
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ONEFLOWSEQ: ACHIEVING ONE-STEP GENERA-
TION FOR DIFFUSION LANGUAGE MODELS VIA
LIGHTWEIGHT DISTILLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive models dominate Seq2Seq generation but suffer from slow, error-
prone token-by-token decoding. Diffusion language models (DLMs) enable paral-
lel refinement and global coherence, yet their iterative denoising requires hundreds
of steps, limiting practicality. Attempting to address this issue, we propose One-
FlowSeq, a novel framework that distills a powerful multi-step diffusion teacher
(LLaDA-8B-Instruct) into a one-step generator via MeanFlow-based supervision
and parameter-efficient prompt tuning. Our OneFlowSeq introduces a Jacobian-
vector product signal that provides richer guidance than conventional distillation,
allowing the student model to not only match the 128-step teacher model1 in terms
of one-step generation quality. Experiments on paraphrasing, text simplification,
and question generation benchmarks show that our OneFlowSeq achieves state-of-
the-art performance, while reducing trainable parameters by 1600× and delivering
inference speeds orders of magnitude faster than both autoregressive and multi-
step diffusion baselines. This work establishes one-step diffusion as a practical
and scalable paradigm for Seq2Seq generation.

1 INTRODUCTION

Autoregressive (AR) language models (Brown et al., 2020; Radford et al., 2019; Touvron et al.,
2023) have long dominated sequence-to-sequence (Seq2Seq) (Sutskever et al., 2014; Yousuf et al.,
2020) tasks in natural language processing. While their token-by-token generation ensures consis-
tency, it introduces fundamental bottlenecks: inference latency scales linearly with sequence length,
and unidirectional context hinders global planning. As an emerging paradigm, diffusion language
models (DLMs) (Ye et al., 2025; Li et al., 2025; Zhang et al., 2025) promise to overcome these
issues. Their parallel generation and holistic refinement mechanisms naturally support bidirectional
reasoning and global coherence. However, their practical application is hindered by a significant
drawback: the iterative denoising process often requires hundreds or thousands of steps, making
inference prohibitively slow.

This tension has sparked intense interest in one-step diffusion (Shen et al., 2025; Xu et al., 2025;
Song & Dhariwal, 2023; Frans et al., 2025). Two recent lines of work have laid the groundwork.
MeanFlow (Geng et al., 2025) offers a principled reformulation of diffusion dynamics via aver-
age velocity, enabling stable one-step generation without distillation. However, its prohibitive cost
of training large models from scratch makes it impractical for the language domain. In contrast,
DLM-One (Chen et al., 2025) demonstrates that score distillation can compress multi-step language
diffusion into a single forward pass, achieving huge inference acceleration. Yet, it does so by re-
training billions of parameters and relying on adversarial stabilization, which shifts the burden from
inference to training inefficiency. This creates a deadlock: one-step diffusion is either elegant but
prohibitively expensive to train, or fast at inference but bloated in training cost. Neither provides a
viable path toward scalable, resource-friendly Seq2Seq generation.

Attempting to tackle this problem, we introduce the OneSeqFlow framework, which combines the
stability of MeanFlow with the practicality of distillation in a new way, i.e., instead of rebuilding or

1While the original LLaDA paper employs variable sampling steps for different datasets in its official eval-
uation, for a fair comparison, we use a fixed 128 steps for all experiments in this work.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

retraining full models, we freeze a large multi-step teacher model (LLaDA-8B-Instruct) (Nie et al.,
2025) and distill its dynamics into a tiny soft prompt module (Li & Liang, 2021) with only ˜5M
trainable parameters. The core process is a Jacobian-vector product (JVP) supervision signal, which
encodes not just the first-order direction but also the second-order dynamics of the teacher. This
richer signal provides the student model with a clearer learning objective, allowing it to reach the
level of its teacher model in generation quality in just one step, which we consistently observe across
benchmarks. Our OneSeqFlow achieves performance equivalent to the teacher model on paraphrase,
text simplification, and question generation tasks while reducing the number of trainable parameters
by 1600 ×. At inference, it eliminates the classic trade-off between speed and quality: a single-step
OneSeqFlow forward pass runs orders of magnitude faster than both AR baselines and multi-step
diffusion, without sacrificing diversity or semantic fidelity, and achieves extremely fast speed and
advanced results on multiple Seq2Seq tasks. Hence, our OneSeqFlow transforms one-step diffusion
from a theoretical curiosity into a scalable, deployable paradigm for Seq2Seq generation.

2 BACKGROUND

Our work introduces a novel distillation framework that transforms a large, multi-step diffusion
language model into a highly efficient one-step generator. We build upon a masked diffusion model,
i.e., LLaDA, and design a distillation process that combines the theoretical stability of the MeanFlow
method with a parameter-efficient prompt finetuning strategy.

2.1 THE LLADA TEACHER: A DIFFUSION MODEL FOR LLMS

Our teacher model is LLaDA (Large Language Diffusion with mAsking). Unlike conventional au-
toregressive models, LLaDA is a Masked Diffusion Model (MDM) trained from scratch on 2.3
trillion tokens. Its generative process consists of a forward masking procedure and a learned reverse
process. The forward process corrupts a clean sequence x0 by independently replacing each token
with a [MASK] token with probability t ∈ [0, 1], yielding a corrupted sequence xt. The reverse
process is parameterized by a bidirectional Transformer pθ that predicts the original tokens from xt:

L(θ) = −Et,x0,xt

[
L∑

i=1

I[xi
t = MASK] log pθ(x

i
0 |xt)

]
. (1)

While LLaDA achieves performance comparable to strong autoregressive LLMs (team, 2024; Yang
et al., 2024), its iterative denoising procedure requires multiple steps, incurring significant latency.
This motivates exploring a one-step generative mechanism, which we introduce next through the
MeanFlow method.

2.2 THE MEANFLOW METHOD FOR ONE-STEP GENERATION

Standard flow-matching models (Lipman et al., 2023; Holderrieth & Erives, 2025; Jin et al., 2025)
learn a neural network vθ(zt, t) to estimate the expected instantaneous velocity v̄t = E[vt | zt] of a
flow from noise to data. Sampling involves numerical integration of this velocity field; large discrete
steps often cause ambiguity and mode averaging. MeanFlow addresses this limitation by predicting
the average velocity over an interval [r, t]:

u(zt, r, t) =
1

t− r

∫ t

r

v(zτ , τ)dτ. (2)

Learning u enables single-step generation. The key is the MeanFlow Identity, which relates u to v
without explicit integration:

u(zt, r, t) = v(zt, t)− (t− r)
d

dt
u(zt, r, t). (3)

This identity yields a principled training objective. The derivative term d
dtu is efficiently obtained via

a Jacobian-vector product (JVP), i.e., the product of the Jacobian ∂u/∂z with a vector, computable
with one forward–backward pass in modern autodiff libraries. While the MeanFlow identity pro-
vides strong theoretical foundations, applying it to large models like LLaDA from scratch remains
computationally prohibitive. This challenge motivates a distillation-based solution.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.3 DISTILLATION VIA PROMPT FINETUNING

To avoid the cost of full-model training with MeanFlow, we use a Parameter-Efficient Fine-Tuning
(PEFT) strategy (Xu et al., 2023). Specifically, we distill the dynamics of the frozen multi-step
LLaDA-8B-Instruct teacher into a compact soft prompt module with only ∼5M trainable parame-
ters.

The main challenge is to condition the student model on an interval (r, t) and predict uθ(xt, r, t),
although the frozen LLaDA accepts only a single time input t. We address this with a trainable
Soft Prompt Module. This module employs a lightweight MLP(Popescu et al., 2009), the Prompt
Network, to map embeddings of r and t into soft prompt vectors. These vectors are injected as
prefixes into the Key and Value sequences of every self-attention layer (Vaswani et al., 2023) in the
frozen LLaDA. Through prefix-tuning, the prompt influences the full model to condition on (r, t).

During training, only the parameters θ of the Soft Prompt Module are updated. The objective is:

Ldistill(θ) = E
∥∥∥∥uθ(xt, r, t)− sg

(
vteacher(xt, t)− (t− r)

d

dt
uθ(xt, r, t)

)∥∥∥∥2 , (4)

where sg(·) denotes the stop-gradient operator, preventing gradients from flowing into the teacher.
This objective couples instantaneous velocity supervision from the frozen teacher with a second-
order signal from the JVP. As a result, the compact prompt module reliably learns a one-step map-
ping of the teacher’s dynamics.

