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ABSTRACT

Autoregressive models dominate Seq2Seq generation but suffer from slow, error-
prone token-by-token decoding. Diffusion language models (DLMs) enable paral-
lel refinement and global coherence, yet their iterative denoising requires hundreds
of steps, limiting practicality. Attempting to address this issue, we propose One-
FlowSeq, a novel framework that distills a powerful multi-step diffusion teacher
(LLaDA-8B-Instruct) into a one-step generator via MeanFlow-based supervision
and parameter-efficient prompt tuning. Our OneFlowSeq introduces a Jacobian-
vector product signal that provides richer guidance than conventional distillation,
allowing the student model to not only match the 128-step teacher model1 in terms
of one-step generation quality. Experiments on paraphrasing, text simplification,
and question generation benchmarks show that our OneFlowSeq achieves state-of-
the-art performance, while reducing trainable parameters by 1600× and delivering
inference speeds orders of magnitude faster than both autoregressive and multi-
step diffusion baselines. This work establishes one-step diffusion as a practical
and scalable paradigm for Seq2Seq generation.

1 INTRODUCTION

Autoregressive (AR) language models (Brown et al., 2020; Radford et al., 2019; Touvron et al.,
2023) have long dominated sequence-to-sequence (Seq2Seq) (Sutskever et al., 2014; Yousuf et al.,
2020) tasks in natural language processing. While their token-by-token generation ensures consis-
tency, it introduces fundamental bottlenecks: inference latency scales linearly with sequence length,
and unidirectional context hinders global planning. As an emerging paradigm, diffusion language
models (DLMs) (Ye et al., 2025; Li et al., 2025; Zhang et al., 2025) promise to overcome these
issues. Their parallel generation and holistic refinement mechanisms naturally support bidirectional
reasoning and global coherence. However, their practical application is hindered by a significant
drawback: the iterative denoising process often requires hundreds or thousands of steps, making
inference prohibitively slow.

This tension has sparked intense interest in one-step diffusion (Shen et al., 2025; Xu et al., 2025;
Song & Dhariwal, 2023; Frans et al., 2025). Two recent lines of work have laid the groundwork.
MeanFlow (Geng et al., 2025) offers a principled reformulation of diffusion dynamics via aver-
age velocity, enabling stable one-step generation without distillation. However, its prohibitive cost
of training large models from scratch makes it impractical for the language domain. In contrast,
DLM-One (Chen et al., 2025) demonstrates that score distillation can compress multi-step language
diffusion into a single forward pass, achieving huge inference acceleration. Yet, it does so by re-
training billions of parameters and relying on adversarial stabilization, which shifts the burden from
inference to training inefficiency. This creates a deadlock: one-step diffusion is either elegant but
prohibitively expensive to train, or fast at inference but bloated in training cost. Neither provides a
viable path toward scalable, resource-friendly Seq2Seq generation.

Attempting to tackle this problem, we introduce the OneSeqFlow framework, which combines the
stability of MeanFlow with the practicality of distillation in a new way, i.e., instead of rebuilding or

1While the original LLaDA paper employs variable sampling steps for different datasets in its official eval-
uation, for a fair comparison, we use a fixed 128 steps for all experiments in this work.
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retraining full models, we freeze a large multi-step teacher model (LLaDA-8B-Instruct) (Nie et al.,
2025) and distill its dynamics into a tiny soft prompt module (Li & Liang, 2021) with only ˜5M
trainable parameters. The core process is a Jacobian-vector product (JVP) supervision signal, which
encodes not just the first-order direction but also the second-order dynamics of the teacher. This
richer signal provides the student model with a clearer learning objective, allowing it to reach the
level of its teacher model in generation quality in just one step, which we consistently observe across
benchmarks. Our OneSeqFlow achieves performance equivalent to the teacher model on paraphrase,
text simplification, and question generation tasks while reducing the number of trainable parameters
by 1600 ×. At inference, it eliminates the classic trade-off between speed and quality: a single-step
OneSeqFlow forward pass runs orders of magnitude faster than both AR baselines and multi-step
diffusion, without sacrificing diversity or semantic fidelity, and achieves extremely fast speed and
advanced results on multiple Seq2Seq tasks. Hence, our OneSeqFlow transforms one-step diffusion
from a theoretical curiosity into a scalable, deployable paradigm for Seq2Seq generation.

2 BACKGROUND

Our work introduces a novel distillation framework that transforms a large, multi-step diffusion
language model into a highly efficient one-step generator. We build upon a masked diffusion model,
i.e., LLaDA, and design a distillation process that combines the theoretical stability of the MeanFlow
method with a parameter-efficient prompt finetuning strategy.

2.1 THE LLADA TEACHER: A DIFFUSION MODEL FOR LLMS

Our teacher model is LLaDA (Large Language Diffusion with mAsking). Unlike conventional au-
toregressive models, LLaDA is a Masked Diffusion Model (MDM) trained from scratch on 2.3
trillion tokens. Its generative process consists of a forward masking procedure and a learned reverse
process. The forward process corrupts a clean sequence x0 by independently replacing each token
with a [MASK] token with probability t ∈ [0, 1], yielding a corrupted sequence xt. The reverse
process is parameterized by a bidirectional Transformer pθ that predicts the original tokens from xt:

L(θ) = −Et,x0,xt

[
L∑

i=1

I[xi
t = MASK] log pθ(x

i
0 |xt)

]
. (1)

While LLaDA achieves performance comparable to strong autoregressive LLMs (team, 2024; Yang
et al., 2024), its iterative denoising procedure requires multiple steps, incurring significant latency.
This motivates exploring a one-step generative mechanism, which we introduce next through the
MeanFlow method.

2.2 THE MEANFLOW METHOD FOR ONE-STEP GENERATION

Standard flow-matching models (Lipman et al., 2023; Holderrieth & Erives, 2025; Jin et al., 2025)
learn a neural network vθ(zt, t) to estimate the expected instantaneous velocity v̄t = E[vt | zt] of a
flow from noise to data. Sampling involves numerical integration of this velocity field; large discrete
steps often cause ambiguity and mode averaging. MeanFlow addresses this limitation by predicting
the average velocity over an interval [r, t]:

u(zt, r, t) =
1

t− r

∫ t

r

v(zτ , τ)dτ. (2)

Learning u enables single-step generation. The key is the MeanFlow Identity, which relates u to v
without explicit integration:

u(zt, r, t) = v(zt, t)− (t− r)
d

dt
u(zt, r, t). (3)

This identity yields a principled training objective. The derivative term d
dtu is efficiently obtained via

a Jacobian-vector product (JVP), i.e., the product of the Jacobian ∂u/∂z with a vector, computable
with one forward–backward pass in modern autodiff libraries. While the MeanFlow identity pro-
vides strong theoretical foundations, applying it to large models like LLaDA from scratch remains
computationally prohibitive. This challenge motivates a distillation-based solution.

2
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2.3 DISTILLATION VIA PROMPT FINETUNING

To avoid the cost of full-model training with MeanFlow, we use a Parameter-Efficient Fine-Tuning
(PEFT) strategy (Xu et al., 2023). Specifically, we distill the dynamics of the frozen multi-step
LLaDA-8B-Instruct teacher into a compact soft prompt module with only ∼5M trainable parame-
ters.

