LLM Pretraining with Continuous Concepts

Jihoon Tack!:2, Jack Lanchantin', Jane Yu', Andrew Cohen', Ilia Kulikov',
Janice Lan', Shibo Hao'3, Yuandong Tian', Jason Weston', Xian Li’
'FAIR at Meta, 2KAIST, *UC San Diego
jihoontack@gmail.com, xianl@meta.com

Abstract

Next token prediction has been the standard training objective used in large lan-
guage model pretraining. Representations are learned as a result of optimizing for
token-level perplexity. We propose Continuous Concept Mixing (CoCoMix), a
novel pretraining framework that combines discrete next token prediction with con-
tinuous concepts. Specifically, CoCoMix predicts “continuous concepts” learned
from a pretrained sparse autoencoder and mixes them into the model’s hidden state
by interleaving with token hidden representations. Through experiments on multi-
ple benchmarks, including language modeling and downstream reasoning tasks,
we show that CoCoMix is more sample efficient and consistently outperforms
standard next token prediction, knowledge distillation and inserting pause tokens.
We find that combining both concept learning and interleaving in an end-to-end
framework is critical to performance gains. Furthermore, CoCoMix enhances
interpretability and steerability by allowing direct inspection and modification of
the predicted concept, offering a transparent way to guide the model’s internal
reasoning process.

1 Introduction

Recent progress in large language models (LLMs) has revolutionized natural language processing
[6, 13] and thus became a core technology in various real-world applications, such as coding assistants
[39], search engines [50], and personal Al assistants [14]. Central to these breakthroughs is the
simple paradigm of next token prediction, which leverages massive amounts of unlabeled text to
uncover rich linguistic patterns [36, 37]. However, natural language tokens are often superficial (e.g.,
function words like “the” or “a”), necessitating substantial training for models to acquire high-level
reasoning and conceptual understanding while also hindering their ability to tackle long-horizon tasks
such as planning [25, 2].

To tackle this issue, recent studies have investigated methods that go beyond token-level signals
by leveraging richer information to train models. For instance, some approaches target more ex-
pressive prediction objectives, such as predicting multiple tokens at once to better capture semantic
relationships [16, 11], while others augment the input with rich signals, e.g., self-generated thought
tokens [55], or fixed pause tokens [17] prior to next token prediction. Moreover, emerging evidence
suggests that LLMs inherently encode high-level concepts and reasoning processes in their latent
representations [12, 51], indicating that replacing discrete language tokens with continuous latent
representations has promise in improving reasoning efficiency [19]. While token-level modeling
remains important for coherent text generation, the key challenge is to enrich or supplement these
natural language tokens so that LLMs can learn more abstract reasoning abilities and long-range
dependencies.

This raises a key question: can we augment the next token prediction objective to explicitly model
concepts in a latent representation space, thereby bridging semantic abstraction and fine-grained
token-level guidance?

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mech Interp

DG eng attibuton ®

to select concepts “Continuous concept”

! = . = ! Gradient flow -A
fCOIl ! Veoncept — log p(‘D’'ABC?) f .
COCOCOCOC Lncemm
Predicted

I concepts
VA
1] o Hm

™D & «©O —O

Extracting concepts from Learning to predict concepts &
a pretrained SAE model’s hidden state Mixing/Interleaving continuous concepts into the hidden state

e mvm-—
>

Figure 1: Overview of CoCoMix. We use an SAE to extract concepts from a pretrained model’s
hidden state h.o, and then select important concepts based on the attribution score (i.e., measuring
the influence on the output). These selected concepts are used as labels Z for concept prediction
by minimizing the cross-entropy loss CE(, -). The predicted concepts z are then compressed into
a compact vector, forming a continuous concept ¢, which is mixed into the model’s hidden state
by interleaving with token hidden representations. We demonstrate that CoCoMix is more sample
efficient and outperforms standard next-token prediction and knowledge distillation baselines.

To this end, we draw inspiration from recent findings that Sparse Autoencoders (SAEs) can effectively
isolate meaningful latent features in LLMs by capturing the high-level semantic concepts [10, 5].
As SAE:s are trained to reconstruct the model’s hidden state with sparsity constraints, it encourages
focusing on a compact set of concept dimensions [47]. This makes it possible to highlight the
pretrained model’s concepts—the core semantic directions that underpin model prediction—while
avoiding unnecessary features.

We propose Continuous Concept Mixing (CoCoMix), a novel and effective language modeling
framework using continuous concepts. Specifically, we extract semantic concepts using a pretrained
SAE and select the most influential ones based on attribution scores, which quantify each concept’s
influence on the model’s output. The model is then trained to predict these selected concepts from its
hidden state using a cross-entropy loss. Once multiple concepts are predicted, we compress them
into a single continuous concept and mix (or insert) into the hidden states by interleaving with token
embeddings, thereby directly contributing to the next token prediction. An additional benefit is that
one can probe or analyze the predicted concepts, enabling controllable generation and improving
model interpretability. An overview of CoCoMix is shown in Figure 1.

We demonstrate the efficacy of CoCoMix through extensive evaluations across multiple language
modeling benchmarks and pretraining model sizes, ranging from million-scale to billion-scale
parameter sizes. For instance, when applied to a 1.38B-sized model, CoCoMix achieves comparable
performance with the next token prediction with 21.5% fewer training tokens. Moreover, CoCoMix
demonstrates substantial improvements in weak-to-strong supervision scenarios, where concepts
extracted from a small model can even be used as ground truth labels to supervise the training of a
larger model. Finally, we show that the insertion of compressed concept vectors enables us to steer
and control the model by probing the predicted concept during generation.

2 CoCoMix: Continuous Concept Mixing

In this section, we present Continuous Concept Mixing (CoCoMix), a framework that extends next-
token prediction with continuous concepts. We first review our problem setup of interest and the
concept extraction process using a sparse autoencoder (SAE) in Section 2.1. Then, we describe the
concept selection framework and explain how the model predicts and interleaves these concepts into
its hidden state to improve language modeling in Section 2.2.

2.1 Prelim: Problem Setup and Sparse Autoencoder

Problem setup. We consider a language-modeling task over a vocabulary V), with a training corpus
D C V*, where each sequence X = (x1,Z2,...) € D is drawn i.i.d. from the data distribution. We
require a pretrained language model for concept extraction Mcon = fcon © hecon Which predicts next
token probability Mon(2: | 2<¢). Here, we extract the continuous concepts ¢ from the hidden
state heon, Where Ao, outputs the hidden state at a chosen layer of depth Ly, and f.,, maps that
representation to the next token distribution. We aim to train M to model the same autoregressive

factorization M(x) = H‘t’il M(z¢ | x<t, <), but by augmenting with continuous concepts c.

Sparse Autoencoder. We first propose to extract high-level concepts from a pretrained model’s
hidden state. We use an SAE, which maps the input to a high-dimensional sparse activation, with the
objective of reconstructing the original input [26]. When applied to an LLM, the SAE decomposes
the hidden state into multiple dimensions, each of which can be viewed as a distinct concept capturing
semantically meaningful features [53, 5]. We consider the TopK SAE [30], which uses a TopK
activation to enforce sparsity.

