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ABSTRACT

We propose an ensembling framework that uses diverse open-sourced Large Lan-
guage Models (LLMs) to achieve high response quality while maintaining cost
efficiency. We formulate a bi-objective optimization problem to represent the
quality-cost tradeoff and then introduce an additional budget constraint that re-
duces the problem to a straightforward 0/1 knapsack problem. We empirically
demonstrate that our framework outperforms the existing ensembling approaches
in response quality while significantly reducing costs, as seen in A.5.

1 INTRODUCTION AND RELATED WORK

Large Language Models (LLMs) excel in traditional NLP problems (OpenAI (2023)), but their high
inference costs hinder deployment in high-throughput applications (Anonymous (2023a)). Mean-
while, open-source models are less performant than their closed-source counterparts (Beeching et al.
(2023)), but they typically offer lower inference costs (Kaplan et al. (2020)).

Due to the variations in the training datasets of open-source LLMs, we expect these models to have
diverse domains of expertise. Jiang et al. empirically verify that no open-source LLM dominates
the competition and further exhibits the potential for ensembling LLMs. While naive ensembles
increase the response quality, the inference cost is O(N), where N is the number of models in the
selection set.

Our work addresses this by a) modeling the tradeoff between response quality and inference cost
as a bi-objective combinatorial optimization problem (2.1), b) motivating an ε-constraint on the bi-
objective problem that transforms it into a 0/1 knapsack problem (Section 2.2), and c) introducing
a framework that outperforms the naive ensemble at a fractional cost (Section 2.3).

To the best of the authors’ knowledge, three approaches to combining LLMs exist in the literature:
LLM-BLENDER (Jiang et al. (2023)) employs a pairwise text ranker and a generative fuser for
combining top-k responses but suffers from high inference costs and latency due to the need for N
LLM invocations and O(N2) comparisons for ranking fusion. Hybrid LLM (Anonymous (2023b))
trains a router to allocate queries to a large or a small model based on difficulty. However, its robust-
ness is compromised, as the failure of the lighter model results in an expensive model addressing
all the queries, and the absence of an explicit cost function limits its generalization to N -model
scenarios. FrugalGPT (Anonymous (2023a)) greedily selects LLMs through pairwise comparisons
and queries them sequentially, using a text quality estimator to determine an optimal stopping point.
It faces challenges in model permutation sensitivity to queries and making up to O(K) sequential
queries in extreme scenarios.

2 PROPOSED FRAMEWORK

Given a query q and a set of N LLMs M = {m1, . . . ,mN}, where mi : Q→ A is a function from
the Query Space Q to the Answer Space A. In the ensembling problem, our goal is to choose a subset
H ⊂ M to maximize Emi∈H[r(f(mi(q)), q)], where, r is a quality function r(a, q) : A × Q → R
that measures quality of response a on the query q, and f is an aggregation function that fuses k
responses into one final response, f : Ak → A, where k is the dimension of the aggregation set.
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2.1 MODEL INFERENCE COST AND THE BI-OBJECTIVE OPTIMIZATION PROBLEM

Kaplan et al. defines the inference cost in FLOPs per token as cforward ≈ 2N+2nlayernctxdmodel,
where N is non-embedding parameters, nlayer is the number of layers, nctx is tokens in input
context, and dmodel is the dimension of the residual stream. Our cost minimization objective is,

min
∑
mi∈H

ci · ti(q) (1)

where ci is the inference cost and ti : Q→ R maps q to the token count based on mi.

Moreover, our experiments suggest that a dependable approach to increase Emi∈H[r(f(mi(q)), q)]
involves maximizing the sum of the individual model’s response quality,

max
∑
mi∈H

r(mi, q) (2)

Equations (1) and (2) form the bi-objective combinatorial optimization problem.

2.2 ϵ-CONSTRAINT TO SOLVE THE BI-OBJECTIVE OPTIMIZATION PROBLEM

Haimes & Wismer introduced the ϵ-constraint method for multi-objective optimization, which in-
volves
optimizing one function while limiting others. We reduce our problem to,

max
∑
mi∈H

r(mi, q)

subject to
∑
mi∈H

ci · ti(q) ≤ ϵ
(3)

Think of it as assigning a budget (ϵ) to each query. This simplifies the problem into a 0/1 knapsack
scenario with profits r(mi, q), costs ci · ti(q), and capacity ϵ, efficiently solvable using a dynamic
programming subroutine (see A.1).