The main challenge is to condition the student model on an interval (r, t) and predict uθ(xt, r, t),
although the frozen LLaDA accepts only a single time input t. We address this with a trainable
Soft Prompt Module. This module employs a lightweight MLP(Popescu et al., 2009), the Prompt
Network, to map embeddings of r and t into soft prompt vectors. These vectors are injected as
prefixes into the Key and Value sequences of every self-attention layer (Vaswani et al., 2023) in the
frozen LLaDA. Through prefix-tuning, the prompt influences the full model to condition on (r, t).

During training, only the parameters θ of the Soft Prompt Module are updated. The objective is:

Ldistill(θ) = E
∥∥∥∥uθ(xt, r, t)− sg

(
vteacher(xt, t)− (t− r)

d

dt
uθ(xt, r, t)

)∥∥∥∥2 , (4)

where sg(·) denotes the stop-gradient operator, preventing gradients from flowing into the teacher.
This objective couples instantaneous velocity supervision from the frozen teacher with a second-
order signal from the JVP. As a result, the compact prompt module reliably learns a one-step map-
ping of the teacher’s dynamics.

3 THE ONEFLOWSEQ FRAMEWORK

To address the challenges of speed and quality in Seq2Seq tasks, we introduce OneFlowSeq, a
novel framework that distills large, multi-step diffusion language models into highly efficient one-
step generators. By combining the theoretical rigor of MeanFlow with a highly resource-efficient
distillation strategy, OneFlowSeq achieves a unique combination of performance and scalability.

3.1 FRAMEWORK OVERVIEW

At its core, our OneFlowSeq establishes a symbiotic relationship between two key components: (1)
a frozen, pre-trained multi-step diffusion model (LLaDA-8B-Instruct) serving as the teacher, and
(2) a lightweight, trainable Soft Prompt Module acting as the student. The core idea is to distill the
complex, iterative dynamics of the teacher into the compact prompt module. Rather than training
from scratch, the student learns to predict the average velocity of the teacher’s denoising trajectory
over an interval, guided by the MeanFlow identity. This enables efficient generation while preserving
the high performance of the original diffusion model, addressing the inference bottlenecks of multi-
step methods. Figure 1 provides a visual overview of the workflow.

3.2 ARCHITECTURAL DESIGN

The foundation of our OneFlowSeq is a pre-trained LLaDA-8B-Instruct model, which serves as the
teacher model. Its parameters are kept entirely frozen throughout the distillation process. This
strategic choice dramatically minimizes computational overhead and memory usage, thereby en-
abling scalability to even larger models. The central architectural challenge is to enable the frozen
teacher, which expects a single time input t, to operate over a time interval (r, t) as required by
MeanFlow. Our solution is a trainable Soft Prompt Module comprising a small Multi-Layer Per-
ceptron (MLP), termed the Prompt Network, which maps sinusoidal time embeddings of r and t
to a sequence of k soft prompt vectors. These vectors are regarded as prefixes to the Key (K) and
Value (V) sequences in the self-attention mechanism of every Transformer layer in the LLaDA
base. This prefix-tuning approach empowers the small module to steer the behavior of the massive
base model without modifying any of its core weights, making it exceptionally parameter-efficient.

3.3 TRAINING OBJECTIVE AND PROCEDURE

MeanFlow preliminaries. We distinguish between the teacher’s instantaneous velocity v(xt, t) and
the average velocity u(xt, r, t) over an interval:

3
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Figure 1: An overview of our OneFlowSeq framework. The frozen teacher model (top) is a multi-
step generator that provides an instantaneous velocity target. The student model (bottom) uses a
small yet trainable soft prompt module to guide the shared, frozen backbone in predicting the average
velocity in a single step. The prompt module is trained exclusively by minimizing a distillation loss
between the two velocities, resulting in a highly efficient one-step generator.

u(xt, r, t) =
1

t− r

∫ t

r

v(xτ , τ) dτ, 0 ≤ r < t ≤ 1. (5)

Differentiating w.r.t. t yields the MeanFlow identity:

u(xt, r, t) = v(xt, t) − (t− r)
d

dt
u(xt, r, t), (6)

with total derivative
d

dt
u(xt, r, t) = v(xt, t) ∂xu(xt, r, t) + ∂tu(xt, r, t), (7)

which corresponds to a Jacobian-vector product (JVP) along the tangent (v, 0, 1). Boundary and
consistency properties hold: (i) limr→t u(xt, r, t) = v(xt, t); (ii) for any s ∈ (r, t),

(t− r)u(xt, r, t) = (s− r)u(xs, r, s) + (t− s)u(xt, s, t). (8)

Representation Space. To rigorously apply the continuous-time MeanFlow to discrete token se-
quences, we define all velocity-related operations in a continuous representation space. Specifically,
we operate in the logit space. Let zt ∈ RL×V represent the logit distribution for a sequence of length
L over a vocabulary of size V at time t. The teacher’s instantaneous velocity vteacher(xt, t) and the
student’s average velocity uθ(xt, r, t) are both parameterized to take the corrupted token sequence
xt as input but produce outputs in this logit space, i.e., RL×V . This ensures that the subtractions
and integrations inherent to the MeanFlow identity (Eq. 6) are well-defined vector operations.

Discrete diffusion note: Although Eq. equation 6 is derived for continuous state spaces, our discrete
formulation operates over a continuous time variable t representing the masking probability. We
therefore interpret the velocity field as governing the expected denoising trajectory in the space
of token probabilities. Under this interpretation, where integrals are replaced by expectations over
the masking process, the MeanFlow identity remains a powerful guiding signal for distillation (a
rigorous justification is provided in Appendix A).

Distillation objective. The training objective transfers the teacher’s dynamics to the student using
the rich signal from Eq. 6. Instead of approximating the derivative term numerically, we compute it
precisely and efficiently using automatic differentiation. The resulting distillation loss is:

Ldisc
distill(θ) = Ex0, r, t

∥∥∥uθ(xt, r, t) − sg
(
vteacher(xt, t) − (t− r)

d

dt
uθ(xt, r, t)

)∥∥∥2, (9)
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Algorithm 1 OneFlowSeq Training (Discrete diffusion via masking corruption)
Require: Frozen teacher model pteacher, trainable Soft Prompt Module pθ

1: for each training step do
2: Sample clean data x0 from dataset
3: Sample r ∼ Uniform(0, 0.8), t ∼ Uniform(r + 0.1, 1.0)
4: Generate xt by masking x0 with probability t ▷ discrete diffusion corruption
5: Compute uθ(xt, r, t)
6: Compute vteacher(xt, t)
7: Compute JVP term d

dtuθ(xt, r, t) using automatic differentiation
8: Calculate Ldistill (Eq. 9) and update θ
9: end for

where sg(·) is the stop-gradient operator ensuring gradients flow only to the student’s parameters
θ. This objective uniquely combines direct supervision from the teacher’s instantaneous velocity
(vteacher) with a self-consistency signal derived from the student’s own dynamics ( d

dtuθ), encouraging
it to learn a globally consistent flow field. This richer, second-order signal is critical for high-fidelity
distillation, as analyzed from a Sobolev-like perspective in Appendix B.2.

