
election and external competition. In addition to the multi-
plier µk used to compete with bidders outside the coalition,
HP maintains for each bidder k a pseudo multiplier λk for
the internal election. The coalition first holds an internal
election to select a representative and recommends her to
compete with other bidders outside the coalition. When the
value is vk (and the budget is still sufficient), bidder k bids

Algorithm 2 Hybrid Coordinated Pacing (HP)

1: Input: ϵ = 1/
√
T , µ̄k ≥ v̄k/ρk for all k ∈ K.

2: Select an initial multiplier µ1 ∈ [0, µ̄k]
K , let the initial

pseudo multiplier be λ1 = µ1, and set the remaining
budget of agent k to B̃k,1 = Bk = ρkT .

3: for T = 1 to t do
4: Observe the realization of vt.
5: Let bIk,t = min

{
vk,t/(1 + λk,t), B̃k,t

}
and dIk,t =

maxi∈K:i ̸=k b
I
i,t for each k.

6: Select k∗ ∈ argmaxk b
I
k,t (breaking ties arbitrarily).

7: For each k, post a bid
8: bOk,t = min

{
1 {k = k∗} vk,t/(1 + µk,t), B̃k,t

}
.

9: Observe the allocations xt and the expenditures zt.
10: For each k, update the pseudo multiplier by
11: λk,t+1 = P[0,µ̄k]

(
λk,t − ϵ

(
ρk − z′k,t

))
,

12: where z′k,t = 1
{
bIk,t ≥ zk,t

}
max

(
zk,t, xk,td

I
k,t

)
.

13: For each k, update the multiplier by
14: µk,t+1 = P[0,λk,t+1] (µk,t − ϵ (ρk − zk,t)) .
15: For each k, update the remaining budget by
16: B̃k,t+1 = B̃k,t − zk,t.
17: end for

vk/(1+λk) in the internal election, and bids vk/(1+µk) in
the real auction if she wins. To make a good distinction, we
label the two ranking bids as bIk and bOk with superscripts.

By updating λk and µk separately, we are able to make sure
that every member gets at least the same opportunities to bid
outside the coalition and win the item, as they do in IP. To
achieve this, we let the inner dual variables update exactly
as the dual variables in IP. Therefore, in the updating rule of
µk, we require that the inner variable always be greater than
the outer variable, i.e., µk,t ≤ λk,t, so that if an agent wins
at a round in IP, she will also win at the same round in HP.
In this way, HP can observe every necessary expenditure zt
that will be used to update the dual variables in IP.

We denote by GHP
k (µk,λ) bidder k’s expected expenditure

per round when all coalition members shade bids according
to µ and λ (ignoring their budget constraints):

GHP
k (µk,λ) =

Ev,dO

[
1

{
vk

1 + λk
≥ dIk ∧ vk

1 + µk
≥ dO

}
dO

]
,

(5)

and we denote by UHP
k (µk,λ) her corresponding expected

utility in this case:

UHP
k (µk,λ) = T ·

Ev,dO

[
1

{
vk

1 + λk
≥ dIk ∧ vk

1 + µk
≥ dO

}
(vk − dO)

]
.
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We now make the following assumptions.
Assumption 4.1. 1. There exists a constant γ > 0 such

that G = (Gk)
K
k=1 is a γ-strongly monotone function

over
∏K

k=1[0, µ̄k].

2. There exists G′ > 0 such that ∂GHP
k /∂µk < −G′ over∏K+1

k=1 [0, µ̄k] for every bidder k ∈ K.

Assumption 4.1 regularizes the behavior of GHP
k with two

assumptions on λ and µk, respectively. The first one di-
rectly follows from Assumption 2.1, which guarantees the
convergence of λ. Interestingly, we only require G instead
of GHP to be γ-strongly monotone with respect to λ, which
differs from that Theorem 3.4 requires the strong monotonic-
ity of GCP. The second one assures the strict monotonicity
of GHP

k and UHP
k with respect to µk. Intuitively, for a fixed

λ, if both GHP
k and UHP

k strictly decrease in µk, bidder k
tends to decrease µk as long as her budget constraint is not
binding, so as to maximize her utility. Therefore, there ex-
ists a unique equilibrium µ∗

k such that either µ∗
k = 0 or any

µk lower than µ∗
k would break the constraint, and we will

show that the dynamically updated sequence of µk,t con-
verges to such an equilibrium under HP. We further provide
a sufficient condition for the second assumption to hold in
Lemma E.2.
Theorem 4.2. Suppose that Assumption 4.1 holds. We have

lim inf
T→∞

1

T
(ΠHP

k − Uk(λ
∗)) ≥ 0,∀k ∈ K, (6)

and the equality holds for at most one bidder.

Theorem 4.2 establishes that with HP, all but one bidders in
the coalition can get higher utilities, compared to Uk(λ

∗) in
an asymptotic sense. Unlike CP, this performance guarantee
holds in a general setting where bidders may have different
budget constraints or value distributions. It is worth noticing
that, both HP, CP and IP have the same convergence rates.
Therefore, HP and CP are also comparable to IP, taking the
convergence rates into consideration.

To prove Theorem 4.2, we first show the convergence of both
the multipliers µ and the pseudo multipliers λ. Observe
that the update of λk is equivalent to

λk,t+1 = P[0,λ̄k]

(
λk,t − ϵ

(
ρk − 1

{
bIk,t ≥ dk,t

}
dk,t

))
,

(7)
which coincides with the subgradient descent scheme of an
individual adaptive pacing strategy. Note that the Euclidean
projection operator in Line 14 assures that for all t,

µk,t ≤ λk,t =⇒
vk,t

1 + λk,t
≤ vk,t

1 + µk,t
.

Thus by bidding vk,t/(1 + µk,t), we can always discern
1
{
vk,t/(1 + λk,t) ≥ dOt

}
. This provides enough informa-

tion to let the sequence of pseudo multipliers exactly be-
haves as if bidders are independently pacing and converges
to the same λ∗ defined by (2).

At the same time, we show that the sequence of multipliers
µt converges to a unique µ∗, defined by the complementar-
ity conditions,

µ∗
k ≥ 0 ⊥ GHP

k (µ∗
k,λ

∗) ≤ ρk,∀k ∈ K. (8)

Consequently, we show that the expected utility of bidder
k under HP converges to UHP

k (µ∗
k,λ

∗). Finally, the proof
of Theorem 4.2 is concluded by a comparison between
UHP
k (µ∗

k,λ
∗) and Uk(λ

∗).

One may consider whether the inequality can strictly hold
for everyone as in Theorem 3.4. Here we provide a concrete
example in which a bidder gains no utility boost.
Example 4.3. We consider two bidders with no budget
constraints. Bidder 1’s value v1 is uniformly distributed
over [0, 2], while bidder 2’ value v2 is uniformly distributed
over [0, 1] ∪ [4, 5]. The highest competing bid of other
bidders dO follows a uniform distribution over [1, 5]. One
can verify that this instance satisfies Assumption 4.1.

When bidding independently, the optimal strategy for each
bidder is to bid truthfully with respect to second-price auc-
tions, i.e., λ1 = λ2 = 0. Then bidder 1 wins an auction only
if v2 ∈ [0, 1] and v1 ≥ dO ≥ 1, which means her winning
payment is always equal to dO. Therefore, bidder 1 cannot
benefit from forming a coalition with bidder 2.

5. Other Properties of Proposed Algorithms
In this section, we discuss the properties of CP and HP in
the symmetric case. Recall that by showing the performance
of the algorithms converges, we are able to study their utility
properties by analyzing the equilibria they converge to. In
what follows, we will assume the corresponding assump-
tions hold (i.e., Assumptions 2.1, 3.3 and 4.1), and all the
results hold the in an asymptotic sense. We note that since
these equilibria are defined as solutions to non-linear com-
plementarity problems (NCP), and do not have closed forms,
they can have various possibilities and are hard to analyze.
Therefore, we leave the exploitation of their properties in
asymmetric cases as an open question.

5.1. Coalition Welfare Maximization

We first show that CP and HP are the best coordinated algo-
rithms in the sense of coalition welfare maximization and
Pareto optimality. Specifically, we consider the hindsight
maximal coalition welfare, given a realization of (v;dO),
the values and highest bids outside the coalition:

πH
(
v;dO

)
:= max

xk∈{0,1}K×T

T∑
t=1

∑
k∈K

xk,t(vk,t − dOt ),

s.t.
T∑

t=1

xk,td
O
t ≤ Tρk,∀k ∈ K.
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We further say a bidding algorithm C is Pareto optimal in the
symmetric case, if there does not exist another coordinated
bidding algorithm, such that in some symmetric instance,
every bidder’s expected utility is no worse than that under
C, and at least one bidder’s expected utility is strictly better.

Theorem 5.1. When every bidder in the coalition has the
same value distribution and budget, CP and HP maximize
the total expected utility of the coalition asymptotically,

lim inf
T→∞

1

T
(
∑
k∈K

ΠCP/HP − E[πH]) ≥ 0.

Therefore, they are Pareto optimal.

A key of the proof is that the sum of expected utilities CP and
HP converge to,

∑
k∈K UCP

k (ξ∗) and
∑

k∈K UHP
k (µ∗

k,λ
∗),

have the same form as an upper bound of E[πH] in the
symmetric case. The simplicity of CP allows us to use it as
a surrogate to prove the properties of HP.

5.2. Truthfulness on Misreporting Budgets

In this section, we will study how a bidder’s obtained value
and utility at equilibrium change if she misreports her bud-
get, with others truthfully behaving. We assume the values
are publicly known and only consider the possibility that a
bidder may under-report her budget, as over-reporting may
let her total cost exceed her budget.

We directly consider G as a function of ρ: G(ρ) =
G(λ∗) where λ∗ is defined by (2) with respect to ρ.
GCP(ρ),UCP(ρ) and V (ρ) are defined similarly, where

Vk(ρ) = Vk(λ
∗) = T · E [1 {vk ≥ dk} vk]

is bidder k’s expected obtained value under λ∗ in IP. Theo-
rem 5.2 shows that CP is incentive compatible.

Theorem 5.2. Under CP, bidder k’s expected utility UCP
k

will not increase, if she under-reports her budget and others
report budgets truthfully.

Contrary to Theorem 5.1, CP and HP have different forms
when bidders deviate. Recall that IP can be regarded as
a special coordinated bidding algorithm, and the pseudo
parameters of HP converge to the same equilibrium as IP.
Therefore, we study IP first.

Theorem 5.3. Under IP, bidder k’s expected obtained value
Vk will not increase if she under-reports her budget and
others report budgets truthfully.

To prove Theorem 5.2 and 5.3, we compare the equilibrium
the algorithm converges to when bidder k misreports with
that when she truthfully behaves. Note that the equilibria
the algorithms converge to are defined by NCPs, which are

generally difficult to study. We analyze all 8 possible solu-
tions of the corresponding NCPs. By applying the definition
of NCP and strong monotonicity, we show that bidder k’s
average expected obtained value at the equilibrium does not
increase by misreporting.

Theorem 5.3 shows that IP has good incentive compatibility
on obtained values. However, when it comes to utilities,
there are chances that the decrease in cost outweighs that
in value, and a bidder’s utility may overall increase. An
experimental example is shown in the appendix.

Moreover, as the analysis of IP is complicated enough, we
make the incentive problem of HP an open problem. Com-
pared with the intricacy of HP, CP has relative succinct
structure and is easy to analyze.

6. Experiments
It is known that the expected performance of IP converges to
the benchmark equilibrium (Balseiro & Gur, 2019). In this
section, we run IP together with CP and HP to demonstrate
their performance. We first use an example to provide useful
insights. Afterward, we conduct experiments on real-world
and synthetic data, as a supplement to our theoretical results.

6.1. An Asymmetric Example

Consider the example where there are only two bidders in
the coalition. The valuation of bidder 1 is sampled from
the uniform distribution in [0, 1], U [0, 1], with probability
p, and from U [1, 1 + η] otherwise. p, η ∈ (0, 1) are two
small constants. The valuation of bidder 2 is sampled from
U [0, 1]. We consider the extreme case where dOt is always
zero. As a result, the representative bidder in CP or HP has
zero expenditure. For both CP and HP, We set the initial
multipliers and their upper bounds as 0 and µ̄i = 3.0, respec-
tively. We also set ρi = v̄i/µ̄i for each bidder. The strong
monotonicity assumption can be validated experimentally
by computing the minimal marginal monotone parameter
within small grids. When the grid width is 0.003, the value
is 0.035. We use a step size ϵ = 0.1T−0.5.