2.3 MODI: MODEL ORCHESTRATION USING DEBERTA INFERENCE

We employ a DeBERTa-based regression model (He et al. (2021)) to predict the response quality for
models in our selection set. A.2 provides details on the regression architecture. The predicted quality
scores, denoted as r̂(mi(q), q), guide the 0/1 knapsack subroutine. Ultimately, the selected model
outputs are combined using the GEN-FUSER (Jiang et al. (2023)). MODI demonstrates superior
performance compared to baseline LLMs and LLM-BLENDER in the Mix-Instruct task, achieving
this at only 20% of the LLM-BLENDER cost, as seen in Table 2 in A.5.

3 EXPERIMENTS AND RESULTS

Our preliminary experiments evaluate our approach using the MixInstruct dataset (Jiang et al.
(2023)). We compare the responses of our model against individual LLM baselines and the LLM-
BLENDER (Jiang et al. (2023)) results. Further details about the experiments are in Appendix (A.3).
The rationale for choosing BARTScore and BERTScore as our comparison metric can be found in
Appendix (A.4).

4 CONCLUSION

We introduce an LLM ensembling framework for Response Quality-Cost optimization. Formulat-
ing a bi-objective optimization problem, we apply an ϵ-constrained approach to ensemble models
within a user-defined budget. Our model surpasses existing ensembling methods while significantly
reducing costs. This work establishes a foundation for cost-effective strategies to enhance language
model capabilities, showcasing the efficacy of ensembling techniques.
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David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and
Alexander Mattick. Openassistant conversations – democratizing large language model align-
ment, 2023.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. URL https://arxiv.org/
abs/2303.08774.

Mathieu Ravaut, Shafiq Joty, and Nancy F. Chen. Summareranker: A multi-task mixture-of-experts
re-ranking framework for abstractive summarization, 2023.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Alex StabilityAI, Andonian, Quentin Anthony, Stella Biderman, Sid Black, Preetham Gali, Leo
Gao, Eric Hallahan, Josh Levy-Kramer, Connor Leahy, Lucas Nestler, Kip Parker, Michael Pieler,
Shivanshu Purohit, Tri Songz, Wang Phil, and Samuel Weinbach. GPT-NeoX: Large Scale Au-
toregressive Language Modeling in PyTorch, 8 2021. URL https://www.github.com/
eleutherai/gpt-neox.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially usable
llms, 2023. URL www.mosaicml.com/blog/mpt-7b. Accessed: 2023-03-28.

Xi Yang and Bei Yang. A study on the strategic application of semantic segmentation based on
improved convolutional neural networks on english-chinese interaction. ACM Trans. Asian Low-
Resour. Lang. Inf. Process., may 2023. ISSN 2375-4699. doi: 10.1145/3596493. URL https:
//doi.org/10.1145/3596493. Just Accepted.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
ating text generation with bert, 2020.

4

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://www.github.com/eleutherai/gpt-neox
https://www.github.com/eleutherai/gpt-neox
https://github.com/tatsu-lab/stanford_alpaca
www.mosaicml.com/blog/mpt-7b
https://doi.org/10.1145/3596493
https://doi.org/10.1145/3596493


Published as a Tiny Paper at ICLR 2024

A APPENDIX

A.1 DYNAMIC PROGRAMMING SUBROUTINE TO SOLVE THE 0/1 KNAPSACK PROBLEM

The dynamic programming subroutine provided in Algorithm 1 is designed to solve the 0/1 knapsack
problem efficiently. Since the BARTScores are negative, we apply the following transformation on
the scores,

Target Score = α+ BARTScore (4)
where α is a positive constant chosen such that,

α > max|BARTScore| (5)

The subroutine utilizes a dynamic programming approach to find the optimal selection of models
within a given budget, maximizing the total target score.
The list ”models” comprises of objects that describe the cost and the target score associated with
each model in the selection set M.