3 THE ONEFLOWSEQ FRAMEWORK

To address the challenges of speed and quality in Seq2Seq tasks, we introduce OneFlowSeq, a
novel framework that distills large, multi-step diffusion language models into highly efficient one-
step generators. By combining the theoretical rigor of MeanFlow with a highly resource-efficient
distillation strategy, OneFlowSeq achieves a unique combination of performance and scalability.

3.1 FRAMEWORK OVERVIEW

At its core, our OneFlowSeq establishes a symbiotic relationship between two key components: (1)
a frozen, pre-trained multi-step diffusion model (LLaDA-8B-Instruct) serving as the teacher, and
(2) a lightweight, trainable Soft Prompt Module acting as the student. The core idea is to distill the
complex, iterative dynamics of the teacher into the compact prompt module. Rather than training
from scratch, the student learns to predict the average velocity of the teacher’s denoising trajectory
over an interval, guided by the MeanFlow identity. This enables efficient generation while preserving
the high performance of the original diffusion model, addressing the inference bottlenecks of multi-
step methods. Figure 1 provides a visual overview of the workflow.

3.2 ARCHITECTURAL DESIGN

The foundation of our OneFlowSeq is a pre-trained LLaDA-8B-Instruct model, which serves as the
teacher model. Its parameters are kept entirely frozen throughout the distillation process. This
strategic choice dramatically minimizes computational overhead and memory usage, thereby en-
abling scalability to even larger models. The central architectural challenge is to enable the frozen
teacher, which expects a single time input t, to operate over a time interval (r, t) as required by
MeanFlow. Our solution is a trainable Soft Prompt Module comprising a small Multi-Layer Per-
ceptron (MLP), termed the Prompt Network, which maps sinusoidal time embeddings of r and t
to a sequence of k soft prompt vectors. These vectors are regarded as prefixes to the Key (K) and
Value (V) sequences in the self-attention mechanism of every Transformer layer in the LLaDA
base. This prefix-tuning approach empowers the small module to steer the behavior of the massive
base model without modifying any of its core weights, making it exceptionally parameter-efficient.

3.3 TRAINING OBJECTIVE AND PROCEDURE

MeanFlow preliminaries. We distinguish between the teacher’s instantaneous velocity v(xt, t) and
the average velocity u(xt, r, t) over an interval:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

P
ro

m
p

t
to

ke
n

P
ro

m
p

t
to

ke
n

R
es

p
on

se

to
ke

n

O
utp

ut token

O
utp

ut tokenR
es

p
on

se

to
ke

n

R
em

as
k

M
o

d
u

le

M
as

k
P

re
d

ic
to

r

M
as

k
P

re
d

ic
to

r

M
as

k
P

re
d

ic
to

r

M
as

k
P

re
d

ic
to

r

R
em

as
k

M
o

d
u

le

Step 1 Step 2 Step 3

so
ft

 p
ro

m
p

t
ve

ct
o

rs

Decode (with Predicted
Average Velocity)

Decode (with Predicted
Average Velocity)

Decode (with Predicted
Average Velocity)

Decode (with Predicted
Average Velocity)

Masked Input

Masked Input

Masked Input

Masked Input

Soft Prompt Module

All In One
Step

Teacher Model

(LLaDA-8B)

Student Model

(OneSeqFlow)

Loss

Calculation

In
st

an
ta

n
eo

u
s

V
el

o
ci

ty
A

ve
ra

g
e

V
el

oc
it

y

Figure 1: An overview of our OneFlowSeq framework. The frozen teacher model (top) is a multi-
step generator that provides an instantaneous velocity target. The student model (bottom) uses a
small yet trainable soft prompt module to guide the shared, frozen backbone in predicting the average
velocity in a single step. The prompt module is trained exclusively by minimizing a distillation loss
between the two velocities, resulting in a highly efficient one-step generator.

u(xt, r, t) =
1

t− r

∫ t

r

v(xτ , τ) dτ, 0 ≤ r < t ≤ 1. (5)

Differentiating w.r.t. t yields the MeanFlow identity:

u(xt, r, t) = v(xt, t) − (t− r)
d

dt
u(xt, r, t), (6)

with total derivative
d

dt
u(xt, r, t) = v(xt, t) ∂xu(xt, r, t) + ∂tu(xt, r, t), (7)

which corresponds to a Jacobian-vector product (JVP) along the tangent (v, 0, 1). Boundary and
consistency properties hold: (i) limr→t u(xt, r, t) = v(xt, t); (ii) for any s ∈ (r, t),

(t− r)u(xt, r, t) = (s− r)u(xs, r, s) + (t− s)u(xt, s, t). (8)

Representation Space. To rigorously apply the continuous-time MeanFlow to discrete token se-
quences, we define all velocity-related operations in a continuous representation space. Specifically,
we operate in the logit space. Let zt ∈ RL×V represent the logit distribution for a sequence of length
L over a vocabulary of size V at time t. The teacher’s instantaneous velocity vteacher(xt, t) and the
student’s average velocity uθ(xt, r, t) are both parameterized to take the corrupted token sequence
xt as input but produce outputs in this logit space, i.e., RL×V . This ensures that the subtractions
and integrations inherent to the MeanFlow identity (Eq. 6) are well-defined vector operations.

Discrete diffusion note: Although Eq. equation 6 is derived for continuous state spaces, our discrete
formulation operates over a continuous time variable t representing the masking probability. We
therefore interpret the velocity field as governing the expected denoising trajectory in the space
of token probabilities. Under this interpretation, where integrals are replaced by expectations over
the masking process, the MeanFlow identity remains a powerful guiding signal for distillation (a
rigorous justification is provided in Appendix A).

Distillation objective. The training objective transfers the teacher’s dynamics to the student using
the rich signal from Eq. 6. Instead of approximating the derivative term numerically, we compute it
precisely and efficiently using automatic differentiation. The resulting distillation loss is:

Ldisc
distill(θ) = Ex0, r, t

∥∥∥uθ(xt, r, t) − sg
(
vteacher(xt, t) − (t− r)

d

dt
uθ(xt, r, t)

)∥∥∥2, (9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 OneFlowSeq Training (Discrete diffusion via masking corruption)
Require: Frozen teacher model pteacher, trainable Soft Prompt Module pθ

1: for each training step do
2: Sample clean data x0 from dataset
3: Sample r ∼ Uniform(0, 0.8), t ∼ Uniform(r + 0.1, 1.0)
4: Generate xt by masking x0 with probability t ▷ discrete diffusion corruption
5: Compute uθ(xt, r, t)
6: Compute vteacher(xt, t)
7: Compute JVP term d

dtuθ(xt, r, t) using automatic differentiation
8: Calculate Ldistill (Eq. 9) and update θ
9: end for

where sg(·) is the stop-gradient operator ensuring gradients flow only to the student’s parameters
θ. This objective uniquely combines direct supervision from the teacher’s instantaneous velocity
(vteacher) with a self-consistency signal derived from the student’s own dynamics (d

dtuθ), encouraging
it to learn a globally consistent flow field. This richer, second-order signal is critical for high-fidelity
distillation, as analyzed from a Sobolev-like perspective in Appendix B.2.

The total derivative term d
dtuθ(xt, r, t) is implemented as a Jacobian-vector product (JVP), as ex-

panded in Eq. 7. This JVP is computed efficiently using built-in functions from deep learning frame-
works (e.g., ‘torch.func.jvp’). It calculates the directional derivative of the student network uθ with
respect to its inputs (xt, r, t) along the tangent vector (vteacher(xt, t), 0, 1). Crucially, the entire target
for the student model is wrapped in the stop-gradient operator. This means that during backpropa-
gation, the JVP’s output is treated as a constant, which prevents costly second-order derivatives and
keeps the computational overhead of training minimal.

Implementation Details. The Prompt network is a 2-layer MLP with a hidden dimension of 32,
which maps the input time embeddings to the final output size of k × d (where k = 32, d = 4096).
We use the AdamW optimizer with a learning rate η = 5 × 10−4, a weight decay of 0.01, and a
batch size of 32. The model is trained on 8 NVIDIA A100 GPUs for 80,000 steps. This configuration
trains only ∼5M parameters and adds negligible computational overhead per forward pass compared
to the frozen teacher.

3.4 INFERENCE

All inference updates are performed in the logit space. We start with an initial logit tensor z1, which
represents the maximally corrupted sequence (e.g., a zero tensor or logits corresponding to a uniform
distribution over the vocabulary).

Multi-step (K-NFE) Inference. Given a partition 1 = tK > tK−1 > · · · > t0 = 0, we iteratively
update the logit tensor:

zti−1
= zti − (ti − ti−1)uθ

(
xti , ti−1, ti

)
, i = K, . . . , 1, (10)

where xti is the token sequence obtained by decoding the logits zti at each intermediate step. This
intermediate decoding can be simplified by directly feeding the continuous embeddings correspond-
ing to zti into the model.