We demonstrate the empirical simulation of the example in
Figure 1. The experiment is run 1, 000 times, each time with
20, 000 rounds. The average performance is presented. We
can see from the figure that by using CP, bidder 2 receives
lower utility than using IP. This result indicates that CP does
not outperform the benchmark in this instance. Intuitively,
in the extreme case where p → 0, it always holds that
v1,t > v2,t. Since bidder 1’s expenditure per round is always
zero, she can set her parameter as 0. Therefore, bidder 1
always wins the inner election, leaving bidder 2 no chance
to win any item. In comparison, bidder 2 is more likely to
win in IP and HP. The reason is that in IP, bidder 1 has a
positive payment, so she has to lower her bid if her budget

7
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Figure 1. The utility convergence results of an asymmetric exam-
ple. The y-axes are the average utilities across rounds (Πk/T ). CP
does not outperform IP concerning bidder 2’s utility.

is small. This enables bidder 2 to win when bidder 1’s bid is
low enough. In HP, the opportunities for competing outside
the coalition are allocated the same way as in IP. Therefore,
both bidders get chances to win, but their expenditures are
lower than those under IP.

6.2. Experiments on Real Data and Synthetic Data

We present experiments on real-world data to evaluate the
performance of our proposed algorithms, and justify its
robustness through experiments on various synthetic data.

Experiments Set-Up. The real-world data we use, the
iPinYou dataset 1 (Liao et al., 2014; Zhang et al., 2014),
was provided for a real-time bidding competition organized
by iPinYou. We use the testing data of Season 2, which
contains 2, 521, 630 records from 5 different bidders. Each
piece of data contains the information of the user, the ad
slot, and the bid, from which we mainly use the bidding
(winning) price, paying price, and advertiser ID.

We first linearly scale all the bidding prices into [0, 1]. To
make up K coordinated bidders, we randomly divide the
historical bidding records of each of the 5 raw bidders into
K/5 parts. Subsequently, we obtain K bidding records. We
sample the valuation of each coalition member by drawing
with replacement from her corresponding bidding record.
Besides, we sample the highest bid outside the coalition,
dOt , from N (0.5, 0.2). As for the budget, we first select
ρ̄, the mean of the target expenditure ratio, to be 0.01α
with α ∈ {1, . . . , 100}. Then we sample each coalition
member’s target expenditure ratio i.i.d. from N (ρ̄, 0.1). We
set the initial multipliers and their upper bounds as 1.0 and
20.0, respectively. We take step size ϵ = 0.1T−0.5 and
T = 20, 000. At last, we let K ∈ {5, 15}, and run 20
experiments for each setting with different random seeds.

We also manually design different distributions to verify
the superiority of our algorithms. Due to page limits, we
show only one typical example. We set K = 5 and compare

1https://contest.ipinyou.com

the coalition welfare and bidders’ utility improvements in
both symmetric and asymmetric cases, respectively. More
results can be found in Appendix F. For the symmetric
case, we sample each bidder’s value i.i.d. from N (0.5, 0.2)
and let their common target expenditure ratio be 0.01α for
α ∈ {1, · · · , 100}. For the asymmetric case, we sample
each bidder’s value from five different distributions, and
each member’s target expenditure ratio is selected the same
as in real data experiments. For both cases, the highest bid
outside the coalition is also sampled i.i.d. from N (0.5, 0.2).
We note that the experiments of different distributions of
the highest bid outside the coalition were conducted. The
results are shown in Appendix F.

Experimental Results. Figure 2a and 2b show algorithms’
performance in real data. We can see that Both CP and HP
significantly improve coalition welfare compared with IP.
The improvement increases with each member’s budget.
Such a result attributes to the reduction of inner competition
in CP and HP. When bidder’s budgets are large, the inner
competition becomes fiercer under independent bidding.
That is also why in IP, the coalition welfare tends to be 0 as
people’s budgets increase. Moreover, CP is slightly higher
than HP in coalition welfare, whereas the method brings
greater utility variance, and cannot guarantee that everyone
gets better than IP. This coincides with our analysis in Sec-
tion 3 that CP makes the entire coalition more competitive.
A further observation is that the utility improvements of HP
and CP decrease with the increase of K, the coalition size.
The reason is that the number of rounds is fixed, and so
does the number of items to be auctioned. Therefore, each
person’s share decreases as more people join the coalition.

The simulation results are shown in Figure 2c and 2d. In the
symmetric case, we see that CP and HP are identical in both
coalition welfare and utility improvement. This is consistent
with the concrete forms of the algorithms. The asymmetric
case reflects similar characteristics with real data. That is,
HP and CP both improve total welfare significantly. In HP,
all the participants receive higher utilities than in IP. In CP,
the utilities of the vast majority can be improved. All the
experimental results demonstrate the benefits of reducing
the inner competition among members in the coalition.

Recall that the theoretic results predict that the averages
of multipliers will converge. In the experiments, the vari-
ances of the last 100 rounds of the averages of multipliers
are around 10−4, indicating the convergence of multipli-
ers. Further details show that they converge to the point
predicted by our theorems, which are shown in Appendix F.
Therefore, while we did not verify the assumptions made in
previous sections, the experimental results further confirm
the robustness of our algorithms.
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Figure 2. Performance of coordinated pacing (CP) and hybrid coordinated pacing (HP) against individual pacing (IP) in real-data and
simulated data: Figure 2a and 2c show the changes of coalition welfare (

∑
k∈K Πk/T ) with target expenditure ratio varies. Figure 2a

shows the result on iPinYou real data and Figure 2c on the simulated data. Each point is an average of 20 repeated experiments. Figure 2b
and 2d the utility increase of coalition members increase after transferring to CP/HP from IP, captured by (ΠCP/HP

k /T −ΠIP
k /T ) when

the target expenditure rate ranges from 0.1 to 0.3. Figure 2b shows the results on real data, while Figure 2d on simulated data.

7. Conclusion
In this paper, we study designing online coordinated bid-
ding algorithms in repeated second-price auctions with bud-
gets. We propose algorithms that guarantee every coalition
member a better utility than the best they can get under
independent bidding. We analyze the game-theoretic prop-
erties of the algorithms like coalition welfare maximization
and bidders’ incentives to misreport their budget constraints.
Experiment results on both synthetic data and real-world
data show the effectiveness and robustness of our proposed
algorithms.

There are quite a few open problems we can ask about. The
first is whether we can relax the assumptions made in this
paper, e.g., the strong monotonicity of bidders’ expected
expenditure functions. Second, in this paper, we assume
that the highest bid outside the coalition is drawn from a
stationary distribution. Another future work is to assume
that agents outside the coalition also use IP to bid and study
whether CP and HP can still improve every coalition mem-
ber’s utilities, compared to their independent pacing. As
more bidders are taken into consideration, we can also ask
about the fairness of the algorithms, before which an appro-
priate concept of fairness needs to be defined. One can also
consider more complicated game-theoretic scenarios, e.g.,
taking the incentives of the bidding agency into account.
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A. Individual Adaptive Pacing
For the completeness of our work, we present adaptive pacing (Balseiro & Gur, 2019), an optimal individual bidding
algorithm, in Algorithm 3. We omit the subscript k to simplify the notation.

Algorithm 3 Individual Adaptive Pacing (IP)

1: Input: ϵ = 1/
√
T , λ̄ ≥ v̄/ρ.

2: Select an initial multiplier λ1 ∈ [0, λ̄], and set the remaining budget of agent k to B̃1 = B = ρT .
3: for t = 1 to T do
4: Observe the realization of vt.
5: Post a bid bt = min

{
vt

1+λt
, B̃t

}
.

6: Update the multiplier by λt+1 = P[0,λ̄] (λt − ϵ(ρ− zt)).
7: Update the remaining budget by B̃t+1 = B̃t − zt.
8: end for

B. Missing Proofs in Section 3
B.1. Proof of Lemma 3.2

Lemma 3.2. For any feasible coordinated strategy C, there exists a feasible bid rotation strategy CP such that every
member’s expected utility under algorithm CP is at least as good as that under algorithm C.

Proof. Let the bidding profile produced by strategy C be (b1, b2, · · · , bT ). Now randomly choose k ∈ argmax bt. Define
new strategy CP such that bPk,t = bk,t, and bPk′,t = 0 for all k′ ̸= k. This rule guarantees ∀t ∈ [T ], bPt has at most one
non-zero component, which means it is a bid rotation strategy.

For each round t, denote It = argmax bt. if |It| = 1, the bidder with the highest bid produced by CP remains the same
with that of C. The second-highest bid under CP is no more than that under C. Therefore a coalition member will win the
same item and gain the same value as in C, but pay no more than in C, leading to more utility. If |It| > 1, each bidder will
pay at least the price as she does in C. This means CP is feasible. Since the case |It| > 1 has measure zero, every member’s
expected utility under CP is at least as good as that under C.

B.2. Details on the Choice of Step Sizes

In the algorithms presented in the main paper, we use ϵ = 1/
√
T as our step size. Generally, the results in Section 3 hold

when ϵ satisfies the following conditions:

1. v̄ϵ < 1 and 2γϵ < 1;

2. limT→∞ ϵ = 0 and limT→∞ Tϵ = ∞.

One can check it when reading the following proofs.

B.3. Proof of Theorem 3.4

Theorem 3.4. Suppose that Assumption 3.3 holds. When every bidder has the same value distribution and budget, we have

lim inf
T→∞

1

T
(ΠCP

k − Uk(λ
∗)) > 0, ∀k ∈ K. (4)

To show that the performance of Algorithm 1 outperforms the benchmark in symmetric cases, we first prove that it converges
to some equilibrium defined below. With the convergence results, we reduce the problem of comparing the asymptotic
performance of our algorithms with players’ benchmark utility, to that comparing the two equilibrium utilities.

12
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Specifically, fix the pacing variables to be ξ1, · · · , ξK . Let dk := max
{
dIk, d

O
}

, where dIk = maxi∈K:i ̸=k
vi

1+ξi
. We can

compute bidder k’s expected expenditure per auction under Algorithm 1 to be

GCP
k (ξ) := Ev,dO

[
1 {vk ≥ (1 + ξk)dk} dO

]
,

and her corresponding expected utility function is

UCP
k (ξ) := T

(
Ev,dO

[
1 {vk ≥ (1 + ξk)dk}

(
vk − dO

)])
. (9)

Since GCP
k and UCP

k are both decreasing in ξk, consider the equilibrium ξ∗ defined by the following complementarity
conditions:

ξ∗k ≥ 0 ⊥ GCP
k (ξ∗) ≤ ρk,∀k ∈ K. (10)

Since GCP is strongly monotone, ξ∗ exists and is unique.

First, with the help of the pacing strategy, we have the performance of Algorithm 1 converges to UCP
k (ξ∗), in arbitrary

problem instances.

Lemma B.1. Suppose that GCP is strongly monotone. We have

lim inf
T→∞

1

T
(ΠCP

k − UCP
k (ξ∗)) ≥ 0, ∀k ∈ K. (11)

Therefore, the problem reduces to the comparison of equilibrium utilities, Uk(λ
∗) and UCP

k (ξ∗). In the symmetric cases,
we first show that everyone’s pacing parameter is lower compared to λ∗. We can utilize this property, to show that the sets
related to the indicator function in UCP

k are supersets of that in Uk. By further showing that the utilities on those sets are no
less in the former than the latter, we finished the comparison of two equilibria.

Specifically, to prove (4), by Lemma B.1, it suffices to show that

UCP
k (ξ∗) > Uk(λ

∗). (12)

By symmetry, for all k ∈ K, we have

λ∗
k = λ∗

1, and ξ∗k = ξ∗1 ,

Gk(λ
∗) = G1(λ

∗) and GCP
k (ξ∗) = GCP

1 (ξ∗),

Uk(λ
∗) = U1(λ

∗) and UCP
k (ξ∗) = UCP

1 (ξ∗).

Without loss of generality, we assume T = 1, then

Uk(λ
∗) = E

[
1
{
(∀i ∈ K : i ̸= k) (vk ≥ vi) ∧

(
vk ≥ (1 + λ∗

1)d
O
)}

(vk − dk)
]
,

UCP
k (ξ∗) = E

[
1
{
(∀i ∈ K : i ̸= k) (vk ≥ vi) ∧

(
vk ≥ (1 + ξ∗1)d

O
)}

(vk − dO)
]
.