Algorithm 1 Knapsack(models, budget)
1: n← length(models)
2: dp← 2D array of size (n+ 1)× (budget+ 1)
3: for i from 1 to n do
4: for j from 0 to budget do
5: if models[i− 1][′cost′] ≤ j then
6: dp[i][j] ← max(dp[i − 1][j], dp[i − 1][j − models[i − 1][′cost′]] + models[i −

1][′target score′])
7: else
8: dp[i][j]← dp[i− 1][j]
9: end if

10: end for
11: end for
12: selected models← empty list
13: j ← budget
14: for i from n to 1 decrementing do
15: if dp[i][j] ̸= dp[i− 1][j] then
16: add models[i− 1] to selected models
17: j ← j − models[i− 1][′cost′]
18: end if
19: end for
20: return selected models

The resulting selected models list contains the optimal selection of models within the given
budget, which is then passed to the GEN-FUSER (Jiang et al. (2023)).
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A.2 REGRESSION MODEL ARCHITECTURE

Figure 1: Regression Model Architecture.

The model architecture is based on a DeBERTa-v3-large (He et al. (2021)) backbone. The output
of the encoder is passed to an aggregation function. We experimented with multiple aggregation
techniques, including average and max pooling of the hidden state embeddings and concatenating
the last four-word embeddings of the hidden state. Finally, we realized that the hidden state
embeddings corresponding to the CLS token provide the best regression results. The embeddings
are passed through a feedforward neural network, the architecture of which is shown in Figure 1.

The embeddings are first passed through a dropout layer (Srivastava et al. (2014)) with p = 0.2 to
prevent overfitting. Then, a Gaussian Error Linear Unit (Hendrycks & Gimpel (2023)),

GELU(x) = xΦ(x) (6)
,

is applied to the embeddings. The resulting tensors are passed through a Linear layer and then
through a Gated Linear Unit (Dauphin et al. (2017)),

GLU(X) = (X ∗W + b)⊗ σ(X ∗V + c) (7)

.

Finally, the tensors are passed through a Linear layer with output dimensions equal to the number of
models in the selection set M to give the predictions, r̂(mi(q), q).

The model minimizes the Huber Loss (Huber (1964)) given by,

Lδ(y, f(x)) =

{
0.5(y − f(x))2, if |y − f(x)| ≤ δ

δ(|y − f(x)| − 0.5δ), otherwise.
(8)

The loss function makes intuitive sense because several outlier queries exist in the training set, which
can significantly deteriorate the performance if an L2 loss function is used.
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A.3 EXPERIMENTAL SETUP AND HYPERPARAMETERS

DATASET: Mix-Instruct (Jiang et al. (2023))
Accelerators:
NVIDIA TESLA P100 (Training) (16 GB)
NVIDIA T4 (Inference & Fusion) (16 GB)
Large Language Models:
1. alpaca-native
2. vicuna-13b-1.1
3. dolly-v2-12b
4. stablelm-tuned-alpha-7b
5. oasst-sft-4-pythia-12b-epoch-3.5
6. koala-7B-HF
7. flan-t5-xxl
8. mpt-7b-instruct
TrainingEpochs : 3
LossFunction : HuberLoss(delta = 0.3)
Optimizer : Adam(LearningRate : 3e− 4, betas : (0.9, 0.98), weightdecay : 0.01)

Table 1: Experiment Details

Dataset: We use the MixInstruct dataset introduced by Jiang et al. to benchmark LLM ensem-
bles. The dataset includes 110K instruction-following tasks curated from four diverse sources. We
trained our regression model on 10k randomly sampled queries and LLM responses from the train-
ing dataset. Our validation and test splits are the same as MixInstruct consisting of 5k instruction
examples each.

Evaluation Metric: We use BARTScore (Yang & Yang (2023)) and BERTScore (Zhang et al.
(2020)) as our quality metric. The rationale for using them and qualitative comparisons against
LLM-BLENDER can be found in A.5.

Budget: We use different fractions of the total FLOPs required by an LLM-BLENDER response on
the query as our budget.

