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Abstract

Human reasoning can be understood as an interplay between two systems: the
intuitive and associative (“System 1”) and the deliberative and logical (“System 2”).
Neural sequence models—which have been increasingly successful at performing
complex, structured tasks—exhibit the advantages and failure modes of System 1:
they are fast and learn patterns from data, but are often inconsistent and incoherent.
In this work, we seek a lightweight, training-free means of improving existing
System 1-like sequence models by adding System 2-inspired logical reasoning.
We explore several variations on this theme in which candidate generations from
a neural sequence model are examined for logical consistency by a symbolic
reasoning module, which can either accept or reject the generations. Our approach
uses neural inference to mediate between the neural System 1 and the logical
System 2. Results in robust story generation and grounded instruction-following
show that this approach can increase the coherence and accuracy of neurally-based
generations.

1 Introduction

Despite recent success, neural sequence models often fail to produce consistent and coherent genera-
tions. When generating stories, language models may forget the attributes of specific characters (such
as personality and background information) (Welleck et al., 2018), ignore previously established
relationships between characters (such as family relationships) (Sinha et al., 2019), or otherwise
contradict prior statements (Brown et al., 2020). Similarly, neural models can make statements that
contradict basic world knowledge or the logical entailment structure of known facts.

Lake & Murphy (2020) illustrated several of these issues with GPT-2 (Radford et al., 2019). When
given prompts of the form “A dolphin is a ”, GPT-2 predicts that the most likely answer is
“mammal”, “fish”, or “bird” depending on small differences in the wording of the prompt. In another
example, GPT-2 states that unicorns have “four horns,” directly after implying that unicorns only
have one horn. Upon diagnosing such issues, it is unclear how to apply a targeted fix to the model,
especially if retraining or fine-tuning is impractical.

In this work, we draw on insights from cognitive science, especially from “dual process” theories
of reasoning (Evans, 2003), to explore how neural sequence models can better interface with prior
knowledge and be made more coherent and consistent. According to dual process theories, human
cognition can be understood as an interplay between a more intuitive and associative “System 1”
and a more deliberative and logical “System 2.” Within this broad framework, automatic actions are
driven by System 1, whereas System 2 engages for more deliberative control: for example, judging
the validity of a logical argument that requires multiple steps of reasoning (Kahneman, 2013).
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World Model

Daniel.location = garden 
apple.holder = Daniel 
Mary.location = office

Story so far

Daniel went to the garden.
Mary traveled to the office.
Daniel grabbed the apple.

Candidate next sentences

Mary dropped the apple there.

Daniel went back to the garden.

Daniel went to the patio.

Generate
(ex. GPT-3)

drop(Mary, apple) 

go(Daniel, garden) 

go(Daniel, patio)

!

!

✅

Daniel went to the garden.
Mary traveled to the office.
Daniel grabbed the apple.
Daniel went to the patio.

Final generation

Parse
(GPT-3)

Parse
(GPT-3)

Check
(symbolic)

System 1 
fast and intuitive

System 2 
slow and logical

Figure 1: Schematic of dual-system approach to text generation. Conditioned on previous text, a
“System 1” neural generation model produces candidate next sentences. Semantic parses for each
candidate are generated via few-shot parsing from GPT-3 and compared to a minimal world model to
check consistency. Only candidates consistent with the world model state are incorporated into the
final generation.

The prominent neural language models of today are single systems, with weaknesses akin to those
exhibited by the human System 1. For example, the cognitive reflection test (CRT) (Frederick,
2005) is a classic probe of System 1 vs. System 2 reasoning in humans. Participants answer a set of
simple questions that have superficially compelling, but logically invalid, answers. These incorrect
answers are often generated as a first “gut” response (putatively, by System 1 intuitive thinking); upon
reflection, however, participants often realize that their responses were not logically or mathematically
consistent (via more explicit System 2 reasoning). Consider the CRT problem on the left below:

A ball and a bat cost $1.10.
The bat costs one dollar more than the ball.
How much does the ball cost?