Formally, for a given input sequence x and corresponding pretrained model’s hidden state at position
t, denoted as h$®® = h.,(x); € R%=, SAE consists of a linear encoder F : Ré%= — RY and a
linear decoder D : R® — R%e» where C is the dimension of the concept space. The reconstruction
process of SAE is as:

o™ = B(h5™), ¢ = TopK (ef"), ™ = D(c).

where cf*° € R is the pre-activation concept vector, TopK(-) zeros out all but the largest Kgg
entries, and h{°" is the reconstruction. The SAE is trained by minimizing the reconstruction loss:

[hgem — ﬁ§°n||§ By enforcing TopK sparsity, the SAE isolates the most critical dimensions in c that
explain the pretrained model’s features. Here, each activated element of c; is interpreted as a concept.

2.2 Continuous Concept Mixing

Now, we describe the core training pipeline of CoCoMix, which consists of a concept selection
framework (refer to the left figure in Figure 1) and two training steps to learn and utilize continuous
concepts (refer to the right figure in Figure 1). First, we select important concepts using the attribution
score, which measures the influence of each concept on the output. Then, we propose predicting
the selected concepts from the model’s hidden state using cross-entropy loss, allowing the model to
implicitly learn which concepts should be encoded as a hidden representation. Finally, we utilize
the predicted concepts to create a “continuous concept”, which is interleaved in the hidden states,
enabling the model to explicitly learn to use both the continuous concepts as well as the token hidden
states. Intuitively, the model selectively learns which concepts are useful for the next token prediction
and how it should mix them with the token representations.

Target concept selection using attribution. While the extracted concept c; represents the core
features of the current input context, it may not directly indicate which concepts matter most for
predicting the ground truth next token x,1 [47]. To this end, we propose utilizing attribution, a
method to measure the causal influence of each concept on the output [3, 45]. Specifically, the
attribution score measures the influence based on the local linear approximation of the effect of
changing the concept value. In this paper, we use a simple attribution score that measures the influence
by multiplying the loss gradient with a given input [44, 43].

Concretely, for a given input x and corresponding concept c;, we define the attribution score a; € R
a; = ¢, © Ve, — 108 feon(z111|D(ct), hey), ()

where © denotes element-wise multiplication. Based on the computed attribution score, we select
salient concepts and incorporate them into language modeling.

Predicting the selected concepts. For a given attribution score a;, we first select the indices of
the concept that have a high score and use these as discrete labels for concept prediction. Let Z =
{i1,...,ixk,, } be the set of indices corresponding to the top K,y values of a;, and h; = h(x); € R?
be the model’s hidden state of the given input x at the same token position. Then, we learn to predict
these labels using a linear prediction head M that outputs logit z; = M (h;) € R® by minimizing

the following cross-entropy loss CE(+, -) is as follows:
1

attr

Z CE (2, i). 2

i€L

Econcept (at) -

Mixing continuous concepts with token embeddings. To encourage the model to internalize the
concept more effectively, we propose “mixing” (i.e., interleaving) the predicted concept with the
existing token hidden representations. As our model predicts multiple concepts at once, we propose to
compress them into a compact vector through a learnable mapping, which we refer to as a continuous
concept. This compressed vector is interleaved with token vectors.

Formally, for a given concept prediction logit z;, we sparsify the logit using TopK activation to
predict the concepts, then compress them into a continuous concept vector ¢; € R%:

¢; = W TopK(z;) + b, 3)

where W € R%¥*C and b € R? project the TopK-sparse vector to a d-dimensional embedding.
We then append ¢&; to the model’s hidden sequence ¢&; as (hy, €1, ..., hy, €;), which is fed into the
remaining transformer blocks f. Note that this design not only improves the model’s performance but
also offers interpretability and controllability through analyzing and steering the predicted concept
z;, which can be probed or tuned during the model’s generation process. Furthermore, by analyzing
the weights of the compression layer W, one can identify which concept is useful for the next token
prediction.

This approach shares similarities with intervention techniques in the mechanistic interpretability
literature, which modify the hidden state by adding a concept vector to the original hidden state
[57,49]. However, unlike intervention methods that directly manipulate the hidden state, our approach
treats the predicted concept as a separate unit of information by interleaving it in the hidden state.
This design allows the model to process the concept independently, leveraging the pretrained model’s
internal reasoning reflected in the prediction.

Training objective. The final training objective for CoCoMix combines the standard next token
prediction loss and the concept prediction term with a tunable coefficient A as follows:

T-1
Z - logf(xt+1 | hﬁta égt) +)\Econcept (at)- (4)

t=1
3 Experiments

We provide an empirical evaluation of CoCoMix by investigating the following questions:

* Can CoCoMix improve the performance of next token prediction in LLM pretraining? (Figure 2
and Figure 3)

* Does CoCoMix show improvement in weak-to-strong supervision setup compared to other knowl-
edge distillation methods? (Table 1 and Figure 4)

* Does CoCoMix introduce model interpretability and steerability? (Figure 5)
* How does each proposed component of CoCoMix contribute to the performance? (Figure 6)

Before answering each question, we outline the experimental protocol (more details in Appendix A).

Training setup. We use a pretrained open-source SAE that is trained on the 124M-sized GPT-2
[15], which has demonstrated strong effectiveness despite a somewhat small model size [8]. Here,
we consider training CoCoMix with three different numbers of active parameters, including 69M,
386M, and 1.38B (which is an academic-scale pretraining [1]), with a context length of 1024. For
the analysis and ablation study, we mainly conducted experiments on the 69M model. Note that
this activated parameter count includes those in the new layer (i.e., the concept predictor), whereas
for other baselines, we match the same number of active parameters by increasing the hidden state
dimension size d. CoCoMix utilizes fewer FLOPs than Pause token (as discussed in Section 3.3) but
more FLOPs than NTP, due to the interleaving of continuous concepts. We use the OpenWebText
dataset [37] as the pretraining corpus to use the same distribution used to train M ,,. All experiments
are conducted with 20B training tokens, except for the main experiment in Section 3.1, which uses
200B tokens.

15 A--—---- -o- NTP -o- NTP -o- NTP
z —+— CoCoMix (ours) > —+- CoCoMix (ours) 56—~ CoCoMix (ours) =~ 7/~
PR e e % -
Qo
g‘ ';::" § 544 ——————— Al
ek [8
S 8 3
s £ <
e b e g < B2t
g <
>
21.5% less tokens
Nt 50
1T T E
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Training tokens (B) Training tokens (B) Training tokens (B)
(a) Validation PPL (b) Average downstream task PPL. (c) Average downstream task Acc

Figure 2: CoCoMix vs. NTP performance at different training checkpoints. Each model contains
a total of 1.38B parameters. Each model is trained on the OpenWebText dataset. For CoCoMix, the
concepts are extracted from a 124M-sized model (10x smaller than the base model). The plots show
improvements in: (a) validation perplexity, (b) average perplexity on LAMBADA, WikiText-103,
and (c) average accuracy on HellaSwag, PIQA, SIQA, Arc-Easy, and WinoGrande.

NTP
CoCoMix (ours)

Perplexity

Perplexity

Perplexity
Accuracy (%)

0

69M 386M 1.38B 69M 386M 1.38B 69M 386M 1.38B 69M 386M 1.38B

(a) OpenWebText, PPL (|) (b) LAMBADA, PPL (}) (c) WikiText-103, PPL (}) (d) HellaSwag, Acc-n (1)

-0.5

[—

Accuracy (%
&
|
Accuracy (%)
Accuracy (%)
Accuracy (%)

60

40—

69M 386M 1.38B 386M

69M 386M 1.38B

69M

(e) PIQA, Acc (1) (f) SIQA, Acc (1) (g) Arc-Easy, Acc (1) (h) WinoGrande, Acc (1)

1.388

69M 386M 1.38B

Figure 3: CoCoMix vs. NTP performance at different model sizes. We consider various model
sizes, including 69M, 386M, and 1.38B parameters and train on 200B OpenWebText tokens. We
evaluate the models on OpenWebText validation perplexity and downstream datasets LAMBADA,
WikiText-103, HellaSwag, PIQA, SIQA, Arc-Easy, and WinoGrande.

