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Abstract:

In multi-class classification tasks, binary decomposition of
the class attribute is necessary for some learning algorithms
such as support vector machines. While the class attribute
is nominal, the binary decomposition is typically done in an
unordered way, which can result in a negative impact on the
effectiveness and efficiency of learning binary classifiers in some
scenarios. In this paper, we explore whether it is achievable to
improve the performance of nominal classification by setting
virtual class orders for achieving ordered binary decomposition
of the class attribute. Specifically, we propose a framework to
search for virtual label orders that are suitable for effectively
transforming a nominal classification problem into simpler binary
ones, where the framework consists of a heuristic search module
for searching local optimal orders and an ensemble module
for combining the orders. The experimental results show that
our framework leads to an improvement of the classification
performance in comparison with arbitrarily assigning a label
order or setting the class labels to be unordered. The current
work can be regarded as a type of class representation learning.
Keywords:

Classification; Binary decomposition; Virtual class order

1. Introduction

In a multi-class classification task, binary decomposition of
the class attribute can be adopted to transform the original clas-
sification problem into a series of simpler problems [24, 22].
This kind of decomposition is highly required for those algo-
rithms that cannot directly learn a multi-class classifier [1, 16].

Existing studies indicate that binary decomposition can be

979-8-3315-8736-9/25/$31.00 ©2025 IEEE

adopted in an ordered or unordered way depending on whether
the class attribute is ordinal or not [21]. In an ordinal classifi-
cation task, an unordered way of binary decomposition can be
adopted practically but it is considered less effective than an or-
dered one. Specifically, as stressed by [10], it is reasonable to
adopt ordered binary decomposition instead of unordered one
for achieving a performance improvement, if the order of the
class labels is also present in the feature space. In this con-
text, ordered decomposition results in simpler binary classi-
fication problems, since a label order naturally indicates that
the distance between two low-ranked (or high-ranked) classes
are smaller than the distance between a low-ranked class and
a high-ranked one [18, 23], and thus it seems easier to dis-
criminate lower-ranked classes from higher-ranked classes than
to discriminate an arbitrary label subset from its complement.
On the other hand, ordered decomposition generally results
in lower computational complexity than unordered decompo-
sition [15, 8]. Although there is not a true order of class labels
in nominal classification, based on the concept of virtual or-
ders [12], we explore whether it is achievable to improve the
classification performance by setting a virtual label order to en-
able the adoption of ordered binary decomposition. In this con-
text, the virtual label order is expected to reflect that the separa-
bility between two classes assigned similar ranks is worse than
that between two classes assigned very different ranks, in order
to promote an improvement of the classification performance.

The contributions of this paper include the following points:

* We formulate a constrained optimization problem in the
context of label order search and propose a framework
that involves the heuristic search module and the ensemble
module for selecting and combining label orders.
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* The heuristic search module is designed by modifying the
velocity update strategy of particle swarm optimization
(PSO) to better suit our formulated problem on search of
the label order.

* Based on the search results returned from the heuristic
search module, we propose to create ensemble diversity by
training classifiers using different label orders that show
top-ranked fitness.

* The results indicate that the proposed framework leads to
an improvement of the classification performance in com-
parison with selecting a label order arbitrarily or setting
the class attribute to be nominal.

2 Problem Formulation

For a data set containing k classes, there are totally k! pos-
sible virtual orders of the class labels. Each possible order is
represented as a k-dimensional vector I, = [lo1, 002, -, Lok,
loi=1,2,... k4,5 =1,2,...,k,Yi # j : lo; # lo5, which s
treated as a candidate solution in the context of heuristic search.
Therefore, the problem 7 that this paper aims to solve is de-
fined as an optimization problem, in a k-dimensional search
space S, i.e., the aim is to find the optimal solution among
the k! candidate solutions, using the fitness function fitnessp
evaluated by measuring classification performance on data set
D, as illustrated in Eq. (1).

max fitnessp(l
0:1,2,...,k!f p(lo)

1§loi§k7i:1,2,...
Vi jiloi #lojyi,j =1,2,... k.