Single-step (1-NFE) Inference. As a special case with K=1, we set (r, t) = (0, 1) and directly
compute the final logits:

z0 = z1 − uθ(x1, 0, 1), (11)

where x1 represents the fully masked input token sequence.

Finally, the resulting token sequence x0 is obtained by decoding the final logits z0, for instance,
via an argmax operation over the vocabulary dimension at each position. The correctness of this
single-step generation and an analysis of its error propagation are detailed in Appendix B.3. where
x1 denotes the maximally corrupted sequence.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Main results on paraphrasing (PP), text simplification (TS), and question generation
(QG) benchmarks. Arrows indicate whether higher (↑) or lower (↓) values are better. Best results
in each category are highlighted in bold.

Task Model BLEU (↑) ROUGE-L (↑) BertScore (↑) Dist-1 (↑) Self-BLEU (↓) Div-4 (↑) Wall-Clock Time (↓)

PP (QQP)

GPT-2 (fine-tuned) 0.20(59) 0.54(15) 0.83(63) 0.98(19) 0.26(25) 0.50(20) ∼0.08
LLaMA2-7B (reference) 0.32(71) 0.64(70) 0.87(70) 0.98(62) 0.24(17) 0.89(27) ∼1.35
DiffuSeq (MBR=1) 0.18(29) 0.52(99) 0.79(32) 0.97(47) 0.27(32) 0.86(41) 14.94
DiffuSeq (MBR=10) 0.24(13) 0.58(80) 0.83(65) 0.98(07) 0.29(64) 0.87(12) ∼20.0
DiffuSeq-v2 (MBR=2) 0.21(15) 0.56(51) 0.80(36) 0.97(82) 0.27(98) 0.86(98) ∼0.0025
LLaDA-8B-Instruct (Teacher) 0.49(72) 0.71(23) 0.91(50) 0.99(01) 0.18(71) 0.90(21) 0.05
DLM-One 0.16(88) 0.52(65) 0.78(51) 0.96(71) 0.34(18) 0.62(56) 0.03
OneFlowSeq (Ours) 0.48(02) 0.70(67) 0.92(10) 0.99(32) 0.19(88) 0.89(73) 0.0003

TS (Wiki-Auto)

GPT-2 (fine-tuned) 0.26(93) 0.51(11) 0.78(82) 0.94(64) 0.40(42) 0.48(76) ∼0.08
LLaMA2-7B (reference) 0.39(28) 0.70(12) 0.89(10) 0.96(14) 0.32(18) 0.75(68) ∼1.35
DiffuSeq (MBR=1) 0.29(29) 0.53(13) 0.77(81) 0.92(72) 0.46(42) 0.63(04) 14.94
DiffuSeq (MBR=10) 0.36(22) 0.58(49) 0.81(26) 0.92(64) 0.48(12) 0.66(21) ∼20.0
DiffuSeq-v2 (MBR=2) 0.32(72) 0.54(31) 0.79(23) 0.93(21) 0.46(85) 0.64(30) ∼0.0025
LLaDA-8B-Instruct (Teacher) 0.54(12) 0.72(91) 0.89(40) 0.92(14) 0.30(19) 0.83(64) 0.05
DLM-One 0.29(27) 0.52(99) 0.75(65) 0.89(24) 0.39(56) 0.40(98) 0.03
OneFlowSeq (Ours) 0.52(13) 0.73(28) 0.88(31) 0.92(98) 0.31(18) 0.82(16) 0.0003

QG (Quasar-T)

GPT-2 (fine-tuned) 0.11(10) 0.32(15) 0.63(46) 0.96(70) 0.29(10) 0.80(86) ∼0.08
LLaMA2-7B (reference) 0.23(21) 0.38(81) 0.71(32) 0.94(21) 0.24(12) 0.88(21) ∼1.35
DiffuSeq (MBR=1) 0.15(12) 0.34(68) 0.58(71) 0.91(41) 0.27(89) 0.81(03) 14.94
DiffuSeq (MBR=10) 0.17(31) 0.36(65) 0.61(23) 0.90(56) 0.29(12) 0.82(42) ∼20.0
DiffuSeq-v2 (MBR=2) 0.15(92) 0.35(12) 0.60(10) 0.91(98) 0.28(19) 0.82(03) ∼0.0025
LLaDA-8B-Instruct (Teacher) 0.30(21) 0.53(19) 0.78(32) 0.96(16) 0.18(34) 0.89(57) 0.05
DLM-One 0.15(12) 0.32(57) 0.56(83) 0.96(66) 0.19(66) 0.37(98) 0.03
OneFlowSeq (Ours) 0.29(81) 0.54(12) 0.80(12) 0.96(91) 0.19(91) 0.87(85) 0.0003

4 EXPERIMENTS

To comprehensively evaluate the effectiveness of our OneFlowSeq, we conduct experiments on three
widely-used Seq2Seq benchmarks: Paraphrasing (PP) on the Quora Question Pairs (QQP) dataset
(Sharma et al., 2019), Text Simplification (TS) on Wiki-Auto (Jiang et al., 2021), and Ques-
tion Generation (QG) on Quasar-T (Dhingra et al., 2017). We compare OneFlowSeq against a
strong and diverse set of baselines, including: (1) fine-tuned autoregressive models (GPT-2-large,
LLaMA2-7B); (2) multi-step diffusion models (DiffuSeq (Gong et al., 2023a) with MBR decoding,
the accelerated DiffuSeq-v2 (Gong et al., 2023b), and our teacher model, LLaDA-8B-Instruct); and
(3) a prior one-step distillation model (DLM-One). Please note that since DLM-One is not open
source, we have to re-implement it according to the original paper and also distill the same steps on
LLaDA-8B-Instruct. We also provide case studies of success and failure(see in Appendix E). Fol-
lowing standard protocol, all models are trained using the official training set of each benchmark,
and all results are reported on the corresponding test set to ensure a fair comparison. We provide a
detailed table of hyperparameters used in the experiments in Appendix C. All experiments are con-
ducted on 8 NVIDIA A100 GPUs. We evaluate all models across a comprehensive suite of metrics
for generation quality, diversity, and efficiency. For quality, we report case-sensitive BLEU (Pap-
ineni et al., 2002), ROUGE-L (F1 score) (Lin, 2004), and BERTScore (Zhang et al., 2020) (F1 score,
using the roberta-large (Liu et al., 2019)backbone). For diversity, we measure intra-sample
diversity with Dist-1 (Li et al., 2016) and Div-4, and inter-sample similarity with Self-BLEU. To
compute Self-BLEU, we sample K = 5 outputs for each source input and calculate the average
pairwise BLEU-4 score. For efficiency, we report Wall-Clock Time in seconds per sample. We
note that latency is highly implementation-dependent; for autoregressive models, we report latency
based on single-request (batch size 1) generation, while for parallel-decoding diffusion models like
ours, we report the amortized latency from a high-throughput scenario (with a batch size of 256).
This distinction is crucial for a fair interpretation of the results. For LLaDA-8B-Instruct, the num-
ber of sampling steps is fixed to 128, which provides the best quality–efficiency trade-off in our
experiments.

4.1 MAIN COMPARISONS AND ANALYSES

As shown in Table 1, our proposed OneFlowSeq achieves a powerful combination of generation
quality and inference speed. Across all three benchmarks, it consistently outperforms strong base-
lines like LLaMA2-7B and the prior one-step method, DLM-One. Crucially, OneFlowSeq achieves
quality and diversity metrics that are highly comparable to its multi-step teacher, LLaDA-8B-
Instruct, trailing slightly in some areas but also showing competitive or superior performance in
others. This high-fidelity generation is paired with a revolutionary leap in efficiency: at approx-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000 100000
of Training Steps

0.0

0.1

0.2

0.3

0.4

0.5

BL
EU

0.06

0.13

0.32

0.38

0.44 0.45 0.47 0.48 0.48 0.49

0.02
0.06 0.07

0.11 0.12 0.14 0.15 0.17 0.18 0.19

Validation BLEU vs. Training Steps (QQP)
OneFlowSeq (Ours)
DLM-One (LLaDA)

Figure 2: Validation BLEU score on the QQP
dataset versus training steps. To ensure a fair
comparison, we implemented a strong baseline,
DLM-One (LLaDA), by applying the score dis-
tillation method from DLM-One to our LLaDA-
8B-Instruct teacher model. By contrast, our pro-
posed OneFlowSeq framework converges dra-
matically faster, exhibits much more stable train-
ing dynamics, and ultimately achieves a signifi-
cantly higher final BLEU score on QQP.