Baselines. We consider the standard pretraining next token prediction (NTP) procedure, and the
commonly used distillation method, knowledge distillation (KD) [20], which is widely used in
pretraining [18, 41, 46]. We excluded KD baselines that require multiple models (i.e., more than a
single teacher model) to be trained [18]. For KD, we minimize the KL divergence between teacher
and student output while balancing the KL term with the NTP loss. Note that using synthetic datasets
for distillation [21, 52] is excluded due to inefficiency (needs to generate more than 20B tokens).

Evaluation setup. For evaluation, we consider the validation perplexity of the pretraining dataset
and 7 downstream tasks to benchmark commonsense reasoning and reading comprehension. This
includes LAMBADA [34], WikiText-103 [32], HellaSwag [56], PIQA [4], Social IQA (SIQA) [42],
ARC-easy [9], and WinoGrande [40] datasets. We also consider OpenWebMath [35] as a pretraining
dataset to demonstrate that concepts learned from a pretrained LLM can still be applied to CoCoMix,
even when the model was trained on a different corpus.

3.1 Main Results

In this section, we illustrate two core results: i) the comparison with NTP on a relatively large-scale
pretraining setup and ii) the comparison with KD baseline, especially on weak-to-strong supervision
scenarios where concepts extracted from a small model are used to guide a larger model.

Improving NTP with CoCoMix at scale. We first present the main result by applying CoCoMix
to the NTP. Here, we consider training NTP and CoCoMix on 200B tokens. As shown in Figure 3,

487 e

- NTP
z N z
3 3 47 ~+ CoCoMix (ours) ”:’ e %
£ S : 5
QO o 4l [4 % o
S <% 5
& % 2
] e A D /- pel
2 : 454 j 3
20+t 44— N 2
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Training tokens (B) Training tokens (B) Training tokens (B)
(a) Weak-to-strong: Avg. PPL (b) Weak-to-strong: Avg. Acc (c) Distribution shift: Math domain

Figure 4: CoCoMix vs. Knowledge Distillation (KD). For our weak-to-strong supervision setup, we
train a 386M model where the teacher of KD (or concept extraction for CoCoMix) is a 124M-sized
model: we report (a) average perplexity over OpenWebText, LAMABADA, and WikiText and (b)
average accuracy over HellaSwag, PIQA, SIQA, Arc-Easy, and WiniGrande dataset. For (c) a
distribution shift setup, we train all methods on OpenWebMath, a math specific pretraining corpus.

Table 1: CoCoMix vs. Next Token Prediction (NTP) vs. Knowledge Distillation (KD). We
report performance on the OpenWebText (OWT) training set, as well as downstream tasks, including
LAMBADA (LAMB), WikiText-103 (Wiki), HellaSwag (HellaS), PIQA, Social Interaction QA
(SIQA), Arc-Easy (Arc-E), and WinoGrande (WinoG). We train three different sizes of models
where 124M model is used as a teacher. All models are trained on 20B tokens sampled from the
OpenWebText dataset. The bold indicates the best result.

Method Total OWT LAMB Wiki HellaS PIQA SIQA Arc-E WinoG Avg Avg
etho Params PPL(|) PPL() PPL(}) Accn(?) Acc(?) Acc(?) Acc(?) Acc(?) | PPL{) Acc (1)
NTP 69M 25.3 107.6 52.3 27.4 59.4 36.6 39.7 50.7 61.8 42.7
KD 69M 252 99.3 51.0 27.4 59.8 36.2 39.8 50.7 58.5 42.8
CoCoMix 69M 24.7 99.1 50.9 27.6 59.5 372 39.3 51.0 58.2 429
NTP 386M 16.3 26.3 29.9 33.6 64.1 38.4 473 50.9 24.2 46.8
KD 386M 16.4 24.6 29.1 33.6 63.6 38.0 48.5 51.4 234 47.0
CoCoMix 386M 15.9 19.3 29.1 34.7 63.6 39.2 47.9 52.3 214 47.5
NTP 1.38B 14.3 16.6 25.0 38.1 66.1 38.9 50.5 50.0 18.6 48.7
KD 1.38B 14.2 16.6 24.9 374 66.7 39.0 50.1 523 18.5 49.1
CoCoMix 1.38B 13.9 154 249 384 66.9 39.5 50.8 53.0 18.1 49.7

CoCoMix consistently and significantly improves the performance of overall downstream tasks
on various model sizes. Our results also indicate that larger models (e.g., 386M and 1.38B) can
benefit from using concepts extracted from a smaller 124M model, showing effective weak-to-strong
supervision. Moreover, as shown in Figure 2, CoCoMix consistently improves the performance over
the NTP on a billion-scale model. For instance, CoCoMix achieves similar performance to NTP
while using 21.5% fewer tokens, demonstrating high sample efficiency. Finally, it is worth noting that
the performance gain of using CoCoMicx is increasing over the training steps, demonstrating strong
generalization performance.

Comparison with KD baseline. We also compare CoCoMix with KD baseline across multiple
scenarios, including (1) a stronger teacher model teaching a smaller student model; (2) weak-to-strong
supervision, where a weaker teacher teaches a larger student model; and (3) distribution shift, where
the student is trained on a corpus different from the teacher’s pretraining distribution. As shown in
Table 1, CoCoMix demonstrates improvements over KD in all considered model configurations. In
particular, CoCoMix shows significant performance gain in the weak-to-strong supervision setup,
e.g., improving average perplexity of 2.8 in 386M, while KD does not show great improvement. This
arises because a weaker teacher can introduce noisy or suboptimal knowledge, especially when the
student surpasses the teacher in capability [38]. This trend is also observable in Figure 4, where
models trained with KD fall behind standard training midway through training as the student outpaces
the teacher (especially in the distribution shift scenario). In contrast, CoCoMix selectively utilizes
useful concepts, resulting in a consistent performance gain.

3.2 Interpretability and Steerability of CoCoMix

Another core advantage of CoCoMicx is its interpretability and model steering. Specifically, as the
model is trained to predict concepts in its hidden state, we can analyze which concepts it focuses

Input Prompt: The best platform for buying tickets is the

No Steer Steer concept 23843: site address related Steer concept 15687: year/month related
g Generation: vernacular ticketing Generation: vernacular website, Generation: — by the end of the year -
L system,” said the official. “The Ticketmaster.com. The site is a great and the new platform by fans. The new
-E ticket prices are fixed and the resource for finding the best deals ticket- by a group of fans has been
o tickets are available at the same on tickets. known as the “ticket by ‘ticket — the
Q time." group
o
w Generation: iphone app. Generation: urchin-cheers.com. The Generation: Facebook page. It's a place
% online store has a new, fast-growing where you can buy tickets for free
o selection of premium tickets and then go to the next one. The
o
o

other option is to buy a ticket for a
month or two

Figure 5: Qualitative demonstration of the concept steering effect. CoCoMix and GPT2 models
are 350M and 124M parameter transformers, respectively, trained on the OpenWebText dataset. For
CoCoMix, we manipulate the predicted concept logit z, while for GPT2, we adjust the SAE concept
space c by increasing the activation of a specific concept index. This illustrates the impact of targeted
concept steering on the respective model outputs.

on based on the concept predictions. Furthermore, by amplifying the magnitude of the predicted
concept z;, one can control the output generation of the model. Following Templeton et al. [47], we
multiply z; of a desired concept element by constants ranging from -10 to 10. To verify whether this
steerability works as intended, we steer the activation of the same concept in the pretrained model’s
SAE latent space c¢ and confirm whether the output exhibits the corresponding concept. Here, we
use a 386M parameter model trained with CoCoMix, where the pretrained model is GPT-2. As
shown in Figure 5, when the concept related to “website address” is amplified, both models start
generating actual website addresses. This demonstrates that our model has successfully learned the
GPT-2 aligned concepts. More examples of steering can be found in Appendix B.3.