Total cost in prompt GPT-3 response
$1.10 10 cents
$1.20 20 cents
$1.30 $0.30
$1.70 $0.70

Reading quickly, you might be tempted to say the ball costs 10 cents. Most participants give this
response, in fact, especially if they are under time pressure or have limited attention (Kahneman,
2013). Of course, if the bat is $1.00 more than the ball, and the ball costs 10 cents, then the total
cost would be $1.20. The correct answer is that the ball costs 5 cents. Notably, in this and other
classic CRT problems, GPT-3 (Brown et al., 2020) predicts the same “gut” response (prediction in red
above; the table above shows that adjusting the price in the prompt also leads to similar effects; see
Appendix Figure 8 for more CRT examples). GPT-3 appears vulnerable to the same sort of intuitive,
unsystematic pattern recognition errors as humans—in this case, incorrectly subtracting one dollar
from $1.10, without confirming that the answer satisfies each of the problem constraints.

Numerous studies have shown that engagement of System 2-style effort can help “override or inhibit
default responses emanating from System 1” (Evans, 2003), correcting inconsistent or un-systematic
intuitive impulses. For example, when System 2 is engaged by asking people to take more time to
respond, people’s accuracy improves on the CRT task above (Kahneman, 2013). It has been argued
that integrating System 2 processing could similarly improve AI systems (Goyal & Bengio, 2020;
Garcez & Lamb, 2020), and here we explore this idea as applied to neural sequence models.

In this work, we take inspiration from dual process theories to explore a neuro-symbolic generation
system, wherein predictions from a neural model are treated as System 1 proposals, and a logical,
deliberative System 2 filters these proposals for consistency and soundness (see Figure 1). We further
take inspiration from the fact that humans often do not need explicit supervision to reason about new
problems or domains (e.g., see human evaluation task in Section 4.2) and require that the System
2 module not need additional problem-specific training, especially on example contradictions or
commonsense violations. People can handle novelty by reconfiguring, rather than retraining, their
internal models (Lake et al., 2017), and we strive to build machine systems capable of the same.
We show how a lightweight, easy-to-implement System 2 model can help improve coherence and
consistency by adding a small amount of symbolic reasoning.

We tackle two kinds of domains: text generation and instruction following. In both cases, we
construct generative models over sequences by using a neural generation model to propose candidate
generations and a symbolic world model that can accept or reject the generations and resample
proposals if necessary. We first illustrate the approach by generating short stories based on the bAbI
dataset (Weston et al., 2015); this pedagogical, synthetic example illustrates how basic commonsense
knowledge of objects, agents, and places can inform a text generation model. We then test our
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approach on rich, natural language vignettes based on CLUTRR (Sinha et al., 2019), focusing on
ensuring consistency of family and interpersonal relationships. In both text generation domains, we
interface between the explicit logical knowledge/reasoning of System 2 and generations of System
1 using a few-shot learning approach with state-of-the-art neural language models (GPT-3), which
requires no additional training or fine-tuning. Even using off-the-shelf transformers and symbolic
solvers, our dual-system model improves the consistency and coherence of text generations as
measured by human judges. We test our approach also on instruction following, showing how goal-
prediction models and execution models can easily be combined to achieve improved performance in
low-data regimes. We show improvements over previous work in the gSCAN grounded compositional
challenge (Ruis et al., 2020); a dual-system model requires much less data to train than previous
models, and achieves higher accuracy and stronger generalization. Overall, our findings indicate that
neuro-symbolic, dual process models are a promising means of addressing longstanding problems of
robustness and consistency in neural sequence models.

2 Related Work

Our approach incorporates semantic parsing (Liang, 2016) as a component of a generative process,
where neural generation is used in conjunction with parsing techniques. In our text generation
experiments, we employ GPT-3 to perform few-shot semantic parsing without fine-tuning. Related
work includes few or zero-shot semantic parsing using pre-training techniques and paraphrasing
(Su & Yan, 2017; Herzig & Berant, 2020). It also includes semantic parsing systems trained either
without supervision (Liang et al., 2017; Mou et al., 2017; Muhlgay et al., 2019), or with synthetic
language data (Marzoev et al., 2020; Xu et al., 2020b).

One popular technique for improving neural generations is generate-and-rerank, wherein one
model generates proposals and another reranks them. This broad approach has been used in image
generation (Ramesh et al., 2021), text generation (Holtzman et al., 2018; Shen et al., 2019; Deng
et al., 2020), dialogue systems (for control, coherence and safety (Welleck et al., 2018; Smith et al.,
2020; Nie et al., 2020; Xu et al., 2020a)), and instruction following (Kurita & Cho, 2020). Reranking
is generally used to improve outputs with respect to relatively broad, holistic criteria. Here, our
goal is to make generation robust to particular types of logical errors by pruning with respect to
explicit symbolic constraints. Our approach can thus be considered closely related to techniques
which employ explicit search to find generations satisfying particular logical constraints. Similar
methods, such as guess-and-check or beam search pruning, have had success in neural program
synthesis (Devlin et al., 2017; Nye et al., 2020).