6]

Since the search space is made up of k! discrete points, T
is essentially a combinatorial optimization problem [7]. Due
to the constraints that the values of various dimensions of the
above-mentioned k-dimensional vector [, need to be integers
and are mutually different, any points (k-dimensional vectors)
that do not satisfy the condition Vi # j : l,; # l,; must not be
included in the search space S. In such a situation, 7 is defined
as a non-convex optimization problem. Specifically, given the
definition that an optimization problem is convex if and only if
the objective function is convex and the domain of the function
is described as a convex set. In the context of our formulated
problem shown in Eq. (1), the objective function is subject to a
constraint on its domain C and it can be derived that C is not a
convex set, as illustrated below: suppose that there are k classes
(k > 2), so C contains k! k-dimensional vectors and each vector
must satisfy the conditions shown in Eq. (1). Given 0 € [0, 1],

we randomly select two k-dimensional vectors from C, say I; =
[1,2,...,k]andls = [k, k—1,...,1]. The following operation
shows 011 + (1 — 0)l2 ¢ C:

Ol + (1—0)lo = 01,2, ..., k| + (1 —O)[k,k—1,...,1]
=[0+k(1—0),3=k)0+(k—1),...,(k—1)0+1]

where the last dimension of the above-derived vector is ranged
in[l,k],ie,0<0 <1 = 1< (k—-10+1<k,
which does not satisfy the condition that each dimension of the
k-dimensional vector [, € C must be an integer between 1 and
k. More generally, if C is assumed to be a convex set, then it
is supposed to be satisfied that Vi, = [lo1, 102, - - - Lok, Vo =
[10/1,10/2, . ,lolk],Vi =1,2,...,k,Vl € [0, 1] 20l + (1 —
Nlyi € {1,2,...,k}. However, we have:

=0 —= 9l0i+(1—0)lo/i:lo/i;9:1 — 9101‘4—(1—
Nlpi =10i;0< 0 <1 = 0l,; + (1 — 0)l,; may not be an
integer.

The above derivation shows a contradiction case: i =
1,2,.‘.,k,39 € [0, 1} 2l 75 lo/i,oloi + (1 — 0)10/2' ¢
{1,2,...,k} = 0l,+ (1 —6)l, ¢ C. Therefore, it is
proved that C is not described as a convex set and thus 7 is
defined as a non-convex constrained optimization problem.

3 Search and Combination of Label Orders

In this section, we present the procedure of our framework,
which involves the heuristic search module and the ensemble
module as illustrated in Fig. 1.

: 0
B 9T

3ot quasta

FIGURE 1. Overview of Proposed Framework

3.1 Heuristic Search Module

The heuristic search module shown in Algorithm 1 aims to
identify a suitable label order, which involves modifying the
velocity update strategy of the classic particle swarm optimiza-
tion algorithm to better suit the search problem.
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Algorithm 1: Heuristic Search Module

Input : Number of iterations IV, Size of population M.
QOutput: Virtual order(s) of class labels.

For each particle a, initialize the velocity vector v, the
position vector puv, the fitness value fitness, the best
position vector of the individual pbest, and the best
position vector of the population gbest .

fort =0to N —1do

fora=0to M —1do
update v,, pv,, fitness, and pbest, of particle
a;
end
update the best position vector gbest; of the
population;

end

if gbest shows significantly higher fitness than the
second best one then
| return gbest;

end

else

return top @ traversed position vectors with similar
fitness values;

end

The initial stage of the PSO algorithm [14] is to randomly
initialize the positions of several particles in the population in
a high-dimensional search space.

We pre-select %k! label orders to form search space S, i.e.,
any two of the candidate solutions in S do not happen to be
two orders inverted to each other, such that the case of produc-
ing identical classifiers can be avoided (as analysed in Propo-
sition 1 in Section 3.2). Furthermore, we take uniform sam-
pling to obtain M initial solutions from S for promoting that
these obtained solutions are sufficiently different. Each solu-
tion is represented as a k-dimensional order vector and is re-
garded as the position of a particle in the population. An initial
velocity vector is randomly assigned to each particle. Corre-
sponding to the order (position) vector, the dimensionality of
the velocity vector is also equal to k, and the value of each
dimension is an integer. The fitness of each particle is eval-
uated by using a validation set to measure the performance
of the classification model trained using the label order (i.e.,
the position in which the particle is located). After the parti-
cle swarm is initialized, at each iteration ¢, the velocity vec-
tor v, ;(t) of each particle a is updated according to Eq. (2),
through learning from the memory term (w(t)v, ;(t)), the cog-
nitive term (¢171,;(¢)(Ya,;(£) — q,;(¢))) and the environmen-

tal term (cora, () (9, (t) — z4,;(t))), and then particle a moves
from its current position x,_;(t) to another one according to
Eq. (3).

