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The coin will fall to the ground.
The box is easier to store things compared to lamp.
The box is made of wood.
The coin is closer to the boy compared to lamp.

The boy is curious and enjoying himself.
The adults may be the boy’s parents.
The boy intends to make a mess.
If adults come in, they will be shocked.
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Figure 1: VKBench systematically evaluates visual knowledge across world-centric and human-
centric tasks, evaluating MLLMs beyond simple perception. It marks a shift from seeing and recog-
nizing to understanding the world principles, enabling models to achieve true visual comprehension.

ABSTRACT

While Multimodal Large Language Models (MLLMs) have become adept at rec-
ognizing objects, they often lack the intuitive, human-like understanding of the
world’s underlying physical and social principles. This capability, which we term
visual knowledge, forms a bridge between perception and reasoning, yet remains
an underexplored gap in current systems. To systematically measure this capa-
bility, we present VKBench, a comprehensive video benchmark featuring 1,680
questions in 1,249 videos, covering eight core types of visual knowledge spanning
both world-centric (e.g., intuitive physics) and human-centric (e.g., subjective in-
tentions). Results show that leading models still fall short of human performance,
with particularly notable gaps in world-centric visual knowledge. To bridge this
gap, we introduce VKQA, a new dataset, and Video-VK+, a baseline model that
explicitly incorporates visual knowledge into MLLMs. Video-VK+ follows a
structured See–Think–Answer format and adopts reinforcement learning with vi-
sual knowledge reward. This approach improves performance on VKBench by
3.7% and surpasses existing models on multiple video benchmarks. Our findings
highlight visual knowledge as a key component for developing more robust and
generalizable MLLMs that can not only see but also truly understand our world.

1 INTRODUCTION

Humans possess an intuitive understanding of the world, effortlessly predicting the trajectory of a
bouncing ball or inferring the fragility of a glass from a single glance. This ability, often referred
to as visual knowledge (Zhu et al., 2020; Wang et al., 2025d), represents an intermediate cognitive
layer that internalizes the principles that govern both the physical and social worlds. For Multimodal
Large Language Models (MLLMs), which frame predictions as probabilities conditioned on both
visual evidence and world knowledge, this layer is crucial. By grounding reasoning in rich, visually-
derived context, visual knowledge helps reduce over-reliance on brittle language priors and mitigates
model hallucinations. Enhancing this capability is fundamental to advancing MLLMs’ performance
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on complex tasks such as compositional problem-solving (Yue et al., 2023; Zhao et al., 2025) and
multi-hop reasoning (Cheng et al., 2025), towards human-like AI (Lee et al., 2024; Liu et al., 2025a).

Despite its importance, this critical dimension of visual understanding remains largely unexplored
in the context of MLLMs. Existing research has primarily focused on enhancing fine-grained per-
ception through techniques such as leveraging multi-scale features (Jiang et al., 2023b; Liu et al.,
2024a), aligning vision and text with detailed descriptions (Zhang et al., 2024a; Wang et al., 2024a),
or processing high-resolution inputs (Liu et al., 2024b; Wang et al., 2025a). While these approaches
improve an MLLM’s ability to recognize concrete objects and attributes, they contribute little to
instilling the embedded, intuitive knowledge necessary for deeper reasoning.

In this paper, we first introduce VKBench to quantitatively measure this gap. VKBench is a com-
prehensive video benchmark designed to evaluate the visual knowledge of MLLMs. Spanning
both world-centric (Intuitive Physics, Object Affordances, Object Materials, Spatial Awareness)
and human-centric (Event Anticipation, Mental States, Social Relations, Subjective Intention) do-
mains, VKBench comprises 1249 videos and 1680 multiple-choice questions across eight dimen-
sions. Through rigorous data curation, we isolate visual knowledge from confounding cues like
audio or language biases, creating a clean and challenging testbed. Our evaluation shows that even
the most advanced MLLMs fall short of human performance with an overall gap of 15.0%, which is
particularly pronounced in world-centric tasks: on Intuitive Physics and Spatial Awareness, model
barely exceeds random guessing, trailing human performance by 38.5% and 32.7%, respectively.
These findings highlight the limitation in current MLLMs’ ability to comprehend visual knowledge.

Having quantified the problem, we then demonstrate that visual knowledge is learnable. We propose
Video-VK+, a baseline model designed to explicitly integrate visual knowledge. Video-VK+ em-
ploys a structured See–Think–Answer reasoning format and is trained with reinforcement learning
guided by a dedicated visual knowledge reward signal. To facilitate this, we introduce VKQA-30K,
a new large-scale video corpus containing diverse instances of visual knowledge. When trained on
VKQA-30K, Video-VK+ achieves a significant 3.7% improvement on VKBench and shows strong
generalization to other leading video understanding benchmarks, including MVBench (+5.4%) (Li
et al., 2024c), Video-MME (+7.0%) (Fu et al., 2025) and MMVU (+5.7%) Zhao et al. (2025). These
results underscore the pivotal role of explicit visual knowledge in advancing multimodal learning.

In summary, our contributions are as follows: (1) We formalize the concept of visual knowledge
for MLLMs, highlighting the critical gap between perceptual accuracy and cognitive reasoning in
current models. (2) We introduce VKBench, a comprehensive video benchmark covering eight
dimensions of visual knowledge, carefully curated to minimize confounding cues and provide a
challenging testbed. (3) We release VKQA, a large-scale video corpus rich in visual knowledge, and
propose Video-VK+, a baseline model that explicitly integrates visual knowledge using a structured
See–Think–Answer format and reinforcement learning with a visual knowledge reward.

2 RELATED WORK

Multimodal Large Language Models. The rapid rise of Large Language Models (LLMs) has
spurred the development of Multimodal LLMs (MLLMs), which integrate visual perception with
language reasoning to bridge cross-modal semantic gaps. Modern MLLMs (Liu et al., 2023; Dai
et al., 2023; Ye et al., 2023; Wang et al., 2024b; Zeng et al., 2024; Bai et al., 2025; Zhu et al.,
2025) typically employ lightweight alignment modules that map visual features from encoders like
CLIP (Radford et al., 2021) or SigLIP (Zhai et al., 2023) into the embedding space of open-source
LLMs (Jiang et al., 2023a; Dubey et al., 2024). Fine-tuned on image-text pairs, these models rival
or surpass proprietary systems (Achiam et al., 2023; Team et al., 2024) on multimodal benchmarks.
Recently, inspired by DeepSeek-R1 (Guo et al., 2025), RL post-training has been adapted to MLLMs
via advanced reward design for vision reasoning (Huang et al., 2025; Yang et al., 2025c; Xia et al.,
2025; Li et al., 2025b), and extended to video domains (Feng et al., 2025; Li et al., 2025a; Wang
et al., 2025b), marking a shift toward structured reasoning in dynamic multimodal contexts.