3.3 Analysis of CoCoMix’s effectiveness

In this section, we provide a detailed analysis of CoCoMix to validate the effect of each proposed
component. Unless otherwise specified, we use a 69M model and train on 20B tokens sampled from
the OpenWebText dataset across all methods throughout this section.

Effectiveness of the attribution score. We first analyze whether the attribution score effectively
extracts important concepts. To demonstrate this, we train CoCoMix using the activation value c;
for concept extraction, i.e., Econcept(ct) in Equation 2, instead of the attribution score a;. Remark
that the activation value also well reflects the importance of the concept [5]. As shown in Figure 6a,
using attribution scores significantly improves performance, improving sample efficiency by 17.5%
compared to activation value based selection. We believe it will be an interesting future direction
to explore other selection criteria for improving CoCoMix’s performance or removing undesirable
concepts to reduce bias, e.g., selectively removing unsafe concepts for safe LLM pretraining.

Comparison with direct hidden state predictions. To evaluate the importance of predicting the
concept extracted from SAE, we compare CoCoMix with direct hidden state prediction strategies
(i.e., predict the full hidden state without projecting into the concept space). To have a comparison
under the same architecture as CoCoMix, we replace the concept prediction head M with a two-layer
multilayer perceptron (MLP), denoted g(-), which predicts the pretrained LLM’s hidden state h°°®
directly from the hidden state of the model h. The predicted representation, g(h), is then compressed
into a continuous embedding for insertion to have the same architecture as CoCoMix. Here, we
use continuous loss including, ¢1, /2, and the cosine distance (e.g., |h®°® — g(h)|3 for ¢3) to predict
the hidden state. As shown in Figure 6b, direct hidden state prediction leads to a performance
drop. We conjecture this to be due to SAE’s ability to decompose the latent into semantically
meaningful concepts while predicting all hidden states may include noisy components, emphasizing
the effectiveness of our method.

Compression layer weight analysis. Now, we analyze the weight of the compression layer W in
Equation 3 to show how CoCoMicx utilize the predicted concept. To this end, we visualize the 5 norm
of each concept’s weights of 386M CoCoMix: for the weight matrix W € R?*C where d is the

hidden dimension and C is the number of concepts, the norm is defined as: [|[W. .||z = 4/ Zle w2 ..
As shown in Figure 6c¢, we found that a portion of concept weights are near zero, e.g., 5.8% has a norm

2000

29 %X =~ -o- Activation 40 Af*K ~ = o Direct hidden pred: £,
z 1 Attribution (Act * Grad) z] 3& ~o- Direct hidden pred: £,
3 8 36T-% Direct hidden pred: cos 1500
g g] \ Concept pred (ours) L;?
o a 1 = o
B 3 1000
5 5 7 g
g £ 1 \\“‘.\,_‘ N
3 2 t-----Tego----F 32 500
s s 1 *
——— 24— o S -
5 10 15 20 0 5 10 15 20 0 0.5 1.0 1.5 2.0
Training tokens (B) Training tokens (B) Weight norm

(a) Effectiveness of the attribution (b) Concept vs. direct hidden state (c) Compression layer’s weight

36 -tk o NTP (53M) 36 -4~ ~+- Adding 32*——’\ ————— o~ NTP + Pause
z e !?)((::‘)"CéPt Prﬁd ((6593;4)) Z Mixing (interleaving) z 1 2 —o- KD + Pause
x] ii) Concept mix X x i
3 4o -foae i + ii) CoCoMix (69M) 2 4 Soeolliid(Ours)
g & &
< < :
g K K}
§ ml eI
s s s |
24—y 24 ey 24 ey
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Training tokens (B) Training tokens (B) Training tokens (B)
(d) Component analysis (e) Concept conditioning method (f) Comparison with Pause Token

Figure 6: Analysis of CoCoMix. (a) Effectiveness of the attribution score for selecting concepts. (b)
Comparison between concept prediction and direct hidden state prediction (i.e., predicting the hidden
state with continuous loss rather than discretizing the hidden state with SAE). (c) The sparsity in the
compression weight. (d) Component analysis by analyzing the contribution of concept prediction and
mixing. (e) Design choices for concept conditioning by comparing adding the concept vector to the
original hidden state and mixing (interleaving the concept vector with token hidden representation).
(f) Comparison between CoCoMix and the Pause token (i.e., adding learnable tokens).

less than le-2. This indicates that CoCoMix ignores these concepts when compressing them into a
continuous concept if it is not useful. We conjecture this enabled CoCoMix for strong weak-to-strong
supervision as it learned to ignore ineffective concepts extracted from a weak model.

Component Analysis. We analyze the contributions of each component of our method: (a) concept
prediction Equation 2, and (b) concept insertion Equation 4. The results in Figure 6d demonstrate
that both components are critical for performance improvement. Specifically, applying the concept
prediction loss alone yields a modest reduction in perplexity. However, incorporating concept
insertion alongside prediction enhances the effectiveness of the loss, resulting in further performance
gains. This highlights the role of insertion in enabling the model to leverage the pretrained LLM’s
latent reasoning effectively. Notably, while concept insertion increases parameter count, it has a
limited impact on performance when used alone, emphasizing the critical role of concept prediction.

Continuous concept mixing method. We explored two methods for introducing the continuous
concept ¢; into the model’s hidden state h;, referred to as concept conditioning. The first method,
insertion, insert the continuous concept in front of the token embedding, thus enabling the model
to have a mixed input of the token and concept. The other option is intervention, which directly
modifies the hidden state by adding the concept vector, i.e., h; <— h; + ¢;. As illustrated in Figure 6e,
both methods enhance pretraining performance (compared to NTP in Figure 6d), highlighting the
importance of concept conditioning, where the insertion method performed better. By introducing a
distinct concept vector, the insertion method enables the model to explicitly recognize and effectively
utilize concepts during generation, enhancing its overall performance.

CoCoMix vs. pause tokens. Furthermore, we consider an additional baseline that jointly uses pause
token [17]. Specifically, the pause token uses an additional learnable token that is inserted into the
token embedding, enabling the LLM to think more before predicting the next token, which is similar
to our continuous concept insertion. To this end, we insert the pause token for every input token on the
same hidden state layer as CoCoMix to ensure comparable computation. Moreover, we also consider
training the pause token with KD. As shown in Figure 6f, CoCoMix consistently outperforms the
pause token, indicating our inserted (or interleaved) continuous concept indeed consists of useful
information to improve the performance.