Recent work in NLP has used template-based planning, in which a model generates text by first
generating a plan or skeleton, and filling in the missing words to produce naturalistic text (Xu et al.,
2018; Hua & Wang, 2020). To generate stories, Martin et al. (2018) parses previous sentences
into events and does planning in event space. Our work extends previous entity/relation/event
planning in that the world model is not used for planning, but rather for post-checking candidate
generations. Structured parsing of this type is also related to dialog tracking techniques such as
slot-filling (Pieraccini et al., 1992). In our work, fully compositional logical facts are extracted from
utterances. It is therefore more closely related to systems which extract programs from dialogue,
such as Andreas et al. (2020).

Recent work has also studied incorporating symbolic constraints into a neural decoding strategy
in the context of natural language. Miao et al. (2019) introduce an MCMC-based inference-time
propose-and-reject strategy for satisfying constraints. They test on constraints such as paraphrase
and grammatical error correction. Lu et al. (2020) introduces “NeuroLogic decoding,” which uses
logical constraints on neural language models to produce generations which contain (or do not
contain) required (or forbidden) keywords. In these works, the constraints are lexical or based on
word/sentence similarity (and provided in the problem setup for Lu et al. (2020)), whereas we study
logical constraints on the world state decoded directly from observations or generations at test time.
Other approaches for solving reasoning tasks end-to-end include Goyal et al. (2021), Serafini &
d’Avila Garcez (2016), and Schlag & Schmidhuber (2018).
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3 Integrating System 1 and System 2

We introduce our dual-system approach using examples from the bAbI domain (Weston et al., 2015),
which we also use to perform diagnostic experiments. Consider generating a simple story involving
people, places and objects, such as (from Figure 1):

Daniel went to the garden. Mary traveled to the office. Daniel grabbed the apple.

A model tasked with generating such stories must juggle several simultaneous demands: staying
on topic and maintaining consistency of style and other textural elements (for which people rely on
System 1), as well as maintaining consistency with previous statements and commonsense knowledge
(for which people rely on both systems). Consider continuing the story with one of the following:

(a) Daniel went to the patio. (b) Mary dropped the apple there.

Sentence (a) is reasonable; sentence (b) is not because it is Daniel, not Mary, who has the apple.
During generation, how might a model distinguish between these candidates? Perhaps a well-trained
neural language model could track constraints of these sorts. Neural language models to date,
however, often violate these types of commonsense, hard constraints without a large high-quality
corpus or explicit training on detecting violations of commonsense (Sinha et al., 2019).

We address this problem by decomposing text generation into two parts: candidate generation
facilitated by deep neural networks and a logical pruning process implemented via a separate
symbolic module. Consider again the example above. To ensure consistency, our model would
extract from the text the features of the world that are subject to the hard, logical constraints, such
as the location of objects and who is holding them. These constraints can then be checked against
an explicit representation of current state of the world. For sentences (a) and (b), the system would
extract and go(Daniel, patio) and drop(Mary, apple), respectively. A minimal world model
would track the state of the apple, such that it maintains apple.holder = Daniel (or equivalently,
Daniel.inventory = [apple]). When such a model is given a parse of a candidate generation,
drop(Mary, apple), the mismatch between the current state and the proposed change would cause
a violation, and the candidate generation will be rejected.

The main steps of our general approach are illustrated in Figure 1: generate proposals from a System
1 proposal model, extract facts with a fact extraction model, and filter proposed generations by
ensuring that they satisfy the constraints given by the extracted facts and the minimal world model.

System 1: Generation. We use neural sequence models to produce System 1 generations. In text
generation domains, we use a large, pre-trained model that can be fine-tuned or conditioned via a
short prompt to generate relevant text. Text sampled from the System 1 model will be treated as
candidate utterances, which will be parsed and filtered by System 2 (described below). For the bAbI
examples, we use GPT-3 as our System 1 proposal model through few-shot prompting with 10
example bAbI stories as context, generating a new story one candidate sentence at a time.