Va,j(t +1) = W(t)va,j(t) + 171,5(8) (Ya,j (1) = a,5(t)) (2)
+ carg i (8)(95(8) — wa,5(t))-
xa,j(t—i—l) :.’13(L7j(t) +U(l7j(t+1). 3)

In Eq. (2), w(t) is the inertia parameter at iteration ¢. v, ;(t)
is the value of the j-th element of the velocity vector of particle
a atiteration ¢. ¢; and ¢ are acceleration constants. r; ;(t) and
72,;(t) are random numbers from O to 1 at iteration ¢. x ;(t)
represents the value of the j-th element of the position vector
of particle a at iteration ¢. y, ;(t) represents the j-th element of
the historical optimal position of the particle a before iteration
t + 1. g;(t) represents the j-th element of the global optimal
position of the population before iteration ¢ 4 1.

Since the value z,_;(t) of each element of the position vec-
tor should be an integer between 1 and k, the correspond-
ing value v, ;(t) needs to be an integer within the range of
1 — z,,(t),k — x4,(t)], and the values of various elements
of a velocity vector need to be partially different. However,
according to Eq. (2), the velocity vector is not guaranteed to
meet the above-mentioned requirement exactly, i.e., the values
of some elements of the velocity vector may be decimals. For
handling this situation, we propose to identify all possible ve-
locity vectors based on the difference between the position of
each particle a at iteration ¢ and any possible positions of the
particle at iteration ¢ + 1, and select the velocity vector that is
closest to v, (t + 1) for use at iteration ¢ + 1.

After the completion of the heuristic search, statistical analy-
sis is conducted to measure the significance of the fitness differ-
ence between the optimal order and each of the other orders. If
the statistical analysis shows that the optimal order has a signif-
icant superiority in fitness in comparison with the other orders,
the optimal order is adopted to set the order of the class labels of
the data set. Otherwise, top @ label orders whose fitness values
are not significantly different are combined through adopting
the ensemble module presented in Section 3.2.

3.2 Ensemble Module

The ensemble module works by training classifiers using var-
ious label orders returned from the heuristic search module. In
practice, ensemble pruning may be necessary due to the case
that base classifiers trained using different orders may have
some positive correlations. From this viewpoint, we analyse
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theoretically in what situations and how the joint use of differ-
ent label orders for training multiple classifiers may encourage
or limit the ensemble diversity, based on Tumer and Ghosh’s
framework [20, 19]. Specifically, in the case of combining the
probabilities predicted by different classifiers for each class, the
expected added error of an ensemble is defined in Eq. (4), as
analyzed by [19].

1+6(T-1)
7 ) “)
where T is the number of classifiers, E,q4q is the expected
added error of each single classifier and ¢ is a statistical mea-
sure of the correlation between class probability estimation er-
rors of different classifiers [2, 11].

According to Eq. (4), it can be derived that the reduction of
the correlation coefficient § between estimation errors of dif-
ferent classifiers is an essential way of enhancing the diversity
among these classifiers. Moreover, it can be derived according
to [19] that the reduction of the correlation between errors of
individual classifiers can be achieved by reducing the correla-
tion between the probabilities estimated by these classifiers for
each class. Our proposed strategy of correlation reduction is
to train multiple classifiers using different virtual label orders
alongside OrderedPartition [5]. Specifically, given a label set
L = {Ly,Ls,..., L} alongside the given virtual label order
Ly < Ly < ... < Ly, Lis decomposed into two subsets L%,
and L, in k—1 ways following the OrderedPartition strategy.