Computational cost analysis. One possible concern Table 2: Computational cost. Training
of CoCoMix is the increased computation due to the FLOPs (x10'®) and validation perplexity (Val.
expanded token sequence in upper layers. To this PPL) comparison of NTP, Pause token, and
end, we report the total FLOPs required for train- CoCoMix, using a 69M model.

ing CoCoMix and baselines, including the NTP and

the Pause token. As shown in Table 2, CoCoMix Method Train Tokens FLOPs Val. PPL
introduces a modest FLOPs increase compared to NTP 20B 2.88 253
NTP, but remains more efficient than the Pause token Pause token 20B 3.48 25.1
while achieving better perplexity in both low-scale ~C°COMix 208 3.37 247
and large-scale settings. Furthermore, it is worth not- NTP 200B 28.83 227
ing that CoCoMix with 140.7B tokens matches the =~ CoCOMix 141B 23.69 227

perplexity of NTP trained with 200B tokens, using CoCoMix 2008 33.68 220

17.8% fewer FLOPs, highlighting its improved efficiency—performance trade-off.

4 Related Work

Beyond token-level guidance for language modeling. While next token prediction (NTP) remains
the standard paradigm, recent works explore guidance beyond language tokens. For instance, some
methods explore a better target, such as leveraging multi-token predictions to capture long context
dependencies [16, 11] or predicting sequence embedding [27]. Additionally, methods explore
new types of inputs, e.g., using latents [19] or self-generated thought as inputs [55], which have
shown improving reasoning capabilities. Only recently, concept-level modeling using local encoder-
decoder architectures has also been explored to represent a language at a higher abstraction level
[24]. Other methods add extra tokens in the input space to increase computation at inference time
[33, 48, 17, 23]. In contrast, we propose a pretraining approach that integrates NTP with continuous
concepts, connecting high-level semantics with fine-grained token guidance.

Sparse Autoencoders (SAEs). SAEs extend the autoencoder by enforcing sparsity constraints in the
latent space [26]. The features learned by SAEs are often interpretable and disentangled, making them
useful across various domains, including language modeling [5]. Additionally, SAEs have gained
attention in mechanistic interpretability due to their ability to capture coherent semantic concepts
[31]. This property has enabled practical advancements in identifying and manipulating semantic
concepts and facilitating steering for controlled model outputs [28]. Among SAE variants, TopK
SAEs [30] enforce explicit sparsity using a TopK activation function, demonstrating effectiveness
even for large models [15]. In this work, we leverage SAE and, to the best of our knowledge, are the
first to apply it to LLM pretraining, achieving strong performance while enhancing the interpretability
and controllability of the trained model.

Knowledge distillation (KD). Our method can also be related to KD, i.e., transfers the expertise
of a teacher model to a student model to enhance performance [20, 54], as CoCoMix extracts high-
level semantic features from a pretrained model. Recently, KD for LLMs has garnered increasing
attention, leveraging knowledge from a teacher to improve the generative and encoding capabilities
of a student [41, 22]. Especially, applying KD to LLM pretraining remains challenging due to the
massive token scales (billions to trillions), forcing most current methods to resort to naive token-level
probability matching [46, 18]. Additionally, while pretrained models contain a vast amount of learned
information and are thus beneficial to use, reusing knowledge from smaller teacher models remains
challenging [7]. In this work, we show CoCoMix can even leverage the concept extracted from small
models to train a large model showing weak-to-strong supervision.

5 Conclusion

We propose CoCoMix, a new LLM pretraining framework that augments next token prediction with
continuous concepts. By leveraging concepts extracted from a pretrained SAE as targets, our model
predicts both the next token and the associated concept. Predicted concepts are then compressed
into a continuous concept vector, which is then mixed into the hidden state. This approach enhances
interpretability and controllability by enabling direct probing of the distilled concepts. Experimental
results show that CoCoMix consistently improves performance across benchmarks, particularly in
challenging generalization scenarios such as weak-to-strong supervision.

References

[1] Z. Allen-Zhu. Physics of language models: Part 4.1, architecture design and the magic of canon
layers, 2025.

[2] G. Bachmann and V. Nagarajan. The pitfalls of next-token prediction. In International
Conference on Machine Learning, 2024.

[3] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K.-R. Miiller. How to
explain individual classification decisions. The Journal of Machine Learning Research, 2010.

[4] Y. Bisk, R. Zellers, J. Gao, Y. Choi, et al. Piga: Reasoning about physical commonsense in
natural language. In AAAI Conference on Artificial Intelligence, 2020.

[5] T.Bricken, A. Templeton, J. Batson, B. Chen, A. Jermyn, T. Conerly, N. Turner, C. Anil, C. Deni-
son, A. Askell, R. Lasenby, Y. Wu, S. Kravec, N. Schiefer, T. Maxwell, N. Joseph, Z. Hatfield-
Dodds, A. Tamkin, K. Nguyen, B. McLean, J. E. Burke, T. Hume, S. Carter, T. Henighan, and
C. Olah. Towards monosemanticity: Decomposing language models with dictionary learn-
ing. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-
features/index.html.

[6] T.Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. In Advances in Neural
Information Processing Systems, 2020.

[7] C. Burns, P. Izmailov, J. H. Kirchner, B. Baker, L. Gao, L. Aschenbrenner, Y. Chen, A. Ecoffet,
M. Joglekar, J. Leike, et al. Weak-to-strong generalization: Eliciting strong capabilities with
weak supervision. arXiv preprint arXiv:2312.09390, 2023.

[8] M. Chaudhary and A. Geiger. Evaluating open-source sparse autoencoders on disentangling
factual knowledge in gpt-2 small. arXiv preprint arXiv:2409.04478, 2024.

[9] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think
you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

[10] H. Cunningham, A. Ewart, L. Riggs, R. Huben, and L. Sharkey. Sparse autoencoders find highly
interpretable features in language models. arXiv preprint arXiv:2309.08600, 2023.

[11] DeepSeek-Al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

[12] Y. Deng, K. Prasad, R. Fernandez, P. Smolensky, V. Chaudhary, and S. Shieber. Implicit chain
of thought reasoning via knowledge distillation. arXiv preprint arXiv:2311.01460, 2023.

[13] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
A. Yang, A. Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[14] D. Gao, L. Ji, L. Zhou, K. Q. Lin, J. Chen, Z. Fan, and M. Z. Shou. Assistgpt: A general multi-
modal assistant that can plan, execute, inspect, and learn. arXiv preprint arXiv:2306.08640,
2023.

[15] L. Gao, T. D. la Tour, H. Tillman, G. Goh, R. Troll, A. Radford, I. Sutskever, J. Leike, and
J. Wu. Scaling and evaluating sparse autoencoders. arXiv preprint arXiv:2406.04093, 2024.

[16] F. Gloeckle, B. Y. Idrissi, B. Roziere, D. Lopez-Paz, and G. Synnaeve. Better & faster large
language models via multi-token prediction. In International Conference on Machine Learning,
2024.

[17] S. Goyal, Z. Ji, A. S. Rawat, A. K. Menon, S. Kumar, and V. Nagarajan. Think before you
speak: Training language models with pause tokens. In International Conference on Learning
Representations, 2024.

[18] Y. Gu, H. Zhou, F. Meng, J. Zhou, and M. Huang. Miniplm: Knowledge distillation for
pre-training language models. arXiv preprint arXiv:2410.17215, 2024.

10

[19] S. Hao, S. Sukhbaatar, D. Su, X. Li, Z. Hu, J. Weston, and Y. Tian. Training large language
models to reason in a continuous latent space. arXiv preprint arXiv:2412.06769, 2024.