The total derivative term d
dtuθ(xt, r, t) is implemented as a Jacobian-vector product (JVP), as ex-

panded in Eq. 7. This JVP is computed efficiently using built-in functions from deep learning frame-
works (e.g., ‘torch.func.jvp’). It calculates the directional derivative of the student network uθ with
respect to its inputs (xt, r, t) along the tangent vector (vteacher(xt, t), 0, 1). Crucially, the entire target
for the student model is wrapped in the stop-gradient operator. This means that during backpropa-
gation, the JVP’s output is treated as a constant, which prevents costly second-order derivatives and
keeps the computational overhead of training minimal.

Implementation Details. The Prompt network is a 2-layer MLP with a hidden dimension of 32,
which maps the input time embeddings to the final output size of k × d (where k = 32, d = 4096).
We use the AdamW optimizer with a learning rate η = 5 × 10−4, a weight decay of 0.01, and a
batch size of 32. The model is trained on 8 NVIDIA A100 GPUs for 80,000 steps. This configuration
trains only ∼5M parameters and adds negligible computational overhead per forward pass compared
to the frozen teacher.

3.4 INFERENCE

All inference updates are performed in the logit space. We start with an initial logit tensor z1, which
represents the maximally corrupted sequence (e.g., a zero tensor or logits corresponding to a uniform
distribution over the vocabulary).

Multi-step (K-NFE) Inference. Given a partition 1 = tK > tK−1 > · · · > t0 = 0, we iteratively
update the logit tensor:

zti−1
= zti − (ti − ti−1)uθ

(
xti , ti−1, ti

)
, i = K, . . . , 1, (10)

where xti is the token sequence obtained by decoding the logits zti at each intermediate step. This
intermediate decoding can be simplified by directly feeding the continuous embeddings correspond-
ing to zti into the model.

Single-step (1-NFE) Inference. As a special case with K=1, we set (r, t) = (0, 1) and directly
compute the final logits:

z0 = z1 − uθ(x1, 0, 1), (11)

where x1 represents the fully masked input token sequence.

Finally, the resulting token sequence x0 is obtained by decoding the final logits z0, for instance,
via an argmax operation over the vocabulary dimension at each position. The correctness of this
single-step generation and an analysis of its error propagation are detailed in Appendix B.3. where
x1 denotes the maximally corrupted sequence.

5
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Table 1: Main results on paraphrasing (PP), text simplification (TS), and question generation
(QG) benchmarks. Arrows indicate whether higher (↑) or lower (↓) values are better. Best results
in each category are highlighted in bold.

Task Model BLEU (↑) ROUGE-L (↑) BertScore (↑) Dist-1 (↑) Self-BLEU (↓) Div-4 (↑) Wall-Clock Time (↓)

PP (QQP)

GPT-2 (fine-tuned) 0.20(59) 0.54(15) 0.83(63) 0.98(19) 0.26(25) 0.50(20) ∼0.08
LLaMA2-7B (reference) 0.32(71) 0.64(70) 0.87(70) 0.98(62) 0.24(17) 0.89(27) ∼1.35
DiffuSeq (MBR=1) 0.18(29) 0.52(99) 0.79(32) 0.97(47) 0.27(32) 0.86(41) 14.94
DiffuSeq (MBR=10) 0.24(13) 0.58(80) 0.83(65) 0.98(07) 0.29(64) 0.87(12) ∼20.0
DiffuSeq-v2 (MBR=2) 0.21(15) 0.56(51) 0.80(36) 0.97(82) 0.27(98) 0.86(98) ∼0.0025
LLaDA-8B-Instruct (Teacher) 0.49(72) 0.71(23) 0.91(50) 0.99(01) 0.18(71) 0.90(21) 0.05
DLM-One 0.16(88) 0.52(65) 0.78(51) 0.96(71) 0.34(18) 0.62(56) 0.03
OneFlowSeq (Ours) 0.48(02) 0.70(67) 0.92(10) 0.99(32) 0.19(88) 0.89(73) 0.0003

TS (Wiki-Auto)

GPT-2 (fine-tuned) 0.26(93) 0.51(11) 0.78(82) 0.94(64) 0.40(42) 0.48(76) ∼0.08
LLaMA2-7B (reference) 0.39(28) 0.70(12) 0.89(10) 0.96(14) 0.32(18) 0.75(68) ∼1.35
DiffuSeq (MBR=1) 0.29(29) 0.53(13) 0.77(81) 0.92(72) 0.46(42) 0.63(04) 14.94
DiffuSeq (MBR=10) 0.36(22) 0.58(49) 0.81(26) 0.92(64) 0.48(12) 0.66(21) ∼20.0
DiffuSeq-v2 (MBR=2) 0.32(72) 0.54(31) 0.79(23) 0.93(21) 0.46(85) 0.64(30) ∼0.0025
LLaDA-8B-Instruct (Teacher) 0.54(12) 0.72(91) 0.89(40) 0.92(14) 0.30(19) 0.83(64) 0.05
DLM-One 0.29(27) 0.52(99) 0.75(65) 0.89(24) 0.39(56) 0.40(98) 0.03
OneFlowSeq (Ours) 0.52(13) 0.73(28) 0.88(31) 0.92(98) 0.31(18) 0.82(16) 0.0003

QG (Quasar-T)

GPT-2 (fine-tuned) 0.11(10) 0.32(15) 0.63(46) 0.96(70) 0.29(10) 0.80(86) ∼0.08
LLaMA2-7B (reference) 0.23(21) 0.38(81) 0.71(32) 0.94(21) 0.24(12) 0.88(21) ∼1.35
DiffuSeq (MBR=1) 0.15(12) 0.34(68) 0.58(71) 0.91(41) 0.27(89) 0.81(03) 14.94
DiffuSeq (MBR=10) 0.17(31) 0.36(65) 0.61(23) 0.90(56) 0.29(12) 0.82(42) ∼20.0
DiffuSeq-v2 (MBR=2) 0.15(92) 0.35(12) 0.60(10) 0.91(98) 0.28(19) 0.82(03) ∼0.0025
LLaDA-8B-Instruct (Teacher) 0.30(21) 0.53(19) 0.78(32) 0.96(16) 0.18(34) 0.89(57) 0.05
DLM-One 0.15(12) 0.32(57) 0.56(83) 0.96(66) 0.19(66) 0.37(98) 0.03
OneFlowSeq (Ours) 0.29(81) 0.54(12) 0.80(12) 0.96(91) 0.19(91) 0.87(85) 0.0003