In the above setting, there are k£ — 1 binary classi-
fiers trained independently for predicting the class proba-
bilities P.(Target > Lilx;), P.(Target > La|x;), ...,
P.(Target > Ly_1|x;), respectively, given a new instance x;.
The probabilities of the k classes in £ can be derived in the
following way [5]:

ensemble __
Egaa = Fada(

P.(Li|z;) =1 — P.(Target > Lil|z;),
P.(La|z;) = Pe(Target > Li|x;) X (1 — Pe(Target > La|x;)),

Pe(Lg|x;) = Pe(Target > Li_1]|z;).
&)
Since the probabilities P.(Target > Li|x;), P.(Target >
Lolx;), ..., P.(Target > Li_q|x;) are predicted by k — 1
binary classifiers trained independently using k& — 1 different
distributions of the positive and negative classes, the k — 1
estimated probabilities are considered to be independent and
thus the derived probabilities of the k classes Li, Lo, ..., Lg
are also considered to be independent. While an ensemble is
created by training T classifiers (i.e., T x (k — 1) binary sub-
classifiers) using 7" label orders, the 7" classifiers are diverse in

some scenarios due to the diversification of the label order in-
formation. In particular, let us reformulate the derivation of the
probability of each class Lz in Eq. (6).

1 — P¥(Target > Ranky(Lz)|x;),
Rankq(Lz) = 1;

Pi(Target > Rank,(Lz) — 1|z;)x
(1 — P4(Target > Ranky(Lz)|z;)),
1 < Rankq(Lz) < k;

Pi(Target > Rankq(Lz) — 1]x;),
Rankq(Lz) = k.

PI(Le|wi) =

(6)
where Rankq(Lz) represents the rank of class L; in the ¢-th
label order and P?(L;|x;) denotes the posterior probability of
class L; predicted by using one or two binary sub-classifiers
trained using the ¢-th label order.

According to Eq. (6), given the g-th and ¢’-th label orders,
if one order is the inverted one of the other order, then we can
have the following proposition:

Proposition 1 While a fixed algorithm is used for learning, if
the q-th label order is the inverted one of the q'-th order, then
the probabilities PY(Lz|x;) and PY (Lg|x;) that are estimated
using the q-th and q'-th label orders are perfectly correlated for
each class Lz,c=1,2,... k.

Proof. For each class Lg, if Ranky(Lz)+ Ranky (Lz) = 14k,
we have:

Jq,q' 1 q #q,Ve=1,2,...,k: Ranky(Lz)+ Ranky (Lz) = 1
k= VR=1,2,....k—1:L,(q) = LNE"(q), LR s ()
LYFR(g), Dy(R) = Dy(1+k—R) — Ve=1,2,...,k:
Corr(P%(Lz|z:), PY (La|z:)) = 1.

L5.,(q) denotes the label subset which forms the nega-
tive class and is obtained by collecting the last R classes
in the g-th label order. Dy(R) denotes the class distribu-
tion, which is obtained by merging the last R classes (or the
rest) in the g-th label order as the negative (or positive) class.
The above derivation indicates that the estimated probabili-
ties P4(Target > Ranky(Lg) — 1|x;) and PY (Target >
Ranky (Lz)|x;) are negatively correlated for each class Lz,
ie, Ve =1,2,...,k : PI(Target > Ranky(Lz) — 1|z;) +
PY (Target > Ranky (Lg)|x;) = 1, so we reach the conclu-
sion shown in Proposition 1 that the probabilities PZ(L;|x;)
and P7 (Lg|x;) are perfectly correlated for each class L.

Overall, in order to effectively enhance the diversity among
individual classifiers, it is necessary to make the selected label
orders hold the assumption: Vq # ¢ : 3¢ = 1,2,...,k :
Ranky(Lz) + Ranky (Lz) # 1+ k, and increasing the number
of classes on which the above assumption holds can generally

—+
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help better encourage the diversity among those classifiers in
an ensemble.

4 Experimental Setup and Results Discussion

The details of the selected data sets are shown in Table 1. The
experiment is conducted by 10 runs of 5-fold cross-validation
on each data set and the average area under curve (AUC) and
the standard deviation are taken for comparisons of various
methods, namely, C4.5, One-vs-One (OVO) [9], One-vs-Rest
(OVR) [17], Many-vs-Many (MVM) [4], random label order-
ing and the proposed framework.

The experimental comparisons aim to show that a transfor-
mation of a multi-class classification problems into a series of
binary ones is meaningful, settings of virtual label orders help
improve the effectiveness of the problem transformation and
heuristic settings are more effective than random ones. In all
cases, C4.5 is adopted for training binary or multi-class clas-
sifiers, where the default settings (provided in Weka [6]) of
those hyper-parameters are used. The settings of all the hyper-
parameters relevant to the proposed framework are shown in
Table 2.