We first show the following lemmas. Notice that in the symmetric setting, we can without loss of generality consider the
case ξk = ξ1 and write GCP

k (ξ) as the function of ξ1. The same holds for other functions as well.

Lemma B.2. Suppose GCP(ξ) is strongly monotone. When every bidder has the same value distribution and budget,
GCP

k (ξ1) is strictly decreasing on [0, ξ̄]. Moreover, the bidders’ expected value function V CP
k (ξ1) under Algorithm 1 is

strictly decreasing on [0, ξ̄]:

V CP
k (ξ1) := E

[
1
{
(∀i ∈ K : i ̸= k) (vk ≥ vi) ∧

(
vk ≥ (1 + ξ1)d

O
)}

vk
]
.

Lemma B.3. ξ∗k < ξ̄k for k ∈ K.

Lemma B.4. For any ξ1 ∈ [0, ξ̄), we have
Gk(ξ1) > GCP

k (ξ1).

13
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Therefore when λ∗ > 0, we must have ξ∗ < λ∗, and GCP
k (ξ∗1) ≤ Gk(λ

∗
1) = ρ1. Similarly, we can define bidder k’s

expected value function with respect to the benchmark, and it coincides with V CP
k . Moreover, since GCP

k and V CP
k are

strictly decreasing, we have

Uk(λ
∗
1) = V CP

k (λ∗
1)−Gk(λ

∗
1)

< V CP
k (ξ∗1)−GCP

k (ξ∗1) = UCP
k (ξ∗1).

When λ∗ = 0, we have GCP
k (0) < Gk(0) ≤ ρk, which means ξ∗ = 0. Therefore

Uk(λ
∗
1) = Uk(0) = V CP

k (0)−Gk(0) < V CP
k (0)−GCP

k (0) = Uk(ξ
∗
1).

This completes the proof.

B.4. Missing Proofs of Lemmas in Theorem 3.4

In the following proofs of the lemmas, Denote the support of F := (F1, . . . , FK , H) to be Supp(F ). That is, for any
(v, dO) ∈ Supp(F ) ⊆ RK+1, fi(vi) > 0, for any i ∈ K and h(dO) > 0. When we talk about sets of (v, dO), we consider
the subsets of Supp(F ) without claiming explicitly. For any subsets of {vi}Ki=1 ∪ {dO}, we denote their supports similarly.
For example, Supp(Fi, Fj) :=

{
(v, dO) ∈ RK+1 : fi(vi) > 0 ∧ fj(vj) > 0

}
.

Due to the convergence of the pacing strategies, the proof of Lemma B.1 is analogous to that in Balseiro & Gur (2019),
which we shall omit here.
Lemma B.2. Suppose GCP(ξ) is strongly monotone. When every bidder has the same value distribution and budget,
GCP

k (ξ1) is strictly decreasing on [0, ξ̄]. Moreover, the bidders’ expected value function V CP
k (ξ1) under Algorithm 1 is

strictly decreasing on [0, ξ̄]:

V CP
k (ξ1) := E

[
1
{
(∀i ∈ K : i ̸= k) (vk ≥ vi) ∧

(
vk ≥ (1 + ξ1)d

O
)}

vk
]
.

Proof. We first show that GCP
k is strictly decreasing. For any ξ1 < ξ′1,

(ξ1 − ξ′1)
(
GCP

k (ξ1)−GCP
k (ξ′1)

)
=(ξ1 − ξ′1)E

[
1
{
(∀i ∈ K : i ̸= k) (vk ≥ vi) ∧

(
(1 + ξ′1)d

O > vk ≥ (1 + ξ1)d
O
)}

dO
]

=1/K(ξ11− ξ′11)
(
GCP(ξ11)−GCP(ξ′11)

)
< 0.

Moreover, we have
Claim B.5. For ξ1, ξ′1 ∈ [0, ξ̄] such that ξ1 < ξ′1,{

(∀i ∈ K : i ̸= k) (vk ≥ vi) ∧
(
(1 + ξ′1)d

O > vk ≥ (1 + ξ1)d
O
)}

has non-zero measure.

Then

V CP
k (ξ1)− V CP

k (ξ′1) = E
[
1
{
(∀i ∈ K : i ̸= k) (vk ≥ vi) ∧

(
(1 + ξ′1)d

O > vk ≥ (1 + ξ1)d
O
)}

vk
]
> 0.

This completes the proof.

Lemma B.3. ξ∗k < ξ̄k for k ∈ K.

Proof. ξ∗k < ξ̄k because

GCP
k

(
ξ̄k, ξ

∗
−k

)
= E

[
1

{
vk

1 + ξ̄k
≥ dk

}
dO

]
(a)
≤ E

[
1

{
vk

1 + v̄k/ρk
≥ dk

}
dO

]
≤ vk

1 + v̄k/ρk
< ρk,

where (a) follows from ξ̄k ≥ v̄k/ρk.
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Lemma B.4. For any ξ1 ∈ [0, ξ̄), we have
Gk(ξ1) > GCP

k (ξ1).

Proof. Since

g(ξ1) := Gk(ξ1)−GCP
k (ξ1) =

∫
x

F̄ (x)

∫ x
1+ξ1

0

H(y) dy dL ≥ 0,

where F̄ (x) = 1− F (x) and L is the cumulative probability function of dIk := maxi∈K:i ̸=k vi.

Since by Claim B.5 and the identical independence of bidders’ distributions, we have, for any ξ1 ∈ [0, ξ̄),{
dIk ≥ (1 + ξ1)d

O
}

and
{
vk ≥ dIk

}
have non-zero measure, and therefore E

[
1
{
vk ≥ dIk

}
1
{
dIk ≥ (1 + ξ1)d

O
}
dIk/(1 + ξ1)

]
> 0.

Note that for any ξ1 ∈ [0, ξ̄),

dg

dξ1
= −

∫
x

x

(1 + ξ1)2
F̄ (x)H(

x

1 + ξ1
) dx dL = − 1

1 + ξ1
E
[
1
{
vk ≥ dIk

}
1
{
dIk ≥ (1 + ξ1)d

O
}
dIk/(1 + ξ1)

]
< 0.

We have Gk(ξ1) > GCP
k (ξ1). This completes the proof.

B.5. Other properties of CP in General Cases

In symmetric cases, ξ∗ ≤ λ∗. Here, we show this holds in general cases under mild conditions.
Lemma B.6. If it holds that for any k ∈ K,{

vk
1 + ξ∗k

≥ dO
}

⊊
{

vk
1 + λ∗

k

≥ dO
}
.

then,

λ∗ ≥ ξ∗. (13)

For example, the “if” condition holds when there exists c > 0, such that H(dO) ̸= 0, for dO ∈ (0, c). As H is the cdf of dO

and is an increasing function, this is equivalent to saying H(dO) > 0 for all dO > 0.

Proof. Writing down the specific formulation of Gk and GCP
k respectively, we have

Gk(λ) = E
[
1

{
vk

1 + λk
≥ max

{
max
i ̸=k

vi
1 + λi

, dO
}}

max

{
max
i ̸=k

vi
1 + λi

, dO
}]

= E

∏
i̸=k

1

{
vk

1 + λk
≥ vi

1 + λi

}
1

{
vk

1 + λk
≥ dO

}
max

{
max
i ̸=k

vi
1 + λi

, dO
} ,

GCP
k (ξ) = E

[
1

{
vk

1 + ξk
≥ max

{
max
i ̸=k

vi
1 + ξi

, dO
}}

dO
]

= E

∏
i̸=k

1

{
vk

1 + ξk
≥ vi

1 + ξi

}
1

{
vk

1 + ξk
≥ dO

}
dO

 .

Now suppose for the sake of contradiction, ξ∗i > λ∗
i for i ∈ {1, . . . , s}, for some s ≤ K, and ξ∗i ≤ λ∗

i for i > s. Consider
k = 1, and we have GCP

1 (ξ∗) = ρ1. Since ξ∗i ≤ λ∗
i for i > s, we have,{

v1
1 + ξ∗1

≥ vi
1 + ξ∗i

}
⊆

{
v1

1 + λ∗
1

≥ vi
1 + λ∗

i

}
,∀ i > s; (14)
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Since ξ∗1 > λ∗
1, we have, {

v1
1 + ξ∗1

≥ dO
}

⊊
{

v1
1 + λ∗

1

≥ dO
}
. (15)

To make GCP
1 (ξ∗1) = ρ1 ≥ G1(λ

∗
1), there must exist σ(1) ∈ {2, . . . , s}, such that{

v1
1 + ξ∗1

≥
vσ(1)

1 + ξ∗σ(1)

}
⊋

{
v1

1 + λ∗
1

≥
vσ(1)

1 + λ∗
σ(1)

}
,

since otherwise, {
v1

1 + ξ∗1
≥ max

{
max
i̸=1

vi
1 + ξ∗i

, dO
}}

⊊
{

v1
1 + λ∗

1

≥ max

{
max
i ̸=1

vi
1 + λ∗

i

, dO
}}

.

Since max
{
maxi ̸=1

vi
1+λ∗

i
, dO

}
≥ dO, we have G1(λ

∗) > GCP
1 (ξ∗), contradicting that GCP

1 (ξ∗1) ≥ G1(λ
∗
1).

This means that
1 + ξ∗1

1 + ξ∗σ(1)
<

1 + λ∗
1

1 + λ∗
σ(1)

.

Similarly, for σ(1), we have σ2(1) ∈ {1, . . . , s}, and moreover

1 + ξσℓ−1(1)

1 + ξσℓ(1)

<
1 + λσℓ−1(1)

1 + λσℓ(1)

, for ℓ = 0, 1, . . . and σℓ(1) ∈ {1, . . . , s}

Since s < ∞, there must exist ℓ0, such that 1 = σℓ0(1). Let us multiply the above inequalities from 0 to ℓ0, we have

1 =

ℓ0∏
ℓ=0

1 + ξσℓ−1(1)

1 + ξσℓ(1)
<

ℓ0∏
ℓ=0

1 + λσℓ−1(1)

1 + λσℓ(1)
= 1,

leading to a contradiction.

C. Omitted Proofs in Section 4
C.1. Details on the Choice of Step Sizes

In the algorithms presented in the main paper, we use ϵ = 1/
√
T as our step size. Generally, the results in Section 4 hold

when ϵ satisfies the following conditions:

• v̄ϵ < 1, 2γϵ < 1 and G′ϵ < 1;

• limT→∞ ϵ = 0 and limT→∞ Tϵ3/2 = ∞.

One can check it when reading the following proofs.

C.2. Proof of Theorem 4.2

Theorem 4.2. Suppose that Assumption 4.1 holds. We have

lim inf
T→∞

1

T
(ΠHP

k − Uk(λ
∗)) ≥ 0,∀k ∈ K, (6)

and the equality holds for at most one bidder.
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First, we show Line 11 in Algorithm 2 is equivalent to (7).

z′k,t = 1
{
bIk,t ≥ zk,t

}
max

(
zk,t, xk,td

I
k,t

)
= 1

{
bIk,t ≥ xk,td

O
t

}
max

(
xk,td

O
t , xk,td

I
k,t

)
= 1

{
bIk,t ≥ xk,td

O
t

}
xk,tdk,t.

When xk,t = 1, as bidder k wins both the internal election and the real auction, we have bOk,t ≥ dOt and bIk,t ≥ dIk,t. Hence,

z′k,t = 1
{
bIk,t ≥ dOt

}
dk,t = 1

{
bIk,t ≥ dk,t

}
dk,t.

When xk,t = 0, either bOk,t < dOt or bIk,t < dIk,t holds. If bIk,t ≥ dIk,t, we have bIk,t ≤ bOk,t < dOt ≤ dk,t, so in either case

z′k,t = 0 = 1
{
bIk,t ≥ dk,t

}
dk,t.

As the update of λk coincides with the subgradient descent scheme of an individual adaptive pacing strategy, we can apply
the results in Balseiro & Gur (2019) to characterize the convergence of the sequence of pseudo multipliers. In what follows

we use the standard norm notation ∥y∥p :=
(∑K

k=1 |yk|p
)1/p

for a vector y ∈ RK .

Lemma C.1 (Balseiro & Gur (2019)). Suppose that Assumption 2.1 holds. There exists a unique λ∗ that satisfies (2) and

lim
T→∞

1

T

T∑
t=1

E [∥λt − λ∗∥1] = 0.

The following Lemma C.2 establishes a similar convergence result for multipliers µ.