System 2: Fact extraction. A fact extractor, or parser, is used to mediate between the System 1
candidate proposals and the minimal world model within System 2. In our text generation domains,
we use a pre-trained GPT-3 model without fine-tuning to perform parsing.

For bAbI, our prompt consist of an initial descriptive sentence “Please parse the following statements
into commands. The available commands are pickup, drop, and go.” and a small set (< 10) of
representative semantic parsing examples (input = sentences; output = correct parses, such as go(Bob,
roof)). The parse of each utterance is produced via few-shot prompting (Brown et al., 2020): the
utterance is added to the end of the prompt, and the subsequent GPT-3 generation is interpreted as the
target parse. We found that this simple parsing technique works well and could easily be applied to
other parsing-based tasks, as in Shin et al. (2021). The parsing prompts are reproduced in full in the
Appendix. As discussed in Section 5, for the gSCAN instruction following domain, fact extraction is
performed with a learned goal location prediction model.

System 2: Minimal world model. We use a lightweight, incomplete description of the state of the
world as a world model in each domain, e.g., commonsense information about the people, objects
and locations (Figure 1). The goal is not to track and verify all the possible information; instead, we
aim for minimalism, capturing just a few commonsense (or application-critical) variables that we
want to ensure are correct. The world model facilitates tracking of long-range logical dependencies
and logical consequences, especially those which are not readily decodable from surface forms. The
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world model also lets us integrate rule-based world-knowledge without retraining (and without the
need for a large set of labeled examples).

For the bAbI examples, the minimal world model keeps track of the people, locations and objects
introduced in the story so far (Figure 1). This encodes constraints on possible actions related to
human core knowledge competencies (objects, agents, places) present early in human development
(Spelke & Kinzler, 2007); specifically, a person or object can only be in one place at a time, an object
can only be possessed by a single person at a time, a person cannot “go” to a room they are already
in, and a person cannot pick up an object if it is in a different room. See the Appendix for details.

Search. At generation time, the interaction between System 1 generation and System 2 parsing
yields a neuro-symbolic, guess-and-check search strategy. In a text generation scenario, where text is
sampled from the model, our dual-system model improves upon a naive, neural-only sampling method
by using the System 2 model to reject candidate utterances which are incompatible with the current
state. When a candidate is rejected, a new candidate utterance is sampled from the System 1 model,
which is again checked by System 2. This process repeats until a candidate utterance is accepted by
System 2 (i.e., the utterance is compatible with the world state). This procedure allows the model
to effectively search the space of candidate utterances, guided by the logical constraints from the
minimal world model. In this work, we use straightforward probabilistic sampling to illustrate that
the approach works with even a very simple search mechanism. We imagine that the search procedure
could be further optimized by applying, for example, beam search or stochastic beam sampling.

GPT-3 only:
John went to the bedroom.
John picked up the apple there.
Mary took the apple there.
Mary travelled to the office.
Daniel went back to the garden.
Mary went to the bedroom.
John went to the bedroom.
Sandra went to the bedroom.
Sandra travelled to the office.
Mary went back to the office.
Where is the apple? A: office

GPT-3 + world model:
John went to the bedroom.
John picked up the apple there.
Mary travelled to the office.
Daniel went back to the garden.
Mary went to the bedroom.
Sandra went to the bedroom.
Sandra travelled to the office.
Mary went back to the office.
Where is the apple? A: bedroom

Figure 2: Example bAbI stories generated by GPT-3
only (left) and our dual-system model (right). Logi-
cally inconsistent lines are written in red text, and are
removed from the story-so-far at generation time.

Diagnostic bAbI experiments. We use
Task #2 from bAbI as a diagnostic test
for our neuro-symbolic dual-system model.
As shown above, this task consists of
synthetically-generated short stories involv-
ing people, places and objects, and ques-
tions concerning the locations of objects in
these stories. We investigate performance
on both question answering (QA) tasks and
story generation. For the QA tasks, we
parse each sentence in the story to encode
each fact into the world model and parse
the final question to query the world model,
returning the answer given by the world
model. We compare with two alternative models (Table 3 in the Appendix): GPT-3 by itself and a
dual-system baseline that uses a neural Natural Language Inference (NLI) model as its System 2.
The NLI-based dual-system model generates 10 candidates from GPT-3 and selects the candidate
with the highest predicted probability of entailment under the NLI model given the context. We use
the RoBERTa MNLI model as our off-the-shelf neural NLI model (Liu et al., 2019), which operates
as a System 2 that does not use additional problem-specific data or fine-tuning.2 On 200 held-out
tasks, our GPT-3-based “fact extractor” achieves 100% QA accuracy, far exceeding the performance
of GPT-3 alone (29.0%) or GPT-3 generation with neural NLI scoring (32.5%; also see Table 3 in the
Appendix). These results show that GPT-3 can be made to answer questions successfully when used
for parsing with a world model, even when GPT-3 alone does not achieve high QA accuracy.