Benchmarks for Multimodal Large Language Models. MLLM evaluation has rapidly evolved
alongside model capabilities. Early benchmarks focused on visual perception, such as VQA (Antol
et al., 2015), captioning (Lin et al., 2014), and OCR (Singh et al., 2019). Later works like Fu et al.
(2023); Liu et al. (2023); Li et al. (2024b); Fu et al. (2024); Song et al. (2024) decoupled perception

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

from reasoning in static images, while POPE (Li et al., 2023; Guan et al., 2024) exposed hallucina-
tions via adversarial questioning. In video, the evaluation shifts to temporal reasoning, advancing
from single-scene tasks (Goyal et al., 2017; Xiao et al., 2021) to complex, long-form understanding
(Li et al., 2024c; Liu et al., 2024c). Recent benchmarks emphasize multimodal reasoning (Yu et al.,
2025; Liu et al., 2025b) and knowledge-intensive tasks (Zhang et al., 2024b; Zhao et al., 2025), inte-
grating visual evidence with expert-level knowledge to test real-world applicability. In contrast, the
questions in VKBench focus on visual knowledge rooted in human psychology and are deliberately
formulated to be straightforward, eliminating the need for domain-specific knowledge.

Visual Knowledge. David Marr’s classical formulation of computer vision (Marr, 2010) focuses
on identifying what and where, but human visual intelligence encompasses much more. Zhu et al.
(2020) proposed FPICU as the dark matter of vision, like dark matter in the universe, invisible in
pixels, yet essential for meaningful understanding. This insight has also been introduced by the
concept of visual knowledge (Pan, 2019; Wang et al., 2025d), which not only emerges from percep-
tion but also enables visual memory, and mental simulation, forming the basis of how we interpret
the world. VCR (Li et al., 2022) introduced the visual commonsense reasoning task, yet its scope
is limited to scenarios involving human activities. Recently, Li et al. (2024d) uncovered the core
knowledge deficits in MLLMs where they consistently underperform on low-level abilities relative
to high-level ones, highlighting a persistent disconnect between seeing and truly understanding.

3 VKBENCH

We introduce VKBench, a comprehensive video benchmark designed to evaluate the visual knowl-
edge of MLLMs across eight dimensions. In this section, we first formally describe the semantic
scope of visual knowledge, followed by an overview of each task included in VKBench. We then
provide a detailed account of the dataset construction and the QA selection pipeline. Finally, we
evaluate a range of state-of-the-art MLLMs on VKBench and analyze their performance.

3.1 VISUAL KNOWLEDGE

Visual knowledge extends far beyond the mere perception or grounding of concrete objects, encom-
passing a set of abstract and transferable principles rooted in cognitive psychology. These principles
shape how we interpret our surroundings, engage in reasoning, and act upon the world. Generally,
humans intuitively grasp the underlying patterns of real-world phenomena as self-evident truths,
whereas machines cannot directly uncover them merely by recognizing pixels or physical entities.
For example, when a moving sphere rises instead of falling under gravity, we immediately recognize
it as a violation of physical laws; when seeing transparent, colorless crystals on a table, we read-
ily identify them as glass and infer their fragility relative to metal; and when observing someone
approach a door, we naturally infer their intention to open it and leave. While these judgments are
grounded in observable, pixel-level entities, they rely even more heavily on the invisible scaffold-
ing of visual knowledge. When encountering such scenarios, humans often arrive at an immediate
and intuitive understanding, akin to a form of visual commonsense (Zellers et al., 2019) or a visual
conditioned reflex (Salter, 2001), without requiring any expert-level domain knowledge.

3.2 TASK DEFINITION

Based on the meaning of visual knowledge, we concretize its domain by giving its eight most related
tasks in VKBench, involving both physical reality (world-centric) and psychologically grounded
human intentions (human-centric). The overview of VKBench is shown in Figure 2.

World-Centric. The world-centric categories assess MLLMs’ capacity to comprehend the objec-
tive physical structure and law of the environment. They are grounded in physics, material prop-
erties, and spatial relationships, and are largely independent of human psychological or cultural
context. Specifically, they include four core competencies: (1) Intuitive Physics: Judge the phys-
ical plausibility of dynamic events, following principles such as object permanence, immutability,
continuity, gravity and so on. (2) Object Affordance: Determine potential functional uses based
on objects’ perceptual and structural properties. (3) Object Material: Identify the material com-
position of objects by leveraging either observable intrinsic properties or behavioral cues revealed
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Q: Given how objects behave on earth, is 
the behavior of the objects plausible?

A. Yes B.No

Q: Which object looks like it is made 
out of wood?            
A. The first one     B.The second one

Event Anticipation
Q: What will happen next?           
A. The person will pour the batter on fryer.     
B. The person will serve the batter on a cup. 

Q: How does the man 
in the green tie feel?          

A. He appears relaxed
B. He feels frustrated
C. He seems 
indifferent
D. He looks excited

Q: What’s the relationship
 between the them?          

A. They are partners
B. They are close friends
C. They are siblings
D. They are strangers 

Q: Why do they pull hard on the rope?          
A. to secure a load on a vehicle
B. to try to win at tug of war
C. to rescue someone from a well
D. to hoist a sail on a boat

Intuitive Physics

Q: Which object could be more easily 
reshaped by a child?            
A. The first one     B.The second one

Q: If I am standing by the stove and 
facing the sofa, is the tv to the left or 
the right of the sofa?            

A. Left B. Right

Object Affordance Object Material Spatial Awareness

Mental State Social Relation Subjective Intention

World-Centric

Human-Centric

Figure 2: An overview of the VKBench. Video and QA case of each tasks are illustrated.

through human-object interactions. (4) Spatial Awareness: Infer relative spatial relationships, such
as positions, directions, and navigation within an environment.

Human-Centric. The human-centric categories evaluate human agents, inferred from visuals such
as facial expressions, body postures, gaze, motion trajectories, and social configurations. Contrary
to physical knowledge, this is inherently interpretive, culturally nuanced, and psychologically lay-
ered. It demands that models reconstruct the invisible mental and social states from visible actions or
activities. Core competencies include: (5) Event Anticipation: Infer the most probable subsequent
events based on existing video clues and social norms. (6) Mental State: Infer internal psycholog-
ical states of individuals, as well as the affective atmosphere of the surrounding environment. (7)
Social Relation: Infer interpersonal relationships and social roles in human society. (8) Subjective
Intention: Reconstruct the underlying goals or motivations behind human observed actions.

3.3 VKBENCH CONSTRUCTION

Data Collection. To construct a high-quality and unambiguous benchmark that comprehensively
evaluates diverse dimensions of visual knowledge, we carefully curate data from multiple estab-
lished datasets aligned with the task definition of VKBench. Specifically, we draw on videos and as-
sociated annotations from IntPhys 2 (Bordes et al., 2025), PACS (Yu et al., 2022), VSI-Bench (Yang
et al., 2025b), VLEP (Lei et al., 2020), Social-IQ 2.0 (Wilf et al., 2023), and RexTime (Chen et al.,
2024). Each sample in VKBench is structured as a multiple-choice question designed to probe a
specific facet of visual knowledge.