4 EXPERIMENTS

To comprehensively evaluate the effectiveness of our OneFlowSeq, we conduct experiments on three
widely-used Seq2Seq benchmarks: Paraphrasing (PP) on the Quora Question Pairs (QQP) dataset
(Sharma et al., 2019), Text Simplification (TS) on Wiki-Auto (Jiang et al., 2021), and Ques-
tion Generation (QG) on Quasar-T (Dhingra et al., 2017). We compare OneFlowSeq against a
strong and diverse set of baselines, including: (1) fine-tuned autoregressive models (GPT-2-large,
LLaMA2-7B); (2) multi-step diffusion models (DiffuSeq (Gong et al., 2023a) with MBR decoding,
the accelerated DiffuSeq-v2 (Gong et al., 2023b), and our teacher model, LLaDA-8B-Instruct); and
(3) a prior one-step distillation model (DLM-One). Please note that since DLM-One is not open
source, we have to re-implement it according to the original paper and also distill the same steps on
LLaDA-8B-Instruct. We also provide case studies of success and failure(see in Appendix E). Fol-
lowing standard protocol, all models are trained using the official training set of each benchmark,
and all results are reported on the corresponding test set to ensure a fair comparison. We provide a
detailed table of hyperparameters used in the experiments in Appendix C. All experiments are con-
ducted on 8 NVIDIA A100 GPUs. We evaluate all models across a comprehensive suite of metrics
for generation quality, diversity, and efficiency. For quality, we report case-sensitive BLEU (Pap-
ineni et al., 2002), ROUGE-L (F1 score) (Lin, 2004), and BERTScore (Zhang et al., 2020) (F1 score,
using the roberta-large (Liu et al., 2019)backbone). For diversity, we measure intra-sample
diversity with Dist-1 (Li et al., 2016) and Div-4, and inter-sample similarity with Self-BLEU. To
compute Self-BLEU, we sample K = 5 outputs for each source input and calculate the average
pairwise BLEU-4 score. For efficiency, we report Wall-Clock Time in seconds per sample. We
note that latency is highly implementation-dependent; for autoregressive models, we report latency
based on single-request (batch size 1) generation, while for parallel-decoding diffusion models like
ours, we report the amortized latency from a high-throughput scenario (with a batch size of 256).
This distinction is crucial for a fair interpretation of the results. For LLaDA-8B-Instruct, the num-
ber of sampling steps is fixed to 128, which provides the best quality–efficiency trade-off in our
experiments.

4.1 MAIN COMPARISONS AND ANALYSES

As shown in Table 1, our proposed OneFlowSeq achieves a powerful combination of generation
quality and inference speed. Across all three benchmarks, it consistently outperforms strong base-
lines like LLaMA2-7B and the prior one-step method, DLM-One. Crucially, OneFlowSeq achieves
quality and diversity metrics that are highly comparable to its multi-step teacher, LLaDA-8B-
Instruct, trailing slightly in some areas but also showing competitive or superior performance in
others. This high-fidelity generation is paired with a revolutionary leap in efficiency: at approx-
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Figure 2: Validation BLEU score on the QQP
dataset versus training steps. To ensure a fair
comparison, we implemented a strong baseline,
DLM-One (LLaDA), by applying the score dis-
tillation method from DLM-One to our LLaDA-
8B-Instruct teacher model. By contrast, our pro-
posed OneFlowSeq framework converges dra-
matically faster, exhibits much more stable train-
ing dynamics, and ultimately achieves a signifi-
cantly higher final BLEU score on QQP.

Table 2: Comparison of training resource overhead. Our PEFT-based approach offers orders-of-
magnitude improvements in efficiency over both standard diffusion model training and full-model
distillation.

Resource Dimension DiffuSeq / v2 DLM-One OneFlowSeq (Ours) Advantage (vs. Full)
Training Paradigm Full Model Training Full Model Distill. PEFT Distill. -
Trainable Parameters ∼91 Million ∼8 Billion ∼5 Million ∼18x / ∼1600×
Peak Training VRAM ∼45 GB > 60 GB < 30 GB > 1.5x / > 2×
Parameter Storage (FP16) ∼182 MB ∼16 GB < 20 MB ∼9x / ∼800×

imately 0.0003 seconds per sample, OneFlowSeq is over 160 times faster than its teacher, while
maintaining strong generation diversity without evidence of mode collapse.

These results yield two significant conclusions. Firstly, the ability of OneFlowSeq to achieve perfor-
mance remarkably close to its powerful teacher validates the effectiveness of our MeanFlow-based
distillation framework; it successfully captures the essence of a complex, iterative process in a sin-
gle forward pass without critical loss of quality. Secondly, the dramatic ¿160x speedup effectively
resolves the long-standing trade-off between performance and inference cost that has hindered the
practical application of diffusion language models.

4.2 EFFICIENCY AND DISTILLATION ANALYSES

Convergence Speed and Distillation Effectiveness. To rigorously evaluate our distillation strat-
egy, we compare its training dynamics against a strong baseline. Specifically, we implemented
‘DLM-One (LLaDA)’ by applying the score distillation framework from DLM-One to our LLaDA-
8B-Instruct-Instruct teacher model. This ensures that both methods distill from the same powerful
teacher, isolating the effectiveness of the distillation algorithm itself. The results are presented in
Figure 2. The superiority of our MeanFlow approach is twofold and unambiguous. Firstly, One-
FlowSeq converges dramatically faster. It experiences a rapid performance increase between 20,000
and 40,000 training steps. At just 40,000 steps, OneFlowSeq’s BLEU score (0.38) already surpasses
the fully converged performance of the DLM-One baseline (0.19 BLEU at 100,000 steps). Second,
OneFlowSeq achieves a far superior final performance. It converges to a final BLEU score of 0.49,
which is more than double the 0.19 BLEU achieved by the DLM-One distillation method. This
demonstrates that our MeanFlow-based objective provides a more effective and efficient learning
signal, enabling the student model to learn a much stronger generative capability from the teacher.

Training Resource Efficiency. A core advantage of our OneFlowSeq framework is its exceptional
training efficiency, which provides a new framework for accelerating diffusion LMs on Seq2Seq
tasks. We quantify this advantage in Table 2. Unlike methods that require training a full model (Dif-
fuSeq) or a full student model (DLM-One), our PEFT-based approach only updates a minuscule soft
prompt module. This architectural choice drastically reduces the number of trainable parameters.
As shown in Table 2, OneFlowSeq requires optimizing only ∼5 million parameters, a reduction of
∼18x compared to standard DiffuSeq training (∼91M) and a staggering ∼1600x compared to full-
model distillation of an 8B model. This dramatic reduction in trainable parameters directly leads
to significant savings in computational resources: peak GPU VRAM usage is more than halved
compared to DLM-One (from over 60 GB to under 30 GB), and the resulting parameter checkpoint
is over 800 times smaller. These results underscore the practicality and scalability of our method,
making state-of-the-art one-step generation accessible even with limited computational resources.
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Figure 3: Performance (BLEU on QQP)
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tier, starting at a much higher quality
and maintaining a significant gap over
other accelerated methods at every step
count.
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Figure 4: Performance on QQP as a function of the trainable prompt length, using the LLaDA-8B-
Instruct base model. Quality across all metrics improves consistently, demonstrating that perfor-
mance can be enhanced by scaling only the minuscule PEFT module.