Table 2: Comparison of training resource overhead. Our PEFT-based approach offers orders-of-
magnitude improvements in efficiency over both standard diffusion model training and full-model
distillation.

Resource Dimension DiffuSeq / v2 DLM-One OneFlowSeq (Ours) Advantage (vs. Full)
Training Paradigm Full Model Training Full Model Distill. PEFT Distill. -
Trainable Parameters ∼91 Million ∼8 Billion ∼5 Million ∼18x / ∼1600×
Peak Training VRAM ∼45 GB > 60 GB < 30 GB > 1.5x / > 2×
Parameter Storage (FP16) ∼182 MB ∼16 GB < 20 MB ∼9x / ∼800×

imately 0.0003 seconds per sample, OneFlowSeq is over 160 times faster than its teacher, while
maintaining strong generation diversity without evidence of mode collapse.

These results yield two significant conclusions. Firstly, the ability of OneFlowSeq to achieve perfor-
mance remarkably close to its powerful teacher validates the effectiveness of our MeanFlow-based
distillation framework; it successfully captures the essence of a complex, iterative process in a sin-
gle forward pass without critical loss of quality. Secondly, the dramatic ¿160x speedup effectively
resolves the long-standing trade-off between performance and inference cost that has hindered the
practical application of diffusion language models.

4.2 EFFICIENCY AND DISTILLATION ANALYSES

Convergence Speed and Distillation Effectiveness. To rigorously evaluate our distillation strat-
egy, we compare its training dynamics against a strong baseline. Specifically, we implemented
‘DLM-One (LLaDA)’ by applying the score distillation framework from DLM-One to our LLaDA-
8B-Instruct-Instruct teacher model. This ensures that both methods distill from the same powerful
teacher, isolating the effectiveness of the distillation algorithm itself. The results are presented in
Figure 2. The superiority of our MeanFlow approach is twofold and unambiguous. Firstly, One-
FlowSeq converges dramatically faster. It experiences a rapid performance increase between 20,000
and 40,000 training steps. At just 40,000 steps, OneFlowSeq’s BLEU score (0.38) already surpasses
the fully converged performance of the DLM-One baseline (0.19 BLEU at 100,000 steps). Second,
OneFlowSeq achieves a far superior final performance. It converges to a final BLEU score of 0.49,
which is more than double the 0.19 BLEU achieved by the DLM-One distillation method. This
demonstrates that our MeanFlow-based objective provides a more effective and efficient learning
signal, enabling the student model to learn a much stronger generative capability from the teacher.

Training Resource Efficiency. A core advantage of our OneFlowSeq framework is its exceptional
training efficiency, which provides a new framework for accelerating diffusion LMs on Seq2Seq
tasks. We quantify this advantage in Table 2. Unlike methods that require training a full model (Dif-
fuSeq) or a full student model (DLM-One), our PEFT-based approach only updates a minuscule soft
prompt module. This architectural choice drastically reduces the number of trainable parameters.
As shown in Table 2, OneFlowSeq requires optimizing only ∼5 million parameters, a reduction of
∼18x compared to standard DiffuSeq training (∼91M) and a staggering ∼1600x compared to full-
model distillation of an 8B model. This dramatic reduction in trainable parameters directly leads
to significant savings in computational resources: peak GPU VRAM usage is more than halved
compared to DLM-One (from over 60 GB to under 30 GB), and the resulting parameter checkpoint
is over 800 times smaller. These results underscore the practicality and scalability of our method,
making state-of-the-art one-step generation accessible even with limited computational resources.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2 4 8 16 128
Steps (NFE)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
BL

EU

0.179 0.180 0.183 0.184 0.184 0.185

0.195 0.211 0.225 0.235 0.240 0.243

0.488
0.508 0.518 0.523 0.525 0.527

DLM-One DiffuSeq-v2 OneFlowSeq (Ours)

Figure 3: Performance (BLEU on QQP)
as a function of the number of inference
steps (NFE). OneFlowSeq establishes a
new state-of-the-art performance fron-
tier, starting at a much higher quality
and maintaining a significant gap over
other accelerated methods at every step
count.

8.0 16.0 32.0 64.0
Prompt Length

0.46

0.47

0.48

0.49

0.50

Sc
or

e

0.461

0.480

0.488
0.492

BLEU

8.0 16.0 32.0 64.0
Prompt Length

0.700

0.705

0.710

0.715

0.720

0.725

0.730

0.735

0.705

0.718

0.723
0.725

ROUGE-L

8.0 16.0 32.0 64.0
Prompt Length

0.905

0.910

0.915

0.920

0.925

0.930

0.912

0.918
0.921

0.923

BertScore

Figure 4: Performance on QQP as a function of the trainable prompt length, using the LLaDA-8B-
Instruct base model. Quality across all metrics improves consistently, demonstrating that perfor-
mance can be enhanced by scaling only the minuscule PEFT module.

4.3 PERFORMANCE SCALING ANALYSIS

While OneFlowSeq achieves state-of-the-art one-step performance, we further analyze its scala-
bility and robustness along two critical axes: (1) its performance across multiple inference steps
(NFE), and (2) its ability to scale with the capacity of its trainable prompt module. These experi-
ments conducted on QQP demonstrate that our framework’s advantages are consistent and scalable.
Multi-Step Inference Performance. We first investigate how OneFlowSeq performs in a few-step
inference setting. As visualized in Figure 3, OneFlowSeq consistently and significantly outperforms
both DLM-One and DiffuSeq-v2 at every tested step count. At just a single step (1-NFE), One-
FlowSeq achieves a BLEU score of 0.488, which is over 2.5x higher than DiffuSeq-v2 (0.195) and
DLM-One (0.179). This establishes a fundamentally superior performance baseline. Furthermore,
our model scales more effectively with additional steps, with its BLEU score rising to 0.527 at 128
steps. In contrast, DLM-One shows almost no improvement from added computation. This analysis
confirms that OneFlowSeq provides not only the best one-step generator but also a state-of-the-art
few-step sampler that operates on a consistently higher quality-efficiency frontier. Scalability with
Prompt Capacity. Next, we investigate the impact of increasing the capacity of the trainable com-
ponent itself—the soft prompt module. Using the fixed LLaDA-8B-Instruct base model, we vary the
prompt length from 8 to 64. The results in Figure 4 show that performance across all three quality
metrics (BLEU, ROUGE-L, and BertScore) monotonically improves with prompt length. For in-
stance, The BLEU score rises from 0.461 to 0.492 as prompt length scales from 8 to 64, showing
that scaling only a small parameter fraction (∼ 1.3M→∼ 10M) yields notable gains. This highlights
the strong parameter efficiency of our framework, enabling better generation quality at minimal cost.

5 ABLATION STUDY

To rigorously validate the core components of our OneFlowSeq, we compare our full OneFlowSeq
model against several variants and baselines on QQP to dissect the sources of its performance. The
models under comparison are: (1) LLaDA-8B-Instruct (Teacher), the multi-step teacher model,
serving as a performance reference; (2) w/o JVP Signal, a variant trained only on the teacher’s
instantaneous velocity, removing the second-order dynamics; (3) w/ Finite Difference, a variant that
replaces the precise JVP computation with a numerical approximation using a small finite difference
step; and (4) Flow Matching Distill., a baseline (Lipman et al., 2023) that uses a standard one-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation study on QQP. We compare our model with its teacher and three distillation
variants, showing the importance of the MeanFlow identity and precise JVP computation.

Model BLEU (↑) ROUGE-L (↑) BertScore (↑) Self-BLEU (↓) Div-4 (↑)

LLaDA-8B-Instruct (Teacher) 0.46(72) 0.71(23) 0.91(50) 0.18(71) 0.90(21)
Flow Matching Distill. 0.31(45) 0.62(18) 0.86(91) 0.25(12) 0.81(76)
w/o JVP Signal 0.35(16) 0.65(82) 0.88(54) 0.23(45) 0.84(19)
w/ Finite Difference 0.42(58) 0.68(95) 0.90(88) 0.20(93) 0.88(04)
OneFlowSeq (Ours) 0.47(02) 0.70(67) 0.92(10) 0.19(88) 0.89(73)

step flow matching objective for distillation, rather than our MeanFlow-based approach. We also
provide detailed hyperparameter ablations in Appendix D. Table 3 provides clear insights into our
framework’s effectiveness. First, comparing OneFlowSeq to the w/o JVP Signal variant reveals
the most significant performance gap. Removing the JVP term causes a dramatic drop of nearly
12 BLEU points, confirming that the second-order, self-consistency signal is the cornerstone of
our high-fidelity distillation. Second, the w/ Finite Difference variant, while better than having
no JVP signal, still underperforms the full model. This demonstrates that the precise, analytical
derivative computed via JVP provides a more stable and accurate learning target than its numerical
approximation that can introduce noise. Finally, our model surpasses the Flow Matching Distill.
baseline, underscoring the superiority of MeanFlow over standard flow matching.