Lemma C.2. For each k, there exists a unique µ∗
k ≤ λ∗

k that satisfies (8) and for each k ∈ K,

lim
T→∞

1

T

T∑
t=1

E [|µk,t − µ∗
k|] = 0.

Lemma C.1 and Lemma C.2 ensure the existence and uniqueness of (µ∗,λ∗), so that we can bound the expected payoffs
with a well-defined UHP

k (µ∗
k,λ

∗
k).

Lemma C.3.

lim inf
T→∞

Bk=ρkT

1

T
(ΠHP

k − UHP
k (µ∗

k,λ
∗)) ≥ 0. (16)

Lemma C.3 establishes that the expected performance of Algorithm 2 can be asymptotically lower bounded by UHP
k (µ∗

k,λ
∗
k).

The proof of Lemma C.3 consists of two parts. We first use the fact that budgets are not depleted too early as shown in the
proof of Lemma C.2. Then we use that the expected utility functions are Lipschitz continuous as argued in Corollary E.3.

With Lemma C.3 in hand, it only remains to show that UHP
k (µ∗

k,λ
∗) ≥ Uk(λ

∗). Since λ∗
k ≥ µ∗

k ≥ 0 by Lemma C.2, we
first have

UHP
k (µ∗

k,λ
∗) := T · Ev,dO

[
1

{
vk

1 + λ∗
k

≥ dIk ∧ vk
1 + µ∗

k

≥ dO
}
(vk − dO)

]
≥ T · Ev,dO

[
1

{
vk

1 + λ∗
k

≥ dIk ∧ vk
1 + λ∗

k

≥ dO
}
(vk − dO)

]
= UHP

k (λ∗
k,λ

∗).

Then we decompose UHP
k (λ∗

k,λ
∗) into two parts, V HP

k (λ∗
k,λ

∗) and GHP
k (λ∗

k,λ
∗), where V HP

k (µk,λ) is defined by

V HP
k (µk,λ) = Ev,dO

[
1

{
vk

1 + λk
≥ dIk ∧ vk

1 + µk
≥ dO

}
vk

]
, (17)
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and GHP
k (µk,λ) defined by (5). We also decompose the benchmark Uk(λ

∗) into Vk(λ
∗) and Gk(λ

∗), where Vk(λ) is
defined by

Vk(λ) = Ev,dO

[
1

{
vk

1 + λk
≥ dk

}
vk

]
, (18)

and Gk(λ) is defined by (1). Observe that V HP
k (λ∗

k,λ
∗) = Vk(λ

∗).

Therefore, we have

UHP
k (µ∗

k,λ
∗) ≥ UHP

k (λ∗
k,λ

∗) = T · V HP
k (λ∗

k,λ
∗)− T ·GHP

k (λ∗
k,λ

∗)

= T · Vk(λ
∗)− T ·GHP

k (λ∗
k,λ

∗)

(a)
≥ T · Vk(λ

∗)− T ·Gk(λ
∗) = Uk(λ

∗),

where (a) follows from Lemma E.4, which also indicates that the equality strictly holds with at most one bidder.

We defer the proofs of key lemmas to the next subsection. It is worth mentioning that the proof techniques differ from
those of the similar results in previous work in the following ways: (1) First, the expected utility and expenditure functions
are more complicated as they involve two multiplier vectors. (2) Second, Algorithm 2 imposes Euclidean projection with
different intervals on µk in different rounds, i.e., [0, λk,t+1] on µk,t+1, so it is subtle to deal with the positive projection
errors.

C.3. Proof of Lemmas in Theorem 4.2

Lemma C.2. For each k, there exists a unique µ∗
k ≤ λ∗

k that satisfies (8) and for each k ∈ K,

lim
T→∞

1

T

T∑
t=1

E [|µk,t − µ∗
k|] = 0.

Proof. Step 1: Existence and uniqueness of µ∗. By Lemma C.1, λ∗ defined by (2) exists and is unique. By Lemma E.4,
we have

GHP
k (λ∗

k,λ
∗) ≤ Gk(λ

∗). (19)

As GHP
k (µk,λ) is continuous and strictly decreases in µk by Assumption 4.1 and Gk(λ

∗) ≤ ρk by the definition of λ∗, we
can find a unique µ∗

k ∈ [0, λ∗
k] that satisfies µ∗

k ≥ 0 ⊥ GHP
k (µ∗

k,λ
∗) ≤ ρk.

Step 2: bounding the ending time. Let τk = sup{t ≤ T : Bk,t ≥ v̄k} be the last period in which bidder k’s remaining
budget is larger than her maximum value, and let τ = mink τk. We denote by Pk,t the projection error introduced by Line 14
of Algorithm 2:

Pk,t := µk,t − ϵ(ρk − zk,t)− P[0,λk,t+1] (µk,t − ϵ(ρk − zk,t)) ,

and then µk,t+1 = µk,t − ϵ(ρk − zk,t)− Pk,t. Summing up from t = 1 to τk, we have

τk∑
t=1

(zk,t − ρk) =
µk,τk+1 − µk,1

ϵ
+

1

ϵ

τk∑
t=1

Pk,t ≤
µk,τk+1

ϵ
+

1

ϵ

τk∑
t=1

P+
k,t.

When τk < T , bidder k hits her budget constraint in round τk + 1, so we should have
∑τk

t=1 zk,t ≥ ρkT − v̄k. Together
with µk,t ≤ λk,t ≤ µ̄k, we obtain

T − τk ≤ v̄k
ρk

+
µ̄k

ϵρk
+

1

ϵρk

T∑
t=1

P+
k,t. (20)

Note that inequality (20) also trivially holds when τk = T since all the terms on the right hand side are positive.
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Now we bound P+
k,t on the right hand side of (20). We first show that there is no positive projection error introduced by

Line 11 of Algorithm 2 whenever ϵv̄k ≤ 1.

λk,t − ϵ
(
ρ− z′k,t

) (a)
≤λk,t + ϵ

(
bIk,t − ρk

) (b)
≤ λk,t +

ϵv̄k
1 + λk,t

− ϵρk

(c)
≤µ̄k +

ϵv̄k
1 + µ̄k

− ϵρk
(d)
≤ µ̄k,

where (a) follows from z′k,t = 1
{
bIk,t ≥ dk,t

}
dk,t; (b) holds by bIk,t ≤ vk/(1 + λk,t) ≤ v̄k/(1 + λk,t); (c) holds since

λk,t + ϵv̄k/(1 + λk,t) increases in λk,t whenever ϵv̄k ≤ 1; and (d) holds since µ̄k ≥ v̄k/ρk. As a result, λk,t+1 ≥
λk,t − ϵ(ρk − z′k,t), and we have

P+
k,t = (µk,t − ϵ(ρk − zk,t)− λk,t+1)

+

≤
(
µk,t − λk,t + ϵ

(
zk,t − z′k,t

))+
.

Since µk,t ≤ λk,t, P+
k,t > 0 is only possible when dOt = zk,t > z′k,t = 0. In this case, bidder k is the final winner with

bOk,t ≥ dOt but she could not have won if using bIk,t < dOt as her final bid. We have

P+
k,t ≤

(
µk,t − λk,t + ϵdOt

)+ ≤ ϵdOt ≤ ϵbOk,t =
ϵvk,t

1 + µk,t
≤ ϵv̄k, (21)

which also implies that a positive error requires λk,t − µk,t < ϵdOt . Then we can bound the probability as follows,

P [Pk,t > 0] ≤ P
[
dOt ∈

(
bIk,t, b

O
k,t

]]
≤ P

[
dOt ∈

(
vk,t

1 + µk,t + ϵdOt
,

vk,t
1 + µk,t

]]
,

≤ ϵdOt vk,t
(1 + µk,t)(1 + µk,t + ϵdOt )

h ≤ ϵv̄2kh, (22)

where we denote by h by the upper bound on the density funciton of dOt .

Combining (21) and (22), we have
EdO

t

[
P+
k,t | Hk,t

]
≤ ϵ2v̄3kh. (23)

Taking expectations over (20) we have

E [T − τk] ≤
v̄k
ρk

+
µ̄k

ϵρk
+

Tϵv̄3kh

ρk
,

and thus

E [T − τ ] ≤ v̄

ρ
+

µ̄

ϵρ
+

Tϵv̄3h

ρ
, (24)

where v̄ = maxk v̄k, ρ = mink ρk and µ̄ = maxk µ̄k.

Step 3: bounding the mean absolute errors. We consider the update formula of µk,t to prove that the sequence converges
to µ∗

k.

(µk,t+1 − µ∗
k)

2
(a)
≤

(
µk,t − ϵ (ρk − zk,t)− P+

k,t − µ∗
k

)2

= (µk,t − µ∗
k)

2 − 2ϵ (ρk − zk,t) (µk,t − µ∗
k) + ϵ2 (ρk − zk,t)

2

+ (P+
k,t)

2 − 2P+
k,t (µk,t − ϵ (ρk − zk,t)− µ∗

k)

(b)
≤ (µk,t − µ∗

k)
2 − 2ϵ(ρk − zk,t)(µk,t − µ∗

k) + ϵ2v̄2k + (P+
k,t)

2 + 2P+
k,tµ̄k, (25)

where (a) follows from a standard contraction property of the Euclidean projection operator and (b) is due to (ρk−zk,t)
2 ≤ v̄2k

and µk,t − ϵ(ρk − zk,t) > λk,t+1 ≥ 0 when P+
k,t > 0.
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Define δk,t = E
[
(µk,t − µ∗

k)
21 {t ≤ τ}

]
. Taking expectations on (25) we obtain

δk,t+1

(a)
≤ δk,t − 2ϵE

[
(ρk −GHP

k (µk,t,λt))(µk,t − µ∗
k)
]
+ ϵ2v̄2k + E

[
(P+

k,t)
2
]
+ 2µ̄kE

[
P+
k,t

]
(b)
≤ δk,t + 2ϵE

[
(GHP

k (µk,t,λt)− ρk)(µk,t − µ∗
k)
]
+ ϵ2

(
v̄2k + ϵv̄4kh+ 2µ̄kv̄

3
kh

)︸ ︷︷ ︸
R

(26)

where (a) holds since 1 {t ≤ τ} monotonically decreases with t and the expectation of zk,t is Gk(µk,t,λt) conditioned on
µk,t and λt; (b) holds by inequalities (21) and (22). For the second term in (26), we have(

GHP
k (µk,t,λt)− ρk

)
(µk,t − µ∗

k) =
(
GHP

k (µk,t,λt)−GHP
k (µ∗

k,λ
∗) +GHP

k (µ∗
k,λ

∗)− ρk
)
(µk,t − µ∗

k)

(a)
≤ (GHP

k (µk,t,λt)−GHP
k (µ∗

k,λ
∗))(µk,t − µ∗

k)

(b)
≤ −G′ (µk,t − µ∗

k)
2
+ v̄2kf̄ |µk,t − µ∗

k|∥λt − λ∗∥1
(c)
≤ −G′ (µk,t − µ∗

k)
2
+

G′

2
(µk,t − µ∗

k)
2
+

v̄4kf̄
2

2G′ ∥λt − λ∗∥22

= −G′

2
(µk,t − µ∗

k)
2 +

v̄4kf̄
2

2G′ ∥λt − λ∗∥22, (27)

where (a) holds by ρk −GHP
k (µ∗

k,λ
∗) ≥ 0, µk,t ≥ 0 and µ∗

k(ρk −GHP
k (µ∗

k,λ
∗)) = 0; (b) follows from Lemma E.2 and f̄

denotes the upper bound on fk; (c) holds by AM-GM inequality. Together with (26) one has

δk,t+1 ≤
(
1− ϵG′) δk,t + ϵv̄4kf̄

2

G′ ηt + ϵ2R,

where ηt = E
[
∥λt − λ∗∥221 {t ≤ τ}

]
. The recursion gives

δk,t ≤
(
1− ϵG′)t−1

µ̄2
k +

t−1∑
s=1

(
1− ϵG′)t−1−s

(
ϵv̄4kf̄

2

G′ ηs + ϵ2R

)
.

By the result of Balseiro & Gur (2019), we have

ηt ≤ Kµ̄2
k (1− 2γϵ)

t−1
+

Kv̄2k
2γ

ϵ.