In the setting of the ensemble module, the ) orders returned
from the heuristic search module are used for training base clas-
sifiers and ensemble pruning based on forward search [13, 3]
is taken to select a sub-ensemble that leads to the best classi-
fication performance on validation data. For OVR, OVO and
MVM, their implementations in Weka are adopted, where ran-
dom coding is adopted as the strategy of error-correcting output
codes (ECOC) [4] for MVM.

TABLE 1. Characteristics of data sets

Data sets No. of features | No. of samples | No. of classes
Analcatdata 4 797 6
Car 6 1728 4
CMC 9 1473 3
Ecoli 7 327 5
Eucalyptus 19 736 5
First-order 51 6118 6
Glass 9 214 6
Jungle_chess 6 44819 3
Page-blocks 10 5473 5
Segment 19 2310 7

The results on the comparison of our proposed framework
with the other methods are shown in Table 3, where the header
“Random” of the third column represents the setting of an ar-
bitrary virtual order of class labels. The results indicate that
the proposed approach outperforms the other ones in most of
the cases and setting virtual label orders is useful in improving

TABLE 2. Hyperparameter settings

Dimensionality of Search Space: No. of classes

No. of particles in the swam, No. of iterations:

15 particles, 16 iterations, where No. of classes = 7
10 particles, 18 iterations, where No. of classes = 6
10 particles, 3 iterations, where No. of classes = 5
3 particles, 4 iterations, where No. of classes = 4

3 particles, 1 iterations, where No. of classes = 3

classifier: OrderedPartition + C4.5 (default hyper-parameters in Weka)

w: max = 1, min = 0.8 (tuning by linearly decreasing)

c1: max = 1.2, min = 0.1 (tuning by linearly decreasing)

c2: max = 1.2, min = 0.1 (tuning by linearly increasing)

Base classifier: OrderedPartition + C4.5 (default hyper-parameters in Weka)

Ensemble pruning strategy: forward search

Fusion strategy: average of probabilities for each class

the performance of nominal classification and the effectiveness
of binary decomposition of the class attribute. However, the
proposed approach may not be so effective while various class
pairs in a data set show very similar inter-class separability, i.e.,
virtual label orders are not considered as useful information in
the above situation.

TABLE 3. Average AUC with standard deviation

Data sets C4.5 Random ovo OVR MVM Proposed

Analcatdata |0.538+0.007 [ 0.523+0.007 | 0.572+0.006 | 0.500+0.001 | 0.557£0.017 | 0.560+0.011
Car 0.9900.003 | 0.990£0.004 | 0.987+0.002 | 0.99420.003 | 0.992+0.002 | 0.995+0.001
CMC 0.664+0.009 | 0.669+0.010 | 0.655+0.008 | 0.684+0.006 | 0.685+0.006 | 0.684+0.009
Ecoli 0.918+0.007 | 0.915£0.012 | 0.942+0.005 | 0.919+0.011 | 0.948+0.008 | 0.948+0.008
Eucalyptus [0.799+0.012 | 0.768+0.014 | 0.853+0.005 | 0.769+0.008 | 0.831+0.017 | 0.841+0.020
First-order |0.738+0.005 | 0.7460.007 | 0.791+0.002 | 0.763+0.003 | 0.793£0.008 | 0.807+0.005
Glass 0.809+0.018 | 0.809+0.024 | 0.864+0.009 | 0.821x+0.025 | 0.863+0.014 | 0.871+0.015
Jungle_chess [ 0.955+0.001 | 0.954+0.003 | 0.899+0.001 | 0.959+0.001 | 0.956+0.005 | 0.958+0.001
Page-blocks |0.940£0.006 | 0.949+0.010 | 0.925+0.004 | 0.954+0.004 | 0.966+0.005 | 0.971+0.005
Segment 0.9860.002 | 0.981+0.004 | 0.991+0.001 | 0.983+0.003 | 0.991+0.006 | 0.991+0.005

5. Conclusions

In this paper, we have formulated a new problem by defin-
ing the search of a suitable order as a task of combinatory opti-
mization for improving the performance. Based on the problem
formulation, we have proposed a framework, which involves a
heuristic search module and an ensemble module. The experi-
mental results show that the proposed framework results in an
improvement of the classification performance in comparison
with assigning a label order arbitrarily or setting the class at-
tribute to be nominal. In the future, we will study how the
extent to which the inter-class separabilities of various pairs of
classes differ impacts the effectiveness of virtual order-driven
binary decomposition.
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