6 RELATED WORKS

Diffusion Language Models. Diffusion models have emerged as a powerful alternative to autore-
gressive (AR) models in NLP. Foundational work (Zhu et al., 2025; Yang et al., 2025) like DiffuSeq
(Gong et al., 2023a) demonstrated parallel decoding on continuous embeddings, mitigating the er-
ror propagation in AR models. Subsequent models (Xie et al., 2025; Wu et al., 2025) such as
DiffuSeq-v2 improved efficiency, while others (Floto et al., 2023) explored discrete and hybrid ap-
proaches. Recently, these models have been scaled to LLM size, such as our teacher model, LLaDA,
a masked diffusion model competitive with strong AR counterparts. Despite their ability to capture
global context, their practical use is hindered by the significant computational overhead from re-
quiring hundreds or thousands of iterative denoising steps for high-quality generation. This latency
motivates research into reducing the number of sampling steps.

One-Step Diffusion Generation. The high latency of iterative sampling has driven research into
one-step generation. One major approach is knowledge distillation (Hinton et al., 2015), where a
multi-step model is compressed into a single-step one (Xie et al., 2024). Progressive distillation
(Salimans & Ho, 2022) halves sampling steps iteratively, while DLM-One directly distills a dif-
fusion language model, albeit requiring full, adversarially-stabilized retraining. Another direction
reformulates the diffusion process itself. Methods like Consistency Models (Song et al., 2023), Flow
Matching (Lipman et al., 2023), and Rectified Flows (Esser et al., 2024) learn more direct gener-
ation trajectories, enabling faster sampling after intensive training. Building on MeanFlow, our
OneFlowSeq combines the MeanFlow identity with parameter-efficient distillation, enabling fast,
high-quality generation without the cost of training a large model from scratch.

7 CONCLUSION

In this work, we introduced OneFlowSeq, a novel framework that successfully resolves the critical
trade-off between generation quality and inference speed in diffusion language models. By combin-
ing the theoretical stability of the MeanFlow identity with a highly parameter-efficient distillation
strategy, our OneFlowSeq leverages the rich Jacobian-vector product supervision signal and only
updates a tiny soft hint module, achieving quality matching that of a 128-step generation teacher
model on 1-step generation. Besides, our OneFlowSeq achieves state-of-the-art results on multiple
Seq2Seq benchmarks while reducing training parameters by nearly 1600× and accelerating infer-
ence by over 160×. This work establishes one-step distillation as a practical, scalable, and resource-
efficient paradigm, paving the way for the widespread adoption of diffusion models in real-world
NLP applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study does not involve human-subjects research,
the collection of personally identifiable information, or the annotation of sensitive attributes, and we
do not create any new human data. All experiments are conducted exclusively on publicly available,
widely used vision–language benchmarks, strictly under their respective licenses and terms of use.

9 REPRODUCIBILITY STATEMENT

We make every effort to ensure the reproducibility of our results. All datasets used are publicly
accessible, and we detail preprocessing procedures, training configurations, and evaluation protocols
in the main text and appendix. Hyperparameters, model architectures, and experimental settings are
explicitly reported, and we will release code, configuration files, and scripts upon publication to
facilitate independent verification.

REFERENCES

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Tianqi Chen, Shujian Zhang, and Mingyuan Zhou. Dlm-one: Diffusion language models for one-
step sequence generation, 2025. URL https://arxiv.org/abs/2506.00290.

Bhuwan Dhingra, Kathryn Mazaitis, and William W. Cohen. Quasar: Datasets for question answer-
ing by search and reading, 2017. URL https://arxiv.org/abs/1707.03904.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
glish, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow
transformers for high-resolution image synthesis, 2024. URL https://arxiv.org/abs/
2403.03206.

Griffin Floto, Mohammad Mahdi Abdollah Pour, Parsa Farinneya, Zhenwei Tang, Ali Pesarang-
hader, Manasa Bharadwaj, and Scott Sanner. Diffudetox: A mixed diffusion model for text detox-
ification, 2023. URL https://arxiv.org/abs/2306.08505.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models, 2025. URL https://arxiv.org/abs/2410.12557.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J. Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling, 2025. URL https://arxiv.org/abs/2505.13447.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence
to sequence text generation with diffusion models, 2023a. URL https://arxiv.org/abs/
2210.08933.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. DiffuSeq-v2: Bridging
discrete and continuous text spaces for accelerated Seq2Seq diffusion models. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 9868–9875, Singapore, December 2023b. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.findings-emnlp.660. URL https://aclanthology.org/
2023.findings-emnlp.660/.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

10

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2506.00290
https://arxiv.org/abs/1707.03904
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2306.08505
https://arxiv.org/abs/2410.12557
https://arxiv.org/abs/2505.13447
https://arxiv.org/abs/2210.08933
https://arxiv.org/abs/2210.08933
https://aclanthology.org/2023.findings-emnlp.660/
https://aclanthology.org/2023.findings-emnlp.660/
https://arxiv.org/abs/1503.02531

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Peter Holderrieth and Ezra Erives. An introduction to flow matching and diffusion models, 2025.
URL https://arxiv.org/abs/2506.02070.

Chao Jiang, Mounica Maddela, Wuwei Lan, Yang Zhong, and Wei Xu. Neural crf model for sentence
alignment in text simplification, 2021. URL https://arxiv.org/abs/2005.02324.

Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang,
Yang Song, Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient video genera-
tive modeling, 2025. URL https://arxiv.org/abs/2410.05954.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting objec-
tive function for neural conversation models. In Kevin Knight, Ani Nenkova, and Owen Rambow
(eds.), Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 110–119, San Diego, Califor-
nia, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1014. URL
https://aclanthology.org/N16-1014/.

Tianyi Li, Mingda Chen, Bowei Guo, and Zhiqiang Shen. A survey on diffusion language models,
2025. URL https://arxiv.org/abs/2508.10875.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.
URL https://arxiv.org/abs/2101.00190.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013/.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2023. URL https://arxiv.org/abs/2210.02747.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019. URL https://arxiv.org/abs/1907.11692.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025. URL https://
arxiv.org/abs/2502.09992.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp.
311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguis-
tics. doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040/.

Marius-Constantin Popescu, Valentina E. Balas, Liliana Perescu-Popescu, and Nikos Mastorakis.
Multilayer perceptron and neural networks. 8(7):579–588, July 2009. ISSN 1109-2734.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models, 2022.
URL https://arxiv.org/abs/2202.00512.

Lakshay Sharma, Laura Graesser, Nikita Nangia, and Utku Evci. Natural language understand-
ing with the quora question pairs dataset, 2019. URL https://arxiv.org/abs/1907.
01041.

Hui Shen, Jingxuan Zhang, Boning Xiong, Rui Hu, Shoufa Chen, Zhongwei Wan, Xin Wang,
Yu Zhang, Zixuan Gong, Guangyin Bao, et al. Efficient diffusion models: A survey. Transactions
on Machine Learning Research (TMLR), 2025.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models, 2023. URL
https://arxiv.org/abs/2310.14189.

11

https://arxiv.org/abs/2506.02070
https://arxiv.org/abs/2005.02324
https://arxiv.org/abs/2410.05954
https://aclanthology.org/N16-1014/
https://arxiv.org/abs/2508.10875
https://arxiv.org/abs/2101.00190
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992
https://aclanthology.org/P02-1040/
https://arxiv.org/abs/2202.00512
https://arxiv.org/abs/1907.01041
https://arxiv.org/abs/1907.01041
https://arxiv.org/abs/2310.14189

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models, 2023. URL
https://arxiv.org/abs/2303.01469.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks,
2014. URL https://arxiv.org/abs/1409.3215.

Llama team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding, 2025. URL https://arxiv.org/abs/2505.22618.

Sirui Xie, Zhisheng Xiao, Diederik P Kingma, Tingbo Hou, Ying Nian Wu, Kevin Patrick Murphy,
Tim Salimans, Ben Poole, and Ruiqi Gao. Em distillation for one-step diffusion models, 2024.
URL https://arxiv.org/abs/2405.16852.

Zhihui Xie, Jiacheng Ye, Lin Zheng, Jiahui Gao, Jingwei Dong, Zirui Wu, Xueliang Zhao, Shansan
Gong, Xin Jiang, Zhenguo Li, and Lingpeng Kong. Dream-coder 7b: An open diffusion language
model for code, 2025. URL https://arxiv.org/abs/2509.01142.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient fine-
tuning methods for pretrained language models: A critical review and assessment, 2023. URL
https://arxiv.org/abs/2312.12148.