Thus we have

δk,t ≤
(
1− ϵG′)t−1

µ̄2
k +

ϵKµ̄2
kv̄

4
kf̄

2

G′

t−1∑
s=1

(
1− ϵG′)t−1−s

(1− 2γϵ)
s−1

+

(
Kv̄6kf̄

2

2γG′ +R

)
ϵ2

t−1∑
s=1

(
1− ϵG′)t−1−s

≤ (1− ϵR1)
t−1

µ̄2
k + ϵR2

t−1∑
s=1

(1− ϵR1)
t−2

+R3ϵ
2
t−2∑
s=0

(1− ϵR1)
s

≤ (1− ϵR1)
t−1

µ̄2
k + ϵR2(t− 1) (1− ϵR1)

t−2
+ ϵ

R3

R1
,

where we denote min{G′, 2γ} by R1, Kµ̄2
kv̄

4
kf̄

2

G′ by R2 and
(

Kv̄6
kf̄

2

2γG′ +R
)

by R3.
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Consider the sum of square roots of δk,t,

T∑
t=1

δ
1/2
k,t

(a)
≤

T∑
t=1

(1− ϵR1)
(t−1)/2

µ̄k +

T∑
t=1

ϵ1/2
√

R3

R1
+

T∑
t=1

ϵ1/2
√
R2(t− 1) (1− ϵR1)

(t−2)/2

(b)
≤ 2µ̄k

ϵR1
+ Tϵ1/2

√
R3

R1
+ ϵ1/2

√
R2

T−1∑
t=1

t (1− ϵR1)
(t−1)/2

(c)
≤ 2µ̄k

ϵR1
+ Tϵ1/2

√
R3

R1
+

4
√
R2

ϵ3/2R2
1

, (28)

where (a) holds since
√
x+ y ≤

√
x+

√
y for x, y ≥ 0, (b) follows from

∑T
t=1 (1− ϵR1)

(t−1)/2 ≤
∑∞

t=0 (1− ϵR1)
t/2

=
1

1−
√
1−ϵR1

≤ 2
ϵR1

, and (c) follows from
∑T−1

t=1 t (1− ϵR1)
(t−1)/2 ≤ 1

(1−
√
1−ϵR1)

2 ≤ 4
ϵ2R2

1
.

Combining (24) and (28), we obtain

T∑
t=1

E [|µk,t − µ∗
k|] =

T∑
t=1

E [|µk,t − µ∗
k|1 {t ≤ τ}+ |µk,t − µ∗

k|1 {t > τ}]

(a)
≤

T∑
t=1

δ
1/2
k,t + µ̄kE [T − τ ]

≤ 2µ̄

ϵR1
+ Tϵ1/2

√
R3

R1
+

4
√
R2

ϵ3/2R2
1

+
v̄µ̄

ρ
+

µ̄2

ϵρ
+

Tϵv̄3µ̄h

ρ
,

where (a) holds by E [|y|] ≤
√

E [y2]. Dividing by T , the result then follows because each term goes to zero when
ϵ ∼ T−1/2.

Lemma C.3.

lim inf
T→∞

Bk=ρkT

1

T
(ΠHP

k − UHP
k (µ∗

k,λ
∗)) ≥ 0. (16)

Proof. In the proof we consider an alternate framework in which bidders ignore their budgets, i.e., each bidder k can post
bIk,t =

vk,t

1+λk,t
, bOk,t =

vk,t

1+µk,t
and make payments even after depleting her budget. Let τ = sup{t ≤ T : ∀k,Bk,t ≥ v̄k} be

the last period in which the remaining budget of every bidder is larger than her maximum value. The performance of both
the original and the alternate frameworks coincide until time τk. Let uk,t be bidder k’s payoff at round t in the alternate
framework. We have

ΠHP
k

(a)
≥

τ∑
t=1

E [uk,t]
(b)
≥

T∑
t=1

E [uk,t]− v̄kE [T − τ ] , (29)

where (a) holds by discarding all auctions after τ and (b) holds since uk,t ≤ v̄k.

We next give a lower bound on the expected utility per auction.

E [uk,t]
(a)
= E

[
1

T
UHP
k (µk,t,λt)

]
(b)
≥ 1

T
UHP
k (µ∗

k,λ
∗)−Kv̄2kf̄E [∥λt − λ∗∥1]− v̄2k

(
h̄+ f̄

)
E [|µk,t − µ∗

k|] ,

where (a) holds by using the independence of vt and dOt from the multipliers and taking conditional expectations; and (b)
holds by the Lipschitz continuity of UHP

k /T from Corollary E.3. Summing over t = 1, . . . , T , we obtain

T∑
t=1

E [uk,t] ≥ UHP
k (µ∗

k,λ
∗)−Kv̄2kf̄︸ ︷︷ ︸

C1

T∑
t=1

E [∥λt − λ∗∥1]− v̄2k
(
h̄+ f̄

)︸ ︷︷ ︸
C2

T∑
t=1

E [|µk,t − µ∗
k|] , (30)
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By the result from Balseiro & Gur (2019) and Equation (28) in Lemma C.2, there exist positive constants C3 through C7

such that
T∑

t=1

E [∥λt − λ∗∥1] ≤
C3

ϵ
+ C4ϵ

1/2T. (31)

T∑
t=1

E [|µk,t − µ∗
k|] ≤

C5

ϵ
+ C6ϵ

1/2T +
C7

ϵ3/2
. (32)

Note that the sequences of multipliers in (31) and (32) are those in the alternate framework, so we do not involve 1 {t < τ}
as we did in Lemma C.2.

Putting (29), (30), (31), (32) and (24) together, we obtain

ΠHP
k ≥ UHP

k (µ∗
k,λ

∗)− C1C3 + C2C5

ϵ
− (C1C4 + C2C6)ϵ

1/2T − C2C7

ϵ3/2
− v̄2

ρ
− v̄µ̄

ϵρ
− Tϵv̄4h

ρ
,

which concludes the proof. In particular, a selection of step size of order ϵ ∼ T−1/2 guarantees a long-run average
convergence rate of order T−1/4.

D. Omitted Proofs in Section 5
D.1. Proof of Theorem 5.1

Theorem 5.1. When every bidder in the coalition has the same value distribution and budget, CP and HP maximize the
total expected utility of the coalition asymptotically,

lim inf
T→∞

1

T
(
∑
k∈K

ΠCP/HP − E[πH]) ≥ 0.

Therefore, they are Pareto optimal.

Proof. As it has been shown in Lemma B.1 that the performance of CP with respect to each bidder k, ΠCP
k , converges to

UCP
k (ξ∗). It suffices for us to show

∑
k∈K UCP

k (ξ∗) is an upper bound of E[πH].

Rewrite the form of πH for a realization of values and the highest bids outside the coalition (v,dO):

πH
(
v,dO

)
:= max

x∈{0,1}K×T

T∑
t=1

∑
k∈K

xk,t(vk,t − dOt ),

s.t.
T∑

t=1

xk,td
O
t ≤ Tρk,∀k ∈ K.

(33)

Introduce Lagrangian multipliers for each budget constraint. The Lagrangian of optimization problem (33) is

L(v,dO;µ) =

T∑
t=1

x⊤
t (vt − dOt e) + µ⊤

T∑
t=1

(
−dOt xt + Tρ

)
=

T∑
t=1

x⊤
t (vt − dOt (e+ µ)) + ρ⊤µ.

where e is all-one vector.

The dual problem is therefore given by

inf
µ≥0

sup
x

L(µ,x) = inf
µ≥0

{
max
k∈K

(
vk,t − (1 + µk)d

O
t

)+
+ ρ⊤µ

}
=: inf

µ≥0
ϕ(µ),
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which serves an upper bound of πH. Take expectations on both sides,

E
[
πH

]
≤ E

[
inf
µ≥0

ϕ(µ)

]
≤ inf

µ≥0
E [ϕ(µ)] = inf

µ≥0

{
E
[
max
k∈K

(
vk,t − (1 + µk)d

O
t

)+]
+ ρ⊤µ

}
=: inf

µ≥0
Φ(µ).

Denote the expected expenditure per auction of each bidder k to be

GS
k(µ) = E

[
1
{
k ∈ argmaxk′∈K

(
vk′,t − (1 + µk′)dOt

)}
1
{
vk,t ≥ (1 + µk)d

O
t

}
dOt

]
.

Then by the Karush-Kuhn-Tucker condition, the optimal dual solution µ∗∗satisfies the complementarity condition, which is

GS
k(µ

∗∗) ≤ ρk ⊥ µ∗∗
k ≥ 0,∀k ∈ K

and the corresponding expected utility of bidder k is

US
k (µ

∗∗) = E
[
1
{
k ∈ argmaxk′∈K

(
vk′,t − (1 + µ∗∗

k′ )dOt
)}

1
{
vk′,t ≥ (1 + µ∗∗

k′ )dOt
} (

vk′,t − dOt
)]

.

When every bidder has the same distribution and budget, we have µ∗∗
k = µ∗∗

1 for any k ∈ K, and ξ∗k = ξ∗1 , where ξ∗ are the
equilibria parameters defined by (10). Recall the forms of GCP

k and UCP
k in this case,

GCP
k (ξ∗) = E

[ ∏
k′∈K

1 {vk,t ≥ vk′,t}1
{
vk,t ≥ (1 + ξ∗k)d

O
t

}
dOt

]
,

UCP
k (ξ∗) = E

[ ∏
k′∈K

1 {vk,t ≥ vk′,t}1
{
vk,t ≥ (1 + ξ∗k)d

O
t

} (
vk,t − dOt

)]
.

(34)

We show GS
k(µ) and US

k (µ) have the same form as (34), when bidders are homogeneous. Then by the uniqueness of ξ∗, we
have ξ∗ = µ∗∗. Moreover, we can conclude that CP maximizes the sum of bidders’ utilities in expectation.

To show the two expected expenditures per auction and the total expected utilities have the same form, it suffices to
show that the sets where the statements of the indicator functions hold are equal. Specifically, notice that the set
{k ∈ argmaxk′∈K (vk′,t − (1 + µk′))} can be rewritten as ∩k′∈K

{
vk,t − (1 + µk)d

O
t ≥ vk′,t − (1 + µk′)dOt

}
. Moreover,

when µk = µ1,

vk,t − (1 + µk)d
O
t ≥ vk′,t − (1 + µk′)dOt ⇔ vk,t ≥ vk′,t.

This completes the proof for CP. To show the results of HP, just notice that at equilibrium, the expected expenditures per
auction and the total expected utilities of HP has the same form as those of CP.

D.2. Proof of Theorem 5.2

Theorem 5.2. Under CP, bidder k’s expected utility UCP
k will not increase, if she under-reports her budget and others

report budgets truthfully.

Proof. Let the expenditure rate of a member be ρ. By symmetry, all members’ equilibrium parameters are the same:
ξ∗ = ξ∗e for some ξ∗ ∈ [0, ξ̄]. When bidder k misreports a rate ρ′ < ρ, denote her corresponding equilibrium parameter to
be ξ∗k and that of other member i to be ξ∗1 . By a slight abuse of notation, we let GCP

i be the function of (ξ1, ξk), the first
parameter for other bidders, and the second for bidder k. Without loss of generality, let k ̸= 1, and we only consider the
truthful bidder 1 as other truthful bidders behave the same. We write down the form of GCP

i and UCP
i :

GCP
k (ξ∗, ξ∗) = E

[
1

{
vk ≥ max

i ̸=k
vi

}
1
{
vk ≥ (1 + ξ∗)dO

}
dO

]
= GCP

1 (ξ∗, ξ∗) ≤ ρ, (35)

GCP
1 (ξ∗1 , ξ

∗
k) = E

[
Πi ̸=1,

i ̸=k
1 {v1 ≥ vi}1

{
v1 ≥ 1 + ξ∗1

1 + ξ∗k
vk

}
1
{
v1 ≥ (1 + ξ∗1)d

O
}
dO

]
≤ ρ, (36)

GCP
k (ξ∗1 , ξ

∗
k) = E

[
1

{
vk ≥ 1 + ξ∗k

1 + ξ∗1
max
i̸=k

vi

}
1
{
vk ≥ (1 + ξ∗k)d

O
}
dO

]
≤ ρ′ < ρ, (37)
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and,

UCP
k (ξ∗, ξ∗) = E

[
1

{
vk ≥ max

i ̸=k
vi

}
1
{
vk ≥ (1 + ξ∗)dO

} (
vk − dO

)]
= UCP

1 (ξ∗, ξ∗), (38)

UCP
1 (ξ∗1 , ξ

∗
k) = E

[
Πi ̸=1,

i ̸=k
1 {v1 ≥ vi}1

{
v1 ≥ 1 + ξ∗1

1 + ξ∗k
vk

}
1
{
v1 ≥ (1 + ξ∗1)d

O
} (

v1 − dO
)]

, (39)

UCP
k (ξ∗1 , ξ

∗
k) = E

[
1

{
vk ≥ 1 + ξ∗k

1 + ξ∗1
max
i̸=k

vi

}
1
{
vk ≥ (1 + ξ∗k)d

O
} (

vk − dO
)]

. (40)

We consider all the possible cases the solutions of NCPs may be. We show that for the only reasonable cases that do not lead
to contradiction with the definition of NCP and strong monotonicity, we have{

vk ≥ 1 + ξ∗k
1 + ξ∗1

max
i ̸=k

vi

}
⊆

{
vk ≥ max

i ̸=k
vi

}
,{

vk ≥ (1 + ξ∗k)d
O
}
⊆

{
vk ≥ (1 + ξ∗)dO

}
,

(41)

therefore UCP
k (ξ∗1 , ξ

∗
k) ≤ UCP

k (ξ∗, ξ∗).