To test story generation, we use our GPT-3-based System 1 proposal model (few-shot prompted on 10
example stories) to sample a new bAbI story, line-by-line. If a generated utterance is inconsistent with
the current state as indicated by the System 2 world model, a new utterance is sampled from System
1 (repeating until a consistent utterance is sampled). Figure 2 shows how the dual-system approach
generates stories that mimic the statistical structure of bAbI stories, while remaining logically sound
In contrast, GPT-3 alone was not able to maintain logical coherence. In a set of 50 generated stories,
all stories required at least one sentence to be resampled to maintain coherence, and over half of the
generated sentences (53.1%) were rejected by our System 2 model to maintain logical consistency.
These results demonstrate that equipping GPT-3 with a minimal world model produces logically
coherent stories that mimic the textural structure of the bAbI domain. In the next section, we apply
this approach to mimicking human-generated short stories in natural language.

2Previous work has used domain-specific entailment/contradiction data to train reranking models (Welleck
et al., 2018), however, this requires collecting a dataset of domain-specific entailment and contradiction data.
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4 Coherent Language Generation - CLUTRR

We apply our dual-system approach to a dataset of natural language using the CLUTRR dataset.
CLUTRR contains human-written stories about people and their family relationships (see example
in Figure 3). As with bAbI, CLUTRR was originally designed as a Question Answering challenge;
instead, we use it to evaluate coherent language generation by querying models to generate complete
CLUTRR-style stories or to complete partially-generated stories. Our particular aim is to produce
stories with coherent and logically consistent family relationships. As above, our language generation
setup consists of pre-trained language models acting as our System 1 proposer, a minimal world
model as System 2, and a neural semantic parser (implemented via few-shot GPT-3 prediction) as a
bridge between the two systems. We use human judgments to assess whether our neuro-symbolic,
dual-system model produces more consistent and coherent stories relative to a baseline.

4.1 Model specification

Figure 3: Sample story from the CLUTRR dataset.
Each story consists of a sequence of human-
generated sentences concerning family relation-
ships. Adapted from Sinha et al. (2019).

As our System 1 proposal model, we used pre-
trained neural models to produce candidate gen-
erations one sentence at a time. We experi-
mented with GPT-3 as our System 1 model
(which we used above for bAbI), but found
generations too unreliable, often outputting the
empty string. Instead, we used a BART model
(Lewis et al., 2019) that was fine-tuned on the
CLUTRR training corpus. This model also gives us an opportunity to compare against a best-case
neural “single-system” baseline, specifically fine-tuned on story data. To maintain a state of family
relations, we use a constraint solver in our “System 2” to encode family relationships (e.g., child(x,
y), spouse(x, z)) and check that the candidate utterances do not contradict the previous state-
ments (e.g., a person cannot be their own child or married to their sibling). We implemented the
world model as a set of logical relations and constraints using the Z3 solver (De Moura & Bjørner,
2008). For instance, we require that the parent of x cannot also be the uncle of x: For all x, y,
uncle(x, y)⇒ ¬child(y, x). To check a candidate utterance, we query the solver to determine
if the set of constraints is satisfiable or if there is a contradiction. The full set of constraints and other
details can be found in the Appendix. We again used GPT-3 as our semantic parser, extracting parses
for each candidate utterance via few-shot learning. This parsing approach worked well, even for the
natural language in this domain. We observed that parsing with GPT-3 was more successful when the
target parse was naturalistic, i.e., “Bob is Joe’s father.” rather than “father(Bob, Joe)”. The parsing
prompt is reproduced in full in the Appendix.

Tracy went to dinner with her daughter Shantel.

They then went to the park afterwards.

Tracy loves her son Aaron very much.

He loves her, too.

Harold took his grandson Aaron to the zoo.

Which of the following sentences makes the most
sense given the information above?

# Harold’s son Aaron didn’t go because he was
afraid of animals.

•# Harold’s daughter, Tracy, went with him.