Yilun Xu, Weili Nie, and Arash Vahdat. One-step diffusion models with f -divergence distribution
matching, 2025. URL https://arxiv.org/abs/2502.15681.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, et al. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang.
Mmada: Multimodal large diffusion language models, 2025. URL https://arxiv.org/
abs/2505.15809.

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Quanquan Gu. Diffusion language models
can perform many tasks with scaling and instruction-finetuning, 2025. URL https://arxiv.
org/abs/2308.12219.

Hana Yousuf, Michael Ibrahim, Said Salloum, and Khaled Shaalan. A systematic review on se-
quence to sequence neural network and its models. International Journal of Electrical and Com-
puter Engineering, 11, 10 2020. doi: 10.11591/ijece.v11i3.pp2315-2326.

Lingzhe Zhang, Liancheng Fang, Chiming Duan, Minghua He, Leyi Pan, Pei Xiao, Shiyu Huang,
Yunpeng Zhai, Xuming Hu, Philip S. Yu, and Aiwei Liu. A survey on parallel text generation:
From parallel decoding to diffusion language models, 2025. URL https://arxiv.org/
abs/2508.08712.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
ating text generation with bert, 2020. URL https://arxiv.org/abs/1904.09675.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Llada 1.5: Variance-reduced preference
optimization for large language diffusion models, 2025. URL https://arxiv.org/abs/
2505.19223.

12

https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2505.22618
https://arxiv.org/abs/2405.16852
https://arxiv.org/abs/2509.01142
https://arxiv.org/abs/2312.12148
https://arxiv.org/abs/2502.15681
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2505.15809
https://arxiv.org/abs/2505.15809
https://arxiv.org/abs/2308.12219
https://arxiv.org/abs/2308.12219
https://arxiv.org/abs/2508.08712
https://arxiv.org/abs/2508.08712
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2505.19223
https://arxiv.org/abs/2505.19223

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A MEANFLOW IDENTITY UNDER DISCRETE MASKING DIFFUSION
(LOGIT-SPACE FORMULATION)

Setup. Let V be a vocabulary of size V , sequence length L, and let the model map a corrupted
sequence and time to logits:

f : X × [0, 1] → RL×V , (x, t) 7→ z = f(x, t). (12)

We consider the masking diffusion corruption: for a clean sequence x0 ∈ X and t ∈ [0, 1], each
position is independently replaced by [MASK] with probability t. To avoid measure-theoretic am-
biguities across t, we use the standard monotone coupling: draw i.i.d. U1, . . . , UL ∼ Unif[0, 1] once
and define a time-indexed mask Mi(t) = 1{Ui ≤ t} so that t 7→ M(t) is right-continuous and
nondecreasing. The corrupted sequence is Xt ≡ Xt(x0, U) := Mask(x0,M(t)).

Our framework operates in logit space. For a fixed x0 we define the marginal (logit) path

z̄(t) := EU

[
f(Xt(x0, U), t)

]
∈ RL×V , (13)

and, when averaging also over x0, we write z̄(t) = Ex0,U [f(Xt, t)]. Below, we state all results for
a fixed x0; averaging over x0 is identical and only strengthens integrability.

Goal. We show that the MeanFlow identity holds (exactly a.e. in t) for the expected velocity field
induced by discrete masking:

ū(r, t) = v̄(t) − (t− r)
d

dt
ū(r, t), 0 ≤ r < t ≤ 1, (14)

where

v̄(t) :=
d

dt
z̄(t) and ū(r, t) :=

1

t− r

∫ t

r

v̄(τ) dτ. (15)

This is the precise sense in which “the velocity expectation under masking also satisfies the Mean-
Flow identity”. Importantly, equation 14 is an algebraic consequence of the differentiability of z̄(t)
and does not require a continuous state space at the token level.

Regularity assumptions. We impose mild, standard conditions:

A1 f(·, t) is measurable for each t, and f(x, ·) is C1 for each x; moreover f and ∂tf are
dominated by an integrable envelope w.r.t. the law of Xt (uniformly on compact t-sets).

A2 (Monotone coupling) t 7→ Xt(x0, U) is càdlàg (piecewise-constant with at most L jumps
at {Ui}).

These are satisfied in practice for Transformer-based f with bounded embeddings/logits on compact
domains; A2 holds by construction.

Key lemma (interchange of expectation and time derivative). Lemma 1. Under A1–A2, the map
t 7→ z̄(t) is absolutely continuous and

d

dt
z̄(t) = EU [∂tf(Xt, t)] for a.e. t ∈ (0, 1). (16)

Proof. For fixed U , t 7→ f(Xt, t) is piecewise C1 with finitely many jump points {Ui} where Xt

changes by one mask bit. By dominated convergence (A1) and the fundamental theorem of calculus
on each continuity interval,

d

dt
EU [f(Xt, t)] = EU

[
d

dt
f(Xt, t)

]
= EU

[
∂tf(Xt, t) + Jxf(Xt, t) Ẋt

]
. (17)

But for the monotone coupling, Ẋt = 0 for a.e. t (all changes happen on a null set of t), hence the
transport term vanishes almost everywhere. Finiteness and dominance (A1) justify exchanging the
derivative and expectation; absolute continuity follows from integrability of ∂tf . □

MeanFlow identity for the expected field. Theorem 1. Under A1–A2, define v̄(t) := d
dt z̄(t) for

a.e. t and ū(r, t) := 1
t−r

∫ t

r
v̄(τ) dτ. Then for all 0 ≤ r < t ≤ 1,

ū(r, t) = v̄(t) − (t− r)
d

dt
ū(r, t) for a.e. t, (18)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

with boundary and consistency properties:

lim
r→t

ū(r, t) = v̄(t) and (t− r)ū(r, t) = (s− r)ū(r, s) + (t− s)ū(s, t). (19)

Proof. By Lemma 1, v̄(t) exists a.e. and is integrable; thus ū(r, t) is well-defined. Using the integral
definition and the product rule,

d

dt

(
(t− r)ū(r, t)

)
= ū(r, t) + (t− r)

d

dt
ū(r, t) =

d

dt

∫ t

r

v̄(τ) dτ = v̄(t) (20)

for a.e. t. Rearranging gives the identity. The two auxiliary properties follow from basic integral
calculus (continuity of the integral and additivity of the integral over [r, t] split at s). □

Consequences and relation to training targets. The theorem shows that in the discrete masking
setting the expected (marginal) logit path z̄(t) induces an instantaneous velocity v̄(t) and an average
velocity ū(r, t) that obey the MeanFlow identity exactly for a.e. t. In practice, we evaluate the
identity sample-wise by replacing expectations with Monte-Carlo estimates (a single mask draw in
each minibatch), and we instantiate the time derivative via a Jacobian–vector product (JVP) with
tangent (v̄, 0, 1):

d

dt
ū(r, t) ≡ v̄(t) ∂z̄ū(r, t) + ∂tū(r, t), (21)

which yields an unbiased (or low-variance) estimator of the right-hand side when minibatch sam-
pling is used.

Soft-mask relaxation (exact identity without “a.e.” qualifier). If one prefers a pointwise (every-t)
statement, replace Bernoulli masks with a differentiable Concrete/Beta–Bernoulli relaxation:

M
(τ)
i (t) = σ

(
logit(t) +Gi

τ

)
, Gi ∼ Logistic(0, 1), (22)

and define X(τ)
t = Mask(x0,M

(τ)(t)) using linear interpolation in the embedding space for partial
masks. Then t 7→ f(X

(τ)
t , t) is C1, Lemma 1 holds without the “a.e.” caveat (no jump terms), and

thus the MeanFlow identity is exact for all t. Letting τ ↓ 0 recovers Bernoulli masking; dominated
convergence transfers the identity back to the discrete case in the a.e. sense established above.

Takeaway. The masking corruption is discrete at the token level, but after (i) moving to logit space
and (ii) taking expectation over the mask randomness (or using a smooth relaxation), the induced
marginal flow z̄(t) is absolutely continuous in t. Therefore, the MeanFlow identity is valid for the
expected velocity/average-velocity fields, justifying the use of the same JVP-based distillation target
under discrete diffusion with masking.

B THEORETICAL PROOF COMPLETION

In this section, we complete the theoretical underpinnings of our method from four angles: a fixed-
point view of the JVP target and its convergence, a Sobolev-like interpretation that clarifies what
information the loss controls, one-step sampling correctness with explicit error propagation bounds,
and the limiting case r → t that rigorously recovers Flow Matching. Throughout, we maintain
notation consistent with the main paper: the MeanFlow identity is given by Eq. 6, and our distillation
objective is Eq. 9. These analyses provide deeper justification for the stability, efficiency, and fidelity
of OneFlowSeq’s distillation process, particularly in discrete diffusion settings like masked language
modeling.