Fusion Model: We use the Flan-T5-XL-based (Chung et al. (2022)) GEN-FUSER very generously
open-sourced by Jiang et al. as our fusion model.

Baselines: We compare our model’s response with the Language models present in our selection
set, a randomly chosen ensemble of models, and LLM-BLENDER.

The details about our training process, including the hardware involved, LLMs used in the selection
set, Loss function, Optimizer used, and their specific hyperparameters, are included in Table 1.

A.4 RATIONALE FOR USING BARTSCORE AND BERTSCORE AS AN EVALUATION METRIC

BARTScore (Yang & Yang (2023)) is computationally affordable compared to resource-intensive
human and GPT-based evaluators. Jiang et al. empirically shows a strong correlation between
BARTScore and the GPT-based ranking metric. Further, recent research (Anonymous (2023b))
empirically demonstrates the correlation of BARTScore with human-based evaluations, indicating
BARTScore to be a reliable and consistent evaluation approach. Additionally, we have incorpo-
rated BERTScore (Zhang et al. (2020)), an automatic evaluation metric used to test the goodness of
text generation systems and calculates the semantic similarity between tokens in a reference and a
hypothesis, in contrast to prevalent approaches that assess token-level syntactic similarity. Qualita-
tively, our responses are better than or equivalent to LLM-BLENDER’s, as seen in Table 3.
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A.5 FRAMEWORK EVALUATION

Method BARTscore BERTscore
Alpaca (Taori et al. (2023)) -2.81 0.71
Vicuna (Chiang et al. (2023)) -3.21 0.68
Dolly V2 (Conover et al. (2023)) -3.89 0.62
StableLM (StabilityAI et al. (2021)) -3.41 0.63
Koala (Geng et al. (2023)) -3.01 0.64
Open Assistant (Köpf et al. (2023)) -2.74 0.74
Flan-T5 (Chung et al. (2022)) -3.88 0.66
Mosaic MPT-instruct (Team (2023)) -3.23 0.63
Random -3.27 0.65
LLM-BLENDER (Jiang et al. (2023)) -2.77 0.82
SummaReranker (Ravaut et al. (2023)) -2.95 0.72
MODI -2.14 0.86

Table 2: Quantitative comparison of MODI with Baseline LLMs and LLM-BLENDER
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Query MODI (20% LLM-BLENDER cost) LLM-BLENDER

I’ve always wondered what the
difference is between a skeptic and
a denier.

A skeptic is someone who questions
and investigates claims, while a de-
nier is someone who refuses to ac-
cept evidence that contradicts their
beliefs. So, a skeptic is someone
who is open to new information and
evidence, while a denier is someone
who refuses to accept any evidence
at all.

A skeptic is someone who ques-
tions the validity of something,
while a denier is someone who
outright rejects something without
evidence or reason.

Is it safe for me to eat a lot of
peanut butter?

As an AI language model, I
am not qualified to give medical
advice. It is always best to consult
with a healthcare professional
before making significant changes
to your diet.

Eating peanut butter in moderation
has health benefits and poses no
harm for most people. However,
consuming large amounts of peanut
butter may result in weight gain due
to its high calorie and fat content.
It’s also important to note that some
people may be allergic to peanuts
and should avoid consuming peanut
butter altogether. If you have con-
cerns about your peanut butter con-
sumption, it’s best to speak with a
healthcare professional.

What are the benefits of hav-
ing a dog in the family?

There are many benefits to having a
dog in the family, including provid-
ing companionship, reducing stress
and anxiety, promoting physical
activity and healthy living, teaching
responsibility, and providing a
sense of security. Dogs can also be
a great way to bond with family
members and teach them important
life skills such as responsibility and
empathy.

There are several benefits of hav-
ing a dog in the family. Dogs
are known to provide unconditional
love and companionship to their
owners. They can help reduce
stress and anxiety, improve physical
health by encouraging exercise, and
provide a sense of security. Hav-
ing a dog can also teach children
responsibility and empathy, as they
learn to care for another living be-
ing. Overall, owning a dog can
bring a lot of joy and positivity to
a household.

Table 3: Qualitative comparison of MODI responses with LLM-BLENDER
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