When ξ∗ = ξ∗1 = ξ∗k = 0, all the members have sufficient budgets, after misreporting, bidder k’s budget is still big enough.
In this case, her obtained utility will not decrease.

When ξ∗ ̸= 0, then GCP
k (ξ∗, ξ∗) = ρ. First we have ξ∗1 ̸= ξ∗k:

• for ξ∗1 = ξ∗k > ξ∗, we have ρ = GCP
1 (ξ∗1 , ξ

∗
k) < GCP

k (ξ∗, ξ∗) = ρ, leading to a contradiction;

• for ξ∗1 = ξ∗k < ξ∗, we have ρ′ ≥ GCP
k (ξ∗1 , ξ

∗
k) = GCP

1 (ξ∗1 , ξ
∗
k) > GCP

k (ξ∗, ξ∗) = ρ, leading to a contradiction.

Then we argue that ξ∗k ̸= 0, as otherwise it must be the case that ξ∗1 ̸= 0 and

GCP
k (ξ∗, ξ∗) = GCP

1 (ξ∗1 , ξ
∗
k) = ρ,

GCP
k (ξ∗1 , ξ

∗
k) ≤ ρ′ < ρ.

By the strong monotonicity of GCP, we have

(ξ∗k − ξ∗)(GCP
k (ξ∗, ξ∗)−GCP

k (ξ∗1 , ξ
∗
k)) > 0,

and
ξ∗k > ξ∗,

leading to a contradiction.

When ξ∗1 = 0, it must be the case that
ξ∗k > ξ∗1 = 0, and ξ∗ ≥ ξ∗1 .

and,

GCP
1 (ξ∗1 , ξ

∗
k) ≤ GCP

k (ξ∗, ξ∗) = ρ,

GCP
k (ξ∗1 , ξ

∗
k) = ρ′ < ρ.

By the strong monotonicity of GCP,

(ξ∗k − ξ∗)(GCP
k (ξ∗, ξ∗)−GCP

k (ξ∗1 , ξ
∗
k)) > (K − 1)(ξ∗ − ξ∗1)(G

CP
1 (ξ∗, ξ∗)−G1(ξ

∗
1 , ξ

∗
k)) ≥ 0,

which means ξ∗k > ξ∗. In this case, {
vk ≥ 1 + ξ∗k

1 + ξ∗1
max
i ̸=k

vi

}
⊆

{
vk ≥ max

i ̸=k
vi

}
,{

vk ≥ (1 + ξ∗k)d
O
}
⊆

{
vk ≥ (1 + ξ∗)dO

}
.
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(41) holds.

Finally we discuss the case when ξ∗, ξ∗1 , ξ
∗
k > 0, and

GCP
1 (ξ∗1 , ξ

∗
k) = GCP

k (ξ∗, ξ∗) = ρ, (42)

GCP
k (ξ∗1 , ξ

∗
k) = ρ′ < ρ. (43)

First by the strong monotonicity of GCP, we have ξ∗k > ξ∗. Then consider the following possible cases:

• ξ∗1 ≥ ξ∗k > ξ∗: (1 + ξ∗1)/(1 + ξ∗k) > 1, and{
v1 ≥ 1 + ξ∗1

1 + ξ∗k
vk

}
⊆ {v1 ≥ vk} ,{

v1 ≥ (1 + ξ∗1)d
O
}
⊆

{
v1 ≥ (1 + ξ∗)dO

}
,

(44)

which means that GCP
1 (ξ∗1 , ξ

∗
k) ≤ GCP

1 (ξ∗, ξ∗). We state the following lemma:

Lemma D.1. When GCP is strongly monotone, then for any ξ∗1 > ξ∗ and (1 + ξ∗1)/(1 + ξ∗k) > 1, we have

GCP
1 (ξ∗1 , ξ

∗
k) < GCP

1 (ξ∗, ξ∗).

By Lemma D.1, GCP
1 (ξ∗1 , ξ

∗
k) < GCP

1 (ξ∗, ξ∗), leading to a contradiction.

• ξ∗k > ξ∗1 : (1 + ξ∗k)/(1 + ξ∗1) > 1, and{
vk ≥ 1 + ξ∗k

1 + ξ∗1
max
i ̸=k

vi

}
⊆

{
vk ≥ max

i̸=k
vi

}
,{

vk ≥ (1 + ξ∗k)d
O
}
⊆

{
vk ≥ (1 + ξ∗)dO

}
.

(45)

(41) holds.

When ξ∗ = 0, and one of ξ∗1 , ξ
∗
k is non-zero, first we argue that ξ∗1 ̸= ξ∗k , as it contradicts that GCP

1 (ξ∗1 , ξ
∗
k) ̸=

GCP
k (ξ∗1 , ξ

∗
k).

If ξ∗k = 0, then GCP
1 (ξ∗1 , ξ

∗
k) = ρ ≥ GCP

k (ξ∗, ξ∗), and ξ∗1 > ξ∗ = ξ∗k = 0, we have (1 + ξ∗1)/(1 + ξ∗k) > 1, and (44) holds.
By Lemma D.1, GCP

1 (ξ∗1 , ξ
∗
k) < GCP

1 (ξ∗, ξ∗), leading to a contradiction.

If ξ∗1 = 0, then GCP
k (ξ∗1 , ξ

∗
k) = ρ′, and ξ∗k > ξ∗1 = ξ∗. In this case, (1 + ξ∗1)/(1 + ξ∗k) < 1, (45) and therefore (41) holds.

When ξ∗1 , ξ
∗
k ̸= 0, consider the two cases:

• if ξ∗1 > ξ∗k > ξ∗ = 0, then (1 + ξ∗1)/(1 + ξ∗k) > 1, (44) holds. By Lemma D.1, GCP
1 (ξ∗1 , ξ

∗
k) < GCP

1 (ξ∗, ξ∗) ≤ ρ,
leading to a contradiction.

• if ξ∗k > ξ∗1 > ξ∗ = 0, then (1 + ξ∗1)/(1 + ξ∗k) < 1, (45) and therefore (41) holds.

D.3. Proof of Theorem 5.3

Theorem 5.3. Under IP, bidder k’s expected obtained value Vk will not increase if she under-reports her budget and others
report budgets truthfully.

Proof. Let the expenditure rate of a member be ρ. By symmetry, all members’ equilibrium parameters are the same:
λ∗ = λ∗e for some λ∗ ∈ [0, λ̄]. When bidder k misreports a rate ρ′ < ρ, denote her corresponding equilibrium parameter
to be λ∗

k and that of another member i to be λ∗
1. By a slight abuse of notation, we let GCP

i be the function of (λ1, λk), the
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first parameter for other bidders, and the second for bidder k. Without loss of generality, let k ̸= 1, and we only consider the
truthful bidder 1 as other truthful bidders behave the same. We write down the form of Gi and Vi:

Gk(λ
∗, λ∗) = E

[
1

{
vk ≥ max

i̸=k
vi

}
1
{
vk ≥ (1 + λ∗)dO

}
max

{
maxi ̸=k vi
1 + λ∗ , dO

}]
= G1(λ

∗, λ∗) ≤ ρ,

G1(λ
∗
1, λ

∗
k) = E

[
Πi ̸=1,

i ̸=k
1 {v1 ≥ vi}1

{
v1 ≥ 1 + λ∗

1

1 + λ∗
k

vk

}
1
{
v1 ≥ (1 + λ∗

1)d
O
}
max

{maxi̸=1
i ̸=k

vi

1 + λ∗
1

,
vk

1 + λ∗
k

, dO

}]
≤ ρ,

Gk(λ
∗
1, λ

∗
k) = E

[
1

{
vk ≥ 1 + λ∗

k

1 + λ∗
1

max
i ̸=k

vi

}
1
{
vk ≥ (1 + λ∗

k)d
O
}
max

{
maxi ̸=k vi
1 + λ∗

1

, dO
}]

= ρ′ < ρ,

and,

Vk(λ
∗, λ∗) = E

[
1

{
vk ≥ max

i ̸=k
vi

}
1
{
vk ≥ (1 + λ∗)dO

}
vk

]
= V1(λ

∗, λ∗),

V1(λ
∗
1, λ

∗
k) = E

[
Πi ̸=1,

i ̸=k
1 {v1 ≥ vi}1

{
v1 ≥ 1 + λ∗

1

1 + λ∗
k

vk

}
1
{
v1 ≥ (1 + λ∗

1)d
O
}
v1

]
,

Vk(λ
∗
1, λ

∗
k) = E

[
1

{
vk ≥ 1 + λ∗

k

1 + λ∗
1

max
i̸=k

vi

}
1
{
vk ≥ (1 + λ∗

k)d
O
}
vk

]
.

We consider all the possible cases the solutions of NCPs may be. We show that for the only reasonable cases that do not
contradict the definition of NCP and strong monotonicity, we have{

vk ≥ 1 + λ∗
k

1 + λ∗
1

max
i ̸=k

vi

}
⊆

{
vk ≥ max

i ̸=k
vi

}
,{

vk ≥ (1 + λ∗
k)d

O
}
⊆

{
vk ≥ (1 + λ∗)dO

}
,

(46)

therefore Vk(λ
∗
1, λ

∗
k) ≤ Vk(λ

∗, λ∗).

When λ∗ = λ∗
1 = λ∗

k = 0, all the members have sufficient budgets, after misreporting, bidder k’s budget is still big
enough. In this case, her obtained value will not decrease.

When λ∗ ̸= 0, then Gk(λ
∗, λ∗) = ρ. First we have λ∗

1 ̸= λ∗
k:

• for λ∗
1 = λ∗

k > λ∗, we have ρ = G1(λ
∗
1, λ

∗
k) < Gk(λ

∗, λ∗) = ρ, leading to a contradiction;

• for λ∗
1 = λ∗

k < λ∗, we have ρ′ ≥ Gk(λ
∗
1, λ

∗
k) = G1(λ

∗
1, λ

∗
k) > Gk(λ

∗, λ∗) = ρ, leading to a contradiction.

Then we argue that λ∗
k ̸= 0, as otherwise it must be the case that λ∗

1 ̸= 0 and

Gk(λ
∗, λ∗) = G1(λ

∗
1, λ

∗
k) = ρ,

Gk(λ
∗
1, λ

∗
k) ≤ ρ′ < ρ.

By the strong monotonicity of G, we have

(λ∗
k − λ∗)(Gk(λ

∗, λ∗)−Gk(λ
∗
1, λ

∗
k)) > 0,

and
λ∗
k > λ∗,

leading to a contradiction.

When λ∗
1 = 0, it must be the case that

λ∗
k > λ∗

1 = 0, and λ∗ ≥ λ∗
1.
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By the strong monotonicity of G,

(λ∗
k − λ∗)(Gk(λ

∗, λ∗)−Gk(λ
∗
1, λ

∗
k)) > (λ∗ − λ∗

1)(G1(λ
∗, λ∗)−G1(λ

∗
1, λ

∗
k)) ≥ 0,

which means λ∗
k > λ∗. In this case, {

vk ≥ 1 + λ∗
k

1 + λ∗
1

max
i ̸=k

vi

}
⊆

{
vk ≥ max

i ̸=k
vi

}
,{

vk ≥ (1 + λ∗
k)d

O
}
⊆

{
vk ≥ (1 + λ∗)dO

}
.

(46) holds.