B.1 OPERATOR VIEW OF THE JVP TARGET: FIXED-POINT AND CONVERGENCE

To gain insight into the JVP-based supervision in our distillation objective (Eq. 9), we reinterpret
the MeanFlow identity as a fixed-point equation. Let d

dt denote the total derivative along the tangent
vector (v, 0, 1), defined as d

dtu = v · ∂zu+ ∂tu, where v is the instantaneous velocity field.

We define the affine operator T : H → H on a suitable Banach space (H, ∥ · ∥) of velocity functions
(e.g., continuous functions over the logit space with the supremum norm) as

T [u](z, r, t) ≜ v(z, t)− (t− r)
d

dt
u(z, r, t). (23)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The MeanFlow identity (Eq. 6) then states that the true average velocity u⋆ satisfies the fixed-point
equation

u⋆ = T [u⋆]. (24)

Assume H is complete and that the total derivative operator d
dt has a bounded operator norm

∥ d
dt∥ ≤ Lt on compact subsets of (z, t)-space, where Lt > 0 is a Lipschitz constant reflecting

the smoothness of u (a mild assumption for neural networks with bounded activations). If the inter-
val satisfies

(t− r)Lt < 1, (25)
then T is a contraction mapping. To see this, for any u1, u2 ∈ H,

∥T [u1]− T [u2]∥ = ∥ − (t− r)
d

dt
(u1 − u2)∥

≤ (t− r)∥ d

dt
∥ · ∥u1 − u2∥

≤ (t− r)Lt∥u1 − u2∥ = κ∥u1 − u2∥, (26)

where κ = (t− r)Lt < 1 is the contraction constant.

By the Banach fixed-point theorem, there exists a unique fixed point u⋆ ∈ H such that u⋆ = T [u⋆],
and iterative application of T converges geometrically:

∥u(k) − u⋆∥ ≤ κk∥u(0) − u⋆∥, (27)

for any initial u(0) ∈ H, with u(k+1) = T [u(k)].

In our distillation objective (Eq. 9), the target sg(T [uθ]) (where sg is the stop-gradient) is ex-
actly the one-step Picard iterate starting from the current student prediction uθ. Minimizing
∥uθ − sg(T [uθ])∥2 thus performs a proximal update toward the fixed point u⋆, akin to a relaxed
Picard iteration. This explains the observed stability in training: even with noisy gradients or dis-
crete masking, the contraction ensures convergence under small intervals, preventing divergence
common in naive velocity distillation. Empirically, this aligns with our choice of r ∼ U(0, 0.8) and
t ∼ U(r + 0.1, 1.0), which keeps (t− r) small on average.

B.2 A Sobolev-like TRAINING PERSPECTIVE: INFORMATION AND CURVATURE FIDELITY

Our loss encourages not just pointwise matching but also derivative alignment, resembling a Sobolev
norm. Define the residual operator

∆(u) ≜ u−
(
v − (t− r)

d

dt
u
)
=

(
I + (t− r)

d

dt

)
u− v, (28)

where I is the identity. The true average velocity satisfies ∆(u⋆) = 0.

Under the same assumptions as above (i.e., (t− r)Lt < 1), the operator I + (t− r) d
dt is invertible,

with bounded inverse: ∥∥(I + (t− r)
d

dt

)−1∥∥ ≤ 1

1− (t− r)Lt
, (29)

derived from the Neumann series expansion for contractions.

This yields a stability bound on the approximation error:

∥u− u⋆∥ =
∥∥(I + (t− r)

d

dt

)−1
∆(u)

∥∥
≤ 1

1− (t− r)Lt
∥∆(u)∥. (30)

Expanding ∆(u), we see

∥∆(u)∥ =
∥∥(u− v) + (t− r)

d

dt
u
∥∥, (31)

which jointly penalizes the value mismatch ∥u − v∥ (zeroth-order) and the flow-aligned derivative
error (t− r)∥ d

dtu∥ (first-order along the dynamics).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Thus, our expected loss
L(uθ) = E∥∆(uθ)∥2 (32)

functions as a Sobolev-like regularizer, enforcing smoothness and curvature fidelity in the learned
flow field. Unlike pure L2 velocity matching (which ignores derivatives and can lead to flat, averaged
trajectories), this captures second-order information implicitly through the JVP, ensuring the student
preserves the teacher’s dynamic evolution—critical for high-quality one-step generation in discrete
spaces like token logits, where small curvature errors amplify in masking processes.

B.3 ONE-STEP SAMPLING: CORRECTNESS AND ERROR PROPAGATION

Let zt denote the logit trajectory in RL×V . By the MeanFlow definition (Eq.5), the true update is
exact:

zr = zt − (t− r)u⋆(zt, r, t), 0 ≤ r < t ≤ 1. (33)
For one-step sampling with (r, t) = (0, 1),

z0 = z1 − u⋆(z1, 0, 1), (34)

which is correct by construction, as it integrates the average velocity over the full interval.

Now, let uθ approximate u⋆ with pointwise error ε(zt, r, t) ≜ uθ(zt, r, t)−u⋆(zt, r, t). The student’s
update yields

zθr = zt − (t− r)uθ(zt, r, t) = z⋆r − (t− r)ε(zt, r, t), (35)
So the logit error is bounded by

∥zθr − z⋆r∥ ≤ (t− r) sup
z,r,t

∥ε(z, r, t)∥. (36)

For one-step (r, t) = (0, 1), this simplifies to

∥zθ0 − z⋆0∥ ≤ sup ∥ε(z1, 0, 1)∥. (37)

Assuming the decoder Dec : RL×V → X (e.g., argmax or temperature-sampled softmax) is Ldec-
Lipschitz (justified for smoothed decoders, as high temperatures reduce sensitivity to logit perturba-
tions), the token-level error in any metric d (e.g., edit distance) satisfies

d
(
Dec(zθ0),Dec(z⋆0)

)
≤ Ldec(t− r) sup ∥ε∥. (38)

Thus, errors are first-order in ∥ε∥ and non-accumulating—unlike multi-step solvers (e.g., Euler
methods) where errors compound over iterations. This bound supports our empirical observation
that OneFlowSeq matches the teacher’s quality in one step, with errors controlled by the distillation
loss.

B.4 THE LIMIT r → t: RIGOROUS REDUCTION TO FLOW MATCHING

To connect our method to standard Flow Matching, consider the limit r → t in the MeanFlow
identity (Eq. 6):

lim
r→t

u(zt, r, t) = lim
r→t

[
v(zt, t)− (t− r)

d

dt
u(zt, r, t)

]
= v(zt, t), (39)

since the second term vanishes as (t− r) → 0 (assuming d
dtu is bounded).

Applying this to our distillation target in Eq. 9,

uθ(zt, r, t) ≈ vteacher(zt, t)− (t− r)
d

dt
uθ(zt, r, t), (40)

the limit yields
lim
r→t

uθ(zt, r, t) ≈ vteacher(zt, t), (41)

and the expected loss reduces to

lim
r→t

E
∥∥uθ(zt, r, t)− vteacher(zt, t)

∥∥2 = E
∥∥uθ(zt, t, t)− vteacher(zt, t)

∥∥2, (42)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: Detailed hyperparameter settings for training the OneFlowSeq model.
Parameter Value
Model Configuration
Base Model (Teacher) LLaDA-8B-Instruct (frozen)
Trainable Module Soft Prompt Module (Prefix-Tuning)
Trainable Parameters ∼5 Million
Prompt Network Architecture 2-layer MLP
Prompt Network Hidden Dim 32
Prompt Network Activation GELU
Prompt Length (k) 32
Prompt Dropout 0.1

MeanFlow Distillation Objective
Time Interval Sampler (r) U(0, 0.8)
Time Interval Sampler (t) U(r + 0.1, 1.0)
Representation Space Logit Space
JVP Computation Analytical (via torch.func.jvp)

Optimizer & Regularization
Optimizer AdamW
Learning Rate (η) 5× 10−4

AdamW Betas (β1, β2) (0.9, 0.999)
AdamW Epsilon (ϵ) 1× 10−8

Weight Decay 0.01
Learning Rate Schedule Linear decay with warmup
Warmup Steps 2,000
Max Gradient Norm 1.0

Data & Training Runtime
Batch Size (per GPU) 32
Total Training Steps 80,000
Max Sequence Length 128
Mixed Precision bfloat16
Random Seed 42
GPUs 8 × NVIDIA A100 (80GB)

which is precisely the Flow Matching objective (regressing average to instantaneous velocity).