Filtering. The filtering principle is to directly evaluate how MLLMs work on visual knowledge,
minimizing the impact brought by text priors or reasoning effects from LLMs. Usually, vqa related
to world-centric types contain no context in the question or answer candidates, thus they are less
concerned in this process. In contrast, human-centric categories are often heavily biased: (1) A
number of questions inherently require complementary audio cues more than pure visuals, intro-
ducing extra reliance. (2) Such questions frequently embed implicit information where MLLMs
may exploit language shortcuts, leveraging world knowledge of LLM for response. To alleviate the
above problems, we design a progressive filtering pipeline, leveraging multiple MLLMs and LLMs
to reduce unwanted biases step by step, illustrated in Figure 3 and detailed as follows.
• I. Minimize Audio Reliance. We abandon QAs whose answers are relevant to their corresponding

audios to some degree. First, we transcribe the audio track of each video using Whisper-large-
v2 (Radford et al., 2022) to generate subtitles. We then compute the semantic similarity between
these subtitles and the ground-truth answers using Qwen3-8B-Embedding (Zhang et al., 2025).
Any question whose corresponding subtitle yields a similarity score exceeding 0.3 is discarded, as
such questions may be answerable through audio cues alone.

• II. Reduce Language Bias. We drop QAs whose questions are easily solved by only answer
candidates without visuals, inspired by MMMU-Pro (Yue et al., 2024). Specifically, we prompt
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Figure 3: An overview of the QA filtering pipeline.

three powerful open-source LLMs, Qwen3-32B-thinking (Yang et al., 2025a), Llama-3.3-70B-
Instruct (Grattafiori et al., 2024), and Reka-Flash-3 (RekaAI, 2025), to answer each question
in the absence of any visual input. Models are instructed to provide responses even when they
explicitly acknowledged the need for visual context, simulating a “blind VQA” scenario. Each
model generated ten independent answers per question; if a model produced the correct answer
more than five times, the question was deemed linguistically answerable. Questions flagged as
answerable by at least two out of the three models were excluded from the final benchmark.

• III. Enhance Wrong Candidates. For the remaining QAs from the previous two steps, we lever-
age DeepSeek-R1 (Guo et al., 2025) to refine the incorrect options while preserving the original
correct answers. These distractors are crafted to be semantically plausible yet subtly incorrect,
ensuring sufficient choice discrimination to elevate the challenge and better test visual knowledge.

• IV. Human Verification. Following the shuffling of multiple-choice options to eliminate po-
sitional bias, we conduct a comprehensive human review to validate the quality and fairness of
all questions. This process culminated in the construction of VKBench, a benchmark compris-
ing 1249 video clips and 1680 rigorously curated question-answer pairs spanning eight distinct
dimensions of visual knowledge. More details of VKBench are in Appendix E.

3.4 EVALUATION

We benchmark a diverse set of multimodal foundation models capable of processing video or multi-
image inputs on VKBench. We evaluate 23 models covering both open-source and advanced propri-
etary MLLMs. On the open-source side, the evaluated models include VideoLLaMA2 (Cheng et al.,
2024), mPLUG-Owl3-7B (Ye et al., 2024), MiniCPM-V-2.6 & 4.5 (Yao et al., 2024), LLaVA-OV (Li
et al., 2024a), LLaVA-Video (Zhang et al., 2024c), Qwen2.5-VL (Bai et al., 2025), InternVL-3.5
(Wang et al., 2025c), GLM-4.1V-9B-Thinking (Hong et al., 2025) and MiMo-VL-RL (Team et al.,
2025). For advanced proprietary models, we include GPT-4o (Hurst et al., 2024), Gemini-2.5-Flash
and Pro (Comanici et al., 2025). To ensure comparability, we restrict the maximum number of video
input frames to 32. Further details of the implementation are provided in Appendix G.2.

Overall Performance. The evaluation results on VKBench are summarized in Table 1. Most
models achieve overall accuracy between 60% and 70%. The strongest model, InternVL3.5-241B-
A28B, reaches 74.6% but still trails human performance by 15.0%. A notable performance disparity
emerges when we categorize the tasks. On human-centric tasks, models demonstrate strong capa-
bilities, with the leading model’s accuracy of 81.9% closely approaching the human benchmark of
86.8%. We hypothesize this strength stems from the abundance of human social interactions and so-
cietal norms in the training data. In sharp contrast, models struggle significantly with world-centric
tasks. The highest accuracies in the IP (59.0%) and SA (62.7%) domains fall short of human perfor-
mance by substantial margins of 38.5% and 32.7%, respectively. This gap highlights a fundamental
limitation in current MLLMs regarding the acquisition of knowledge about the physical world. We
posit that this deficiency arises because much world-centric knowledge is grounded in physical per-
ception, which is difficult to capture exhaustively through textual descriptions alone. The results

5
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Table 1: Evaluation results on VKBench. Abbreviations adopted: IP for Intuitive Physics; OA for
Object Affordance; OM for Object Material; SA for Spatial Awareness; EA for Event Anticipation;
MS for Mental State; SR for Social Relation; SI for Subjective Intention; WC for overall accuracy
on World-Centric; HC for overall accuracy on Human-Centric; Human Performance are sourced
from original annotation or researchers’ responses. Green marks the best results.

Models Overall IP OA OM SA WC EA MS SR SI HC

Random Guess 36.7 50.0 50.0 50.0 31.9 45.5 50.0 25.0 25.0 25.0 30.3
Human Performance 89.6 97.5 90.5 96.8 95.4 95.0 81.1 83.2 86.7 87.2 86.8

Open-Source MLLMs
VideoLLaMA2-7B 55.7 46.0 53.0 51.1 40.9 47.8 68.4 64.5 57.5 60.5 63.5
MiniCPM-V 2.6 63.8 53.0 51.5 76.5 36.5 54.3 74.0 66.5 75.0 66.5 69.2
MiniCPM-V 4.5 67.6 50.0 58.5 83.5 39.0 57.6 78.5 77.2 76.7 72.5 75.4
mPLUG-Owl3-7B 64.2 57.0 55.0 72.6 36.3 55.2 77.9 73.1 79.2 66.7 72.1
LLaVA-OV-7B 64.9 52.5 56.0 83.0 38.0 57.2 73.0 72.1 75.8 62.5 68.6
LLaVA-OV-72B 68.0 56.0 60.0 83.0 41.0 59.9 76.0 71.6 83.3 69.0 73.0
LLaVA-Video-7B 66.0 50.5 56.5 79.0 42.0 56.9 72.5 69.5 80.0 69.5 71.5
LLaVA-Video-72B 70.5 57.0 65.5 86.0 44.5 63.1 78.0 72.6 84.2 73.8 75.8
Qwen2.5-VL-3B-Instruct 61.1 50.0 57.0 77.9 38.3 55.7 71.6 73.1 71.7 57.4 65.8
Qwen2.5-VL-7B-Instruct 64.0 48.0 53.0 82.6 35.2 54.5 79.5 75.1 77.5 65.6 72.2
Qwen2.5-VL-32B-Instruct 64.5 53.0 57.5 76.8 39.4 56.6 77.4 76.7 75.8 64.4 71.4
Qwen2.5-VL-72B-Instruct 70.1 59.0 64.5 86.3 40.9 62.6 76.8 79.7 82.5 73.3 76.7
MiMo-VL-7B-RL 68.0 56.0 66.0 80.5 49.2 62.8 78.4 75.6 80.8 65.4 72.5
GLM-4.1V-9B-Thinking 68.3 54.0 66.5 80.5 47.0 61.9 72.5 73.1 80.8 69.8 72.6
InternVL3.5-8B 66.9 50.5 58.0 78.9 44.6 57.9 75.3 75.6 75.8 73.8 74.8
InternVL3.5-8B-Think 67.6 50.5 63.0 80.5 42.0 58.9 76.3 74.1 78.3 74.1 75.1
InternVL3.5-30B-A3B 71.5 49.5 65.0 82.1 62.7 64.6 75.8 77.2 81.7 77.2 77.5
InternVL3.5-38B 72.7 49.0 61.0 82.6 59.1 62.7 77.9 76.1 82.5 85.4 81.4
InternVL3.5-38B-Think 71.8 49.0 66.5 79.0 54.9 62.2 80.5 76.1 80.8 82.1 79.7
InternVL3.5-241B-A28B 74.6 52.5 67.5 85.8 60.6 66.4 81.6 77.2 84.2 83.6 81.9