Figure 4: Example trial from CLUTRR human
judgement experiment. Participants were in-
structed to select which of two options makes
the most sense given the prompt. One op-
tion was generated by the System 1 model
only (“single-system”), while the other was
generated by the dual-system model.
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Figure 5: CLUTRR human judgment experiment
results. Bars denote proportions of dual-system
generations selected as making more sense over
single-system generations, in each of four condi-
tions. Error-bars denote bootstrapped 95% con-
fidence intervals of the item means. The points
denote means for each individual item in the exper-
iment and are jittered horizontally for clarity.

6



Table 1: Statistics from CLUTRR story generation. We report the percentage of generations (on both
a per-line and per-story basis) for which the System 2 world model did not detect an error. The
dual-system model is able to detect many inconsistencies in the neural single-system generations,
and most can be corrected by re-sampling new candidates (up to a limit of ten).

% w/out error detected (per line) % w/out error detected (per story)
single-system dual-system single-system dual-system
(neural gen. only) (neural gen.+world model) (neural gen. only) (neural gen.+world model)

prompt from dataset 82.8 97.1 60 96.1
prompt from model 71.9 96.3 36.4 93.5

4.2 Human judgments

We test our dual-system neural generation + world model method in its ability to generate stories that
are deemed by naive human participants to be more naturalistic and coherent than those generated
from the baseline models. Specifically, we asked participants to select which of two continuations
made the most sense to them, where one continuation was generated from the neural model alone
(single-system) and the other from a dual-system model (either the world model System 2 or the
neural NLI System 2).

Participants. Participants (N = 101) were recruited on the crowd-sourcing platform Prolific and
compensated $2 for the task (∼15 minutes, so roughly $8/hour). Participants gave informed consent,
and the study was approved by MIT’s IRB. 21 participants were excluded for failing an instruction
quiz, incorrectly answering more than one of five filler questions, or finishing the task too quickly.
The data we collected contains no personally identifiable information or offensive content.

Procedure. Participants began the experiment by reading a set of instructions and answering
comprehension questions. On each main trial, participants were shown a prompt consisting of several
sentences and were asked to choose which of two possible continuations made the most sense (an
example trial is shown in Figure 4). Participants were instructed that if a name appeared multiple times
within a trial, then it referred to the same person, whereas if a name appeared across trials, then it was
not referring to the same person. For each trial, one continuation option was generated by the neural
only single-system baseline, while the other was a dual-system generation. We selected generations
from the neural only baseline that were rejected by the System 2 model in order to maximize the
differences between the models’ generations; thus, human judgments pertain to generations that the
models disagreed on. Each participant performed between 20 and 26 trials.

Materials. Participants were randomly assigned to one of four between-participant conditions,
which varied according to the kind of prompt and the kind of dual-system model. The prompt was
either generated from the model (up to the point of disagreement between System 1 and System 2
models; “Prompts from model” condition) or taken completely from the length 4 CLUTRR systematic
generalization test dataset (“Prompts from dataset” condition). To generate prompts for the “from
model” condition, we took the first sentence of each story from the CLUTRR test dataset and generated
subsequent prompt sentences from the dual-system model; sentences were generated until the two
systems disagreed (i.e., System 1 generated a sentence that System 2 rejected), at which point
the “rejected sentence” served as the neural only (single-system) baseline generation and the first
resampled sentence that System 2 accepted served as the dual-system generation. Prompts were
sampled to a maximum length of four sentences. The dual-system model shown to participants used
a System 2 based on either our constraint-based “world model” or the neural NLI baseline.

Table 1 catalogs critical statistics from the stimulus generation process. We generated vignettes from
the System 1 model and report the percentage of System 1 generations which are deemed correct
by the System 2 model.3 We also report the percentage of generations corrected by the System 2
model (i.e., if System 1 made an error, could System 2 fix it within 10 attempts?). We report these
statistics on both a per-story and per-line basis. According to System 2, the System 1 generation
model makes a lot of errors (only 36.4% of stories and 71.9% of lines were error-free, in the “from
model" condition). In most instances, re-sampling new generations yields stories that, according to

3For all System 1 generations, we used model temperature of 1.0. For the neural NLI baseline, we used 0.9
probability of contradiction as the cutoff for rejection. Our dual-system model uses a sampling budget of 10
System 1 samples per sentence. Contradictions remaining after 10 samples are considered dual-system errors.
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Table 2: Accuracy on gSCAN splits. Models
were trained on 5000 examples (only 2.5% of the
gSCAN training data). See Appendix Table 4 for
additional results.)