[20] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[21] Y. Kim and A. M. Rush. Sequence-level knowledge distillation. In Annual Conference of the
Association for Computational Linguistics, 2016.

[22] J. Ko, S. Kim, T. Chen, and S.-Y. Yun. Distillm: Towards streamlined distillation for large
language models. In International Conference on Machine Learning, 2024.

[23] J. Lanchantin, S. Toshniwal, J. Weston, S. Sukhbaatar, et al. Learning to reason and memorize
with self-notes. Advances in Neural Information Processing Systems, 36, 2024.

[24] LCM, L. Barrault, P.-A. Duquenne, M. Elbayad, A. Kozhevnikov, B. Alastruey, P. Andrews,
M. Coria, G. Couairon, M. R. Costa-jussa, et al. Large concept models: Language modeling in
a sentence representation space. arXiv preprint arXiv:2412.08821, 2024.

[25] Y. LeCun. A path towards autonomous machine intelligence. Open Review, 2022.

[26] H. Lee, A. Battle, R. Raina, and A. Ng. Efficient sparse coding algorithms. In Advances in
Neural Information Processing Systems, 2006.

[27] H. Lee, D. Kim, J. Jun, S. Joo, J. Jang, K.-W. On, and M. Seo. Semiparametric token-sequence
co-supervision. In Annual Conference of the Association for Computational Linguistics, 2024.

[28] T. Lieberum, S. Rajamanoharan, A. Conmy, L. Smith, N. Sonnerat, V. Varma, J. Kramdr,
A. Dragan, R. Shah, and N. Nanda. Gemma scope: Open sparse autoencoders everywhere all at
once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.

[29] I. Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

[30] A.Makhzani and B. Frey. K-sparse autoencoders. In International Conference on Learning
Representations, 2014.

[31] S. Marks, C. Rager, E. J. Michaud, Y. Belinkov, D. Bau, and A. Mueller. Sparse feature
circuits: Discovering and editing interpretable causal graphs in language models. arXiv preprint
arXiv:2403.19647, 2024.

[32] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. In Interna-
tional Conference on Learning Representations, 2017.

[33] M. Nye, A. J. Andreassen, G. Gur-Ari, H. Michalewski, J. Austin, D. Bieber, D. Dohan,
A. Lewkowycz, M. Bosma, D. Luan, et al. Show your work: Scratchpads for intermediate
computation with language models. arXiv preprint arXiv:2112.00114, 2021.

[34] D. Paperno, G. Kruszewski, A. Lazaridou, Q. N. Pham, R. Bernardi, S. Pezzelle, M. Baroni,
G. Boleda, and R. Fernandez. The lambada dataset: Word prediction requiring a broad discourse
context. In Annual Conference of the Association for Computational Linguistics, 2016.

[35] K. Paster, M. D. Santos, Z. Azerbayeyv, and J. Ba. Openwebmath: An open dataset of high-quality
mathematical web text. arXiv preprint arXiv:2310.06786, 2023.

[36] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding
by generative pre-training. 2018.

[37] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are
unsupervised multitask learners. 2019.

[38] A.S.Rawat, V. Sadhanala, A. Rostamizadeh, A. Chakrabarti, W. Jitkrittum, V. Feinberg, S. Kim,
H. Harutyunyan, N. Saunshi, Z. Nado, et al. A little help goes a long way: Efficient llm training
by leveraging small Ims. arXiv preprint arXiv:2410.18779, 2024.

11

[39] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, R. Sauvestre,
T. Remez, et al. Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

[40] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
schema challenge at scale. In AAAI Conference on Artificial Intelligence, 2020.

[41] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter. In Advances in Neural Information Processing Systems, 2019.

[42] M. Sap, H. Rashkin, D. Chen, R. Le Bras, and Y. Choi. Social IQa: Commonsense reasoning
about social interactions. In Conference on Empirical Methods in Natural Language Processing,
2019.

[43] A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje. Not just a black box: Learning
important features through propagating activation differences. In International Conference on
Machine Learning, 2016.

[44] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[45] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In International
Conference on Machine Learning, 2017.

[46] G. Team. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

[47] A. Templeton, T. Conerly, J. Marcus, J. Lindsey, T. Bricken, B. Chen, A. Pearce, C. Citro,
E. Ameisen, A. Jones, H. Cunningham, N. L. Turner, C. McDougall, M. MacDiarmid,
C. D. Freeman, T. R. Sumers, E. Rees, J. Batson, A. Jermyn, S. Carter, C. Olah, and
T. Henighan. Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

[48] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-
thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824-24837, 2022.

[49] Z. Wu, A. Arora, Z. Wang, A. Geiger, D. Jurafsky, C. D. Manning, and C. Potts. Reft:
Representation finetuning for language models. In Advances in Neural Information Processing
Systems, 2024.

[50] D. Xuan-Quy, L. Ngoc-Bich, P. Xuan-Dung, N. Bac-Bien, and V. The-Duy. Evaluation of
chatgpt and microsoft bing ai chat performances on physics exams of vietnamese national high
school graduation examination. arXiv preprint arXiv:2306.04538, 2023.

[51] S. Yang, E. Gribovskaya, N. Kassner, M. Geva, and S. Riedel. Do large language models latently
perform multi-hop reasoning? In Annual Conference of the Association for Computational
Linguistics, 2024.

[52] P. Yu, J. Xu, J. Weston, and I. Kulikov. Distilling system 2 into system 1. arXiv preprint
arXiv:2407.06023, 2024.

[53] Z. Yun, Y. Chen, B. A. Olshausen, and Y. LeCun. Transformer visualization via dictionary
learning: contextualized embedding as a linear superposition of transformer factors. arXiv
preprint arXiv:2103.15949, 2021.

[54] S.Zagoruyko and N. Komodakis. Paying more attention to attention: Improving the performance
of convolutional neural networks via attention transfer. In International Conference on Learning
Representations, 2017.

[55] E.Zelikman, G. Harik, Y. Shao, V. Jayasiri, N. Haber, and N. D. Goodman. Quiet-star: Language
models can teach themselves to think before speaking. In Conference on Language Modeling,
2024.

12

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

[56] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine really
finish your sentence? In Annual Conference of the Association for Computational Linguistics,
2019.

[57] A.Zou, L. Phan, S. Chen, J. Campbell, P. Guo, R. Ren, A. Pan, X. Yin, M. Mazeika, A.-K.
Dombrowski, et al. Representation engineering: A top-down approach to ai transparency. arXiv
preprint arXiv:2310.01405, 2023.

13

A Experimental Details

Architecture details. Our method and baseline both utilize the GPT-2-based Transformer architecture
and tokenizer [37], with a context length of 1024. We consider three model sizes, defined by the
number of activated parameters: 69M, 386M, and 1.38B. For CoCoMix, the hidden state dimensions
d are 512, 1024, and 2028, with 8, 24, and 24 layers, respectively. The number of attention heads is
set to 8, 16, and 16 for the three configurations. Baseline models are configured to match the number
of activated parameters by employing the same number of layers and attention heads, with hidden
state dimensions of 624, 1072, and 2096, respectively. We leverage an open-source pretrained TopK
Sparse Autoencoder (SAE) [15] for concept extraction, where Kconcept 18 set to 32 and the concept
activation size is 32,768. Consequently, our models introduce an additional (C' + Kconcept) X d
activated parameters on top of the base Transformer parameters. The GPT-2 model (a teacher model
for KD and a concept extraction model for CoCoMix) has 12 layers, a hidden dimension size of
768, and 124M parameters. The concept extraction layer L., is configured as the 6th middle layer
of GPT-2 for all model sizes. For CoCoMix, the concept prediction is done at the 4th layer for the
69M model and the 6th layer for the larger 386M and 1.38B models. The reported training FLOPs
in Table 2 are based on the base model, and show low FLOPs thanks to the high sparsity of the
compression layer (only activated with a concept number of 32), which introduces a small cost.