Proprietary MLLMs
GPT-4o 65.7 55.0 74.0 84.7 42.5 64.0 74.7 63.5 65.0 65.9 67.1
Gemini-2.5-Flash 68.8 56.0 80.0 90.0 51.8 69.3 76.8 65.5 74.2 63.6 68.2
Gemini-2.5-Pro 71.1 55.0 82.0 88.4 55.4 70.1 71.6 73.1 75.8 70.3 72.0

suggest that the standard next-word prediction training objective may not provide sufficient super-
visory signals for learning these concepts. This indicates that incorporating world models could be
promising for these limitations.

Proprietary vs Open-Source MLLMs. Proprietary models demonstrate clear advantages on
world-centric tasks, such as Object Affordance, Object Material, and Spatial Awareness, likely ben-
efiting from richer pre-training corpora and proprietary alignment techniques optimized in physical
world. However, these same models often underperform in human-centric visual knowledge, where
open-source counterparts like Qwen2.5-VL and InternVL3.5 excel. This asymmetry suggests diver-
gent optimization goals: proprietary pipelines emphasize physics-based property, while open-source
efforts prioritize socially diverse supervision. Bridging this gap will be critical for achieving bal-
anced competence across the full spectrum of visual knowledge.

LLM Scaling. Scaling clearly improves performance. Larger models like LLaVA-Video-72B and
Qwen2.5-VL-72B-Instruct consistently outperform smaller variants across most dimensions. This
suggests that scaling the language component enables MLLMs to achieve a deeper understanding
of visual knowledge. Joint training with a stronger LLM during large-scale alignment yields a more
powerful vision encoder, further enhancing the model’s ability to interpret visual knowledge.

Thinking or Not. MiMo-VL-7B-RL, GLM-4.1V-9B-Thinking and InternVL3.5-8B-Think exhibit
a modest gain over their non-thinking counterparts, especially on world-centric tasks. However,
InternVL3.5-38B-Think declines due to severe repetition. As VKBench involves relatively straight-
forward visual knowledge, excessive reasoning can be counterproductive, highlighting the need for
an appropriate level of language reasoning to improve the understanding of visual knowledge.

Correlation between Different Tasks. As shown in Figure 5, the Pearson correlation coefficients
among the eight tasks reveal two clusters, each exhibiting strong intra-cluster but weak inter-cluster
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Figure 4: Accuracies of MLLMs on VKBench.
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Figure 5: Pearson Correlation between 8 Vi-
sual Knowledge Tasks.

correlations. This clustering pattern corroborates VKBench’s categorization of tasks into world-
centric and human-centric domains, indicating these two dimensions of visual knowledge function
as largely independent subsystems. See Appendix H for more analysis on VKBench.

4 EMBEDDING VISUAL KNOWLEDGE INTO MLLMS

Here we make initial attempts to explicitly integrate visual knowledge into MLLMs. Our core
idea is to encourage MLLMs to rely more heavily on evidence rich in visual knowledge during the
generation process, so that we can effectively offload the burden from the language prior, reducing
hallucinations (see Appendix C for theoretical analysis). To operationalize this principle, we design
an explicit reasoning pathway that anchors responses directly in perceived visual evidence, which is
implemented through two key components: (1) a structured See–Think–Answer output format that
enforces perceiving visual knowledge before reasoning, and (2) a visual knowledge reward based on
the GRPO paradigm (see Appendix D). Together, these form the baseline we term Video-VK+.

See-Think-Answer Output Format. Inspired by Xiao et al. (2025); Xia et al. (2025), we impose
a constraint on Video-VK+ to explicitly generate a self-contained visual description prior to per-
forming reasoning. This description content is designed to encapsulate the rich visual knowledge
essential for the task, thereby laying a solid foundation for subsequent reasoning. To enforce strict
adherence to the structured See–Think–Answer output, format reward rf is computed via regular ex-
pression matching over the model’s output. For multiple-choice QA, we define an accuracy reward
ra that equals 1 if the model’s prediction matches the ground-truth answer, and 0 otherwise.

Visual Knowledge Reward. We employ an external frozen MLLM as the verifier model to assess
whether the correct answer can be directly inferred from the generated visual description (Figure 12).
To encourage the model to produce self-contained content rich in visual knowledge, we incorporate a
binary visual knowledge reward rv ∈ {0, 1} into the policy update process, where rv = 1 indicates
that the visual content is sufficient for deriving the answer without further reasoning and rv = 0
otherwise. This reward incentivizes the model to focus more on enriching its visual knowledge, the
richer the visual knowledge, the less reasoning effort is required from the LLM. The final reward is
formulated as:

Ri = rf + ra + λ · rv, (1)
where λ is a hyperparameter controlling the relative weight of the visual knowledge reward.

4.1 VKQA: A DATASET CENTERED ON VISUAL KNOWLEDGE

To meet the training requirements of Video-VK+, we construct a training dataset, named VKQA-
30K, by curating and augmenting samples from open-source VLM benchmarks. Each instance in
VKQA-30K consists of a question accompanied by multiple-choice options. We carefully perform
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deduplication to ensure no overlap between VKQA-30K and VKBench, thereby avoiding data leak-
age and guaranteeing an out-of-domain evaluation setting. See Appendix F for details of VKQA.

RL Data Collection. Our reinforcement learning dataset comprises approximately 30K samples
curated from publicly available VLM datasets, named VKQA-30K. The dataset covers three major
domains: general (40%), world-centric (30%), and human-centric (30%). These instances encapsu-
late diverse and rich visual knowledge across the aforementioned dimensions.

Cold Start Data Generation. We also provide data in the See–Think–Answer format to facilitate
cold-start scenarios. For each QA instance in VKQA-30K, we first employed an MLLM to generate
See-Think-Answer responses and retained only those cases where the model produced both a correct
answer and an output in desired format. Following the similar manner in Sec. 4, we then ensured
the model could correctly answer question using only the text-based visual content as a proxy for
the visual input, thereby guaranteeing that the reasoning was grounded in explicit visual knowledge.
This process resulted in approximately 12K high-quality QAs, which we denote as VKQA-CS-12K.

5 EXPERIMENT

5.1 MAIN RESULTS

We adopt Qwen2.5-VL-7B-Instruct (Bai et al., 2025) as the base model for validation. To align
the model with the structured See–Think–Answer output format, we first conduct a SFT cold-start
phase. This is followed by training with GRPO augmented with the visual knowledge reward rv ,
to encourage the model to generate responses by explicitly leveraging the visual knowledge it has
acquired. This two-stage process yields the final Video-VK+.