Test split: single-system5 dual-system
dev 71.7 83.3
random 57.2 74.7
yellow squares 68.1 81.3
red squares 64.9 78.1
novel direction 0.0 0.01
relativity 41.0 53.6
class inference 68.1 76.2
adverb (k=1) 0.0 0.0
adverb to verb 20.8 21.8
3From Heinze-Deml & Bouchacourt (2020)
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Figure 6: Schematic of our dual-system approach
to gSCAN. We train a neural sequence model to
predict both a distribution over action sequences,
and a distribution over target locations. At test
time, we decode candidate action sequences from
the model, execute them on the gridworld, and
only accept a sequence that brings the agent to the
predicted target location (shown in green).

System 2, no longer contain logical errors within a budget of 10 samples (93.5% of stories and 96.3%
of lines were error-free, respectively).

Results. The human evaluation indicates that System 2 is indeed correcting genuine errors in the
stories. As summarized in Figure 5, participants strongly preferred the dual-system neural generation
+ world model continuations in comparison to the neural only single-system continuations (proportion
preferring dual-system = 0.84; bootstrapped 95% confidence interval [0.77, 0.89] and 0.79 [0.77, 0.89]
for the “from dataset” and “from model” prompt conditions, respectively). The dual-system approach,
however, did not improve generation quality when the System 2 was based on an off-the-shelf neural
NLI model (Proportion preferring dual-system = 0.51; [0.40, 0.64] for “from dataset”; 0.58 [0.48,
0.68] for “from model”). Thus, when using a minimal world model, the dual-system approach
dramatically improves logical consistency without any need for additional training or fine-tuning.
People clearly prefer neuro-symbolic generations from the dual-system model over purely neural
generations from a single-system model.4

5 Grounded Instruction Following

The dual-system approach offers a general-purpose means of improving upon generative, neural
sequence models by incorporating logical constraints. To highlight its generality, we examine how the
dual-system perspective can be deployed in a very different domain: grounded instruction following.
In Heinze-Deml & Bouchacourt (2020), a learned target location predictor was used to increase the
accuracy of a neural action sequence generation model. Here, we show how to increase performance
further by enforcing consistency between the target location predictor and the action sequence
generator in our dual-system framework.

We use the gSCAN benchmark (Ruis et al., 2020), a recently proposed grounded instruction following
dataset designed to measure compositional generalization in neural systems. Given an initial gridworld
state and an instruction, e.g., “walk to the big square,” an agent must predict the sequence of low-level
actions which achieve the goal, e.g., “TURN LEFT, WALK, TURN LEFT, WALK” (See Figure 6). The
dataset contains several test splits, each testing different aspects of compositional generalization.

Our model builds on Heinze-Deml & Bouchacourt (2020) by using an LSTM to predict the correct
action sequence and target location. Given a command c and an initial gridworld state s, the neural
network defines two distributions: a distribution over action sequences qa(a|c, s) and a distribution
over target grid locations qloc(l|c, s). Heinze-Deml & Bouchacourt (2020) showed that when these
distributions share parameters, using location prediction as an auxiliary loss improves the accuracy of
the action sequence prediction model. We can further exploit these two models by noticing that when
a predicted action sequence is not consistent with a predicted target location, then either the action
sequence or the target location must be incorrect. Since the target location is much simpler to predict,

4We note that the effect size of our approach depends upon the prevalence of disagreements between the
single-system and dual-system models. As reported in Table 1, we find that the prevalence of disagreements is at
least 14% - 57%, depending on the data regime. Therefore, the model predictions do often differ, resulting in a
large overall effect size.
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and thus much more likely to be correctly predicted, if a predicted action sequence is not consistent
with the predicted target location, then the action sequence is most likely incorrect. Our dual-system
framework can use this property to increase action sequence prediction accuracy. Consider the initial
state and command in Figure 6. Our model predicts candidate action sequences, and also predicts
that the most likely target location is the grid containing the bigger yellow square (highlighted in red).
The model then executes the candidate action sequences, and only accepts a sequence which results
in the agent standing in the target location.