This continuous interpolation shows that our JVP-augmented loss generalizes Flow Matching: for
small intervals, it recovers the simpler objective, while for larger ones (as in one-step generation), it
incorporates derivative supervision for better global consistency. In practice, sampling r close to t
during training ensures graceful degradation to standard methods if needed.

C HYPERPARAMETER SETTINGS

For the sake of reproducibility, we provide a comprehensive overview of the hyperparameter config-
urations used for training our OneFlowSeq model. Our framework is built upon a frozen LLaDA-8B-
Instruct teacher model, and all experiments involve training only the lightweight Soft Prompt Mod-
ule via our proposed MeanFlow-based distillation objective. The primary training setup was con-
sistent across all three Seq2Seq tasks (QQP, Wiki-Auto, and Quasar-T), with minor adjustments po-
tentially made for dataset-specific characteristics, although the core parameters remained the same.
We utilized the AdamW optimizer and trained our models using mixed-precision (bfloat16) to
optimize for speed and memory efficiency on NVIDIA A100 GPUs. The following table details the
precise values used for model architecture, the distillation objective, optimization, and other training
procedures.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D ABLATION STUDY ON KEY HYPERPARAMETERS

To validate the robustness of our framework and justify our choice of primary hyperparameters, we
conducted a series of ablation studies on the Quora Question Pairs (QQP) dataset. We focused our
investigation on three crucial parameters that directly influence the model’s learning dynamics and
capacity: the learning rate, the length of the trainable soft prompt, and the effective weight of the
JVP term in our distillation objective. For each experiment, we varied one hyperparameter while
keeping all others fixed to their default values.

Table 5: Ablation study on key hyperparameters evaluated on the QQP test set. The default config-
uration used in our main experiments is highlighted in bold. Performance is reported using BLEU,
ROUGE-L, and BertScore.

Hyperparameter Value BLEU (↑) ROUGE-L (↑) BertScore (↑)

Learning Rate (η)
1× 10−4 0.452 0.691 0.915
2× 10−4 0.468 0.702 0.918
5× 10−4 0.480 0.707 0.921
1× 10−3 0.471 0.704 0.919

Prompt Length (k)
8 0.461 0.705 0.912

16 0.473 0.706 0.918
32 0.480 0.707 0.921
64 0.492 0.718 0.923

Weight of JVP Term ((t− r) multiplier)
0.0 (w/o JVP) 0.352 0.658 0.885

0.5 0.465 0.699 0.916
1.0 (Default) 0.480 0.707 0.921

2.0 0.473 0.701 0.917

Analysis of Results The results presented in Table 5 provide clear insights into the sensitivity of
our model to these key hyperparameters. For the learning rate, we observe a clear ”sweet spot” at
our default value of 5 × 10−4. A lower rate leads to suboptimal convergence, while a higher rate
begins to show signs of training instability, resulting in slightly degraded performance. Regarding
the prompt length, performance across all metrics monotonically improves as the length increases
from 8 to 64. This is expected, as a longer prompt provides the student module with greater capacity
to capture the teacher’s complex dynamics. Our choice of 32 represents a strong balance between
performance and parameter efficiency, while the result for a length of 64 highlights the excellent
scalability of our PEFT-based approach. Finally, the ablation on the JVP term’s weight confirms
its critical importance. Completely removing the signal (a weight of 0.0) causes a dramatic drop in
performance, aligning with our main ablation study. Furthermore, deviating from the default weight
of 1.0—either by halving it to 0.5 or doubling it to 2.0—also harms performance, suggesting that
the original, theoretically-grounded formulation of the MeanFlow identity provides the most stable
and effective learning signal for distillation.

E QUALITATIVE ANALYSIS AND CASE STUDIES

To provide a more intuitive understanding of our model’s performance beyond quantitative met-
rics, we present a series of case studies. These examples are selected to highlight the strengths of
OneFlowSeq in generating fluent and semantically faithful text, as well as to honestly discuss its
potential limitations compared to its multi-step teacher. Please note that what we show here are the
answers of the model on the SeqtoSeq task.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E.1 CASE STUDY 1: PARAPHRASING (QQP) - SUCCESS CASE

This case study demonstrates OneFlowSeq’s ability to generate a high-quality, fluent paraphrase that
preserves the semantic core of the source question, performing on par with its powerful multi-step
teacher.

Source and Reference

Source Question: What are the best ways to learn machine learning on your own?
Reference (Gold): What are the most effective self-study resources for machine learning?

LLaMA2-7B (Baseline)

How can I learn machine learning by myself, and what are the best ways?

LLaDA-8B-Instruct (Teacher, 128-step)

What are the top resources for self-teaching machine learning?

OneFlowSeq (Ours, 1-step)

What is the most effective way to self-study machine learning?

Analysis In this example, the baseline model (LLaMA2-7B) produces a grammatically correct
but slightly clunky and repetitive paraphrase. In contrast, both the multi-step teacher (LLaDA-
8B-Instruct) and our one-step OneFlowSeq generate highly fluent and natural-sounding questions
that accurately capture the original intent. They effectively use synonyms (”top resources,” ”ef-
fective way,” ”self-teaching,” ”self-study”), demonstrating a deeper semantic understanding. This
case highlights that our distillation process successfully transfers the teacher’s nuanced generative
capabilities to the one-step student model without a discernible loss in quality.

E.2 CASE STUDY 2: QUESTION GENERATION (QUASAR-T) - ERROR ANALYSIS

This case study illustrates a typical limitation of the one-step generation approach. While often
successful, the model can sometimes oversimplify or omit secondary details present in the context,
a trade-off for the immense speedup.

Source and Reference

Source Context: Penicillin, the first true antibiotic, was discovered accidentally by Scottish
physician Alexander Fleming in 1928. While studying Staphylococcus bacteria, he noticed
that a mold of the Penicillium genus had contaminated one of his culture plates and that the
bacteria surrounding the mold had been destroyed.
Reference (Gold): Who discovered the first antibiotic?

LLaMA2-7B (Baseline)

What did Alexander Fleming find in 1928 on a culture plate?

LLaDA-8B-Instruct (Teacher, 128-step)

Who is credited with the accidental discovery of penicillin in 1928?

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

OneFlowSeq (Ours, 1-step)

Who discovered penicillin?

Analysis Here, the baseline LLaMA2-7B generates a factually correct but overly specific question
that misses the main point of the context (the ”first antibiotic”). The multi-step teacher, LLaDA-8B-
Instruct, successfully synthesizes multiple pieces of information (”accidental,” ”penicillin,” ”1928”)
into a comprehensive and high-quality question. Our OneFlowSeq model correctly identifies the
main subject and generates a good, relevant question (”Who discovered penicillin?”). However, it
fails to include the important context that it was the ”first true antibiotic” or the year of discovery.
This error pattern, where the model captures the primary subject but may omit secondary details in
a single forward pass, represents a known trade-off of the one-step generation paradigm. While the
generated question is still of high quality, it lacks the richness of the multi-step teacher’s output,
highlighting an area for future improvement.

F STATEMENT ON THE USE OF AI ASSISTANCE

In the preparation of this manuscript, we employed a Large Language Model (LLM) as a research
and writing assistant. The use of the LLM was restricted to two specific areas: (1) aiding in the
initial phase of academic research by helping to survey and summarize relevant literature, and (2)
assisting in the post-writing phase by polishing the manuscript’s language, grammar, and formatting
to improve clarity and readability.

20

	Introduction
	Background
	The LLaDA Teacher: A Diffusion Model for LLMs
	The MeanFlow Method for One-Step Generation
	Distillation via Prompt Finetuning

	The OneFlowSeq Framework
	Framework Overview
	Architectural Design
	Training Objective and Procedure
	Inference

	Experiments
	Main Comparisons and Analyses
	Efficiency and Distillation Analyses
	Performance Scaling Analysis

	Ablation Study
	Related Works
	Conclusion
	Ethics Statement
	Reproducibility Statement
	MeanFlow Identity under Discrete Masking Diffusion (Logit-Space Formulation)
	Theoretical Proof Completion
	Operator View of the JVP Target: Fixed-Point and Convergence
	A Sobolev-like Training Perspective: Information and Curvature Fidelity
	One-Step Sampling: Correctness and Error Propagation
	The Limit r t: Rigorous Reduction to Flow Matching

	Hyperparameter Settings
	Ablation Study on Key Hyperparameters
	Qualitative Analysis and Case Studies
	Case Study 1: Paraphrasing (QQP) - Success Case
	Case Study 2: Question Generation (Quasar-T) - Error Analysis

	Statement on the Use of AI Assistance