Table 2: Results on VKBench and other video benchmarks. GRPO-Zero indicates conducting GRPO
without SFT cold start like DeepSeek-R1-Zero (Guo et al., 2025). All results are obtained using
256×28×28 input resolutions and 32 frames. Implementation details are in Appendix G.1.

Models VKBench MVBench Video-MME MMVU VSI-Bench Avg.
Open-Source Models
VideoLLaMA2 (Li et al., 2024a) 55.7 54.6 47.9 44.8 - -
mPLUG-Owl3-8B (Wang et al., 2025b) 64.2 54.5 53.5 - - -
LLaVA-OneVision-7B (Li et al., 2024a) 64.9 56.7 58.2 49.2 34.1 52.62

Recent R1-based Video Methods
Video-R1-7B (Feng et al., 2025) 65.3 63.9 59.3 63.8 30.8 56.62
VideoRFT-7B (Wang et al., 2025b) 64.6 62.1 59.8 68.5 35.5 58.10

Basemodel: Qwen2.5-VL-7B-Instruct
Zero-Shot 64.0 59.4 52.8 61.3 34.8 54.46
See-Think-Answer SFT 63.9 61.0 53.3 63.2 35.1 55.30
GRPO-Zero 64.3 63.8 58.8 65.6 23.6 55.22
Video-VK+ 67.7 64.8 59.8 67.0 35.9 59.04

As shown in Table 2, our model achieves a 3.7% improvement over the baseline on VKBench, high-
lighting its superior capacity to comprehend visual knowledge. Moreover, Video-VK+ demonstrates
strong generalization across multiple video understanding and reasoning benchmarks, surpassing the
baseline by 5.4% on MVBench, 7.0% on Video-MME, 5.7% on MMVU and 1.1% on VSI-Bench,
while also outperforming previous open-source and R1-based video models. These results under-
score the effectiveness of our VKQA collection and training strategy, reflecting the model’s robust
learning capabilities. Crucially, these findings indicate that strengthening an MLLM’s grasp of vi-
sual knowledge as a bridge can consistently boost performance across both perceptual grounding
and higher-level cognitive reasoning tasks.

5.2 ABLATION STUDY

Contribution of Training Strategy. As shown in Table 3, using See–Think–Answer SFT alone
results in a notable drop in the MS and SI dimensions, likely because merely memorizing visual
knowledge does not generalize to diverse and complex social scenarios. Experiments also show that
both vanilla GRPO and GRPO with rv tend to repetitively describe scene phenomena in the SA
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Table 3: Performance of different training strategies on VKBench. Bold indicates the best result.

SFT GRPO rv Overall IP OA OM SA EA MS SR SI
63.99 48.00 53.00 82.63 35.23 79.47 75.13 77.50 65.64

✓ 63.87 57.00 54.50 80.00 43.52 78.95 69.54 81.67 58.72
✓ 64.29 48.50 57.50 82.11 31.61 77.89 78.17 83.33 63.85
✓ ✓ 63.63 53.50 56.50 82.11 22.28 81.58 77.16 80.83 63.08

✓ ✓ 65.71 52.50 59.50 83.16 42.49 78.42 78.68 79.17 61.79
✓ ✓ ✓ 67.74 58.00 60.50 83.68 38.34 81.05 79.19 80.83 66.92

dimension, struggling with structured output. Only the two-stage combination of SFT and GRPO
achieves consistent gains across all dimensions, with rv providing an additional 2% improvement.
SFT establishes a foundation for generating structured outputs, while RL enables the model to gen-
eralize across diverse visual knowledge scenarios (Chu et al., 2025). However, Video-VK+ still
underperforms other baselines in SA. This is likely because it involves long-term visual memory,
and MLLM augmented by rv tends to capture excessive visual knowledge without focusing on the
most relevant ones, highlighting the need for better spatial visual comprehension in current MLLMs.

Table 4: Performance of different λ.

λ 0.0 0.1 0.3 0.5 0.7 1.0

VKBench 65.96 66.79 65.71 65.83 65.77 64.64

Table 5: Performance of different verifier model.

Verifier Model Zero-Shot Qwen2.5-7B Qwen2.5-VL-7B

VKBench 63.99 66.49 67.74

Choice of Visual Knowledge Reward Ratio λ. We study the impact of varying λ, which controls
the weight of the visual knowledge reward rv , by training 1K RL steps for rapid exploration. As
shown in Table 4, Video-VK+’s performance on VKBench is sensitive to this parameter. The best
performance 66.79 is achieved at λ = 0.1, both omitting the reward and overemphasizing it lead to
noticeable drops, indicating that either reliance or disregard of visual knowledge is suboptimal. A
moderate incorporation of rv is crucial for maximizing Video-VK+’s performance.

Choice of Verifier Model. We examined the impact of the verifier model on VKBench perfor-
mance by using both Qwen2.5-VL-7B and its LLM-only counterpart, Qwen2.5-7B (Team, 2024)
to compute the visual knowledge reward. As shown in Table 5, using MLLM to verify performs
slightly better. Using the same verifier as the basemodel better simulates how MLLM leverages
the internal visual knowledge acquired by itself. While a stronger LLM verifier model might yield
higher gains, this would diverge from our goal of encouraging reliance more on the models’ own
visual knowledge rather than on language reasoning alone.

6 CONCLUSION

In this paper, we highlight the critical role of visual knowledge in the development of MLLMs,
which encompasses concepts rooted in human cognitive psychology and serves to bridge perception
and reasoning. To measure this gap quantitatively, we introduce VKBench, a multimodal bench-
mark designed to evaluate MLLMs’ understanding of visual knowledge across both world-centric
and human-centric scenarios. Furthermore, we propose Video-VK+, an initial attempt to explicitly
integrate visual knowledge into MLLMs using reinforcement learning with VKQA, achieving no-
table performance on VKBench as well as other video benchmarks. We hope that our work could
provide some insight for the development of vision-oriented MLLMs.

Limitation. The current VKBenchis limited to multichoice QA form. Although effective for stan-
dardized assessment, this format does not capture the full complexity of open-ended reasoning and
may not fully expose the nuances of model failures. Future work could extend the benchmark
to include more challenging formats, such as free-form generation and interactive dialogues. Be-
sides, Video-VK+ builds on existing models using established techniques such as SFT and GRPO.
While this demonstrates that visual knowledge can be learned even with these methods, designing
new models and training objectives specifically optimized for acquiring and reasoning with visual
knowledge remains a promising direction for future research.
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the research process and paper submission. The datasets employed in this study are either openly
accessible benchmark resources or synthetically created exclusively for research objectives. The
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machine learning models and do not entail direct risks of misuse or potential harm. We uphold
the principles of fairness, transparency and accountability in our work and advocate for responsible
application of the datasets and techniques introduced in this study.