Training details. We mainly followed the training details outlined in [6]. For the main results
presented in Section 2, models were trained on 200B tokens over approximately 382K training steps,
while other experiments were conducted on 20B tokens. We used OpenWebText as the training dataset
to match the same training corpus as GPT-2. The learning rate schedule included a warm-up phase
over the first 1/300 of the total training steps, followed by a cosine decay to 10% of the maximum
learning rate at the end of training. The maximum learning rates were set to 6e-4, 3e-4, and 2e-4 for
the 69M, 386M, and 1.38B models, respectively. The batch sizes were configured to 0.5M, 0.5M,
and 1M tokens for the three model sizes. A weight decay of 0.1 was applied across all configurations,
and we utilized the AdamW optimizer [29] with 5; = 0.9 and 2 = 0.95. For training CoCoMikx,
the concept prediction loss Equation 4 was scaled by a hyperparameter A = 0.1, and K,¢y; Was
set to 4. Here, as the next token prediction (NTP) loss is our primary objective, we chose A that
is smaller than 1 to ensure that the concept prediction loss—which has a similar scale—would not
dominate but instead serve as an auxiliary objective. We found that this value empirically worked
well with our small-scale model (69M), and thus we consistently used 0.1 throughout all experiments.
While further tuning could potentially yield better results, this initial choice was sufficient to clearly
demonstrate our method’s effectiveness. For training CoCoMix under a 69M transformer for 20B
tokens, we have used 16 A100 GPUs for less than 8 hours.

For the KD baseline, we employed the vanilla KD loss, where the output probabilities of the
teacher model M., and the student model M were matched using the Kullback-Leibler (KL)
divergence. Specifically, given an input x, the KD loss is defined as — log M(z¢41]x) + Axp -
KL(Meon(-|x)||M(+]%x)), where Axkp = 0.1 consistently demonstrated strong performance.

14

\ o NTP
W ~+~ CoCoMix (ours)

Validation Perplexity

Perplexity

60) By
Bl Setenrs, 274
o " Tso o150 200 o 5o oo S0 200 o " TTso o 150 200 o Tso oo S0 200
Training tokens (B) Training tokens (B) Training tokens (B) Training tokens (B)
(a) OpenWebText, PPL (|) (b) LAMBADA, PPL (}) (c) WikiText-103, PPL (|) (d) HellaSwag, Acc-n ()

6l

Accuracy (%)

Accuracy (%)

Accuracy (%)

T T T T
50 100 150 200

Training tokens (B)

(e) PIQA, Acc (1)

T T T
100 150 200

0
Training tokens (B)

(f) SIQA, Acc (1)

T T T T
0 50 100 150 200

Training tokens (B)

(g) Arc-Easy, Acc (1)

T T T
4 50 100 150
Training tokens (B)

(h) WinoGrande, Acc (1)

Figure 7: CoCoMix vs. NTP performance at different training checkpoints on 69M parameter
model. Each model is trained on the 200B tokens sampled from the OpenWebText dataset. The
plot shows the result of (a) OpenWebText, (b) LAMBADA, (c) WikiText-103, (d) HellaSwag, (e)
PIQA, (f) SIQA, (g) Arc-Easy, and (h) WinoGrande datasets. We use the concepts extracted from a
124M-sized model for training CoCoMix.

Validation Perplexity

Perplexity

Accuracy norm (%)

T
200

T T T T
50 100 150 200

T T T T
50 100 150 200

5‘0 I60 I gO 200 Sb I 60 IS‘O
Training tokens (B) Training tokens (B) Training tokens (B) Training tokens (B)
(a) OpenWebText, PPL (1) (b) LAMBADA, PPL (}) (c) WikiText-103, PPL () (d) HellaSwag, Acc-n (1)

S
&
|

AN

,;‘[, ,,,,,,,,,,,,,,,,,,

Accuracy (%)

@
ES
I

41

40

394 -

Accuracy (%)

Accuracy (%)

13 381
Il
PRUS. \ \ \ E \ \ \ \ “ \ \ \ \ ; : : ;
50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200
Training tokens (B) Training tokens (B) Training tokens (B) Training tokens (B)
(e) PIQA, Acc (1) (f) SIQA, Acc (1) (g) Arc-Easy, Acc (1) (h) WinoGrande, Acc (1)

Figure 8: CoCoMix vs. NTP performance at different training checkpoints on 368M parameter
model. Each model is trained on the 200B tokens sampled from the OpenWebText dataset. The
plot shows the result of (a) OpenWebText, (b) LAMBADA, (c) WikiText-103, (d) HellaSwag, (e)
PIQA, (f) SIQA, (g) Arc-Easy, and (h) WinoGrande datasets. We use the concepts extracted from a
124M-sized model for training CoCoMix.

B Additional Results

B.1 Detailed Performance During Training

In this section, we present the performance tracking during training on 200B tokens, including
validation perplexity and the perplexity and accuracy of various downstream tasks, including LAM-
BADA, WikiText-103, HellaSwag, PIQA, SIQA, Arc-Easy, and WinoGrande datasets. As shown
in Figure 7, Figure 8, and Figure 9, we compare CoCoMix with the next token prediction (NTP)
across different active parameter sizes: 69M, 386M, and 1.38B. In most of the graphs, CoCoMix
consistently demonstrates performance gains. Notably, our results show that CoCoMix achieves
stable improvements in perplexity across all tasks. Furthermore, CoCoMix exhibits sample efficiency;

15

- o NTP O

~+~ CoCoMix (ours) 1

> t
T
,,,,,,,,,,,,, 3 \
s
N\ s AN
a w

\ OKX
T A S
“,,.X‘;}:,fgﬂm

.o

Validation Perplexity
Perplexity
Accuracy norm (%)

T T T T T T T T 18 T T T T T T T T
50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200
Training tokens (B) Training tokens (B) Training tokens (B) Training tokens (B)

(a) OpenWebText, PPL (|) (b) LAMBADA, PPL (}) (c) WikiText-103, PPL () (d) HellaSwag, Acc-n (1)

[e e
Ao mm oo

ASeE .
& 704+-------- D & N FNJ/L‘;}:\X\ S
> ot T ol .)i \;,,,;IL”,, 7
o Yika -
fal AT i
f - T8
66y : : : : : : : 4 : : : : 54 : : : :
50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200
Training tokens (B) Training tokens (B) Training tokens (B) Training tokens (B)
(e) PIQA, Acc (1) (f) SIQA, Acc (1) (g) Arc-Easy, Acc (1) (h) WinoGrande, Acc (1)

Figure 9: CoCoMix vs. NTP performance at different training checkpoints on 1.38B parameter
model. Each model is trained on the 200B tokens sampled from the OpenWebText dataset. The
plot shows the result of (a) OpenWebText, (b) LAMBADA, (c) WikiText-103, (d) HellaSwag, (e)
PIQA, (f) SIQA, (g) Arc-Easy, and (h) WinoGrande datasets. We use the concepts extracted from a
124M-sized model for training CoCoMix.