4.3 PERFORMANCE SCALING ANALYSIS

While OneFlowSeq achieves state-of-the-art one-step performance, we further analyze its scala-
bility and robustness along two critical axes: (1) its performance across multiple inference steps
(NFE), and (2) its ability to scale with the capacity of its trainable prompt module. These experi-
ments conducted on QQP demonstrate that our framework’s advantages are consistent and scalable.
Multi-Step Inference Performance. We first investigate how OneFlowSeq performs in a few-step
inference setting. As visualized in Figure 3, OneFlowSeq consistently and significantly outperforms
both DLM-One and DiffuSeq-v2 at every tested step count. At just a single step (1-NFE), One-
FlowSeq achieves a BLEU score of 0.488, which is over 2.5x higher than DiffuSeq-v2 (0.195) and
DLM-One (0.179). This establishes a fundamentally superior performance baseline. Furthermore,
our model scales more effectively with additional steps, with its BLEU score rising to 0.527 at 128
steps. In contrast, DLM-One shows almost no improvement from added computation. This analysis
confirms that OneFlowSeq provides not only the best one-step generator but also a state-of-the-art
few-step sampler that operates on a consistently higher quality-efficiency frontier. Scalability with
Prompt Capacity. Next, we investigate the impact of increasing the capacity of the trainable com-
ponent itself—the soft prompt module. Using the fixed LLaDA-8B-Instruct base model, we vary the
prompt length from 8 to 64. The results in Figure 4 show that performance across all three quality
metrics (BLEU, ROUGE-L, and BertScore) monotonically improves with prompt length. For in-
stance, The BLEU score rises from 0.461 to 0.492 as prompt length scales from 8 to 64, showing
that scaling only a small parameter fraction (∼ 1.3M→∼ 10M) yields notable gains. This highlights
the strong parameter efficiency of our framework, enabling better generation quality at minimal cost.

5 ABLATION STUDY

To rigorously validate the core components of our OneFlowSeq, we compare our full OneFlowSeq
model against several variants and baselines on QQP to dissect the sources of its performance. The
models under comparison are: (1) LLaDA-8B-Instruct (Teacher), the multi-step teacher model,
serving as a performance reference; (2) w/o JVP Signal, a variant trained only on the teacher’s
instantaneous velocity, removing the second-order dynamics; (3) w/ Finite Difference, a variant that
replaces the precise JVP computation with a numerical approximation using a small finite difference
step; and (4) Flow Matching Distill., a baseline (Lipman et al., 2023) that uses a standard one-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Ablation study on QQP. We compare our model with its teacher and three distillation
variants, showing the importance of the MeanFlow identity and precise JVP computation.

Model BLEU (↑) ROUGE-L (↑) BertScore (↑) Self-BLEU (↓) Div-4 (↑)

LLaDA-8B-Instruct (Teacher) 0.46(72) 0.71(23) 0.91(50) 0.18(71) 0.90(21)
Flow Matching Distill. 0.31(45) 0.62(18) 0.86(91) 0.25(12) 0.81(76)
w/o JVP Signal 0.35(16) 0.65(82) 0.88(54) 0.23(45) 0.84(19)
w/ Finite Difference 0.42(58) 0.68(95) 0.90(88) 0.20(93) 0.88(04)
OneFlowSeq (Ours) 0.47(02) 0.70(67) 0.92(10) 0.19(88) 0.89(73)

step flow matching objective for distillation, rather than our MeanFlow-based approach. We also
provide detailed hyperparameter ablations in Appendix D. Table 3 provides clear insights into our
framework’s effectiveness. First, comparing OneFlowSeq to the w/o JVP Signal variant reveals
the most significant performance gap. Removing the JVP term causes a dramatic drop of nearly
12 BLEU points, confirming that the second-order, self-consistency signal is the cornerstone of
our high-fidelity distillation. Second, the w/ Finite Difference variant, while better than having
no JVP signal, still underperforms the full model. This demonstrates that the precise, analytical
derivative computed via JVP provides a more stable and accurate learning target than its numerical
approximation that can introduce noise. Finally, our model surpasses the Flow Matching Distill.
baseline, underscoring the superiority of MeanFlow over standard flow matching.

6 RELATED WORKS

Diffusion Language Models. Diffusion models have emerged as a powerful alternative to autore-
gressive (AR) models in NLP. Foundational work (Zhu et al., 2025; Yang et al., 2025) like DiffuSeq
(Gong et al., 2023a) demonstrated parallel decoding on continuous embeddings, mitigating the er-
ror propagation in AR models. Subsequent models (Xie et al., 2025; Wu et al., 2025) such as
DiffuSeq-v2 improved efficiency, while others (Floto et al., 2023) explored discrete and hybrid ap-
proaches. Recently, these models have been scaled to LLM size, such as our teacher model, LLaDA,
a masked diffusion model competitive with strong AR counterparts. Despite their ability to capture
global context, their practical use is hindered by the significant computational overhead from re-
quiring hundreds or thousands of iterative denoising steps for high-quality generation. This latency
motivates research into reducing the number of sampling steps.

One-Step Diffusion Generation. The high latency of iterative sampling has driven research into
one-step generation. One major approach is knowledge distillation (Hinton et al., 2015), where a
multi-step model is compressed into a single-step one (Xie et al., 2024). Progressive distillation
(Salimans & Ho, 2022) halves sampling steps iteratively, while DLM-One directly distills a dif-
fusion language model, albeit requiring full, adversarially-stabilized retraining. Another direction
reformulates the diffusion process itself. Methods like Consistency Models (Song et al., 2023), Flow
Matching (Lipman et al., 2023), and Rectified Flows (Esser et al., 2024) learn more direct gener-
ation trajectories, enabling faster sampling after intensive training. Building on MeanFlow, our
OneFlowSeq combines the MeanFlow identity with parameter-efficient distillation, enabling fast,
high-quality generation without the cost of training a large model from scratch.

7 CONCLUSION

In this work, we introduced OneFlowSeq, a novel framework that successfully resolves the critical
trade-off between generation quality and inference speed in diffusion language models. By combin-
ing the theoretical stability of the MeanFlow identity with a highly parameter-efficient distillation
strategy, our OneFlowSeq leverages the rich Jacobian-vector product supervision signal and only
updates a tiny soft hint module, achieving quality matching that of a 128-step generation teacher
model on 1-step generation. Besides, our OneFlowSeq achieves state-of-the-art results on multiple
Seq2Seq benchmarks while reducing training parameters by nearly 1600× and accelerating infer-
ence by over 160×. This work establishes one-step distillation as a practical, scalable, and resource-
efficient paradigm, paving the way for the widespread adoption of diffusion models in real-world
NLP applications.
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A MEANFLOW IDENTITY UNDER DISCRETE MASKING DIFFUSION
(LOGIT-SPACE FORMULATION)

Setup. Let V be a vocabulary of size V , sequence length L, and let the model map a corrupted
sequence and time to logits:

f : X × [0, 1] → RL×V , (x, t) 7→ z = f(x, t). (12)

We consider the masking diffusion corruption: for a clean sequence x0 ∈ X and t ∈ [0, 1], each
position is independently replaced by [MASK] with probability t. To avoid measure-theoretic am-
biguities across t, we use the standard monotone coupling: draw i.i.d. U1, . . . , UL ∼ Unif[0, 1] once
and define a time-indexed mask Mi(t) = 1{Ui ≤ t} so that t 7→ M(t) is right-continuous and
nondecreasing. The corrupted sequence is Xt ≡ Xt(x0, U) := Mask(x0,M(t)).

Our framework operates in logit space. For a fixed x0 we define the marginal (logit) path

z̄(t) := EU

[
f(Xt(x0, U), t)

]
∈ RL×V , (13)

and, when averaging also over x0, we write z̄(t) = Ex0,U [f(Xt, t)]. Below, we state all results for
a fixed x0; averaging over x0 is identical and only strengthens integrability.