REPRODUCIBILITY STATEMENT

We have taken comprehensive instructions to ensure the reproducibility of our benchmark and exper-
imental results. Section 3.3 and Appendix E provide detailed descriptions of the data collection and
filtering procedures for VKBench. Section 3.4 and Appendix G.2 outline the evaluation protocols
and metrics, including the prompts and hyperparameters used to conduct evaluations on VKBench.
Section 4 and Appendix F describe the training strategy for Video-VK+ and the complete VKQA
generation pipeline. Section 5 and Appendix G.1 detail the experimental setup, including all hyper-
parameter choices and implementation details necessary to replicate our results. To further facilitate
reproducibility, we will release all code, model weights, and datasets under appropriate open-source
licenses in the future.
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A THE USAGE OF LARGE LANGUAGE MODELS (LLMS)

In our work, LLMs were employed to assist in the preliminary screening of the data, which was
subsequently reviewed and finalized by human researchers. In addition, LLMs were used to support
proofreading and linguistic refinement of the manuscript. All content presented here has been rigor-
ously verified to ensure a faithful representation of the original intent of the authors and to eliminate
any factual inaccuracies or hallucinations potentially introduced by the models.

B DETAILED DEFINITION OF EIGHT TASKS OF VISUAL KNOWLEDGE

Intuitive Physics. Intuitive Physics refers to the cognitive ability to judge the physical plausibility
of dynamic events by applying a common-sense understanding of physical principles such as object
permanence, solidity, and continuity (Spelke et al., 1992; Baillargeon, 1986). This goes beyond
simply recognizing objects to predicting how they will behave under physical laws. For instance, if a
ball rolls behind a screen, we intuitively expect it to continue its trajectory and emerge from the other
side, rather than vanishing or passing through the solid screen. This core knowledge, which develops
earlier than the motor skills needed to search for hidden objects, was famously demonstrated in
violation-of-expectation experiments where infants looked longer at physically impossible events
(Baillargeon, 1986; Piaget, 1954).

Object Affordance. Object Affordance is the cognitive capacity to determine an object’s potential
functional uses based on its perceptual and structural properties relative to an agent’s own capabil-
ities (Gibson, 1979). It is the direct perception of action possibilities. For example, a horizontal,
flat, knee-high surface affords sitting, a small, graspable object affords lifting, and a sharp edge af-
fords cutting. This is distinct from object identification; one perceives a chair’s ”sittability” directly,
rather than first identifying it as a chair and then deducing its function. The design of everyday
objects often relies on making these affordances clear and perceivable to the user (Norman, 1988).

Object Material. Object Material involves identifying the material composition of objects by
leveraging visual cues such as texture, gloss, and transparency (Fleming, 2017; Adelson, 2001).
This ability is crucial for predicting an object’s physical properties (e.g., weight, fragility, texture)
without direct tactile interaction. For example, by looking at a drinking glass, one can infer it is
made of glass and is therefore rigid, fragile, and smooth, whereas a paper cup is understood to be
flexible, light, and opaque. Human perception of materials is organized along both perceptual di-
mensions (e.g., gloss, grainy) and conceptual ones (e.g., mineral, viscous), indicating a blend of
low-level visual analysis and high-level knowledge (Schmidt et al., 2025).

Spatial Awareness. Spatial awareness is the cognitive understanding of objects’ relative positions,
orientations, and relationships within a given environment O’keefe & Nadel (1978). It involves cre-
ating a mental representation, or “cognitive map” of a scene that allows for navigation and localiza-
tion. This is distinct from simply identifying objects, it is about knowing where they are in relation
to one another. For example, in an image, a model with spatial awareness understands that a cat is
sitting on a mat, not under it, and that a lamp is to the left of the sofa.

Event Anticipation. Event Anticipation is the cognitive faculty for inferring the most probable
subsequent events based on existing video clues and learned social norms or scripts (Schank &
Abelson, 1977). This ability allows for proactive, rather than reactive, behavior. For example, upon
seeing a person in a restaurant reading a menu, one anticipates that the next likely event is the person
ordering food from a waiter, not standing up to leave. This prediction relies on a learned ”restaurant
script” that outlines the typical sequence of actions in that context. At a more fundamental level,
the brain is viewed as a prediction machine that constantly generates and updates hypotheses to
minimize prediction errors about future sensory input (Friston, 2010; Clark, 2013).

Mental State. Mental State inference, often termed Theory of Mind, is the ability to infer the
internal psychological states of others, including their beliefs, desires, intentions, and emotions, and
to understand that these can differ from one’s own (Premack & Woodruff, 1978; Baron-Cohen et al.,
1985). A classic test involves understanding false beliefs: if Sally puts her marble in a basket and
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leaves, and Anne then moves the marble to a box, a person with Theory of Mind understands that
Sally will still look for the marble in the basket because she holds a false belief (Wimmer & Perner,
1983). This is distinct from simply recognizing an emotion; for example, recognizing a smile as
happiness is a component, but inferring that someone is happy, because they believe they won is a
Theory of Mind judgment (Ekman, 1992).

Social Relation. Social Relation inference is the capacity to discern interpersonal relationships
and social dynamics (e.g., intimacy, dominance) from non-verbal cues. These cues include physical
proximity (proxemics), gaze patterns, and body posture (Hall, 1966; Argyle & Dean, 1965). For
example, observing two individuals standing very close together, maintaining frequent eye contact,
and having open body postures suggests a familiar and positive relationship, such as that between
close friends. In contrast, two individuals maintaining a large distance, avoiding eye contact, and
using closed postures (e.g., crossed arms) would suggest a more formal or distant relationship, like
that between strangers.

Subjective Intention. Subjective Intention involves reconstructing the underlying goals or moti-
vations behind an observed action, moving beyond what a person is doing to infer why they are
doing it (Dennett, 1987). This requires treating others as rational agents whose actions are driven
by their beliefs and desires. For instance, if you see someone repeatedly failing to place a book on a
high shelf, you infer their intention is to shelve the book, even though the action itself is unsuccess-
ful. This is different from moral evaluation, which judges the rightness or wrongness of an intention;
here, the task is simply to identify the goal itself (Piaget, 1965; Brentano, 1995).

C THEORETICAL ANALYSIS OF VIDEO-VK+

The reasoning process of MLLMs can be characterized as a conditional probability optimization
grounded in the visual evidences. Given a visual input V (e.g., images or videos), a user query
Tq , and corresponding ground-truth anwser Ta, we formulate the MLLMs’ reasoning over these
multimodal inputs as:

P (Ta|V,Tq)︸ ︷︷ ︸
VQA Accuracy

∝ P (V|Ta,Tq)︸ ︷︷ ︸
Visual Evidences

· P (Ta|Tq)︸ ︷︷ ︸
Language Priors

, (2)

where P (V|Ta,Tq) measures the consistency between the extracted visual representation from V
and Ta. We can expect a higher P (V|Ta,Tq) when those visual features embed rich and precise
descriptions related to Ta, indicating visual evidences support the answer more confidently. In
contrast, P (Ta|Tq) reflects the language prior, the model’s pre-existing world knowledge encoded
during LLM pretraining. When visual evidence is ambiguous or insufficient, MLLMs tend to rely
more heavily on this prior P (Ta|Tq), which may lead to plausible but incorrect, or even hallucinated
responses. Accordingly, the final output of MLLMs aims to maximize the following:

T̂a = argmax
Ta

P (V|Ta,Tq) · P (Ta|Tq). (3)

Note it is sound to regularize how MLLMs reason in a postive manner by explicitly improving the
visual evidences P (V|Ta,Tq). Strengthening this component encourages the model to ground its
predictions more firmly in visual knowledge, thereby reducing over-reliance on language priors and
mitigating hallucination risks.