In the language of our dual-system approach, we treat the distribution over actions qa(a|c, s) as
our System 1 proposal model. The distribution over target locations qloc(l|c, s) serves as a fact
extractor model, which extract a location constraint l. As a minimal world model, we use a
deterministic gridworld execution model T (a, s0)→ sf , which takes a state and action and predicts
the resulting state. At test time, we first extract the predicted location as l = argmaxl′ qloc(l

′|c).
We then search through the possible action sequences from qa(·|c), conditioned on agreement with
l. In our experiments, we use a sample-based search with a maximum budget of 50 samples. We
trained models on random subsets of the gSCAN training set of varying sizes: 5000 datapoints, 8000
datapoints, and 20000 datapoints (2.5%, 4% and 10% of the original training set, respectively).

Results. The results show that the System 2 execution model improves performance without the
need for any additional training (see Table 2 for results training on 5000 examples). In contrast to the
single-system model, the dual-system model allows for sampling many candidate action sequences
from the neural network, accepting only consistent sequences. This guess-and-check approach greatly
increases the evaluation accuracy, improving upon prior work on gSCAN, particularly in low-data
regimes.

6 Limitations

In its current form, our approach is most useful in domains where naturalistic, learned generation
is necessary and where a small number of mission-critical logical constraints can be explicitly
articulated. Our system will be less useful when constraints are more difficult to articulate (e.g.,
creative domains such as writing poetry) or when there are many constraints, since the minimal world
model must be hand-engineered. Enforcing strict constraints may also pose risks: if the constraints
are not only logical but cultural, they may be harmful if misapplied. However, these constraints must
be articulated explicitly in a symbolic model, and are thus easier to identify and correct.

The current few-shot parsing technique may also suffer from a limited capacity. For more complex
domains, the number of examples required to specify the desired parsing behavior may be too large
(i.e., they may not fit in the input window) or too complex for a model to perform parsing accurately.
While some tasks may not be suitable, the complexity of the world model need not necessarily
increase hand-in-hand with the complexity of the application domain. A dual-system model will
be most successful when tracking just a few critical variables (e.g., tracking consistency in family
relations, as in our experiments, or tracking scheduling constraints when discussing a team plan).

A promising direction for future work is to incorporate learning into the System 2 world model.
Currently, the minimal world knowledge that exists in System 2 can be easily modified, but changes
must be made by hand. Improvements would come from automatically learning and updating this
structured knowledge, possibly by incorporating neuro-symbolic learning techniques (Ellis et al.,
2020; Mao et al., 2019), or other neuro-symbolic integration work such as Tsamoura et al. (2021);
Michael & Valiant (2008).

Learning could improve our dual-system approach in other ways, e.g., by training a neural module to
mimic the actions of a symbolic System 2. The symbolic System 2 judgments could be used as a
source of supervision; candidate utterances rejected by the symbolic System 2 model could be used
as examples of contradictory sentences, and accepted utterances could be used as examples of non-
contradictory statements. This oversight could help train a neural System 2 contradiction-detection
model capable of more subtleties than its symbolic counterpart, especially in domains where labeled
examples are otherwise unavailable. This approach may also help us understand aspects of human
learning, where certain tasks that require slower, logical reasoning can be habitualized over time and
tackled by faster, more intuitive reasoning.
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Recent work (Li et al., 2021) has shown that large pre-trained neural models learn to approximately
represent certain types of structured semantic information. However, it is not yet clear how represen-
tational fidelity translates to logical coherence during generative tasks. Our current approach allows
us to explicitly fix logical errors in generation, which may ultimately be caused by representational
errors. Understanding how we might leverage our approach to improve the representation of struc-
tured knowledge within neural models is a promising direction for future work, which could lead to
increased generation consistency and coherence.

7 Conclusion

Inspired by dual process theories from cognitive science, we combine the respective strengths of
neural and symbolic approaches to build more robust models that can more effectively incorporate
domain knowledge. For language generation, we showed that equipping neural generation with
a minimal symbolic world model increased language coherence and consistency. For grounded
instruction following, we showed that requiring test-time consistency between predicted action
sequences and goal locations led to improved performance, especially in low-data regimes. Our
neuro-symbolic approach can readily be applied to other domains and types of prior knowledge, as a
lightweight way of improving the coherence and consistency of powerful neural sequence models.

This paper just scratches the surface of how structured knowledge can make neural systems more
robust; we hope to inspire further work into neuro-symbolic systems which possess the robustness
and commonsense necessary for human-level intelligence.
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