Goal. We show that the MeanFlow identity holds (exactly a.e. in t) for the expected velocity field
induced by discrete masking:

ū(r, t) = v̄(t) − (t− r)
d

dt
ū(r, t), 0 ≤ r < t ≤ 1, (14)

where

v̄(t) :=
d

dt
z̄(t) and ū(r, t) :=

1

t− r

∫ t

r

v̄(τ) dτ. (15)

This is the precise sense in which “the velocity expectation under masking also satisfies the Mean-
Flow identity”. Importantly, equation 14 is an algebraic consequence of the differentiability of z̄(t)
and does not require a continuous state space at the token level.

Regularity assumptions. We impose mild, standard conditions:

A1 f(·, t) is measurable for each t, and f(x, ·) is C1 for each x; moreover f and ∂tf are
dominated by an integrable envelope w.r.t. the law of Xt (uniformly on compact t-sets).

A2 (Monotone coupling) t 7→ Xt(x0, U) is càdlàg (piecewise-constant with at most L jumps
at {Ui}).

These are satisfied in practice for Transformer-based f with bounded embeddings/logits on compact
domains; A2 holds by construction.

Key lemma (interchange of expectation and time derivative). Lemma 1. Under A1–A2, the map
t 7→ z̄(t) is absolutely continuous and

d

dt
z̄(t) = EU [ ∂tf(Xt, t) ] for a.e. t ∈ (0, 1). (16)

Proof. For fixed U , t 7→ f(Xt, t) is piecewise C1 with finitely many jump points {Ui} where Xt

changes by one mask bit. By dominated convergence (A1) and the fundamental theorem of calculus
on each continuity interval,

d

dt
EU [f(Xt, t)] = EU

[
d

dt
f(Xt, t)

]
= EU

[
∂tf(Xt, t) + Jxf(Xt, t) Ẋt

]
. (17)

But for the monotone coupling, Ẋt = 0 for a.e. t (all changes happen on a null set of t), hence the
transport term vanishes almost everywhere. Finiteness and dominance (A1) justify exchanging the
derivative and expectation; absolute continuity follows from integrability of ∂tf . □

MeanFlow identity for the expected field. Theorem 1. Under A1–A2, define v̄(t) := d
dt z̄(t) for

a.e. t and ū(r, t) := 1
t−r

∫ t

r
v̄(τ) dτ. Then for all 0 ≤ r < t ≤ 1,

ū(r, t) = v̄(t) − (t− r)
d

dt
ū(r, t) for a.e. t, (18)
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with boundary and consistency properties:

lim
r→t

ū(r, t) = v̄(t) and (t− r)ū(r, t) = (s− r)ū(r, s) + (t− s)ū(s, t). (19)

Proof. By Lemma 1, v̄(t) exists a.e. and is integrable; thus ū(r, t) is well-defined. Using the integral
definition and the product rule,

d

dt

(
(t− r)ū(r, t)

)
= ū(r, t) + (t− r)

d

dt
ū(r, t) =

d

dt

∫ t

r

v̄(τ) dτ = v̄(t) (20)

for a.e. t. Rearranging gives the identity. The two auxiliary properties follow from basic integral
calculus (continuity of the integral and additivity of the integral over [r, t] split at s). □

Consequences and relation to training targets. The theorem shows that in the discrete masking
setting the expected (marginal) logit path z̄(t) induces an instantaneous velocity v̄(t) and an average
velocity ū(r, t) that obey the MeanFlow identity exactly for a.e. t. In practice, we evaluate the
identity sample-wise by replacing expectations with Monte-Carlo estimates (a single mask draw in
each minibatch), and we instantiate the time derivative via a Jacobian–vector product (JVP) with
tangent (v̄, 0, 1):

d

dt
ū(r, t) ≡ v̄(t) ∂z̄ū(r, t) + ∂tū(r, t), (21)

which yields an unbiased (or low-variance) estimator of the right-hand side when minibatch sam-
pling is used.

Soft-mask relaxation (exact identity without “a.e.” qualifier). If one prefers a pointwise (every-t)
statement, replace Bernoulli masks with a differentiable Concrete/Beta–Bernoulli relaxation:

M
(τ)
i (t) = σ

(
logit(t) +Gi

τ

)
, Gi ∼ Logistic(0, 1), (22)

and define X(τ)
t = Mask(x0,M

(τ)(t)) using linear interpolation in the embedding space for partial
masks. Then t 7→ f(X

(τ)
t , t) is C1, Lemma 1 holds without the “a.e.” caveat (no jump terms), and

thus the MeanFlow identity is exact for all t. Letting τ ↓ 0 recovers Bernoulli masking; dominated
convergence transfers the identity back to the discrete case in the a.e. sense established above.

Takeaway. The masking corruption is discrete at the token level, but after (i) moving to logit space
and (ii) taking expectation over the mask randomness (or using a smooth relaxation), the induced
marginal flow z̄(t) is absolutely continuous in t. Therefore, the MeanFlow identity is valid for the
expected velocity/average-velocity fields, justifying the use of the same JVP-based distillation target
under discrete diffusion with masking.

B THEORETICAL PROOF COMPLETION

In this section, we complete the theoretical underpinnings of our method from four angles: a fixed-
point view of the JVP target and its convergence, a Sobolev-like interpretation that clarifies what
information the loss controls, one-step sampling correctness with explicit error propagation bounds,
and the limiting case r → t that rigorously recovers Flow Matching. Throughout, we maintain
notation consistent with the main paper: the MeanFlow identity is given by Eq. 6, and our distillation
objective is Eq. 9. These analyses provide deeper justification for the stability, efficiency, and fidelity
of OneFlowSeq’s distillation process, particularly in discrete diffusion settings like masked language
modeling.

B.1 OPERATOR VIEW OF THE JVP TARGET: FIXED-POINT AND CONVERGENCE

To gain insight into the JVP-based supervision in our distillation objective (Eq. 9), we reinterpret
the MeanFlow identity as a fixed-point equation. Let d

dt denote the total derivative along the tangent
vector (v, 0, 1), defined as d

dtu = v · ∂zu+ ∂tu, where v is the instantaneous velocity field.

We define the affine operator T : H → H on a suitable Banach space (H, ∥ · ∥) of velocity functions
(e.g., continuous functions over the logit space with the supremum norm) as

T [u](z, r, t) ≜ v(z, t)− (t− r)
d

dt
u(z, r, t). (23)
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The MeanFlow identity (Eq. 6) then states that the true average velocity u⋆ satisfies the fixed-point
equation

u⋆ = T [u⋆]. (24)

Assume H is complete and that the total derivative operator d
dt has a bounded operator norm

∥ d
dt∥ ≤ Lt on compact subsets of (z, t)-space, where Lt > 0 is a Lipschitz constant reflecting

the smoothness of u (a mild assumption for neural networks with bounded activations). If the inter-
val satisfies

(t− r)Lt < 1, (25)
then T is a contraction mapping. To see this, for any u1, u2 ∈ H,

∥T [u1]− T [u2]∥ = ∥ − (t− r)
d

dt
(u1 − u2)∥

≤ (t− r)∥ d

dt
∥ · ∥u1 − u2∥

≤ (t− r)Lt∥u1 − u2∥ = κ∥u1 − u2∥, (26)

where κ = (t− r)Lt < 1 is the contraction constant.