Finally we discuss the case when λ∗, λ∗
1, λ

∗
k > 0, and

G1(λ
∗
1, λ

∗
k) = Gk(λ

∗, λ∗) = ρ, (47)
Gk(λ

∗
1, λ

∗
k) = ρ′ < ρ. (48)

First by strong monotonicity of G, we have λ∗
k > λ∗. Then consider the following possible cases:

• λ∗
1 ≥ λ∗

k > λ∗: (1 + λ∗
1)/(1 + λ∗

k) > 1, and{
v1 ≥ 1 + λ∗

1

1 + λ∗
k

vk

}
⊆ {v1 ≥ vk} ,{

v1 ≥ (1 + λ∗
1)d

O
}
⊆

{
v1 ≥ (1 + λ∗)dO

}
,

maxi ̸=1
i ̸=k

vi

1 + λ∗
1

<

maxi ̸=1
i ̸=k

vi

1 + λ∗ ,

vk
1 + λ∗

k

<
vk

1 + λ∗ .

(49)

G1(λ
∗
1, λ

∗
k) ≤ G1(λ

∗, λ∗). We prove a similar lemma as Lemma D.1,

Lemma D.2. When G is strongly monotone, then for any λ∗
1 > λ∗ and (1 + λ∗

1)/(1 + λ∗
k) > 1, we have

G1(λ
∗
1, λ

∗
k) < G1(λ

∗, λ∗)

By Equation (49) and Lemma D.2, G1(λ
∗
1, λ

∗
k) < G1(λ

∗, λ∗), leading to a contradiction.

• λ∗
k > λ∗

1: (1 + λ∗
k)/(1 + λ∗

1) > 1, and{
vk ≥ 1 + λ∗

k

1 + λ∗
1

max
i̸=k

vi

}
⊆

{
vk ≥ max

i ̸=k
vi

}
,{

vk ≥ (1 + λ∗
k)d

O
}
⊆

{
vk ≥ (1 + λ∗)dO

}
.

(46) holds.

When λ∗ = 0, and one of λ∗
1, λ

∗
k is non-zero, first we argue that λ∗

1 ̸= λ∗
k, as it contradicts that G1(λ

∗
1, λ

∗
k) ̸= Gk(λ

∗
1, λ

∗
k).

If λ∗
k = 0, then G1(λ

∗
1, λ

∗
k) = ρ ≥ G1(λ

∗, λ∗), and λ∗
1 > λ∗ = λ∗

k = 0, we have (1 + λ∗
1)/(1 + λ∗

k) > 1, and{
v1 ≥ 1 + λ∗

1

1 + λ∗
k

vk

}
⊆ {v1 ≥ vk} ,{

v1 ≥ (1 + λ∗
1)d

O
}
⊆

{
v1 ≥ (1 + λ∗)dO

}
,

maxi̸=1
i ̸=k

vi

1 + λ∗
1

<

maxi ̸=1
i ̸=k

vi

1 + λ∗ ,

vk
1 + λ∗

k

≤ vk
1 + λ∗ .

27



Coordinated Dynamic Bidding in Repeated Second-Price Auctions with Budgets

By Lemma D.2, G1(λ
∗
1, λ

∗
k) < G1(λ

∗, λ∗), leading to a contradiction.

If λ∗
1 = 0, then Gk(λ

∗
1, λ

∗
k) = ρ′, and λ∗

k > λ∗
1 = λ∗. In this case, (1 + λ∗

1)/(1 + λ∗
k) < 1, and (46) holds.

When λ∗
1, λ

∗
k ̸= 0, consider the two cases:

• if λ∗
1 > λ∗

k > λ∗ = 0, then (49) holds, leading to a contradiction.

• if λ∗
k > λ∗

1 > λ∗ = 0, then (1 + λ∗
1)/(1 + λ∗

k) < 1, and (46) holds.

D.4. An Experimental Example that IP is Not Truthful on Utilities

Consider a coalition of two bidders. Consider independent random varaibles X1, X2, distributed uniformly in [0, 1],
and Y1, Y2, distributed uniformly in [1, 2], respectively. For i ∈ 1, 2, the random variable of bidder i’s value is Zi =
1/3Xi + 2/3Yi. The competing bid outside the coalition is uniformly distributed in [0, 1]. We set the true expenditure ratio
of each bidder to be 0.5, and let bidder 1 misreports a ratio of 0.49.

We run IP the same as we run the example in Section 6.1. And we repeated the experiment 100 times. For every experiment,
all bidders have higher utilities when bidder 1’s misreports: bidder 1’s increases by about 0.003, and bidder 2’s by about
0.006.

As we further check the changes of bidders’ obtained values and the equilibrium parameters, we can find out that bidder 1’s
obtained value decreases by about 0.007. Denote the equilibrium parameter when bidder 1 truthfully reports by µ∗, the
equilibrium parameter of bidder 1’s by µ∗

1 and of bidder 2’s by µ∗
2, respectively, when bidder 1 misreports. It shows that

µ∗
1 > µ∗

2 > µ∗, which is consistent with the analysis above.

D.5. Proofs of Lemmas in Proving Theorem 5.2 and 5.3

We give the proof of Lemma D.1, as the proof of Lemma D.2 is similar.

Lemma D.1. When GCP is strongly monotone, then for any ξ∗1 > ξ∗ and (1 + ξ∗1)/(1 + ξ∗k) > 1, we have

GCP
1 (ξ∗1 , ξ

∗
k) < GCP

1 (ξ∗, ξ∗).

Proof. We prove this by contradiction. Suppose GCP
1 (ξ∗1 , ξ

∗
k) = GCP

1 (ξ∗, ξ∗), then

0 =GCP
1 (ξ∗, ξ∗)−GCP

1 (ξ∗1 , ξ
∗
k) = E

 ∏
i∈K,

i ̸=1,i̸=k

1 {v1 ≥ vi}

· 1
{(

(v1 ≥ vk) ∧
(
(1 + ξ∗)dO ≤ v1 < (1 + ξ∗1)d

O
))

∨
((

vk ≤ v1 <
1 + ξ∗1
1 + ξ∗k

vk

)
∧
(
v1 ≥ (1 + ξ∗)dO

))}]
,

which means ⋂
i∈K,

i ̸=1,i̸=k

{v1 ≥ vi}
⋂((

{v1 ≥ vk}
⋂{

(1 + ξ∗)dO ≤ v1 < (1 + ξ∗1)d
O
})

⋃({
vk ≤ v1 <

1 + ξ∗1
1 + ξ∗k

vk

}⋂{
v1 ≥ (1 + ξ∗)dO

})) (50)

has zero measure, then for ξ ∈ (ξ∗, ξ∗1), the set⋂
i∈K,

i ̸=1,i̸=k

{v1 ≥ vi}
⋂((

{v1 ≥ vk}
⋂{

(1 + ξ)dO ≤ v1 < (1 + ξ∗1)d
O
})

⋃({
vk ≤ v1 <

1 + ξ∗1
1 + ξ∗k

vk

}⋂{
v1 ≥ (1 + ξ)dO

}))
28



Coordinated Dynamic Bidding in Repeated Second-Price Auctions with Budgets

is a subset of (50), and therefore has measure zero. This means that

GCP
1 (ξ∗, ξ∗)−GCP

1 (ξ∗1 , ξ
∗
k) = 0 = GCP

1 (ξ, ξ)−GCP
1 (ξ∗1 , ξ

∗
k),

equivalent to
GCP

1 (ξ∗, ξ∗) = GCP
1 (ξ, ξ).

This contradicts that GCP is strongly monotone.

E. Auxiliary Results
Lemma E.1. Gk(λ), Vk(λ), GCP

k (ξ) are Lipschitz continuous.

Proof. We denote by Lk the cumulative distribution function of dIk:

Lk(x;λ) =
∏

i∈K:i ̸=k

Fi((1 + λi)x). (51)

We omit λ when there is no confusion. In what follows, we denote by f the upper bound on fk and by h the upper bound on
hk. We use F̄k = 1− Fk to denote the complementary cumulative distribution function of vk.

1. We write down two expressions of Gk(λ) and calculate its derivatives with respect to λk and λi for i ̸= k.

Gk(λ) =

∫
xF̄k((1 + λk)x) d (Lk(x)H(x)) (52)

=

∫
Lk(x)H(x)

(
(1 + λk)xfk((1 + λk)x)− F̄ ((1 + λk)x)

)
dx. (53)

Using the first expression (52), we have

∂Gk(λ)

∂λk
= −

∫
x2f((1 + µk)x) d(Lk(x)H(x)),

and thus, ∣∣∣∣∂Gk(λ)

∂λk

∣∣∣∣ ≤ v̄f̄ .

Using the second expression (53), we have for i ̸= k,

∂Gk(λ)

∂λi
=

∫
t

(1 + λk)
2 fi

(
1 + λi

1 + λk
t

) ∏
j ̸=i,k

Fj

(
1 + λj

1 + λk
t

)
H

(
t

1 + λk

)(
tfk(t)− F̄k(t)

)
dt,

and thus, ∣∣∣∣∂Gk(λ)

∂λi

∣∣∣∣ ≤ v̄f̄(v̄f̄ + 1).

2. We write down the expression of Vk(λ) and calculate its derivatives with respect to λk and λi for i ̸= k.

Vk(λ) =

∫
xH

(
x

1 + λk

)
Lk

(
x

1 + λk

)
dFk(x).

Therefore

∂Vk(λ)

∂λk
= −

∫ (
x

1 + λk

)2 (
h

(
x

1 + λk

)
Lk

(
x

1 + λk

)
+H

(
x

1 + λk

)
lk

(
x

1 + λk

))
dFk(x),
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where lk is the density function of Lk. Since

lk (x) =
∑
i ̸=k

(1 + λi)fi ((1 + λi)x)
∏
j ̸=i,k

Fj((1 + λi)x),

we have ∣∣∣∣∂Vk(λ)

∂λk

∣∣∣∣ ≤ v̄2h̄+ (K − 1)v̄2f̄ .

And for i ̸= k,

∂Vk(λ)

∂λi
=

∫
x2

1 + λk
H

(
x

1 + λk

)
fi

(
1 + λi

1 + λk
x

) ∏
j ̸=i,k

Fj

(
1 + λj

1 + λk
x

)
dFk(x),

∣∣∣∣∂Vk(λ)

∂λk

∣∣∣∣ ≤ v̄2f̄ .

3. We write down the expression of GCP
k (ξ) and calculate its derivatives with respect to ξk and ξi for i ̸= k.

GCP
k (ξ) =

∫ ∫
x≥y

F̄k((1 + ξk)x)y dLk(x) dH(y) +

∫
F̄k((1 + ξk)y)Lk(y)y dH(y)

=

∫
y

∫
x≥y

(1 + ξk)Lk(x)fk((1 + ξk)x) dx dH(y),

Therefore, we have

∂GCP
k (ξ)

∂ξk
= −

∫ ∫
x≥y

xfk((1 + ξk)x)y dLk(x) dH(y)−
∫

y2f ((1 + ξk)y)Lk(y) dH(y).

∣∣∣∣∂GCP
k (v)

∂ξk

∣∣∣∣ ≤ 2v̄2f̄ .

And for i ̸= k,

∂GCP
k (ξ)

∂ξi
=

∫
y

∫
t≥(1+ξk)y

tfi

(
1 + ξi
1 + ξk

t

)
fk (t)

∏
j ̸=i,k

Fj

(
1 + ξj
1 + ξk

t

)
dx dH(y),

∣∣∣∣∂GCP
k (ξ)

∂ξi

∣∣∣∣ ≤ v̄2f̄2.

Lemma E.2. GHP
k (µk,λ) and V HP

k (µk,λ) are Lipschitz continuous. Moreover, if for all k ∈ K, bidder k’s density function
has a lower bound f > 0 over the interval [0, v̄k], and density function h also has a lower bound h > 0 over the interval
[0, v̄], then there exists constants G′ > 0 such that

∂GHP
k (µk,λ)

∂µk
≤ −G′ < 0.

Proof. In hybrid coordinated pacing algorithms, we still denote by Lk the cumulative distribution function of dIk:

Lk(x;µk,λ) =
∏

i∈K:i ̸=k

Fi((1 + λi)x). (54)

Note that Lk is independent of µk. We omit µk and λ when there is no confusion. In what follows, we denote by f the upper
bound on fk and by h the upper bound on hk. We use F̄k to denote the omplementary cumulative distribution function of vk.
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We first consider bidder k’s expected expenditure under Algorithm 2 and calculate its derivatives with respect to µk, λk and
λi for i ̸= k.