D PRINCIPLE OF GROUP RELATIVE POLICY OPTIMIZATION

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) has demonstrated notable effective-
ness across both textual and visual tasks (Huang et al., 2025; Feng et al., 2025). GRPO estimating
the baseline from group scores, significantly reducing training computation. Specifically, it samples
G outputs {o1, ..., oG} for each query q from old policy πθold , these generations are then evaluated
with predefined rule-based rewards, such as format reward and accuracy reward, the final advantage
value of each group Ai is calculated as:

Ai =
Ri − mean({Rj})

std({Rj})
(4)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Finally, the policy model πθ will be optimized by maximizing the following objective, where ϵ and
β are hyper-parameters, and πref is the reference policy:

JGRPO(θ) = E[q,{oi}]

[
1

G

G∑
i=1

[
min

(
πθ

πθold

Ai, clip
(

πθ

πθold

, 1− ϵ, 1 + ϵ

)
Ai

)
− βDKL(πθ||πref)

]]
(5)

E DETAILS OF VKBENCH

E.1 DATA SOURCE

We summarize the annotation sources and video sources for each task in VKBench. The collection
spans diverse scenarios and provides reasonably accurate initial annotations, which serve as the
foundation for constructing VKBench.

Table 6: Data source of VKBench.

Task Annotation Source Video Source
Intuitive Physics IntPhys2 (Bordes et al., 2025) Unreal Engine (Epic Games, 2019) Simulated

Object Affordance PACS (Yu et al., 2022) YouTube

Object Material PACS (Yu et al., 2022) YouTube

Spatial Awareness VSI-Bench (Yang et al., 2025b) ARKitScenes (Baruch et al., 2021)

Event Anticipation VLEP (Lei et al., 2020) YouTube Lifestyle Vlog clip

Mental State Social-IQ-2.0 (Wilf et al., 2023) YouTube

Social Relation Social-IQ-2.0 (Wilf et al., 2023) YouTube

Subjective Intention RexTime (Chen et al., 2024) QVHighlights (Lei et al., 2021),
ActivityNet (Caba Heilbron et al., 2015)

E.2 STATISTICAL CHARACTERISTICS

The statistical characteristics of our collected dataset are illustrated in Figure 6. Compared with other
tasks, videos in Spatial Awareness and Subjective Intention tend to have longer durations, providing
richer visual knowledge for MLLMs to capture and thereby increasing the level of difficulty.

Figure 6: Statistical characteristics of per task in VKBench. Left. Average lengths of question and
options (in words). Right. Average video duration (in seconds).
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E.3 QA FILTERATION

The text-only LLM accuracy on VKBench QA pool is shown in Figure 7. Through progressive
filtering (Section 3.3) with text-only LLMs, combined with DeepSeek-R1 rewriting of unsuitable
options, the accuracy of text-only models under the blind QA setting steadily decreases. For in-
stance, Qwen3-32B-Thinking drops from 55.1% to 34.7%, approaching the random-choice level.
This trend demonstrates the effectiveness of our QA filtration process in substantially mitigating
language bias, thereby preventing MLLMs from exploiting linguistic shortcuts and ensuring that
they must genuinely rely on visual knowledge to answer questions in our VKBench.

26.8

32.7

34.7

29.8

38.6

39.1

48.5

56.4

55.1

Reka-
Flash-3

Llama-
3.3-
70B-

Instruct

Qwen3-
32B-

thinking

Original w/ Filtering w/ Rewriting

Figure 7: Text-only LLM accuracy on VKBench QA pool.

The prompt provided to DeepSeek-R1 to enhance options is illustrated in Figure 8.

See-Think-Answer Prompt

You are an expert MCQ (Multiple Choice Question) evaluator and editor tasked 
with assessing and improving question options.
Question:{question}
Current Options: A) ... B) ... C) ... D) ...
Correct Answer: {answer}

**Task**:
1. Rate the options' quality (1 = good, 0 = needs improvement) based on:
   - Distinctiveness of each option
   - Plausibility of distractors
   - Relevance to question
   - Avoidance of redundancy/nonsense
   - Appropriate difficulty level
2. If rating is 0, provide improved options following above guidelines and take 
into account the following:
   - Preserve the correct answer's validity
   - Ensure all distractors are plausible but incorrect

**Output Requirements:**
You MUST provide your evaluation in the following strict JSON format:
{{"rating": 0,"improved_options_1": "Revised option 1", 
"improved_options_2": "Revised option 2", "improved_options_3": "Revised 
option 3","improved_options_4": "Revised option 4"}}
or {{"rating": 1}}

Important Notes:
1. Output must be valid JSON (check for proper quotes, commas, etc.)
2. Do not output any other explanation or comment.

Rewriting Options Prompt

Figure 8: Prompt for DeepSeek-R1 (Guo et al., 2025) to enhance options.
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F DETAILS OF VKQA

F.1 VKQA-30K DATA SOURCES

Table 7: Data source of VKQA-30K.

Category Source Size (%)

General
LLaVA-Video-178K (Zhang et al., 2024c),

12K (40.0%)Video-R1-260K (Feng et al., 2025)
NextQA (Xiao et al., 2021)

World-Centric CLEVRER (Yi et al., 2019), VSI-100K (Liao et al., 2025), 9K (30.0%)Intphys (Riochet et al., 2018), STAR (Wu et al., 2024)

Human-Centric EMER (Lian et al., 2023), MAFW (Liu et al., 2022), 9K (30.0%)Social-IQ (Zadeh et al., 2019), CausalVidQA (Li et al., 2022)

F.2 STATISTICAL CHARACTERISTICS

(a) VKQA-CS-12K description. (b) VKQA-CS-12K think.

Figure 9: Word length distribution visualizations of VKQA.

(a) VKQA-30K. (b) VKQA-CS-12K description. (c) VKQA-CS-12K think.

Figure 10: Word cloud visualizations of VKQA.

F.3 VKQA-CS-12K GENERATION PIPELINE

Starting from the original VKQA-30K collection, we first prompted an MLLM (Qwen2.5-VL-7B-
Instruct) to produce See-Think-Answer style responses, as outlined in Figure 12. Only those ques-
tion–answer pairs where the model’s output was both accurate and matched the required format
were kept. In the next stage, we applied an additional filtering step using the prompt shown in Fig-
ure 13. Here, we preserved only the instances that the model could correctly solve when provided
with textual descriptions of their visual content alone generated before, thereby ensuring that the
reasoning relied strictly on explicit visual cues rather than implicit priors. After these two refine-
ment steps, we obtained a curated subset of about 12,000 high-quality QA pairs, which we denote
as VKQA-CS-12K.
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G IMPLEMENTATION DETAILS

G.1 TRAINING

Baselines. Video-R1 (Feng et al., 2025) and VideoRFT (Wang et al., 2025b) are employed for
comparisons. The former explores the R1 paradigm for video reasoning with MLLMs, with a SFT
cold start and following T-GRPO manner, while the latter follows the similar training style, incorpo-
rating higher quality COT data and semantic-consistency reward to guide the reasoning trajectories.

Prompts. We use the prompt shown in Figure 12 to guide the model in generating See-Think-
Answer responses during both SFT and GRPO. Prompt shown in Figure 13 is used to calculate the
binary visual knowledge reward with the help of regular expression matching.