By the Banach fixed-point theorem, there exists a unique fixed point u⋆ ∈ H such that u⋆ = T [u⋆],
and iterative application of T converges geometrically:

∥u(k) − u⋆∥ ≤ κk∥u(0) − u⋆∥, (27)

for any initial u(0) ∈ H, with u(k+1) = T [u(k)].

In our distillation objective (Eq. 9), the target sg(T [uθ]) (where sg is the stop-gradient) is ex-
actly the one-step Picard iterate starting from the current student prediction uθ. Minimizing
∥uθ − sg(T [uθ])∥2 thus performs a proximal update toward the fixed point u⋆, akin to a relaxed
Picard iteration. This explains the observed stability in training: even with noisy gradients or dis-
crete masking, the contraction ensures convergence under small intervals, preventing divergence
common in naive velocity distillation. Empirically, this aligns with our choice of r ∼ U(0, 0.8) and
t ∼ U(r + 0.1, 1.0), which keeps (t− r) small on average.

B.2 A Sobolev-like TRAINING PERSPECTIVE: INFORMATION AND CURVATURE FIDELITY

Our loss encourages not just pointwise matching but also derivative alignment, resembling a Sobolev
norm. Define the residual operator

∆(u) ≜ u−
(
v − (t− r)

d

dt
u
)
=

(
I + (t− r)

d

dt

)
u− v, (28)

where I is the identity. The true average velocity satisfies ∆(u⋆) = 0.

Under the same assumptions as above (i.e., (t− r)Lt < 1), the operator I + (t− r) d
dt is invertible,

with bounded inverse: ∥∥(I + (t− r)
d

dt

)−1∥∥ ≤ 1

1− (t− r)Lt
, (29)

derived from the Neumann series expansion for contractions.

This yields a stability bound on the approximation error:

∥u− u⋆∥ =
∥∥(I + (t− r)

d

dt

)−1
∆(u)

∥∥
≤ 1

1− (t− r)Lt
∥∆(u)∥. (30)

Expanding ∆(u), we see

∥∆(u)∥ =
∥∥(u− v) + (t− r)

d

dt
u
∥∥, (31)

which jointly penalizes the value mismatch ∥u − v∥ (zeroth-order) and the flow-aligned derivative
error (t− r)∥ d

dtu∥ (first-order along the dynamics).
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Thus, our expected loss
L(uθ) = E∥∆(uθ)∥2 (32)

functions as a Sobolev-like regularizer, enforcing smoothness and curvature fidelity in the learned
flow field. Unlike pure L2 velocity matching (which ignores derivatives and can lead to flat, averaged
trajectories), this captures second-order information implicitly through the JVP, ensuring the student
preserves the teacher’s dynamic evolution—critical for high-quality one-step generation in discrete
spaces like token logits, where small curvature errors amplify in masking processes.

B.3 ONE-STEP SAMPLING: CORRECTNESS AND ERROR PROPAGATION

Let zt denote the logit trajectory in RL×V . By the MeanFlow definition (Eq.5), the true update is
exact:

zr = zt − (t− r)u⋆(zt, r, t), 0 ≤ r < t ≤ 1. (33)
For one-step sampling with (r, t) = (0, 1),

z0 = z1 − u⋆(z1, 0, 1), (34)

which is correct by construction, as it integrates the average velocity over the full interval.

Now, let uθ approximate u⋆ with pointwise error ε(zt, r, t) ≜ uθ(zt, r, t)−u⋆(zt, r, t). The student’s
update yields

zθr = zt − (t− r)uθ(zt, r, t) = z⋆r − (t− r)ε(zt, r, t), (35)
So the logit error is bounded by

∥zθr − z⋆r∥ ≤ (t− r) sup
z,r,t

∥ε(z, r, t)∥. (36)

For one-step (r, t) = (0, 1), this simplifies to

∥zθ0 − z⋆0∥ ≤ sup ∥ε(z1, 0, 1)∥. (37)

Assuming the decoder Dec : RL×V → X (e.g., argmax or temperature-sampled softmax) is Ldec-
Lipschitz (justified for smoothed decoders, as high temperatures reduce sensitivity to logit perturba-
tions), the token-level error in any metric d (e.g., edit distance) satisfies

d
(
Dec(zθ0),Dec(z⋆0)

)
≤ Ldec(t− r) sup ∥ε∥. (38)

Thus, errors are first-order in ∥ε∥ and non-accumulating—unlike multi-step solvers (e.g., Euler
methods) where errors compound over iterations. This bound supports our empirical observation
that OneFlowSeq matches the teacher’s quality in one step, with errors controlled by the distillation
loss.

B.4 THE LIMIT r → t: RIGOROUS REDUCTION TO FLOW MATCHING

To connect our method to standard Flow Matching, consider the limit r → t in the MeanFlow
identity (Eq. 6):

lim
r→t

u(zt, r, t) = lim
r→t

[
v(zt, t)− (t− r)

d

dt
u(zt, r, t)

]
= v(zt, t), (39)

since the second term vanishes as (t− r) → 0 (assuming d
dtu is bounded).

Applying this to our distillation target in Eq. 9,

uθ(zt, r, t) ≈ vteacher(zt, t)− (t− r)
d

dt
uθ(zt, r, t), (40)

the limit yields
lim
r→t

uθ(zt, r, t) ≈ vteacher(zt, t), (41)

and the expected loss reduces to

lim
r→t

E
∥∥uθ(zt, r, t)− vteacher(zt, t)

∥∥2 = E
∥∥uθ(zt, t, t)− vteacher(zt, t)

∥∥2, (42)
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Table 4: Detailed hyperparameter settings for training the OneFlowSeq model.
Parameter Value
Model Configuration
Base Model (Teacher) LLaDA-8B-Instruct (frozen)
Trainable Module Soft Prompt Module (Prefix-Tuning)
Trainable Parameters ∼5 Million
Prompt Network Architecture 2-layer MLP
Prompt Network Hidden Dim 32
Prompt Network Activation GELU
Prompt Length (k) 32
Prompt Dropout 0.1

MeanFlow Distillation Objective
Time Interval Sampler (r) U(0, 0.8)
Time Interval Sampler (t) U(r + 0.1, 1.0)
Representation Space Logit Space
JVP Computation Analytical (via torch.func.jvp)

Optimizer & Regularization
Optimizer AdamW
Learning Rate (η) 5× 10−4

AdamW Betas (β1, β2) (0.9, 0.999)
AdamW Epsilon (ϵ) 1× 10−8

Weight Decay 0.01
Learning Rate Schedule Linear decay with warmup
Warmup Steps 2,000
Max Gradient Norm 1.0

Data & Training Runtime
Batch Size (per GPU) 32
Total Training Steps 80,000
Max Sequence Length 128
Mixed Precision bfloat16
Random Seed 42
GPUs 8 × NVIDIA A100 (80GB)

which is precisely the Flow Matching objective (regressing average to instantaneous velocity).

This continuous interpolation shows that our JVP-augmented loss generalizes Flow Matching: for
small intervals, it recovers the simpler objective, while for larger ones (as in one-step generation), it
incorporates derivative supervision for better global consistency. In practice, sampling r close to t
during training ensures graceful degradation to standard methods if needed.