GHP
k (µk,λ) =

∫
y

y

∫
x≥ 1+µk

1+λk
y

F̄k((1 + λk)x) dLk(x) dH(y)

+

∫
y

yF̄k((1 + µk)y)Lk

(
1 + µk

1 + λk
y

)
dH(y) (55)

=

∫
y

y

∫
x≥ 1+µk

1+λk
y

(1 + λk)fk((1 + λk)x)Lk(x) dx dH(y). (56)

1. Using the second expression (56) we obtain that

∂GHP
k (µk,λ)

∂µk
= −

∫
y

y2fk ((1 + µk) y)Lk

(
1 + µk

1 + λk
y

)
dH(y),

and thus, ∣∣∣∣∂GHP
k (µk,λ)

∂µk

∣∣∣∣ ≤ v̄2kf̄ .

Let v = mini∈K v̄i and µ̄ = maxi∈K µ̄i. When y ≤ v/(1 + µ̄) one has

(1 + λi)(1 + µk)

1 + λk
y ≤ (1 + λi)y ≤ v ≤ v̄i,

and consequently,

Lk

(
1 + µk

1 + λk
y

)
=

∏
i∈K:i̸=k

Fi

(
(1 + λi)(1 + µk)

1 + λk
y

)

≥
(
(1 + λi)(1 + µk)

1 + λk
yf

)K−1

≥
(

yf

1 + µ̄

)K−1

. (57)

We can upper bound the derivative ∂GHP
k (µk,λ)/∂µk as follows:

∂GHP
k (µk,λ)

∂µk

(a)
≤ − fh

∫ v̄k/(1+µk)

0

y2Lk(
1 + µk

1 + λk
y) dy

(b)
≤ − fh

∫ v/(1+µ̄)

0

y2
(

yf

1 + µ̄

)K−1

dy

=−
vK+2fKh

(K + 2)(1 + µ̄)2K
,

where (a) follows fk ≥ f and hk ≥ h when (1 + µk)y ≤ v̄k; (b) follows from (57) and v̄k/(1 + µk) ≥ v/(1 + µ̄).

2. Using the first expression (55) we obtain that

∂GHP
k (µk,λ)

∂λk
= −

∫
y

y

∫
x≥ 1+µk

1+λk
y

xfk ((1 + λx)x) dLk(x) dH(y),

and thus, ∣∣∣∣∂GHP
k (µk,λ)

∂λk

∣∣∣∣ ≤ v̄2kf̄ .

3. Using the second expression (56) we obtain that for i ̸= k,

∂GHP
k (µk,λ)

∂λi
=

∫
y

y

∫
x≥ 1+µk

1+λk
y

(1 + λk)fk((1 + λk)x)
∂Lk(x)

∂λi
dx dH(y),
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where the derivative of Lk(x) satisfies

∂Lk(x;µk,λ)

∂λi
= xfi((1 + λi)x)

∏
i∈K:j ̸=i,k

Fj((1 + λj)x) ≤ v̄kf̄ .

Therefore, we have ∣∣∣∣∂GHP
k (µk,λ)

∂λk

∣∣∣∣ ≤ v̄2kf̄ .

We next consider V HP
k (µk,λ) and its derivatives.

V HP
k (µk,λ) =

∫
x

xLk

(
x

1 + λk

)
H

(
x

1 + µk

)
dFk(x). (58)

1. We have that

∂V HP
k (µk,λ)

∂µk
= −

∫
x

(
x

1 + µk

)2

Lk

(
x

1 + λk

)
h

(
x

1 + µk

)
dFk(x),

and thus, ∣∣∣∣∂V HP
k (µk,λ)

∂µk

∣∣∣∣ ≤ v̄2kh̄.

2. We have

∂V HP
k (µk,λ)

∂λk
= −

∫
x

(
x

1 + λk

)2

lk

(
x

1 + λk

)
H

(
x

1 + µk

)
dFk(x),

and thus, ∣∣∣∣∂V HP
k (µk,λ)

∂λk

∣∣∣∣ ≤ (K − 1)v̄2kf̄ .

3. For i ̸= k, the derivative with respect to λi is

∂V HP
k (µk,λ)

∂λi
=

∫
x2

1 + λk
fi

(
1 + λi

1 + λk
x

) ∏
j ̸=i,k

Fj

(
1 + λj

1 + λk
x

)
H

(
x

1 + µk
x

)
dFk(x),

and thus, ∣∣∣∣∂V HP
k (µk,λ)

∂λi

∣∣∣∣ ≤ v̄2kf̄ .

Corollary E.3. Uk(λ), UCP
k (λ) and UHP

k (µk,λ) are Lipschitz continuous.

Proof. The results directly follow from Lemma E.1 and Lemma E.2 since

1

T
Uk(λ) = Vk(λ)−Gk(λ);

1

T
UCP
k (ξ) = V CP

k (ξ)−GCP
k (ξ);

1

T
UHP
k (µk,λ) = V HP

k (µk,λ)−GHP
k (µk,λ).
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Lemma E.4. Suppose that Assumption 4.1 holds. We have

GHP
k (λ∗

k,λ
∗) ≤ Gk(λ

∗),∀k,

and the equality strictly holds for at most one bidder.

Proof. In what follows, we use Lk(x) to denote the cumulative distribution function of dIk defined by (54) and lk(x) is the
corresponding density function. We analyze how much GHP

k (λk,λ) and Gk(λ) differ by their expressions.

GHP
k (λk,λ)

(a)
=

∫
x

(1 + λk)fk((1 + λk)x)Lk(x)

(∫
y≤x

y dH(y)

)
dx

(b)
=

∫
x

(1 + λk)xfk((1 + λk)x)Lk(x)H(x) dx

−
∫
x

(1 + λk)fk((1 + λk)x)Lk(x)

(∫
y≤x

H(y) dy

)
dx

(c)
=

∫
x

(
(1 + λk)xfk((1 + λk)x)− F̄k((1 + λk)x)

)
Lk(x)H(x) dx

−
∫
x

F̄k((1 + λk)x)lk(x)

(∫
y≤x

H(y) dy

)
dx

(d)
= Gk(λ)−

∫
x

F̄k((1 + λk)x)lk(x)

(∫
y≤x

H(y) dy

)
dx︸ ︷︷ ︸

∆k(λ)

.

where (a) follows from (56) and changes the order of integration; (b) and (c) use integration by parts; and (d) follows from
(53). Observe that ∆k(λ) is always non-negative. Moreover, we claim that when Assumption 4.1 holds, ∆k(λ

∗) must be
strictly positive for all but one bidder, by which the proof can be completed.

To prove the claim, we first show that for every bidder k ∈ K,

H

(
v̂k

1 + λ∗
k

)
> 0, (59)

where v̂k := sup{vk : F̄k(vk) > 0}. Otherwise, H(v̂k/(1 + λ∗
k)) = 0 implies that bidder k can, almost surely, never win

the auction by bidding vk/(1 + λ∗
k) or lower when bidders are independently bidding. Note that λ∗

k < µ̄k because

Gk

(
µ̄k,λ

∗
−k

)
= E

[
1

{
vk

1 + µ̄k
≥ dk

}
dk

]
(a)
≤ E

[
1

{
vk

1 + v̄k/ρk
≥ dk

}
dk

]
≤ vk

1 + v̄k/ρk
< ρk,

where (a) follows from µ̄k ≥ v̄k/ρk. Thus, Gk((λk,λ
∗
−k)) ≡ 0 on [λ∗

k, µ̄k] contradicts the strong monotonicity assumption.

Let k′ = argmink v̂k/(1 + λ∗
k) and let dO := inf{dO : H(dO) > 0}. Note that by (59) and the continuity of H , we must

have dO < v̂k′/(1 + λ∗
k′). For every k ̸= k′, when x ∈ (dO, v̂k′/(1 + λ∗

k′)), we have

1. F̄k((1 + λ∗
k)x) > 0;

2.
∫
y≤x

H(y) dy > 0.

Suppose for contradiction that for k ̸= k′, ∆k(λ
∗) = 0. Then lk(x) = 0 holds almost everywhere on [dO, v̂k′/(1+λ∗

k′)], i.e.,
the competing bid dIk lies in this interval with zero probability. However, bk′ = vk′/(1+λ∗

k′) belongs to [dO, v̂k′/(1+λ∗
k′)]

with positive probability by the definition of v̂k′ . This implies there is almost always another bid higher than bk′ so that
bk′ almost never becomes dIk, which further implies that bidder k′ actually can, almost surely, never win in IP by bidding
vk′/(1 + λ∗

k′) or lower. Again by a similar argument, this contradicts the strong monotonicity assumption. Therefore,
∆k(λ

∗) > 0 holds at least for all bidders except bidder k′.
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(a) Symmetric cases: coalition welfare with different means of the highest bid outside the coalition: 0.2, 0.4, 0.6, 0.8.
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(b) Symmetric cases: coalition welfare with different variances of bidders’ values: 0.02, 0.1, 0.2, 0.5.
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(c) Symmetric cases: coalition welfare with different members’ value distributions: Uniform, Gaussian, power law distribution, and
exponential.

Figure 3. Experiment Results on Symmetric Synthetic Data

F. More Experiment Results on Synthetic Data
We present more experiment results on synthetic data here. All the following cases have the same number of coalition
members: K = 5.

Figure 3 show the results on symmetric cases, where all 5 members have the same value distribution and the same budget.
Specifically, Figure 3a shows the coalition welfare when the distribution of the highest bid outside the coalition dO varies.
From left to right, dO is sampled from Gaussian distribution with µ equals to 0.2, 0.4, 0.6, 0.8 respectively. With the mean
increases, bidders’ power outside the coalition becomes stronger.

In Figure 3b, the coalition members’ value distributions are all Gaussian distributions with µ = 0.5 but they have different
standard deviations σ. From left to right, σ equals to 0.02, 0.1, 0.2, 0.5 respectively.

The four subfigures in Figure 3c compare the coalition welfare when members’ values are sampled from different distribu-
tions: uniform distribution, Gaussian distribution, power law distribution, and exponential distribution.

Figure 4 shows four asymmetric cases. Different from above, the target expenditure rates for coalition members have the
same expectation rather than being completely the same. From left to right, coalition member’s values are sampled from
totally the same distributions, same distributions with different means, and completely different distributions, respectively.

In Figure 4a, each member’s value is sampled from Gaussian distribution with µ = 0.5, σ = 0.2. In Figure 4b, the five
members’ value are respectively sampled from Gaussian distributions with µ equals to 0.1, 0.3, 0.5, 0.7, 0.9. In Figure 4c,
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(a) Gaussian with same means.
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(b) Gaussian with different means.
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(c) Uniform with different means.
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(d) Different value distributions.

Figure 4. Experiment Results on Asymmetric Synthetic Data

the five members’ value are respectively sampled from uniform distributions on [0, 0.2], [0.2, 0.4], [0.4, 0.6], [0.6, 0.8],
[0.8, 1]. In Figure 4d, the value functions are more complicated. We choose one uniform distribution, one Gaussian
distribution, two power law distributions and one exponential distribution. We adjust the parameters so that the value
expectation of all members is 0.5, which is the same as the others in Figure 4.

To verify if the averages of the multipliers indeed converge to the profile defined by the non-linear complementarity
conditions (2), (10) and (8), we check the variances of the averages and the empirical value of (

∑T
t=1 λk,t/T )(ρk −

Gk(
∑T

t=1 λt/T )) ((
∑T

t=1 ξk,t/T )(ρk−GCP
k (

∑T
t=1 ξt/T )) and (

∑T
t=1 µk,t/T )(ρk−GHP

k (
∑T

t=1 λt/T,
∑T

t=1 µk,t/T ))).
To approximate Gk(

∑T
t=1 λt), we use the empirical average expenditure

∑T
t=1 zk,t/T . The same goes for Gk(

∑T
t=1 ξt)

and Gk(
∑T

t=1 ξt). In the experiments, the variances of the last 100 rounds of
∑

λk,t/T (
∑

ξk,t/T and
∑

µk,t/T ) are
around 10−4, indicating the convergence of multipliers. The values of the last 100 rounds of (

∑
λk,t/T )(ρk −

∑
zk,t/T )

((
∑

ξk,t/T )(ρk −
∑

zk,t/T ) and (
∑

µk,t/T )(ρk −
∑

zk,t/T )) are less than 10−3, indicating the convergence to the point
defined by (2), (10) and (8).
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