Hyper-parameters. Our training implementation is based on TRL framework (von Werra et al.,
2020). All hyper-parameters we use for the main experiments are reported in Table 8. To balance
training efficiency and computational resource constraints, we adopt the strategy from Huang et al.
(2025); Wang et al. (2025b) by limiting the maximum number of video frames at 16 during train-
ing. Each frame is processed at a resolution of up to 128 × 28 × 28 pixels. All experiments are
reproducible using 8 NVIDIA A800 GPUs (80GB).

Table 8: Training hyperparameters.

Parameter SFT GRPO
train type full full
use vllm false true
vllm gpu memory utilization - 0.7
attn impl flash attn2 flash attn2
deepseed config zero2 zero3
torch dtype bfloat16 bfloat16
num train epochs 1 1
per device train batch size 1 1
gradient accumulation steps 2 1
num generations - 8
KL coefficient β - 0.04
visual knowledge reward ratio λ - 0.1
learning rate 1e-6 1e-6
max prompt length 16384 16384
max completion length 1024 1024
max grad norm 5.0 5.0
min frames 4 4
max frames 16 16
video pixels 128 × 28 × 28 128 × 28 × 28

G.2 EVALUATION

The models evaluated in our study vary significantly in both architecture and scale. All experiments
are conducted on NVIDIA A800 GPUs with 80 GB of memory. To ensure the fidelity and repro-
ducibility of our results, we strictly follow the official implementations and configurations released
by the model developers. Detailed specifications of the evaluated models are summarized in Table 9.

Prompts. For models that do not require thinking, we use the prompt in Figure 11 to guide their
concise responses. For Video-VK+, we use the same prompt in Figure 12 as in the training stage.
For other thinking models, we follow the official prompts specified by their developers.

Hyper-parameters. For QwenVL-based models, in particular QwenVL-2.5, MiMo-VL, and our
Video-VK+, we perform evaluation with the number of video frames ranges from 4 to 32, while the
video resolution is fixed at 256× 28× 28 pixels. For other open-source and proprietary models, we
fix the maximum number of input video frames to 32 to ensure comparability. Except for proprietary
models, which are evaluated with a temperature of 1.0, all open-source models are evaluated with a
temperature of 0.1 and a top p value of 0.001.
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Table 9: Details of evaluated multimodal large language models used in VKBench.

Organization Model Release Version

Proprietary MLLMs

OpenAI GPT-4o 2024-11 gpt-4o-2024-11-20

Google Gemini-2.5-Flash 2025-5 Gemini-2.5-Flash
Gemini-2.5-Pro 2025-3 Gemini-2.5-Pro

Open-source MLLMs

DAMO-NLP VideoLLaMA2-7B 2024-6 VideoLLaMA2-7B

LMMs-Lab

LLaVA-OV-7B 2024-8 LLaVA-OV-7B
LLaVA-OV-72B 2024-8 LLaVA-OV-72B
LLaVA-Video-7B 2024-10 llava-onevision-qwen2-7b-ov
LLaVA-Video-72B 2024-10 llava-onevision-qwen2-72b-ov-chat

mPLUG mPLUG-Owl3-7B 2024-11 mPLUG-Owl3-7B-241101

OpenBMB MiniCPM-V-2.6 2024-8 MiniCPM-V-2 6
MiniCPM-V-4.5 2025-9 MiniCPM-V-4 5

Alibaba

Qwen2.5-VL-3B 2025-1 Qwen2.5-VL-3B-Instruct
Qwen2.5-VL-7B 2025-1 Qwen2.5-VL-7B-Instruct
Qwen2.5-VL-32B 2025-1 Qwen2.5-VL-32B-Instruct
Qwen2.5-VL-72B 2025-1 Qwen2.5-VL-72B-Instruct

ZhipuAI GLM-4.1V-9B-Thinking 2025-7 GLM-4.1V-9B-Thinking

Xiaomi MiMo-VL-7B-RL 2025-8 MiMo-VL-7B-RL-2508

OpenGVLab

InternVL3.5-8B 2025-9 InternVL3.5-8B
InternVL3.5-30B-A3B 2025-9 InternVL3.5-30B-A3B-Instrcut
InternVL3.5-38B 2025-9 InternVL3.5-38B
InternVL3.5-241B-A28B 2025-9 InternVL3.5-241B-A28B-Instruct

See-Think-Answer Prompt

Please provide only the single option letter (e.g., A, B, C, D, E,etc.) 
within the <answer> </answer> tags.

Vanilla Evaluation Prompt

Figure 11: Prompt for VKBench evaluation for vanilla models.

See-Think-Answer Prompt

You are tasked with analyzing an video to generate a detailed 
description to help you answer the question. 
First analyze the video and produce a self-contained description—
detailed enough that can lead to the correct answer. Wrap the entire 
description between <description> </description> tags.
Next, engage in an internal dialogue and include self-reflection or 
verification in your reasoning process. Provide your detailed, step-
by-step reasoning based on the video description information and 
video, and enclose this part between <think> </think> tags.
Finally, provide only the single option letter (e.g., A, B, C, D, E, etc.) 
between the <answer> </answer> tags.
The output format should be: <description> video description here 
</description><think> reasoning process here </think><answer> 
answer here </answer>.

See-Think-Answer Prompt

Figure 12: Prompt for MLLMs to generate to See-Think-Answer output format.
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See-Think-Answer Prompt

You are provided a text description of a problem and a question. 
Determine the answer to the question based on the text description. 
Provide only the single option letter (e.g., A, B, C, D, E, etc.) 
between the <answer> </answer> tags.
The output format should be: <answer> answer here </answer>.

Visual Knowledge Reward Prompt

Figure 13: Prompt for verifier model to cauculate visual knowledge reward.

H MORE EVALUATION ANALYSIS ON VKBENCH

H.1 FULL PERFORMANCE OF ABLATION STUDY ON THE VERIFIER MODEL

Table 10: Full performance of different verifier models on VKBench. Bold indicates the best result.

Verifier Model Overall IP OA OM SA EA MS SR SI
Qwen2.5-7B 66.49 51.00 59.50 83.16 39.38 79.47 78.68 80.00 66.67
Qwen2.5-VL-7B 67.74 58.00 60.50 83.68 38.34 81.05 79.18 80.83 66.92

As shown in Table 10, integrating the MLLM verifier leads to consistent performance improvements
across most tasks. Although a slight drop is observed in the Spatial Awareness, the multimodal
verifier still exhibits more balanced and robust performance overall, particularly in Intuitive Physics
and Event Anticipation. These results highlight that leveraging visual signals and knowledge during
verification can significantly enhance model reliability on VKBench.

H.2 EFFECT OF FRAMES

We examine the sensitivity of model performance to the number of input frames on VKBench. As
shown in Figure 14, performance varies across tasks with changing frames. Tasks such as SR and
SI benefit from more frames, indicating richer visual knowledge extraction. However, some tasks
(e.g., SA) show non-monotonic trends, suggesting more frames does not always yield better results,
while redundant frames may introduce noise and interfere with visual knowledge. These findings
highlight that making the selection of informative and critical frames, similar to how humans focus
on key visual knowledge, a promising direction for future improvements.

Figure 14: Performance across varying numbers of frames for each task of VKBench (Base model:
Qwen2.5-VL-7B-Instruct; Input video frame pixels: 256 × 28× 28).
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