Table 3: Comparison of CoCoMix with ablation baselines. We report validation perplexity on
OpenWebText using a 69M-parameter Transformer model.

Method Validation PPL
NTP (token-only) 25.3
(i) Interleave same token twice 25.1
(ii) Insert concept every T' = 4 steps 25.0
(iii) Concept-only (no token hidden states) 25.1
CoCoMix (Ours) 24.7

for instance, in the 1.38B model, CoCoMix reaches the same OpenWebText validation perplexity as
NTP while requiring approximately 43B fewer tokens (a 21.5% improvement in token efficiency).

B.2 More Comparison with Additional Baselines

To further demonstrate the effectiveness of CoCoMix, we consider three additional baselines. Specifi-
cally, we compare with: (i) duplicating each token hidden state, resulting in an interleaved sequence

of (hy,hy,he, hy, -+ hy, hy); (ii) interleaving continuous concepts every T steps instead of at
every time step, yielding (hy, -+ by, &r,hpyq, -+ hop, Cor, -+ -); where we use T' = 4 and (iii)
using only continuous concepts without token hidden states, i.e., (¢1, €2, -, €¢).

This comparison isolates key components of CoCoMix and highlights their contributions to overall
performance. We present the result in Table 3. First, duplicating token hidden states to match the
sequence length of CoCoMix yields worse performance despite higher computational cost (it is worth
noting that the copied baseline increases the forward GFLOPs even higher than CoCoMix, 164.46
— 169.52 for computing 1024 tokens), indicating that gains are not solely due to sequence length.
Second, reducing the interleaving frequency of concept vectors leads to performance degradation,
suggesting that frequent integration of semantic signals is crucial. Lastly, a model using only
continuous concepts outperforms token-only models but still underperforms CoCoMix, confirming
that the synergy between token-level and concept-level representations is essential for optimal
effectiveness.

16

B.3 Additional Steerability Results

Input Prompt: The best platform for buying tickets is the

No Steer Steer concept 12783: $ dollar related Steer concept 19193: Phone related
E Generation: vernacular ticketing Generation: vernacular website, which Generation: iphone.The iPhone is a
L system,” said the official. “The is a great resource for finding out great way to buy tickets to the game.
-g ticket prices are fixed and the about the event. The event is free to It is easy to use, and it is very
o tickets are available at the same attend, but you will need to pay for fast. You can buy a ticket to a game,
g time. " your ticket. The cost is $25 for pay for
w Generation: iphone app. Generation: $10.60 price. The price Generation: iphone. The iPhone is a
g is $10 for a ticket. I bought a $5.58 great way to get around the iPhone.
~ ticket for $1. It's a good way for people to buy a
& The price of a good ticket is a lot smartphone. The iPhone has a lot of
° more than a features, but it's not

(a) Main figure prompt, ‘$ dollar’ and ‘Phone’ concept

Input Prompt: Latent concept modeling is a

No Steer Steer concept 15687: year/month related Steer concept 19193: Phone related
-
5 Generation: technique that allows you Generation: way to help the community Generation: powerful way to make the
L to model a complex system in a way by the end of the year. most of the data.The data is stored
E that is easy to understand and easy in a relational database, and the
o for the user to manipulate. model is then used to create a model
g of a particular type of data
w Generation: very important part of the Generation: good idea. It's a way of Generation: great way to get started
% design process.The first step is to doing a series of a month and then with your Android device. The first
o~ create a model that is easy to use you can go to the next level and you thing you need to do is install the
5 and easy for the user to understand. don't have to worry about the other Android SDK. The SDK is located in
° thing. You can do a two-year-old your computer.

(b) New prompt, ‘year/month’ and ‘Phone’ concept

Input Prompt: Latent concept modeling is a

No Steer Steer concept 6781: politic/law related Steer concept 8984: aggressive tone
-
5 Generation: technique that allows you Generation: high-level policy: The Generation: thing? I'm not sure what is
L to model a complex system in a way White House does not have a policy on going on here.
-é that is easy to understand and easy <REMOVED>'s plans. The White house
o for the user to manipulate. said that <REMOVED> and his team had
g not discussed the matter with
w Generation: very important part of the Generation: common practice in the Generation: thing of the past. And
ﬁ design process.The first step is to world of computer science. The new that's what we're talking about here.
o~ create a model that is easy to use law, which was introduced in 2010, A concept?
E and easy for the user to understand. requires that all data in public use

be treated as such.
(c) New prompt, ‘Politic/law’ and ‘aggressive tone’ concept

Figure 10: More qualitative demonstration of the concept steering effect. CoCoMix and GPT2
models are 350M and 124M parameter transformers, respectively. For CoCoMix, we manipulate the
predicted logit z, while for GPT2, we adjust the SAE concept space c by increasing the activation of
a specific concept index

To further analyze the steerability enabled by CoCoMix, we conducted experiments using both the
same prompt as in the main figure and a new prompt (in Figure 10). For consistency, we first applied
steering on additional concepts identified during our analysis—*“$ dollar” and “Phone”—using
the same prompt as in Figure 5. These experiments confirmed that the model could effectively
modulate its output based on these newly identified concepts, producing coherent and concept-aligned
generations. Next, to verify whether the identified concepts generalize to different contexts, we
experimented with a new prompt: “Latent concept modeling is a” and steered the model using
the previously identified concepts “month/year” and “Phone.” The results showed that the model
successfully reproduced outputs aligned with these concepts, further supporting the robustness of
our method. Additionally, we explored whether new concepts could be identified and steered using
the same prompt. In this case, we identified two new concepts: “politics/law” and “aggressive
tone.” Steering the model with these new concepts demonstrated that the outputs could be effectively
controlled to exhibit characteristics aligned with the corresponding concepts. These findings further
highlight the flexibility and interpretability of our approach.

17

C Future Work and Societal Impact

Societal impact. We introduce a novel LLM pretraining framework that augments continuous
concepts for the next token prediction. This framework not only improves the performance but
also enhances the interpretability and controllability of the LLM. By enabling direct probing and
analyzing the CoCoMix’s concept space, one can achieve transparency in understanding and guiding
model behavior. Additionally, the framework offers the potential to selectively exclude harmful or
undesirable concepts during LLM pretraining, contributing to the development of more responsible
and ethical Al systems. We believe this research provides new perspectives on language modeling
through enhanced interpretability.

Future work and limitations. Several recent approaches, including ours, leverage additional
compute to support more advanced forms of reasoning—such as test-time optimization or latent
thinking via pause tokens. While this often leads to improved performance, it naturally increases
computational cost. As shown in Section 3.3, CoCoMix achieves favorable compute efficiency,
demonstrating stronger performance per FLOP compared to prior latent thinking methods. This
opens up an interesting direction for future work: designing more informative and structured inputs
that better utilize the compute budget of the Transformer to improve the performance. Also, future
work could explore learning continuous concepts during pretraining without the need for distillation.

18

	Introduction
	CoCoMix: Continuous Concept Mixing
	Prelim: Problem Setup and Sparse Autoencoder
	Continuous Concept Mixing

	Experiments
	Main Results
	Interpretability and Steerability of CoCoMix
	Analysis of CoCoMix's effectiveness

	Related Work
	Conclusion
	Experimental Details
	Additional Results
	Detailed Performance During Training
	More Comparison with Additional Baselines
	Additional Steerability Results

	Future Work and Societal Impact