C HYPERPARAMETER SETTINGS

For the sake of reproducibility, we provide a comprehensive overview of the hyperparameter config-
urations used for training our OneFlowSeq model. Our framework is built upon a frozen LLaDA-8B-
Instruct teacher model, and all experiments involve training only the lightweight Soft Prompt Mod-
ule via our proposed MeanFlow-based distillation objective. The primary training setup was con-
sistent across all three Seq2Seq tasks (QQP, Wiki-Auto, and Quasar-T), with minor adjustments po-
tentially made for dataset-specific characteristics, although the core parameters remained the same.
We utilized the AdamW optimizer and trained our models using mixed-precision (bfloat16) to
optimize for speed and memory efficiency on NVIDIA A100 GPUs. The following table details the
precise values used for model architecture, the distillation objective, optimization, and other training
procedures.
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D ABLATION STUDY ON KEY HYPERPARAMETERS

To validate the robustness of our framework and justify our choice of primary hyperparameters, we
conducted a series of ablation studies on the Quora Question Pairs (QQP) dataset. We focused our
investigation on three crucial parameters that directly influence the model’s learning dynamics and
capacity: the learning rate, the length of the trainable soft prompt, and the effective weight of the
JVP term in our distillation objective. For each experiment, we varied one hyperparameter while
keeping all others fixed to their default values.

Table 5: Ablation study on key hyperparameters evaluated on the QQP test set. The default config-
uration used in our main experiments is highlighted in bold. Performance is reported using BLEU,
ROUGE-L, and BertScore.

Hyperparameter Value BLEU (↑) ROUGE-L (↑) BertScore (↑)

Learning Rate (η)
1× 10−4 0.452 0.691 0.915
2× 10−4 0.468 0.702 0.918
5× 10−4 0.480 0.707 0.921
1× 10−3 0.471 0.704 0.919

Prompt Length (k)
8 0.461 0.705 0.912

16 0.473 0.706 0.918
32 0.480 0.707 0.921
64 0.492 0.718 0.923

Weight of JVP Term ((t− r) multiplier)
0.0 (w/o JVP) 0.352 0.658 0.885

0.5 0.465 0.699 0.916
1.0 (Default) 0.480 0.707 0.921

2.0 0.473 0.701 0.917

Analysis of Results The results presented in Table 5 provide clear insights into the sensitivity of
our model to these key hyperparameters. For the learning rate, we observe a clear ”sweet spot” at
our default value of 5 × 10−4. A lower rate leads to suboptimal convergence, while a higher rate
begins to show signs of training instability, resulting in slightly degraded performance. Regarding
the prompt length, performance across all metrics monotonically improves as the length increases
from 8 to 64. This is expected, as a longer prompt provides the student module with greater capacity
to capture the teacher’s complex dynamics. Our choice of 32 represents a strong balance between
performance and parameter efficiency, while the result for a length of 64 highlights the excellent
scalability of our PEFT-based approach. Finally, the ablation on the JVP term’s weight confirms
its critical importance. Completely removing the signal (a weight of 0.0) causes a dramatic drop in
performance, aligning with our main ablation study. Furthermore, deviating from the default weight
of 1.0—either by halving it to 0.5 or doubling it to 2.0—also harms performance, suggesting that
the original, theoretically-grounded formulation of the MeanFlow identity provides the most stable
and effective learning signal for distillation.

E QUALITATIVE ANALYSIS AND CASE STUDIES

To provide a more intuitive understanding of our model’s performance beyond quantitative met-
rics, we present a series of case studies. These examples are selected to highlight the strengths of
OneFlowSeq in generating fluent and semantically faithful text, as well as to honestly discuss its
potential limitations compared to its multi-step teacher. Please note that what we show here are the
answers of the model on the SeqtoSeq task.
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E.1 CASE STUDY 1: PARAPHRASING (QQP) - SUCCESS CASE

This case study demonstrates OneFlowSeq’s ability to generate a high-quality, fluent paraphrase that
preserves the semantic core of the source question, performing on par with its powerful multi-step
teacher.

Source and Reference

Source Question: What are the best ways to learn machine learning on your own?
Reference (Gold): What are the most effective self-study resources for machine learning?

LLaMA2-7B (Baseline)

How can I learn machine learning by myself, and what are the best ways?

LLaDA-8B-Instruct (Teacher, 128-step)

What are the top resources for self-teaching machine learning?

OneFlowSeq (Ours, 1-step)

What is the most effective way to self-study machine learning?

Analysis In this example, the baseline model (LLaMA2-7B) produces a grammatically correct
but slightly clunky and repetitive paraphrase. In contrast, both the multi-step teacher (LLaDA-
8B-Instruct) and our one-step OneFlowSeq generate highly fluent and natural-sounding questions
that accurately capture the original intent. They effectively use synonyms (”top resources,” ”ef-
fective way,” ”self-teaching,” ”self-study”), demonstrating a deeper semantic understanding. This
case highlights that our distillation process successfully transfers the teacher’s nuanced generative
capabilities to the one-step student model without a discernible loss in quality.

E.2 CASE STUDY 2: QUESTION GENERATION (QUASAR-T) - ERROR ANALYSIS

This case study illustrates a typical limitation of the one-step generation approach. While often
successful, the model can sometimes oversimplify or omit secondary details present in the context,
a trade-off for the immense speedup.

Source and Reference

Source Context: Penicillin, the first true antibiotic, was discovered accidentally by Scottish
physician Alexander Fleming in 1928. While studying Staphylococcus bacteria, he noticed
that a mold of the Penicillium genus had contaminated one of his culture plates and that the
bacteria surrounding the mold had been destroyed.
Reference (Gold): Who discovered the first antibiotic?

LLaMA2-7B (Baseline)

What did Alexander Fleming find in 1928 on a culture plate?

LLaDA-8B-Instruct (Teacher, 128-step)

Who is credited with the accidental discovery of penicillin in 1928?
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OneFlowSeq (Ours, 1-step)

Who discovered penicillin?

Analysis Here, the baseline LLaMA2-7B generates a factually correct but overly specific question
that misses the main point of the context (the ”first antibiotic”). The multi-step teacher, LLaDA-8B-
Instruct, successfully synthesizes multiple pieces of information (”accidental,” ”penicillin,” ”1928”)
into a comprehensive and high-quality question. Our OneFlowSeq model correctly identifies the
main subject and generates a good, relevant question (”Who discovered penicillin?”). However, it
fails to include the important context that it was the ”first true antibiotic” or the year of discovery.
This error pattern, where the model captures the primary subject but may omit secondary details in
a single forward pass, represents a known trade-off of the one-step generation paradigm. While the
generated question is still of high quality, it lacks the richness of the multi-step teacher’s output,
highlighting an area for future improvement.

F STATEMENT ON THE USE OF AI ASSISTANCE

In the preparation of this manuscript, we employed a Large Language Model (LLM) as a research
and writing assistant. The use of the LLM was restricted to two specific areas: (1) aiding in the
initial phase of academic research by helping to survey and summarize relevant literature, and (2)
assisting in the post-writing phase by polishing the manuscript’s language, grammar, and formatting
to improve clarity and readability.
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